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Synopsis. We estimate a neural network's ability to generalize from ex­
amples using ideas from statistical mechanics. We discuss the connection 
between this approach and other powerful concepts from mathematical 
statistics, computer science, and information theory that are useful in ex­
plaining the performance of such machines. For the simplest network, the 
perceptron, we introduce a variety of learning problems that can be treated 
exactly by the replica method of statistical physics. 

5.1 Introduction 

Neural networks learn from examples. This statement is obviously true for 

the brain, but artificial networks also adapt their "synaptic" weights to a 

set of examples. After the learning phase, the system has adopted some 
ability to generalize; it can make predictions on inputs which it has not 

seen before; it has learned a rule. 

To what extent is it possible to understand learning from examples by 

mathematical models and their solutions? It is this question that we em­

phasize in this chapter. We introduce simple models and discuss their prop­

erties combining methods from statistical mechanics, computer science, and 

mathematics. 

The simplest model for a neural network is the perceptron. It maps an 

N-dimensional input vector e to a binary variable (1' E {+1, -I}, and the 

function is given by an N-dimensional weight vector w: 

(1' = sign (w· e) . (5.1) 

Motivated by real neurons, the components of w may be called synaptic 

weights; i. e., w( i) is a measure of the strength of the influence of the neuron 

signal e(i) to the output neuron (1'. 
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For a given w this function separates the input space by a hyperplane 

into two parts, w . e > ° and w . e < 0, and the hyperplane is normal to 
w. But also for a given input e, the space of weights w is divided into two 

parts with different outputs 0'. Equation (5.1) gives a very limited class of 

all possible functions from RN to ±l. But this limitation is necessary for 

a good generalization, as we shall show later. 

In the simplest case, the perceptron operates in two ways: in a learning 

and in a generalization phase. In the learning process, the network receives 

a set of P = aN many examples, i.e., input/output pairs (Uk, ek), k = 
1, ... , aN, which were generated by some unknown function Uk = F(ek). 
The weight vector w is adapted to these examples by some learning algo­

rithm, i.e., the strengths of the synapses are changed when one or more 

examples are shown to the perceptron. Of course, the aim of learning is 

to map each pair correctly by Eq. (5.1), and the number of examples for 

which the network disagrees with the shown output, Uk =F sign (w· ek), 
is the training error E: 

aN 

E = L 0 (-O'k w . ek) . (5.2) 

k=l 

o is the step function, O(X) = ( sign x + 1) /2. If the examples are generated 

by another perceptron with weights Wt, then it is possible to obtain zero 

training error, ct = 0, for instance, by using the perceptron learning rule 

(see [1]). 
After the learning phase, the perceptron has achieved some knowledge 

about the rule by which the examples were produced. Therefore, the net­

work can make predictions on a new input vector e that it has not learned 

before. Let (0', e) be a new example that the network has not seen be­

fore. Then the probability that the perceptron gives the wrong answer, 

0' =F sign (w· e), is given by 

c = 0 (-0' W • e) , (5.3) 

where the bar means an average over all possible examples (0', E'). 
The calculation of the generalization error c as a function of the fraction 

a of the learned examples is the main subject of this chapter. We call 

the learning network student and the example producing rule the teacher. 
Hence, c is the probability of disagreement between student and teacher on 

a new input e. c(a) depends on the structure of student and teacher, on 
the structure of the examples, and on the learning algorithm. 

From very general concepts one obtains bounds and relations between dif­
ferent generalization errors. Using methods of statistical mechanics devel­

oped from the theory of disordered solids (spin glasses), one obtains exact 

results on c(a) for infinitely large networks (N --+ 00). Section 5.2 intro­

duces general results, while the statistical mechanics approach is presented 
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in Sec. 5.3. Section 5.4 discusses scaling ideas, from which the asymptotic 

behavior of the generalization error can be understood in some cases. A 

variety of applications for perceptrons are reviewed in Sec. 5.5. 

This chapter is not supposed to review the new field of generalization 

using neural networks. (For a review we recommend the article by Watkin, 

Rau, and Biehl [2].) But we want to give an introduction to the field with 

an emphasis on general results and on applications of our own group at 

Wiirzburg. We apologize for not referring to a large number of interesting 

and important results of our colleagues and friends. 

5.2 General Results 

The theory of learning in neural networks has benefitted from an interplay 

of ideas that come from various scientific fields; these include computer sci­

ence, mathematical statistics, information theory, and statistical physics. 

In the following, we try to present some of these ideas. We review a va­
riety of general results that can be obtained without specifying a network 

architecture. 

5.2.1 PHASE SPACE OF NEURAL NETWORKS 

In this section we adress the problem of noise-free learning in networks with 

binary outputs. We assume that an ideal teacher network, with a vector of 

parameters Wt, exists, who will give answers ($ or e) on2 input vectors e 
without making mistakes. 

Let us now look at the phase space of all teachers Wt, described by a pa­

rameter vector Wt, for fixed inputs el"" ep. Before knowing the teacher's 
correct answers to all of these inputs, a learner could partition the phase 
space into maximally 2P cells or subvolumes, each cell U corresponding to 

one of the 2P possible labelings (= answers) Uk = ±I, k = 1, ... , P. In 
general, a given type of neural network will not be able to produce all 2P 

outputs on the given inputs. If the teacher network has a very complex 
architecture, we can assume that, by suitable choices of its parameters, 
more combinations of outputs, in other words, more cells in phase space, 

can be realized than for a less complex teacher. As we shall see in the next 

section, this number of cells plays an important role for the learner's ability 

to understand the teacher's problem. 

After the teacher has given the answers, we know to which cell Wt be­

longs. In the so-called consistent learning algorithms, one trains a student 

network to respond perfectly to the P training inputs. In the following, 

2In general, we do not assume that the dimensions of parameter space and 
input space are equal. 
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we assume that the student belongs to the same class of networks as the 

teacher. Thus, after learning, the student has parameters w s , which belong 

to the teacher's cell. 

Will the probability of making a mistake on unknown inputs always be­

come small when P grows large, whatever consistent algorithm we choose? 

Surprisingly, the answer is yes, if the teacher has a bounded complexity. 

As a measure for this complexity, the so-called Vapnik-Ohervonenkis (VO) 

dimension, which comes from mathematical statistics, has been introduced 

into computer science. We will try to review some of its basic ideas in the 

next section. 

5.2.2 VC DIMENSION AND WORST-CASE RESULTS 

The maximal number of cells in the teacher's space is 2P for P input vectors. 

But, due to the teacher's internal structure, the actual number of cells for 

a set of inputs may not grow exponentially fast in P. A combinatorial 

theorem, independently proved by Sauer [3J and Vapnik and Chervonenkis 

[4J, gives an upper bound on this number: If d is the size of the largest set of 

inputs realizing all 2d cells, then, for any set of P > d inputs, the number 

N(P, d) of cells will only grow like a polynomial in P. d is called the VO 

dimension. 

Formally, Sauer's lemma states: 

P ~ d~ 1: 

N(P, d) ~ t, (~) ~ (e:) d (5.4) 

A sketch of the proof of Eq. (5.4) is given in Appendix 5.1. Equation (5.4) 

shows, that the VC-dimension plays a similar role as the capacity of the 

class of teacher networks. For P > > d, only an exponentially small fraction 

of input-output pairs can be stored in the net. For the perceptron, one has 

exactly d = N, the number of couplings. For general feedforward networks 

with N couplings and M threshold nodes, the bound d ~ 2N . log2 (eM) 
was found in [5J. 

Using Sauer's lemma, Blumer, Ehrenfeucht, Haussler, and Warmuth [6J 

showed a worst-case result for the performance of consistent algorithms. 

To understand their result, consider the following learning scenario: After 

a student has learned a number of P independent random examples per­

fectly, he or she makes a prediction on an unknown input vector e, which 

was drawn from the same distribution as the training examples. The stu­

dent's probability of making a mistake on the random input e defines the 

generalization error e. Different students (algorithms) will have different 

e. In general, their performance will depend on the random training set, 

which makes e a random variable. So we can define the probability pee), 
that there exists a student, who learns the examples perfectly but makes 
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an error larger than c. In [6] it was shown that, for P> 8/c, 

p(c) '5:. N(2P, d) . 2-!P/2 '5:. 2 (2e;') d 2-!P/2. (5.5) 

Statistical physicists often discuss the thermodynamic limit d, P - 00, 

0: = Pld fixed. In this limit, Eq. (5.5) means that no errors larger than 

2ln(2eo:) 
cma:r: = --'------'-

0: 

will occur, whatever consistent student we choose. 

Due to lack of space, we cannot sketch the proof of Eq. (5.5) here. A 

simpler theorem, which relates errors and the number of cells within the 

Bayesian framework of learning, will be proved in Sec. 5.2.4. 

The power of the va method lies in the fact that no specific assump­

tion on the distribution of inputs, other than their independence, must be 

made. Further, the architecture of the teacher problem to be learned is 

characterized by only a single number, the va dimension. 

As a drawback of the worst-case results, one often finds that ''typically,'' 

the error bounds are too pessimistic. In the next two sections, we will 

discuss a more optimistic learning scenario. We show what is gained if, 

besides the teacher's complexity, more prior knowledge, expressed by a 

probability distribution on the teacher's parameters, is available. 

5.2.3 BAYESIAN ApPROACH AND STATISTICAL MECHANICS 

The statistical mechanics approach to learning is closely related to concepts 

established in mathematical statistics and information theory [7, 8, 9, 10, 

11]. To explain these connections, let us first briefly remind the reader of 

some ideas from density estimation in mathematical statistics. 

A common problem in statistics is to infer a probability density, 'Pe(y), 

from a sample of P data values, yP == Y1, ... , YP, independently drawn from 

this distribution. Here we assume that the class of distributions is known 
up to an unknown parameter O. For example, assume 'Pe{y) = (27r)-1/2 . 

e-(1/2)(y-II)2, i.e., a Gaussian density, where 0, its mean, is unknown. 

One approach to this problem is to estimate the value of 0 first and then 

to approximate the unknown density by 

'P9(y), 

where 0 is the estimate. A well-known method is the maximum likelihood 

estimation, which uses a 0 that makes the observed data most likely, i.e., 

which maximizes the likelihood 

(5.6) 
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For the Gaussian density, this leads to the simple arithmetic mean 

P 
A -1,", 
0= P L..JYk. 

k=1 

In the so-called Bayesian approach to density estimation, all prior knowl­

edge (or lack of the same) of the unknown parameter is expressed by a prior 

distribution p( 0). For example, if the (Bayesian) statistician knows that the 

unknown mean of the Gaussian will not be too large or too small, say 0 
must be between -1 and + 1, he or she could assume that 0 is uniformly 

distributed in this interval. Rather than giving a single estimate of 0, as 

in the maximum likelihood case, the Bayesian calculates the posterior dis­
tribution p(O/yP), which represents his or her knowledge or uncertainty of 

the parameter after having observed the data values. This is derived by the 

Bayes Formula, which expresses the joint density P(yP, 0) of the data and 

the parameter in two ways using conditional densities: 

p 

P(yP,O) = p(O) . II P9(Yk) 
k=l 

P(yP,O) = p(O/yp ) . P(yp). (5.7) 

The posterior density is then 

«()/ p) = p(O) . nf-1 P9(Yk) 
P Y P(yP ) , 

(5.8) 

with the normalization 

P 

P(yp ) = J dO II P9(Yk) . p(O). 
k=1 

(5.9) 

Note that, for p( 0) = const, the maximum of Eq. (5.8) is just the maximum 

likelihood estimate. 

Then, if the Bayesian is asked to present an estimate of the unknown 

density, he or she will return the posterior averaged density 

(5.10) 

which in general will not belong to the class of densities originally consid­

ered. Besides the most likely value of 0, this estimate includes neighboring 

values as well. 
It can be shown that, if the parameter is actually distributed according 

to p(O), then Eq. (5.10) gives the best approximation to the true density 

on average [4]. 



Manfred Opper and Wolfgang Kinzel 157 

The justification of a prior probability for 0 often has been questioned. 

Even if it is not satisfied, the posterior density Eq. (5.8) will, under some 

mild conditions, be highly peaked around the true value of 0 for P --+ 00. 

The dependence on the actual shape of p( 0) will disappear asymptotically. 

Let us now translate these ideas into the language of supervised learning. 

The data observed in a learning experiment are the examples consisting of 

P input-output pairs aP == {(al, el)' ... ' (ap, ep)}. In general, we assume 
that there is a possibly stochastic relation between the inputs and the 

outputs, which can be expressed by a relation of the type 

a = F(Wt, e, "noise"). (5.11) 

W t is a parameter vector representing an ideal classifier or teacher. In con­

trast to the previous section, we include the possibility that the observations 

may contain errors ("noise"). 

Using a neural network, which can implement functions of the type F 

(with "noise"=O!), the task of the learner is to find a student vector Ws that 

best explains the observed data. This can be understood as an estimation 

of the parameter W for the distribution 

(5.12) 

where f is the density of the inputs and 1'w(ale) is the probability that, 

given an input e, one observes an output a. 
The statistical physics approach to learning is closely related to the 

Bayesian idea. Based on the pioneering work of Gardner [12], one may 

study ensembles of neural networks to capture a "typical" behavior of their 

learning abilities. Such ensembles are defined by a Gibbs distribution, 

(5.13) 

with partition function 

z = J dw· p(w). exp (-(3t,E(Wj Uk,ek)) . (5.14) 

E is the training energy of the kth example and (3-1 is the learning tem­

perature in a stochastic learning algorithm. In p( w), all constraints on the 

possible couplings are summarized. 

Equation (5.13) has an interpretation as the posterior distribution [Eq. 

(5.8)] of coupling parameters if we identify 

p( 0) --+ 

1'8(YP ) --+ 

1'(yp ) --+ 

p(W) 

1'w(aP) oc ni=l exp(-(3E(Wj Uk,ek)) 

1'(aP) oc z. 
(5.15) 
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As an example, let us consider a perceptron. We assume that the ideal 

classification u = sign(N-1/ 2Wt . e) is inverted by output noise, i.e., u = 
77·sign(N-l/2Wt ·e), where 77 = -1 with a probability e-fJ /1+e-fJ , and {3-1 

is the noise temperature. Fixing the inputs, the probability of observing P 
output labels is 

'P (uP) = IIP {9(UkN-1/2w. ~k) + e- fJ9( -UkN - 1/2w . ~k)} 
W 1 + e-fJ 1 + e-fJ 

k=1 

= (1 + e-fJ)-p . exp [-{3 t 9( -UkN - 1/ 2w . ~k)l. (5.16) 

k=1 

A second possibility of misclassification arises when the coupling parame­

ters, or network weights, of the teacher are uncertain to some degree, i.e., 

Wt is replaced by Wt+v, where v is Gaussian with 0 mean and V·V = {3-1. 

Now, 
P 

'Pw(uP) = II H( _{31/2ukN-l/2W . ~k)' (5.17) 

k=1 

where 

H(x) = 100 

Dt 

and 
Dt = dt . (211")-! . exp( -it2) 

is the Gaussian measure. 

To summarize, we obtain for the training energies 

for output noise 

for weight noise. 

(5.18) 

The case of output noise also can be formulated for general neural net­

works and leads to a total training energy that is just the number of inputs, 

for which the noisy outputs (1 and the student's answer disagree. 

From the Bayesian viewpoint, the posterior distribution could be used 

to make predictions on new inputs ~ by calculating the output with the 

largest posterior probability. This is the Bayes algorithm, which, for binary 

outputs [ef. Eq. (5.1O)J, answers 

u = sign [/ dw p(wl(1P)F(w,~, "noise" = 0)] . (5.19) 

Unfortunately, this represents a superposition of many neural networks, 

each given by a coupling vector w. In general, this output cannot be re­

alized by a single network of the same architecture, but requires a more 

complicated machine. 
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An algorithm that also uses the entire posterior density is the Gibbs al­
gorithm [9,10, 13J, which draws a a single vector w at random according to 

the posterior Eq. (5.13). This is precisely what we would call the "typical" 

neural network in statistical physics. 

This should be contrasted with a maximum likelihood strategy, which 

simply chooses a student vector [for p(w) = constJ that minimizes the 

training energy E. In the case of noisy outputs, the student would try 

to learn perfectly as many examples as it can, even if a fraction of them 

contains wrong classifications. 

In general, perfect knowledge of the prior distribution of teachers will 

not be available. Nevertheless, the Gibbs distribution [Eq. (5.13)J is a nat­

ural device for defining learning algorithms, even if they are not optimally 

matched to the learning problem. We will discuss some examples in the 

section on perceptrons. 

5.2.4 INFORMATION-THEORETIC RESULTS 

In this section we explore in more detail what would happen if the Bayesian 

assumption was perfectly realized. That is, we assume that "nature" actu­

ally selects teacher problems at random, and that their prior distribution 

is completely known by the student.3 

Learning more and more examples, the student's knowledge of the un­

known teacher parameters grows. This knowledge gained by learning a new 

example is expressed in the so-called information gain. As was shown by 

Haussler, Kearns, and Shapire [13J, this quantity can be related to the aver­

age error made by a student using the Gibbs and Bayes algorithms. Finally, 

using information theory and the VC approach, inequalities for errors can 
be derived. We restrict ourselves to the case of noise-free learning. A more 

general treatment can be found in [14J. 
We assume for this section that the inputs are fixed, SO that the only 

randomness is in the choice of the teacher, and, for the Gibbs algorithm, 

in the choice of the student. 

Having observed P classified inputs, we know that the teacher is con­

strained to one of the N(P, d) nonempty cells. Thus, the posterior density 

for the teacher's parameters is 0 outside the cell (see Fig. 5.1 for a percep­
tron) and equals 

(5.20) 

inside the cell, where 

3This a natural assumption for physics students, who, in preparing their ex­
ams, often use a catalog of the professor's questions from previous exams. 
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(w·w)=N ~_ 

/ Wt 

Fig. 5.1. Sketch of the phase space of weights for a perceptron. Left: Before 
learning, the vector Wt is completely unknown and assumed to be randomly 
distributed on the surface of an N-dimensional sphere. Right: After learning of 

P input-output examples ek' ak, the teacher Wt must be in a smaller cell of the 
phase space with boundaries given by the planes akw, ek = 0, k = 1, ... , P. 
A new input (dashed line) divides the cell into two new subcells, V+ and V-, 
corresponding to the two possible answers. 

V(aP ) == Vp = 1 p(w) dw 
cell 

(5.21) 

is its (weighted) volume, satisfying I:O'l ... O'p=±l V(aP ) = 1. 
Let us begin with the Gibbs algorithm and fix the teacher for a moment. 

The learner chooses a vector Ws at random, with density [Eq. (5.20)]. If a 

new input is added, the cell is divided into two subcells (Fig. 5.1). If an 

output cannot be realized, we will formally assume a new cell with zero 

volume. 

Let us compare the student's prediction on the new input with the 

teacher's answer. Both agree only if the student vector Ws is in the same 

cell as the teacher's. Averaging over w s , this will happen with probability 

y _ Vp +1 

- Vp , (5.22) 

where VP+1 is the volume of the teacher's new cell. The probability of 
making a mistake thus is given by 1 - Y. 

The Bayesian prediction would weight the answers of the two sub cells 

with their corresponding posterior probabilities and vote for the output 

a = sign[V+ - V-j. 

Thus, the answer of the largest cell wins. Since the Bayesian gives the 

answer with largest posterior probability, he or she will, on average, have 
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the lowest number of mistakes over all of the algorithms.4 The Bayesian 

will only make a mistake if the teacher is in the smaller volume, i.e., if 

Y < !. To this algorithm we can assign the number 

8(1 - 2Y) E {O, I}, (5.23) 

which counts as a "I" when the algorithm makes a mistake. 

Finally, by observing a new classified input, our uncertainty on the 

teacher's couplings will be reduced if the volume of the teacher's cell 

shrinks.5 Formally, this corresponds to an information gain, 

/).1 = -[In(Vp +1) -In(Vp)] = -In(Y). (5.24) 

Obviously, Y, the volume ratio, is a random variable with respect to the 

random teacher and the inputs. Performing the average over the teacher 
only, simple and useful relations between the information gain and the 

probabilities of mistakes may be derived next. 

Clearly, Y does not change if the teacher is moved inside a cell. Thus, 
we can average any function F(Y) over the space of teachers, first by in­

tegrating over all teachers inside a cell, and then summing over all cells, 
labeled by their configuration uP+! of outputs: 

(F(Y») = (5.25) 

The factor V(uP+!) is the integral over the new cell [Eq. (5.21)]. Thus, 

outputs, which cannot be realized, are counted with zero weight. 

We first will show the useful relation 

(F(Y») = (YF(Y) + (1- Y)F(l- Y»). (5.26) 

Beginning with the right-hand side, and using the definition in Eq. (5.25), 

we fix the first P labels and sum over the up+!. Let V+ and V- be the two 
possible subvolumes and Y+ = V+ jV(uP), Y- = 1-y+. The summation 

over up+! gives a contribution 

V+[Y+ F(Y+) + Y-F(Y-)] + V-[Y-F(Y-) + y+ F(Y+)] = (5.27) 

V(uP)[y-F(Y-) + y+ F(Y+)] = V-F(Y-) + V+ F(Y+) 

4We always assume that the teacher actually was drawn from the assumed 
prior distribution. 

15 An interpretation of -In(Vp) in terms of the stochastic complexity of Rissa­
nen [151 has been discussed in [161. Viewing the learning of the examples as an 
encoding of the outputs in the network's parameters w, this quantity measures 
how many bits we need to describe the parameters if we use only a finite set of 
discrete values for the components of w. 
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to Eq. (5.26). Here we have used V* + V- = V(o?). Summing over the
remaining labels, we obtain Eq. (5.26).

Using relation (5.26), the total probabilities of mistakes, in other words,
the errors averaged overall teachers (but for fixed inputs), are given by

Egisss = (1-Y) = 2(Y —Y*) (5.28)

EBayes = (O(1 ~ 2Y)) — (min(Y, 1— Y)),

wherethefirst equality is from Eq. (5.22) and the second from Eq.(5.23).
The average information gain is rewritten as

(AI) = —(In(Y)) = -(Y¥ MY +(1-Y)In(1-Y)). (5.29)

By comparing the three curves in Fig. 5.2, we conclude that

EGibbs S 2€Bayes

1
‘bbs << oe (Al). ,EGibbs S 9 In(2) ( ) (5 30)

Although the random Gibbs algorithm is not optimal, its error is of the
same order of magnitude as that of the optimal Bayes algorithm.
The second inequality (5.30) indicates that, in order to gain a lot of in-

formation on the teacher, a student should select inputs on which his or her
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Fig. 5.2. Graphic demonstration of the inequalities min(Y, 1- Y) (lower curve) 

~ 2(Y - y2) (middle curve) ~ -1/2ln 2(Yln Y +(1- Y) In(l- Y)) (upper curve). 

to Eq. (5.26). Here we have used V+ + V- = V(a P ). Summing over the 

remaining labels, we obtain Eq. (5.26). 

Using relation (5.26), the total probabilities of mistakes, in other words, 

the errors averaged over all teachers (but for fixed inputs), are given by 

CGibbs = (1 - Y) = 2( Y _ y2 ) 

CBayes = (8(1 - 2Y») = (min(Y, 1 - Y»), 

(5.28) 

where the first equality is from Eq. (5.22) and the second from Eq. (5.23). 
The average information gain is rewritten as 

(t::.I) = -(In(Y)) = -( Y In Y + (1 - Y) In(l - Y) ). 

By comparing the three curves in Fig. 5.2, we conclude that 

CGibbs ~ 2cBayes 

1 
CGibbs ~ 2In(2) (t::.I). 

(5.29) 

(5.30) 

Although the random Gibbs algorithm is not optimal, its error is of the 

same order of magnitude as that of the optimal Bayes algorithm. 

The second inequality (5.30) indicates that, in order to gain a lot of in­

formation on the teacher, a student should select inputs on which his or her 
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performance is bad. This can be utilized in the so-called query algorithms 

(see Sec. 5.5.4). 

Using the VC method and Eq. (5.30), an estimate of the decrease of the 

generalization error for the Gibbs algorithm can be obtained [13J. 

Summing the second inequality (5.30) from P = 0 to P = M - 1, we can 

bound the average cumulative number of mistakes, 

(5.31) 

where we have used the fact that the individual terms 

AI = -[In(Vp+1) -In(Vp)J 

sum up to -In(VM) == -In(V(aM)). Since the volume of each cell equals 

its probability, the sum in the last expression equals the entropy of the 

distribution of outputs. 

As is well known from information theory, the entropy is maximal if 

all probabilities are equal. In other words, this happens if the total unit 

volume of the phase space is equally divided under the N(M, d) cells. Thus 

we obtain the inequalities 

M-l 1 1 

]; f.Gibbs(P):::; 21n(2) In (N(M,d)) :::; 21n(2) .d(ln(M/d) -1). (5.32) 

The logarithmic growth in M indicates a faster decay of errors than the 

worst-case result f.(P) ~ In(o:)/o:, with 0: = P/d. Rather, the estimate is 

consistent with a faster decay f.Gibbs(P) <X 0:-1 , asymptotically. In fact, 

using more refined techniques, it is shown in [13J that 

f.Gibbs(P) :::; 2/0:. (5.33) 

Since this bound holds for arbitrary distributions of inputs, even very ar­

tificial ones, one might expect that, for "typical" distributions, learning 

might be even faster. Using the statistical mechanics approach, we will see, 

however, in the section on perceptrons, that the 0:-1 decay also holds for 

a natural distribution of inputs. 

A greater speed of generalization only can be achieved if the asymptotic 

information gain from new new inputs can be enlarged. We will come back 

to this idea in Sec. 5.5.4. 

5.2.5 SMOOTH NETWORKS 

Most parts of this chapter deal with networks that have binary outputs and 

the sign transfer function. Often in technical applications of neural nets, the 

transfer functions between in- and outputs are highly nonlinear, but they 
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nevertheless are smooth functions. This property is utilized in the so-called 
backpropagation algorithm [28], where a training energy is minimized via 

gradient descent. This requires the calculations of derivatives of the energy 
with respect to the coupling parameters. 

It turns out that the asymptotic behavior of the generalization errors 

can be calculated easier than for binary outputs. 

We assume a learning algorithm that is defined by the Gibbs ensemble 

(5.34) 

We assume that Uk is a function of the inputs and a teacher parameter 

vector. In the following we will not assume that the problem is completely 

learnable. Then the aim of a learner will be to find a network that minimizes 

the training energy averaged over the space of all examples. If P, the number 
of examples, grows large, we expect that the final state of the network 
converges to the optimal value Wo, for which 

(5.35) 

for all i. The bar denotes the average over the examples, and the derivative 

is with respect to the components wei). 
The generalization error after learning P examples is 

e = J dw p(wluP ) E(wj U, ~). (5.36) 

We further expect that the posterior density is strongly peaked at its max­
imum w, the maximum likelihood estimate. The fluctuations around this 

value are, to the lowest order, Gaussian with zero mean and covariance: 

(w{i) - wei»~ (w{j) - w(j))) ~ {f3 p)-l (U-l)ij, (5.37) 

where 

P 

Uij = p-1 EM)j L E{w; Uk, ek)w=w ~ 8i8j E{w; u, e)· (5.38) 

k=l 

Expanding Eq. (5.36) around (w = w), and averaging over the Gaussian 

fluctuations in Eq. (5.37), we get 

e ~ E(w;u,~) + ~(f3P)-l L:Uij(U-1)ij. 
ij 

(5.39) 

The sum on the right-hand side simply equals N, the number of weights. 
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For P large, Vi will be close to the optimum wo. To estimate the difference 

between Vi and wo, we use the fact that w = Vi extremizes the learning 

energy, i.e., it fulfills 

p 

0= p-1/28i 2: E(w; Uk, ~k)w=w ~ 
k=l 

P 

p-1/28i 2: E(w; Uk, ~k)W=WO + 2: UijvP(w(j) - w(j)O), (5.40) 
k=l j , 

where we have expanded to the first order at w = wO. We also neglected 

the dependence of Uij on w. The first term, 'Yi, is a sum of independent 
random variables and is, in the limit, Gaussian distributed. We find from 

Eq. (5.35) that 'Yi = 0 and 

'Yi 'Yj ~ 8i E· 8jE == Iij . (5.41) 

Using this information, we can solve Eq. (5.40) to get 

P (w(i) - wO(i)) (w(j) - w0(j)) ~ (U-1 I U-1)ij. (5.42) 

Finally, we expand the first term of Eq. (5.39) at wO up to the second order 

in (w(i) - w(i)O); the first order clearly vanishes. Using Eq. (5.42), we get 

1 -1 N 
e ~ emin + 2pTr(U I) + 2f3P' (5.43) 

emin is the minimal error achieved by the parameter wO. 

This result has been shown in [17J using the replica method. In [18J, a 
similar result has been proved using the analogy to density estimation in 

mathematical statistics. In this framework, the matrix I is proportional to 

the so-called Fisher Information, defined as 

Iij = J dy 8i In('P8(y)) . 8j In('P8(y)), (5.44) 

Here we have used the terminology of Sec. 5.2.3 and we assumed that the 
parameter () is a vector. I plays an important role in the asymptotics of 

statistical estimation procedures [4]. 

The result in Eq. (5.43) has the same ex: p-1 behavior as the decay 

of the Gibbs errors in Eq. (5.33). It should be noted, however, that the 

definition (5.36) of the generalization error does not correspond to a binary 

classification problem like the ones treated in the previous sections. If we 

would force a smooth network to give "straight" answers EEl or e, by clipping 

its outputs after training, the generalization error may be different. As we 

will see in Sec. 5.5.2, for the ADALINE algorithm, a slower performance 

e ex: lIn can be observed in such a case. 
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5.3 The Percept ron 

5.3.1 SOME GENERAL PROPERTIES 

The perceptron shows many interesting features that distinguish it from 

other neural networks. 

One of the oldest rigorous results for perceptrons is the number of pos­

sible output combinations or cells. Besides the estimate of Sauer's lemma, 

we know a precise result for the perceptron, given by Cover [19] in 1965: 

For any set of P inputs in general position,6 one has exactly 

N(P, N) = 2 L ~ 1 , 
N-l (P ) 
i=O ~ 

(5.45) 

where N is the number of weights. Equation (5.45) also yields P = N for 

the largest number of input vectors with N(P,N) = 2P • Thus, the VC 

dimension equals N. 

The independence of N(P, N) from the location of input vectors is no 

longer valid when we look at other networks. Perceptrons with binary 

weights already show large fluctuations for this quantity. Based on ex­
act enumerations on small systems [20], but for many samples of random 

inputs, we have obtained lower bounds on the VC dimension d for this 

model. Finite-size scaling (see Fig. 5.3) indicates that for N - 00 we will 

have d~ N/2. 
Another striking feature is the simple geometric picture (Fig. 5.4) of the 

perceptron's classification ability. In the space of the inputs, the vector of 
couplings defines a separating plane perpendicular to w. Inputs on the side 

of this normal vector are classified as $, while those on the other side are 
classified as e. Perceptrons realize linear-separable functions. 

As a consequence of this geometric picture, we can easily find the gener­
alization error € (= probability of making a mistake) when the inputs have 

a spherical distribution. Such a distribution can be realized from indepen­

dent, normally distributed cartesian components ~(j), j = 1, ... ,N, with 

density 

(5.46) 

For fixed teacher and student, one finds 

€ = ~ arccos C:: I,::,) . (5.47) 

Equation (5.47) will be used extensively in the following sections. Although 

this theorem can be derived by averaging over the Gaussian random vari­
ables, it is immediately clear from the geometric construction of Fig. 5.4. 

6 Any subset of inputs containing no more than N input vectors is linearly 
independent. 
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5.3.2 REPLICA THEORY

In this section we develop a general framework that will allow us to treat

a variety of perceptron learning problems using the replica method.

Following Gardner’s approach, wewill consider a Gibbs ensembleof per-
ceptrons defined bythe distribution

P

p(we|o") = Z-* - p(Ws) - exp (09° Btwiew6) (5.48)
k=1

with partition function

P

Z= [aw p(w) - exp (-2>etons)
k=1

In the following we will keep the form of Eq. (5.48) rather general: We will
only assume that E depends on the internal fields N~1/?o,w - €,- Lhus,

we consider partition functions of the type

P
Z(a*) = [aw p(w) - I] ®(N-1/2o,w €,), (5.49)

k=1

with an arbitrary ®.
We constrain the coupling vectors to the surface of a sphere, i.e.,

p(w) = Vy*6(w- w — qo),

with Vo = eX/2(In2"+1) ~  §(w» w — N)dw. Finally, dw = J]7_,dw(j)is
the volume element in cartesian coordinates.
One of the basic assumptionsof the statistical mechanics approach can

be stated as follows: The free energy per coupling F, defined by

F=NlnZ(o"), (5.50)

is a self-averaging quantity for N — oo and most “natural” distributions
of the random examples. This meansthat it equals its average

F=N*. S° P(o?)nZ(o?) (5.51)
01..0p=+1

 

for almost all realizations of the random examples. Here,

P(o?) = P(o1,...,op|€,,..-,€p)
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Note that, for N -+ 00, any distribution with the same first two moments 

will give the above result. A popular choice is ~k(j) = ±1 with probability 
1 
2· 

5.3.2 REPLICA THEORY 

In this section we develop a general framework that will allow us to treat 

a variety of perceptron learning problems using the replica method. 

Following Gardner's approach, we will consider a Gibbs ensemble of per­

ceptrons defined by the distribution 

with partition function 

z = J dw p(w)· exp (-f3t.E(w;u"e,)) . 

In the following we will keep the form of Eq. (5.48) rather general: We will 
only assume that E depends on the internal fields N-1/2UkW . ek. Thus, 

we consider partition functions of the type 

P 

Z(uP) = J dw pew) . II iP(N-1/2UkW . ek), 
k=l 

(5.49) 

with an arbitrary iP. 
We constrain the coupling vectors to the surface of a sphere, i.e., 

pew) = Vo-18(w . w - qoN), 

with Vo = eN/ 2(ln211"+1) ~ J 8(W· w - N)dw. Finally, dw = nf=l dw(j) is 

the volume element in cartesian coordinates. 

One of the basic assumptions of the statistical mechanics approach can 

be stated as follows: The free energy per coupling:F, defined by 

(5.50) 

is a self-averaging quantity for N -+ 00 and most "natural" distributions 

of the random examples. This means that it equals its average 

:F = N-1 • L P(uP ) InZ(uP ) (5.51) 

Ul ••• up=±l 

for almost all realizations of the random examples. Here, 
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is the total probability over all teachers (and noise) that, given the inputs, 

the binary classifications qP will be observed. The bar denotes the average 

over the distributions of inputs. If Eq. (5.48) was actually the posterior 

distribution corresponding to a prior distribution of random teachers (see 

Sec. 5.2.3), we would have 

(5.52) 

where the normalization 

C = L Z{qP) 
O'l ... O'p=±l 

is assumed to be independent of the inputs. In general, we will not restrict 

ourselves to Eq. (5.52), but rather we will use the more general ansatz, 

1'{qP) = Zt{qP)/Ct 
P 

Zt{qP) = J dWt Pt{w) . II fPt{N-1/2qkWt . (k), (5.53) 

k=l 

where fPt can be different from fP and 

Pt{w) = Vo- 16{wt . Wt - N). 

To perform the average over the inputs, the replica trick is utilized: 

where 

En = L Zt{qP)zn{qP) (5.55) 

O'l ... O'p=±l 

is the weighted and averaged n-times replicated partition function. Equa­

tion (5.55) will be calculated for integer n, and the result then will be 

continued to reals. 

Since all inputs are assumed to be statistically independent and drawn 

from the same distribution, we get 

Sn = J dWt p(Wt) IT dWa p(wa) 
a=l 

X C~, ifI.(N-l/'UW.' e) il ifI(N-l/'uw •. e) P (5.56) 

For the inputs, we use the Gaussian distribution (5.46). fP and fPt depend on 

(only via Ua = N- 1/ 2qWa .(, a = 1, ... , n, and Un+! = Ut = N-l/2qWt .(. 
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For fixed couplings, these are joint Gaussian random variables with 0 means 

and second moments Qab = UaUb = N-1wa . Wb. Thus, we have, for P = 
aN, 

n+l 

N-1ln(Sn) = N-1ln J II dWa Pa(wa) exp[aNg1(n)] 
a=l 

(5.57) 

with 

n 

e'h(n) = 2<Pt(un+dQ}) II <p(ua{Q}). (5.58) 

a=l 

The average over the Ua can be performed with the help of the following 

basic assumption of mean-field theory. 

For N -+ 00, the integrals over Wa will be dominated by regions in the 

phase space where the matrix elements Qab assume nonfiuctuating values. 

These are the order parameters, which determine the macroscopic physics of 

the network. Assuming that replica symmetry is valid, the order parameters 

will obey Qab = q, for a =f b and a, b ~ n. Further, Qa,n+1 = R. 
q = N-1wa . Wb is the typical overlap between any two student vectors 

Wa and Wb, which are drawn randomly from the Gibbs distribution (5.48). 

Accordingly, R = N-1Wt . Ws is the overlap between a teacher and a 

student. By Eq. (5.47), the knowledge of the order parameters enables us 

to obtain the generalization error via 

1 
c = - arccos(Rj ,.fijO). 

7C' 
(5.59) 

Using the replica-symmetric ansatz, the Gaussian fields can be con­

structed explicitly, 

(5.60) 

for a ~ nand 

(5.61) 

where Za, y, t are independent Gaussian variables with variance 1. Obvi­

ously, these variables yield the correct second moments. Now the Gaussian 

average is easily performed, yielding 

e91 (n) = 2 i: Dt i: DY<Pt (Y(l- R2/q)1/2 - tR/ql/2) 

x [I: Dz <P (zJqO - q - tJq) r (5.62) 

Again, Dt = (27C')-1/2e-l/2t2 dt is the Gaussian measure. Using the saddle­

point method, for N -+ 00, we finally get 

lim N-llnSn = Extrq,R [agl + g2]. 
N-oo 
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The second term is an entropic term coming from the phase-space integral, 

where the order parameters q and R are fixed: 

n+l 

eN92 (n) = l'o-(n+l) J II dWa II 8(wa . Wb - NQab). 

a=l a~b 

(5.63) 

In replica symmetry, it is not hard to evaluate this expression, giving the 

result 

n-l 1 [ 2] (h = -2- ln(qo - q) + "2 In (qo - q) + n(q - R ) . (5.64) 

Finally, performing the derivative with respect to n yields 

(5.65) 

where 

J~oo Dy <I>t (Y(l - R2/q)1/2 - tR/ql/2) 

J~oo Dy <I>t(Y) 
(5.66) 

x In [I: Dz <I> (zJqO - q - t..;'Q)] 

and 

1 1 q - R2 
F2 = "2 ln (qO - q) + "2 (qO _ q) . (5.67) 

Extremizing the free energy in Eq. (5.65), we will get the physical values of 

the order parameters q and R, which in turn determine the generalization 
error c. 

5.3.3 RESULTS FOR BAYES AND GIBBS ALGORITHMS 

Before we come to specific deterministic learning algorithms, we will study 

the performance of the Gibbs algorithm for a perceptron. As in Secs. 5.2.3 

and 5.2.4, we will assume that the prior distribution of the teacher is known 

to the student. 

However, it should be noted that, for the spherical density of inputs 

in Eq. (5.46), by symmetry, the order parameters will not depend on the 

actual teacher. Thus, for this special density, the following results will hold 

not only on average, but also for any specific teacher. If noise is present in 

the teacher's classifications, we also will assume that the student will know 

the type of noise and its strength. 

The interpretation of the Gibbs ensemble as the posterior distribution 

in the Bayesian sense simplifies the algebra. In this case we always have 

<I> = <I>t. 
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Then, teacher and student will enter the replica theory in a completely 

symmetric way. The teacher is just another replica, so that, from the be­

ginning, we can set q = Rand qo = 1. 

Now Eq. (5.65) is replaced by 

{ 
0: 100 1 q} F = Extrq Ao -00 A(t; q) In [A(t; q)] + 21n(1 - q) + 2 ' (5.68) 

where 

(5.69) 

and 

Ao = I: Dz <I>(z). 

It is interesting to note that this expression could have been derived by a 

slight modification of the standard replica trick, where we replace the limit 

n ~ 0 by n ~ 1. Setting Zt = Z, we get 

F = lim ~N-l1n ~ zn(aP ). (5.70) 
n-+l an 6 

O'l ... O'p=±l 

We now give explicit expressions for noise-free and noisy teachers [see 

Eq. (5.18)]: 

leading to 

{ 
8(u) 

<I>(u) = exp[-,88(-u)] 

H( -,8-!u) 

{ 
H(-yt) 

A(t; q) = e- f3 + (1 - e- (3 )H(-yt) 
H(-yt) 

no noise 

output noise 

weight noise, 

no noise 

output noise 

weight noise 

(5.71) 

(5.72) 

with 'Y = Jq/1 - q and -y = Jq/1- q + 1/,8. For output noise, Ao = 

~(l+e-f3), and Ao = ~ in the other cases. Calculating the order parameter 

q from Eq. (5.68), yields the Gibbs error as: 

1 
CGibbs = - arccos(q). (5.73) 

7r 

For noisy outputs, this is the probability that the student will find the ideal 
output of the teacher. 

Solving the order parameter equation asymptotically for 0: ~ 00, i.e., 

q ~ 1, one obtains 

without noise 

output noise 

weight noise 

(5.74) 
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C1 , C2 are functions of the temperature. C1 converges to the value 0.62 for 

f3 -+ 00, whereas C2 goes to 0, indicating the crossover to the faster decay 

in the noise-free limit. 

The decay OC 0:-1 in the noise-free case is of the same order as the 

bound (5.33) discussed in Sec. 5.2.4. Remarkably, this asymptotic decay 
still persists if output noise is included. When the noise temperature grows 

large (i.e., f3 -+ 0), the coefficient Cl diverges like 4/ f32. 

The case of weight noise also has been studied in [8, 21]. However, the 

authors calculated the Gibbs error for a different algorithm, which uses 
the sum of mistakes [the first line in Eq. (5.18)] as the learning energy. 

With an optimized learning temperature, eGibbs ~ 0:-1/ 4 was found. With 

a 0 temperature learning, which corresponds to minimizing the training 

energy (maximum likelihood), the behavior is even worse. This shows that 

the generalization ability can be remarkably enhanced if more information 

on the teacher is included in the learning algorithm. 

The error of the Bayes algorithm has been calculated in [9, to]. We will 

give a different derivation by looking at the volume ratio, 

V(aP+l) 

y = V(aP ) , 
(5.75) 

previously defined in Sec. 5.2.4. Equation (5.75) describes the reduction of 

the volume of the teacher's cell when a new input is learned. As was shown 

in Sec. 5.2.4, Y can be used to find Gibbs and Bayes errors, as well as the 

information gain. 

Obviously, Y is an average of the function 9{N-1/2ap+l Wt . (P+l) over 

all couplings of the teacher's old cell V(aP ). We can write 

(5.76) 

One of the basic assumptions of the replica-symmetric mean-field theory is 
the clustering hypothesis [22], which states that the thermodynamic fluctu­
ations of different components Wt(j) of Wt are uncorrelated in the thermo­
dynamic limit. From the central limit theorem, we conclude that, for fixed 

input (P+l' the field N-1/2ap+l w'(P+l can be written as N-1/2ap+l (w)· 
(P+1 +v, where the fluctuating part v is Gaussian distributed and has vari-

ance 
(v2 ) = N-l«w. w) - (w)2) = 1- q. (5.77) 

Here, we have again used the clustering hypothesis, yielding 

q = N-1w a • Wb = N-1(w)2. (5.78) 

Performing the average over v gives the expression 

Y = H (N- 1/ 2ap +l (w) . (P+l) , 
vr=q (5.79) 
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which holds for a fixed input pattern and classification label in the thermo­

dynamic limit! The Bayesian algorithm votes for that value of UPH which 

gives the largest volume, in other words, the largest value for Y. By its 

definition, H(x) = J:z:oo Dt > ~, if x> O. This has the consequence that a 

student with coupling vector Wa = (w) will always make the optimal Bayes 

decision. 

This was first shown in [23] by means of a slightly different argument. It 
is nontrivial because, in general, the "Bayesian student" does not belong to 

the phase space of the teachers. Finally, to get the Bayes error, we simply 

have to find the average overlap between the student and a random teacher 

[Eq. (5.47)]: 

Hence, 
1 

CBayea = - arccos( Jq). 
11" 

(5.80) 

(5.81) 

Solving the order parameter equation (5.68), we get an asymptotic decay, 

CBayea ~ 0.44 . 0:-1, 

for large 0:. A comparison of Gibbs and Bayes errors is given in Fig. 5.5. 

Different algorithms to achieve the performance of the Bayes prediction 

can be found in [2, 9, 24]. 

We will end this section by calculating the density of Y. We first need 

the probabilities of the classification labels Up+l = ±l. These probabilities 
are proportional to the volumes of the two new cells. Thus, they simply 

equal Y(up+d! Using that N-1/2(W} . (PH is Gaussian distributed with 

respect to the random input (PH' with variance equal to (W}2 = q, we 

find 

fey) = 21: Dt H(-yt) 8(Y - H(-yt». (5.82) 

Here, 'Y = J qj1 - q and 8(-) is Dirac's 8-function. Equation (5.82) is de­

picted in Fig. 5.6 for different values of q. This density is also valid for 

discrete couplings as long as replica symmetry is exact. Figure 5.7 gives 

a result for fey) obtained from simulations of perceptrons with binary 

weights. Here, the volumes of the cells were found by counting the number 

of discrete coupling vectors belonging to each cell. 

The smooth behavior of fey) somehow seems to contradict the VC re­

sults. Since the number of cells grows only like a polynomial in P, most 

of the cells will not be split into two pieces by adding a new input. Thus, 

f (Y) should contain 8-functions at Y = 0 and Y = 1, corresponding to one 

new cell with the old volume, and one with 0 volume. This would in fact 

be true if all of the cells had the same volume. We conclude that those cells 

which are not cut into two pieces have neglectable volume (probability) in 

the thermodynamic limit. 
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Fig. 5.5. Comparison of Gibbs and Bayes generalization errors. 

6 

5.4 Geometry in Phase Space and 
Asymptotic Scaling 

The result of the replica theory for the Gibbs algorithm shows an asymp­

totic decay of the error eGibbs ~ 0:-1. The same power law was obtained as 
an upper bound from the VC theory in Sec. 5.2.4. While for the replica cal­

culation a specific distribution of inputs was assumed, in the VC approach 
only the VC dimension of the network entered the theory. Thus, arises the 
question of whether the asymptotic scaling of the generalization error can 
be explained using only a few parameters of a network. 

As we will see, simple geometric scaling arguments will bring us a step 

closer to this idea of universality. We begin with the perceptron. The phase 
space of all perceptrons is a simple manifold - the surface of a sphere. The 
generalization error, 

1 
e = - arccos(ws . Wt), (5.83) 

7r 

which is valid for normalized teacher and student vectors, is just the ar­

clength of the shortest line (the geodesic) between Ws and Wt, and e is a 

natural distance between perceptron networks. 

A second contribution to a geometry in phase space comes from the 

information theoretic results of Sec. 5.2.4. We remember that the average 

information gain for any new input is an upper bound for the Gibbs error 
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on that input. Assuming that both quantities will be of the same order
asymptotically, we set

(AT) = —(In(Vp41/Vp)) ~ é. (5.84)

Vp is the volume of the teacher’s cell and € is, as we have shown,a typical

distance in the cell. Since the number of couplings N is the dimension of
the manifold, we expect that

Vp eX, (5.85)

Then, with P = aN,Eq. (5.84) can be written as

(a) == In(e(a)), (5.86)

from which the asymptotic relation

e(a) tao}

follows.

As a further consequence wesee that, if the learner can select examples

such that the asymptotic information gain becomes a constant for each new

input, then a faster decay of the generalization error like

é ~ exp(—aN(Al)) (5.87)
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on that input. Assuming that both quantities will be of the same order 
asymptotically, we set 

(5.84) 

Vp is the volume of the teacher's cell and e is, as we have shown, a typical 

distance in the cell. Since the number of couplings N is the dimension of 

the manifold, we expect that 

Vp~eN. 

Then, with P = aN, Eq. (5.84) can be written as 

8 
e{a) = - 8aln{e{a)), 

from which the asymptotic relation 

e{a) ~ a-I 

follows. 

(5.85) 

(5.86) 

As a further consequence we see that, if the learner can select examples 

such that the asymptotic information gain becomes a constant for each new 

input, then a faster decay of the generalization error like 

e ~ exp{-aN(L.H}) (5.87) 
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Table 5.1. Volumes in input space 

0 1 O2 0 3 0 4 0 5 0 6 0 7 0 8 

(Fa -1 -1 -1 -1 1 1 1 1 
(Fb -1 -1 1 1 -1 -1 1 1 
(Fe -1 1 -1 1 -1 1 -1 1 

is expected. In fact, such behavior is observed for query algorithms (see 

Sec. 5.5.4). 

The interpretation of the generalization error as a distance between net­

works is no artefact of the perceptron. Generalizing Eq. (5.83) to arbitrary 

networks, we will show that the probability ~(t, s) (over all inputs) that two 

networks with parameters Wt and Ws do not give the same answer defines a 

metric in the space of networks (of a given type). The only nontrivial part7 

is the triangular inequality. Consider three parameter vectors Wa,Wb,We 

and divide the input space into 8 sets with volumes 0 1, ... ,08 , Ei Oi = 1, 

according to the outputs (Fa,b,e (see Table 5.1). Then, ~(a, b) Probability 

of all E, for which Wa and Wb have different outputs = 0 3 + 0 4 + 0 5 + 0 6 • 

Similarly, ~(b, c) = O2 + 0 3 + 0 6 + 0 7 and ~(a, c) = O2 + 0 4 + 0 5 + 0 7• 

Thus, 

This completes the proof of the triangular inequality. 

So we can expect that the asymptotic scaling of the learning error based 

on the simple geometric picture is valid for more general types of networks 

or learning machines. 

Based on similar ideas, an asymptotic scaling of the information gain 

(~I) ~ a-I for noise-free learning was predicted in [25]. Using this simple 

geometric picture, we now derive an asymptotic result for the Gibbs error 

in the case of learning with strong output noise [26]. This will be shown for 

a general network, where only the number N of free adjustable parameters 

enters the calculation. 

We consider a teacher network with a noisy output, 

(5.88) 

The teacher's ideal answer is inverted, i.e., TJ = -1, with probability 

e-13 /1 + e-13 independent of the inputs. The task of the learner is to con­

struct a deterministic, i.e., noise-free, student network w s , 

(5.89) 

7We neglect the possibility that two different parameters w .. and Wb will give 
the same outputs on all inputs. 



Manfred Opper and Wolfgang Kinzel 179 

who will be able to give the teacher's ideal answers [T} = +1 in Eq. (5.88)]. 

We will use the Gibbs algorithm to construct such a network. This al­

gorithm will draw a W s randomly from the posterior distribution of the 

unknown teacher, after having seen P noisy examples. Using the ideas of 
Sec. 5.2.3, the students will have probability 

where 

Z(qP) ~ J dw exp (-Pt,E(W;qk'~k)) . (5.91) 

E(WsiUk,ek) equals 1 if Uk 'I- F(ws,ek)' i.e., if the student does not learn 
the outputs correctly. 

By using the Gibbs algorithm, the student will not simply try to minimize 

his or her learning error, but instead will make mistakes on the observed 

labels with probability e-(3/1 + e-(3. This is precisely the rate at which the 

teacher produces wrong outputs. Using the temperature {3-1, the student 

assumes a priori that a fraction of the teacher's answers are not correct. 

Fixing teacher and student for a moment, the probability that the stu­

dent's and the teacher's ideal answer disagree on a new input e, i.e., that 

(5.92) 

is given by 

~(t,s) = 1- L E(WtiU,e)E(wsiU,e)· (5.93) 

CT=±l 

Given the P outputs, the teacher and the student have the same distribu­

tion [Eq. (5.90)] by the definition of the algorithm. Using this fact, and 

weighting all possible output configurations with their probability [Eq. 

(5.52)], P(uP ) = C-l . Z(uP ), we can average Eq. (5.93) over teachers 

and students: 

(~(t,s)) = 

I: C-1 . Z(uP ) J dWt dws ~(t, s) . p(wtluP) . p(wsluP ). (5.94) 
CTl ... CTp=±l 

The total Gibbs error is obtained by averaging this expression over the 

training inputs. This can be done with the replica method, in a form similar 

to Eq. (5.70). One finds, using Eqs. (5.90) and (5.91), 
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with the replica Hamiltonian 

n 

Gn = -In[ L exp( -,8 L E(wa, 0', e))· (5.96) 
u=±l a=l 

This result has an interesting limit for strong noise, i.e., small ,8: 

n,8 f32n2 ,82 
Gn({Wa}) = -ln2 + 2"" - -8- + 4 LLl(a,b) + 0(,83). 

atfb 
(5.97) 

Here we have made use of the fact that (E(wa; 0', e))2 = E(wa; 0', e) and 

LS±l E(wa; (1, e) = 1. Inserting this into Eq. (5.95), we get 

82 J n 
€Gibbs ~ - ~~ 8n8B In II dWa exp[-BLLl(a,b)], 

a=l atfb 
(5.98) 

where the derivative with respect to B has to be taken at B = Pf32/4. The 

phase-space integral in Eqs. (5.98) is the partition function for n classical 

"particles" at temperature B-1 interacting with the pair potential Ll(a, b). 
If the number of examples P grows large, the effective temperature B-1 

goes to 0 and the particles are close together at the minimum of the poten­

tial. In other words, Ll(t, s) vanishes, and we have perfect generalization! 

To estimate the speed of generalization, we fix one of the couplings, 

e.g., W n' If all distances Ll (n, b) are small for large B, then the triangular 

inequality will enforce all other distances Ll(a, b) to be small as well. 

Our basic assumption is that for small distances the manifold of parame­

ters W is locally flat. In suitably chosen coordinates, with Wn at the origin, 

Wa == wa(i), i = 1, ... , N, the volume element (wn is fixed) 

N 

dWa ~ II dwa(i) (5.99) 

i=1 

is locally cartesian. Also, the distances Ll (a, b) are expected to be of the 

form Ll[{wa(i) - wb(i)}] for wa(i) - wb(i) « 1, and Ll should obey the 

"regular scaling" of a length, 

(5.100) 

Then we can simply scale the inverse temperature B out of Eq. (5.98) by 

using BWa (i) as new coordinates. We get 

• f'V _ I' ~ I [B-(n-1)N] _ N 
€Gtbbs - n~ 8n8B n - B' (5.101) 

Setting B = P,82/4, we get 

(5.102) 
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This coincides with the known result in the case of the perceptron. Note, 

however, that in the present approach we have made no assumptions on 

the distribution of inputs and the special architecture of the network. 

Since exact replica calculations for multilayer networks become techni­
cally very involved, we expect that the geometric approach will provide a 

useful alternative, at least in asymptotic regions. It would be interesting. to 

establish a connection with the VC results. 

5.5 Applications to Perceptrons 

In this section we discuss several applications of the statistical mechanics 

of generalization. In particular, we concentrate on the simplest case: the 

teacher as well as the student are simple one-layer perceptrons, with one 

input layer e, one weight layer Wt or w s , respectively, and one output bit 

0'. As before, we normalize the teacher weight vector to Wt • Wt = N: 

(5.103) 

The student tries to learn a set of aN = P input-output examples 

O'k,ek ,k = 1, ... ,aN, given by the teacher network. In the following, sev­
erallearning rules are considered; in addition, the structure of the teacher 

may be different from that of the student, or it may even change with time. 
It turns out that the simplest case - perceptron learns from perceptron 

- already shows many interesting phenomena. 

The advantage of simplicity is the fact that one obtains exact mathe­

matical relations, for example, the generalization error e as a fuction of 

the number aN of learned examples. Furthermore, the simple structure 
is always a part of more complex networks, and from understanding the 
perceptron it may be possible to derive results for multilayer networks. 

5.5.1 SIMPLE LEARNING: HEBB RULE 

The learning rule that easily can be analyzed [27] is the Hebb rule: At each 

presentation of a new example (Uk, ek) the product of input and output 

bits is added to the corresponding weight, 

Ws (t + 1) = w-:'(t) + ~ Uk ek . (5.104) 

If each example is presented once, and if the initial weight vector is 0, 
then the final weights are given by 

1 p 

w-:' = . fiT L Uk ek . 
vN k=l 

(5.105) 
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Note that ak is given by the teacher, 

(5.106) 

Now we study the case of random inputs ek' We are interested in the 
generalization error £, which, following Eq. (5.47), is given by the overlaps 

R = Wt . waiN and qo = Wa . waiN: 

c = ~ arccos (~) . (5.107) 

At each step of presenting a new example (ak' ek) the teacher-student 

overlap R = Wt . waiN changes by an amount tlR given by 

(5.108) 

However, for different input patterns ek , the variable u = Wt· eklVN is 
Gaussian distributed (u = sum of independent random numbers) with 

u=o and 
- 1 
u2 = - Wt • Wt = 1 . 

N 
(5.109) 

Hence, with iUT = J2/7r, on average, the teacher-student overlap changes 

by the amount tlR = J2/7rIN, which gives 

R=j! a. (5.110) 

The square of Eq. (5.104) gives the change of the student-student over­

lap, and one has 

(5.111) 

The variable z = wa(t) . eklVN is again Gaussian distributed with 

and zu=R. 

The correlations between z and u are taken into account by the substitution 

z = Ru + J qo - R 2t with t2 = 1 and tu = O. One obtains for the average 

of tlqo 

(5.112) 



Manfred Opper and Wolfgang Kinzel 183 

0.5.----------------------------------------, 

0.4 

0.3 

0.2 

0.1 

Hebb 

Bayes 

training error 

, , , , 

ex 

Fig. 5.S. Generalization error for Hebbian learning. The other two curves are 
the Bayesian error and the Hebbian training error. 

This gives 

qo =a+R2 , (5.113) 

and, as the final result, 

c =..!:. arccos ( fI 0: ) = ~ arctan ({1r\27r0: . 
7r V; j 0: + ~0:2" V 20.) 

(5.114) 

Hebbian learning also may be considered as a drifting random walk of w 8 

in an N-dimensional vector space [2]. The component of w 8 in the direction 

of the teacher increases like J2/7r0: while, perpendicular to the teacher, the 

student performs a random walk with mean-square displacement 0:. The 

ratio of the two lengths determines tan(7rc), according to Fig. 5.4. 

Figure 5.8 shows the generalization error c [Eq. (5.114)] as a function of 

the number of learned examples a. If only a finite number of examples has 

been stored (0: = 0), the network cannot generalize, and one has c = 0.5. 

But if the number of examples is of the order of the number of weights, c 
decreases. For large values of 0:, Eq. (5.114) gives 

c <X l/va. (5.115) 

Hence, asymptotically, the Hebbian rule is worse than the Bayesian op­

timum e ~ 0.44/0:. Nevertheless, it is surprising that the rule gives a rea-
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sonably low error c. That is, the Hebbian network cannot learn perfectly; 
its training error 

(5.116) 

is nonzero for any a > O. With the Gaussian variables u and t as before, 

one has 

(5.117) 

which gives [27] 

ct = ! - Joo Du erf (u ~ + _1 ) 
2 y; y'2a 

(5.118) 

o 

Hence, for a ~ 5, one finds a maximal training error of about 10%, which 

appears to be rather large. Nevertheless, the Hebbian network is able to 
generalize reasonably well. 

5.5.2 OVERFITTING 

If one has a cost function E that depends continuously on the weight vector 

W 8, then a learning rule may be defined as a gradient descent in the N­
dimensional weight space: 

(5.119) 

In many applications, the cost function is defined as the quadratic de­
viation between student and teacher output. In a multilayer feedforward 
network with continuous activation functions, the gradient rule is called 

error backpropagation [28]. 
Unfortunately, a gradient cannot be defined for binary student output. 

But one may try to learn the binary teacher output by a linear student 

network, minimizing the cost function 

(5.120) 

with Uk given by the teacher network, Uk = sign (Wt' t.k/ V'N). This 

gives the learning algorithm 

W8 (t + 1) = w 8 (t) + Jw (1 - .IN Uk w 8 (t) t.k) Uk t.k . (5.121) 

This algorithm has been studied for more than 30 years [29]; it is called 
ADALINE. For attractor networks it improves the storage capacity for 

random patterns from ac = 0.14 (Hebbian weights) to ac = 1 [30]. 
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= w, €, = sign ea Wt: és) k=1,..,0N. (5.122)

If the input patterns €, are linearly independent, one can solve this equation
for a < 1. But, for a > 1, it is obvious that Eq. (5.122) cannot befulfilled;
although the rule is realizable, the ADALINE algorithm cannot learn it
perfectly. The training error E; increases for a > 1 to a nonzero value.

Although the learning algorithm is defined by the linear network, its
training and generalization errorsstill are defined by the nonlinear network

o = sign(w-€). Both of the errors can be calculated analytically using the
replica method of Sec. 5.3.2 [31]. Using the Gibbs weight exp|—GE], one
finds the properties of the stationary state of the weight vector we,(i.e.
after having learned for infinitely many timesteps t) from the limit 8 — oo.

In Eq. (5.66) we replace ®(u) by

B(u) = V/Bexp [—-} B (u—1)?] (5.123)

nd ®, b

° ” ;(u) = O(u). (5.124)

Then we solve the saddle-point equations for the order parameters q and

R. For the limit G — oo, we have to consider two cases:

a <1: In this case, one has E = 0, and the length ,/qo of the student w,is
a free parameter that is maximized by go — q. Onefinds

_ p2
R= a)? go = Cot (5.125)

l—a
 

a >1: One has only one minimum of £, and q convergesto gp automatically.

However, the quantity G(qo —q) remainsfinite and nonzero. Onefinds

1+ 2(a-2
R= /2/n; go = se?) . (5.126)

These equations show that the length of the student vector diverges when
a approaches the value 1. This means — since the overlap R between the

teacher and the student remains finite — that the generalization error €
increases to 1/2. Ata =1, the network cannot generalize, although it has
learned perfectly!

The linear network tries to learn a nonlinear problem;for a < 1, it does so

by increasing the length of the weight vector. This gives a low performance
of generalization; this effect has been named overfitting (27|. For a > 1,
the network cannot learn perfectly, and its generalization error decreases.
Figure 5.9 compares the ADALINErule with other learning rules.
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For E = 0, Eq. (5.120) gives aN many linear equations for the N un­

known coefficients of w s : 

~ Ws ek = sign (~ Wt .ek); k = 1, ... ,aN. (5.122) 

If the input patterns ek are linearly independent, one can solve this equation 

for a < 1. But, for a > 1, it is obvious that Eq. (5.122) cannot be fulfilled; 

although the rule is realizable, the ADALINE algorithm cannot learn it 

perfectly. The training error Et increases for a > 1 to a nonzero value. 

Although the learning algorithm is defined by the linear network, its 

training and generalization errors still are defined by the nonlinear network 

(J' = sign(w· e). Both of the errors can be calculated analytically using the 

replica method of Sec. 5.3.2 [31]. Using the Gibbs weight exp[-.8E], one 

finds the properties of the stationary state of the weight vector w 8 (i.e. 

after having learned for infinitely many timesteps t) from the limit .8 -+ 00. 

In Eq. (5.66) we replace q>(u) by 

q>(u) = ~exp [-! .8 (u _1)2] (5.123) 

and q>t by 

(5.124) 

Then we solve the saddle-point equations for the order parameters q and 

R. For the limit .8 -+ 00, we have to consider two cases: 

a < 1 : In this case, one has E = 0, and the length .J'iiO of the student w s is 

a free parameter that is maximized by qo -+ q. One finds 

a-R2 
qo = 1 . 

-a 
(5.125) 

a > 1 : One has only one minimum of E, and q converges to qo automatically. 

However, the quantity .8(qO-q) remains finite and nonzero. One finds 

R = J2/'Tr; 
1+ 1 (a-2) 

qo = 11' • 

a-I 
(5.126) 

These equations show that the length of the student vector diverges when 

a approaches the value 1. This means - since the overlap R between the 

teacher and the student remains finite - that the generalization error e 

increases to 1/2. At a = 1, the network cannot generalize, although it has 
learned perfectly! 

The linear network tries to learn a nonlinear problem; for a ~ 1, it does so 

by increasing the length of the weight vector. This gives a low performance 

of generalization; this effect has been named over fitting [27]. For a > 1, 

the network cannot learn perfectly, and its generalization error decreases. 

Figure 5.9 compares the ADALINE rule with other learning rules. 
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For small @ values, Eq. (5.125) agrees with the Hebbian rule equations
(5.110) and (5.113). In fact, the ADALINEalgorithm only adds an addi-
tional weight to the Hebbian term ox €,/VN that is small for small a. For

large a, one finds
ex 1/V/a, (5.127)

which is again the result of the Hebbian network. Note that in both cases
the training error is nonzero.

It is interesting to note that the results for the order parameters [Eqs.

(5.125) and (5.126)] can be obtained without the replica method, by an
explicit calculation of the coupling vectors (60]. This will be shown in Ap-

pendix 5.2.
Finally, we want to mention that the dynamics of ADALINElearning can

be solved exactly, in contrast to nonlinear learning rules (32, 33, 34, 35].

It can easily be shown that the dynamics is governed by the spectrum of
eigenvalues of the matrix

P

By =~ Do &e(i) (4) (5.128)

B measures correlations between different input bits; note that at each
input unit i the P different training vectors define a P—dimensional vector,
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learning with optimal stability, and the optimal Bayes prediction. 

For small a values, Eq. (5.125) agrees with the Hebbian rule equations 
(5.110) and (5.113). In fact, the ADALINE algorithm only adds an addi­
tional weight to the Hebbian term Uk F-k/VN that is small for small a. For 

large a, one finds 

e IX. 1/..;a, (5.127) 

which is again the result of the Hebbian network. Note that in both cases 

the training error is nonzero. 

It is interesting to note that the results for the order parameters [Eqs. 

(5.125) and (5.126)] can be obtained without the replica method, by an 

explicit calculation of the coupling vectors [60]. This will be shown in Ap­

pendix 5.2. 

Finally, we want to mention that the dynamics of ADALINE learning can 

be solved exactly, in contrast to nonlinear learning rules [32, 33, 34, 35]. 

It can easily be shown that the dynamics is governed by the spectrum of 

eigenvalues of the matrix 

P 

Bij = ~ L ~k(i) ~k(j). 
k=l 

(5.128) 

B measures correlations between different input bits; note that at each 

input unit i the P different training vectors define a P-dimensional vector, 
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and Eq. (5.128) gives the product of those vectors. B is a kind of random 

matrix; its spectrum is a distorted semicircle between the values (1 ± y'(i)2 
with an additional degenerate eigenvalue 0 for 0: < 1, [32, 1]. One finds 

that for 0: -+ 1 the longest relaxation time diverges like IVa - 11-2 • Hence, 

one obtains a critical slowing down at the transition to perfect learning. 

5.5.3 MAXIMAL STABILITY 

The simple perceptron Ws has learned an example ek if 

(5.129) 

Its ability to generalize is related to the fact that the sign function maps 

similar input vectors e to the same output bit Uk. But from the above 

equation it is obvious that this property is optimal if the quantity 

Uk 
fl.k = VN Ws . (k (5.130) 

is as large as possible (for fixed norm Ws • wsIN). The quantity 

A _ • ukVN Ws '(k 
u-mln I I 

k Ws 
(5.131) 

is called the stability of the perceptron, and a good learning algorithm 

should maximize the stability fl.. For attractor networks, a similar relation 

is assumed between the stability and the size of the basin of attraction [12]. 

Equation (5.131) can be related to quadratic optimization with boundary 
conditions: 

Minimize w . w 

with the conditions ~ w . ek ~ 1 

for all patterns (k' 

It turns out that the optimal perceptron w s classifies the training examples 

into two classes [36]: One set of patterns is right at the boundary fl.k = 1, 

and the second set is in the interior of the allowed region. But only the first 

set has to be learned by the perceptron, namely, one has 

1 
Ws = fiT L Xk ek 

vN k 

(5.132) 

with coefficients Xk that are 0 for the second set. The number O:elJN of the 

examples belonging to the first set can be calculated by the replica method; 

it is shown in Fig. 5.10 as a function of o:N many random examples (k' 

O:ell remains smaller than 1, even for 0: -+ 00. Only O:ellN many examples 
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Fig. 5.10. Effective numberof inputs per weight to be learned by the perceptron
with optimal stability.

have to be learned by the network; and for these the ADALINElearning
rule is sufficient, leading to E = 0 in Eq. (5.120). For large a, most of the
added training examples are useless since they give A, > 1 and do not

change the student w, (they are not learned). Of course, this is related to
the fact that the generalization error is small.

Optimal stability has a surprising geometric implication: Considera set

of aN many random points € on the unit hypersphere in aN-dimensional
space. Label each point black or white randomly. Then a two-dimensional

projection of the points looks like Fig. 5.11(a). For N — oo and a < 2,
a perceptron with optimal stability A > 0 exists (Sec. 5.3.1). This means
that there is a weight vector w,, and a two-dimensional projection on a

plane containing w, lookslike Fig. 5.11(b). Now black points are separated
from white ones andthere is a gap A between the twoclouds. Precisely at

the boundary planes of the gap there are aesN many points. Hence, just
by rotating the cloud of random points one can find a view wherethe black
and white points are clearly separated.

There is an interesting general relation between a@efs and €, which holds

independently of the distribution of the inputs. Consider the case where a
P + 1st example (€,0) is added to the training set of P = aN inputs.If
we run our algorithm on this new, enlarged set, the coupling vector of the
P input problem is only changed if
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have to be learned by the network; and for these the ADALINE learning 

rule is sufficient, leading to E = 0 in Eq. (5.120). For large a, most of the 
added training examples are useless since they give t1k ~ 1 and do not 
change the student Ws (they are not learned). Of course, this is related to 
the fact that the generalization error is small. 

Optimal stability has a surprising geometric implication: Consider a set 
of aN many random points e on the unit hypersphere in aN-dimensional 
space. Label each point black or white randomly. Then a two-dimensional 

projection of the points looks like Fig. 5.11(a). For N - 00 and a < 2, 
a perceptron with optimal stability A. > 0 exists (Sec. 5.3.1). This means 

that there is a weight vector ws , and a two-dimensional projection on a 

plane containing Ws looks like Fig. 5.11(b). Now black points are separated 

from white ones and there is a gap A. between the two clouds. Precisely at 

the boundary planes of the gap there are ael I N many points. Hence, just 

by rotating the cloud of random points one can find a view where the black 

and white points are clearly separated. 

There is an interesting general relation between aefJ and e, which holds 

independently of the distribution of the inputs. Consider the case where a 

P + 1st example (e, u) is added to the training set of P = aN inputs. If 
we run our algorithm on this new, enlarged set, the coupling vector of the 

P input problem is only changed if 
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Fig. 5.11. Separating random inputs with a perceptron of maximal stability. 
The classifications are random (no teacher). (a) Projection onto a random plane. 

(b) Projection onto a plane containing w •. The arrow shows the student vector 

w •. 
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N-1/ 2(JW . e < 1, 

where W is the vector of the old couplings. If, on the other hand, 

N-1/ 2(JW • e ~ 1, 

the old couplings also provide optimal stability for the P + 1 pattern system. 

If this happens, then the new pattern is uncorrelated to w. 

Let 'Po be the probability over the distribution of the new input for this 

event. It turns out that 'Po and the probability G for a correct generalization 

on the new input are rather similar: 

'Po = Pr(N-1/ 2(Jw . e ~ 1) 

G = Pr(N-1/ 2(Jw • e ~ 0). (5.133) 

Since 1 > 0, it is clear that Po ~ G, so that we have for the generalization 

error 

c = 1 - G ~ 1 - 'Po. (5.134) 

Now, a'Po is the average, relative number of patterns that need not be 

learned explicitly. Conversely, aeJ J = 0.(1 - 'Po) is the average fraction of 

patterns that must be learned. Since we always have aeJJ ~ 1, we get from 

Eq. (5.134) 

ac = 0.(1 - G) ~ aeJJ ~ 1. (5.135) 

Thus, we will always have c ~ 1/0.. 
There are several algorithms that are guaranteed to find the optimal 

perceptron for aN many random examples ek' Unfortunately, one cannot 

classify the examples according to Eq. (5.132) in advance; hence, one has 

to learn all of them instead of a fraction aeJ J /0. of them, which becomes 

very small for 0.-"'00. 

One algorithm (Minover [38]) is an extension of the standard Rosenblatt 

[37] rule; another faster algorithm (Adatron [39]) is related to the quadratic 

optimization discussed above. But algorithms derived from standard opti­

mization theories also have been developed [40]. 

All of these algorithms converge to the perceptron with maximal stability. 

Its properties have been calculated in [31] using the replica method of 

Gardner [12] introduced in Sec. 5.3.2. Now the function ~ of Eq. (5.66) is 

(5.136) 

and ~t(u) = 9(u). Maximizing K, shrinks the volume in student space Wa 

to a single point, and the overlap q = Wa • Wb/ N approaches the square of 

the norm, i.e., q -... qo = Wa . waiN. 
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Figure 5.9 shows the generalization error as a function of the size 0: of 

the training set. € decreases monotonically and behaves like 

0.50 
€ ~--

0: 
(5.137) 

for 0: --+ 00. Hence, asymptotically, the perceptron with optimal stability 

can generalize much better than the Hebbian or ADALINE rule (for which 

€ ~ 1/..;a). It performs only slightly worse than the Bayesian lower bound 

of Sec. 5.3.3, although this difference means that maximal stability does 

not imply optimal generalization. 

5.5.4 QUERIES 

In the previous applications of the statistical mechanics of neural networks 

only random input patterns were considered. However, it seems obvious 

that the student network can improve its generalization performance if 

it selects input patterns according to its present state of knowledge. In 
particular, if the fraction 0: of learned examples is large, a new random 

plane is unlikely to cut the (small) version space into two parts ofroughly 

the same size; hence, the gain of information about the teacher is very small 

(see Sec. 5.2.4). 

Much more information can be obtained if the student selects a question 

according to its present state [41]. For the simple perceptron, a good choice 

seems to be a pattern ek that is perpendicular to the weight vector WS' 

Such a pattern is at the border of knowledge; tiny chances of W s produce 

different answers. 

For the simplest learning rule, e.g., the Hebbian algorithm discussed in 

Sec. 5.5.1, one easily obtains a differential equation for the overlap Rand 
the length qo, which determine the generalization error. Equation (5.111) 

gives L':l.qo = lIN since ek . Ws = 0 by construction. Hence, one has 

qo = 0: • (5.138) 

But IWt' ekl of Eq. (5.108) also can be easily calculated. With IWtl = 
VN, the component of Wt perpendicular to Ws has a length VNsin(J, 

where (J is the angle between the teacher and the student vectors. If ek is 

chosen randomly in the plane perpendicular to WS , then Wt ek is Gaussian 
distributed with variance 

(Wt • ek)2 = N sin2 (J 

= N(l - cos2 (J) • (5.139) 

With cos (J = RI v'Qo = RI..;a, one finds 

(5.140) 



192 5. Statistical Mechanics of Generalization 

0.5.----------------------------------------, 

0.4 

0.3 

0.2 

0.1 

, , , 

random examples 

selected examples 

, , , 

O.O~--r--.--~--._-,--_.--~--r_~--._--r_~ 

o 2 3 4 5 6 

ex 

Fig. 5.12. Comparison oflearning with selected and random inputs, using Hebb's 

rule. 

which gives, with Eq. (5.108), 

dR = f%. J 1 _ R2 . 
da Y; a 

(5.141) 

The solution R(a) determines the generalization error c(a) by c = 

arccos (R/Va)/rr. 
Figure 5.12 compares the results of random and selected examples. Al­

though the generalization error is lower for "intelligent" questions, the 

asymptotic decay for large values of a is c <X 1/ Va for both cases. 

This is different if the whole set of examples is relearned after a new 

pattern was selected. Then the perceptron with maximal stability gives an 

exponential decay of the generalization error with an increasing fraction 

a of the number of learned examples [41, 42]. For random patterns, the 

Bayesian bound of Sec. 3.3.3 as well as the optimal perceptron give c <X 1/ a. 
Hence, in this case, selected examples give much better performance. 

For more complicated networks it may be difficult to find patterns at 

the border of knowledge: An algorithm has been investigated that uses the 

principle of maximal disagreement between several students as a selection 

process [43]. Several students are trained on the same set of examples by 

an algorithm that selects students randomly in the version space. Then an 

algorithm starts which selects a new example for the training set: Many 
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random input vectors are presented to the students, and one is chosen 

on which the students disagree most. This problem has been solved using 

the replica theory. For large a, the gain of information becomes constant, 

yielding an exponential decay of the generalization error; this even holds 

for only two students. 

Selecting examples according to the weight vector W s (or several vectors 

ws ) may not be the best way of selecting examples. If the student learns 

a new example that is perpendicular to all of the previous ones, the gen­

eralization error is much lower than for the examples perpendicular to the 

actual Ws (a) [2J. However, this algorithm works only for a < 1. 

5.5.5 DISCONTINUOUS LEARNING 

If one increases the number of examples, one expects that the generalization 

error of a network continuously decreases to its minimal possible value for 

a --+ 00. If the rule is completely learnable, then the asymptotic error is 0, 

at least for perfect learning. However, a different behavior is observed for 

perceptrons with binary weights: For small a, e decreases; but at a critical 

value ac , e jumps discontinuously to a lower value that is 0 for a realizable 

rule [44, 45J. This transition occurs even for high-temperature learning. In 

this case, it can be easily described analytically, since one does not need 

replicas [47J. We consider the case where both the teacher and the student 

are simple perceptrons with binary weights W s , Wt E {1/..fN, -1/..fN} N. 

The student learns a set of aN many examples «(k' Uk) from the teacher, 

and the training algorithm is a Monte Carlo procedure. After learning each 

weight vector, Ws occurs with probability 

p(ws ) ex: exp [-,8 ~ e [-(Wt . ek)(ws . ek)l] . (5.142) 

For high temperatures, T = 1/,8, the free energy I per synapse of the ther­

mal equilibrium after learning is only a function of the overlap R between 

the teacher and the student: 

a,8 1 - R 1 - R 1 + R 1 + R 
-,81 = --;- arccos R - -2- ln -2- - -2- ln -2-' (5.143) 

The first term is the generalization error, and the second term is the entropy 

of Ising variables with magnetization R. Note that T and a appear only as 

aeff = a/T. (5.144) 

Hence, in the limit T --+ 00, the network has to learn a --+ 00 many exam­

ples. The minimum of I(R) gives the equation that determines the overlap 

R: 
a,8 

R = tanh ..;r-:::Ji2' 
11' l-R 

(5.145) 
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Solving these equations, one finds three different regimes of aeff: 

1. For aeff < 1.7, a state with R < 1 is the minimum of f. The gen­

eralization error decreases from e = ~ at aef f = 0 to e ~ 0.2 at 

aeff = 1.7. 

2. Between 1.7 < aeff < 2.1, the state with R < 1 is a local minimum, 
only; the state R = 1 has lower free energy. Hence, the system has a 

first-order transition to perfect generalization. 

3. For aeff > 2.1, the metastable state with R < 1 disappears. 

Note that for large a the network collapses to its ground state at high 

temperatures! To understand this, consider a small deviation 6R = 1 - R 
from the state of perfect generalization. The energy increases like E ex: 

N J8ij,. This increase cannot be compensated for by the entropy increase 

68 ex: N{6R) In{6R). Hence, the state R = 1 is always a local minimum of 

f{R); and if the initial state of the student is identical to the teacher, then 

no Monte Carlo algorithm can move the student out of this state of perfect 

generalization. Increasing the complexity of the student network by using a 

multilayer architecture with binary weights leads to even more phases and 

discontinuous transitions of the generalization error [46]. 

At zero temperature, i.e., for perfect learning, the first-order transition 

for the binary weight perceptron occurs at a c = 1.245 [45]. Approaching the 

transition from below, a -+ ac, the entropy 8 obtained from the number 

of weight vectors w B that learn aN many examples perfectly goes to O. 8 
has been calculated by the replica method. 

Figure 5.13 shows the phase diagram of the binary perceptron obtained 
from replica calculation including replica symmetry breaking (RSB) [47]. 

In addition to the three phases discussed above, there is a spin-glass phase 
where a solution with one-step RSB exists; this solution is metastable. The 
spin-glass phase indicates a complex space of students {ws } who learn 
perfectly. Its implications for a dynamics of the binary weight perceptron 

are still unclear. A direct treatment of the dynamics gives new types of 

freezing transitions [48]. 
How many questions does one have to ask in order to obtain a complete 

knowledge about the N unknown weights of the student w s? For binary 

weights, one needs at least N questions; hence, the minimal possible number 

of patterns for which a transition to perfect generalization occurs is N. This 
gives a lower bound . 

ac > 1. (5.146) 

Therefore, learning random patterns with a transition ac = 1.245 is not 

the optimal way of asking questions. A better strategy seems to be learning 

patterns at the border of knowledge, as was discussed in Sec. 5.5.4. In fact, 

a replica calculation gives ac ~ 1.14 [42]. 
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Fig. 5.13. Phase diagram for the perceptron with binary weights (taken from 

[47]). To the left of the dashed line, the equilibrium state has R < 1. To the right, 

the state of perfect generalization (R = 1) is the absolute minimum of the free 

energy. Between the dashed line and the solid spinodal line, the R < 1 state is 

metastable. In the region marked by "SG," a one-step replica symmetry breaking 

predicts a metastable spin-glass phase. 

For T = 0, all results so far have been obtained by phase-space calcula­

tions. This means that one calculates the volume of all students who learn 

perfectly. However, a practicable training algorithm does not exist yet. In 

fact, finding a W 8 may be an NP-hard problem of combinatorial optimiza­
tion [48,49], at least for Q < 1.63 (the upper limit of the spin-glass phase), 

for which an algorithm converging in a time that is a polynomial in N does 

not exist. Then even simulated annealing does not yield perfect learning. 

5.5.6 LEARNING DRIFTING CONCEPTS 

In the previous sections the examples were given by a rule ( = teacher) 

defined by a perceptron with a stable weight vector Wt. All of the examples 

were learned iteratively, that is, the training algorithm was repeated for all 

of the examples until it converged. 

But neural networks also may be useful for situations where the rule 

slowly changes with time, and the network tries to follow the changes by 

learning only the most recent examples. Hence, the teacher continuously 

changes his opinion and the student tries to adapt to such a dynamic pro­

cess by learning the examples and, if possible, predicting Wt for the next 

time step. 

In the simplest case, the teacher vector Wt is performing a random walk 
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in the N-dimensional space [50, 51J with 

'" Wt(t + 1) . Wt(t) = 1 - N' (5.147) 

where '" is a measure of the drift velocity. The student learns only one 

example (e,a) with a = sign (Wt· e) given by the teacher at time t. The 

learning rule uses only information about the output bit a and the field 

h(t) of the student. One defines 

Ws(t + 1) = ws(t) (1 - ~) + ~I (a(t), h(t)) a(t) ws(t). (5.148) 

1 is a function that has to be optimized, and h(t) is the field generated by 

the student, h(t) = (l/VN) ws(t) . ej ,\ gives an additional weight decay 

which reduces the length of the student vector Ws. 
Again we need the overlaps R = Wt • ws/N and qo = Ws . ws/N to 

determine the generalization error £ = (1/11") arccos (R/vqo). But, since 

only the latest example is learned, one obtains simple differential equations 

for R(t) and qo(t), in analogy to Sec. 5.5.1. The changes of Rand q are 

given by 

6.R = ~[f(a,h(t))~eat-('\+"')R] (5.149) 

t::.qo ~ [!Ca, h(t» a h(t) + ~f2(a, h(t» - ,\qo] 

These equations have to be averaged over different examples e and different 

random walks of the teacher Wt. For random examples one obtains 

dR 

da 

dqo 

da 

Wt e 
= I(a, h) TN a - (,\ + ",)R (5.150) 

Wt· e 1 2 = 2/(a, h) VN +"21 (a, h) - 2'\qo . 

The fields Ws . e and Wt . e are correlated Gaussian variables that allow 

an easy calculation of the average values n similar to Sec. 5.5.1. The 

"time t" has been replaced by aN, the number of learned examples. 

As before, the simplest learning rule is the Hebbian one, with 1 = 1. In 

this case, one finds without decay (,\ = 0): 

R(a) (5.151) 
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Fig. 5.14. Generalization errors for the learning of drifting concepts, using Heb­

bian learning (with and without weight decay), the perceptron algorithm, and 

the on-line algorithm with optimal f given in [53]. 

Figure 5.14 shows the generalization error c(o:) given by these equations. 

It has a minimum at some 0: value but then increases to c = 1/2. Hence, 

the student cannot generalize if he or she has learned too much! 

The reason for this surprising feature is the fact that the Hebbian cou­
plings have equal strengths for all of the examples. But, since the teacher 

changes his or her direction, the examples produced some time ago destroy 

the most recent information that is important for generalization. 

In fact, a weight decay>. > 0 produces lorgetting [52]; hence, the error 

c:(o:) decreases to a stationary value c:(oo) that can be minimized with 

respect to >.; the result is shown in Fig. 5.15. The minimal asymptotic 
error increases with small drift parameters TJ as 

1 1/4 
copt(OO) ~ 7r3/ 4 TJ • (5.152) 

A better training algorithm is the perceptron learning rule [1], with 

I(a, h) = 0 (K - ah/qo). Now, c(oo) can be minimized with respect to the 

two parameters K and >.. One finds [50, 51] for small TJ values 

c(oo) ~ 0.511]1/3 . (5.153) 

The same power of 1] is found if the learner knows c(o:) and uses this 

information to derive an optimal function I(a, h) [53]. 



198 5. Statistical Mechanics of Generalization 

--8 
t 
~ 

"-" 
O.ll 

c.v 

0.30 

0.20 

0.10 

/// 
: I.: 
: t ' 
tt' 
i,: 
;,: 
f 

Perceptron ~ ~~ 

Hebb rule 
/C=},.=O 

I/C.},.! opt. 
optimal f 

O.OO~~~~~~~~~~~~~~Th~~rrl 

0.00 0.10 0.20 0.30 0.40 0.50 

1] 

Fig. S.lS. Stationary value c:(oo) for learning of drifting concepts using the 

learning algorithms mentioned in Fig. 5.15. Also, the effect of queries is included. 

An additional improvement is obtained by selecting examples as in Sec. 
5.5.4. For the Hebb rule with optimal decay, one finds 

e( 00) = .!. arccos vrk ~ f2.. 
7r +'17r y; (5.154) 

Using e(a) with an optimal I, the generalization error decays exponentially 

fast to the same asymptotic error [Eq. (5.154)]. 

Of course, a random walk cannot be predicted by definition. But for 

deterministic changes of the teacher or for biased random walks it should 

be possible to predict future actions of the teacher by studying the history 

of the presented examples. The statistical mechanics of such problems still 

have to be formulated. 

5.5.7 DILUTED NETWORKS 

In the previous examples the student had the same structure as the teacher. 

But it may be interesting to study cases where the student has to deduce the 

structure of the teacher from the set of presented examples. A simple case 

is the diluted teacher: Both teacher and student are simple perceptrons, but 

a certain fraction I of the couplings is erased. This means that the teacher 
has a fixed set of weights that are equal to 0, and the student also has a 
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fixed fraction of 0 weights, but he or she is allowed to choose which bonds 

are to be erased. 

Hence, the student has additional dynamic variables C E {O, I}N, which 

are multiplied with the weights w 8 E RN. For this problem, the perceptron 
of optimal stability can be calculated using the phase-space integral of 

Gardner, but now with the additional discrete variables C [54]. One obtains 

the generalization error g as a function of a, f8,ft, where f8 and ft are the 

fraction of nonzero bonds of the student and teacher, respectively. One finds 

that g has a minimum as a function of f8, and for large Q this minimum 

approaches f8 ~ It-
Again, the replica calculation does not provide us with a learning al­

gorithm. Finding the optimal configuration c is presumably an NP-hard 

problem of combinatorial optimization, similar to the binary perceptron. 

Therefore, a practicable algorithm does not exist, yet. However, one might 

guess that, by learning the complete network and by erasing the weak 

bonds, one may obtain a good approximation of the optimal perceptrons. 

In fact, this is the case for attractor networks (= random teacher) [55]. 
A fast and effective dilution algorithm is given by the Hebbian couplings: 

Ci = 0 if (5.155) 

where s is determined by f8. For this fixed dilution vector c, the remaining 

weights are determined by the standard algorithms for the perceptron of 

optimal stability [1]. 

The generalization error g has been calculated analytically [54]. The order 

parameters now are defined by 

N 

q = N1f L CiWa(i) Wb(i) 
8 i=l 

N 

R = NJ,;,; t;CiWt(i) ws(i). (5.156) 

Rand q determine g as usual. Figure 5.16 shows the result. For fa < ft, 
the target rule is unrealizable; the student cannot reproduce the teacher 

perfectly, even for Q -+ 00. For fs > ft, the student has too many degrees 

of freedom, which deteriorates his or her ability to generalize. Hence, g 

has a maximum that approaches fs -+ ft for a large fraction Q of learned 
examples. 

Note that fs is a fixed parameter. What remains is to find an algorithm 

that determines the optimal dilution fraction fs of the student. By such 

a learning rule the student would be able to explore the structure of the 
teacher. 
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Fig. 5.16. Generalization error as a function of student dilution i. for a teacher 

with dilution it = 0.2. The dashed curve separates training with errors (left) and 

without errors (right). 

5.5.8 CONTINUOUS NEURONS 

Up to now we have mainly discussed output neurons with the step transfer 

function sign (x). The teacher as well as the student is a network with 

binary output a E {+ 1, -I}. But functions with continuous output also 

are interesting. First, they model a continuous firing rate as a function of 

excitation potential for real neurons; and, second, tasks for neurocomputers 

may involve analog signals, and learning rules like gradient descent work 

only for continuous functions [56]. 

In the context of statistical mechanics, continuous neurons have been 

studied for a simple percept ron [57]. The teacher and the student are per­

ceptrons with weight vectors Wt and w s , respectively. But now the output 

signal is given by 

a = tanh (IN W· e) , (5.157) 

where "I is a parameter that measures the degree of nonlinearity of the 

transfer function. An increase of the student's length qo = Ws . wslN can 

be compensated for by a decrease of the slope "Is of Eq. (5.157). Hence, 

only the product "I; qo has a physical meaning, and the student has the 

freedom to adjust its slope "Is during learning. In [57], qo = 1 was chosen. 
Learning again is expressed as minimizing a cost function E, which is 
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chosen as the quadratic deviation 

(5.158) 

By defining 

l1k = (JNWt '~k)' (5.159) 

one observes that E = 0 implies E = 0 for the function 

(5.160) 

This is just the cost function for a linear network! For a < 1, E = 
o gives less equations than unknowns, and the solution with minimal "18 

(corresponding to minimal norm) is given by the pseudoinverse as in Sec. 

5.5.2. Using the replica method, one finds [57] 

R=y'Q. (5.161) 

For a> 1, E = E = 0 gives perfect generalization with "18 = 'Yt and R = 1. 

The generalization error c can be defined by 

(5.162) 

i.e., the quadratic deviation between the answers of the teacher and the 
student for random patterns. 

One finds for a < 1 

00 00 

c=~ J Dx J Dy[tanh('Ytx )-tanh('Yt\/a(l-aY)+'Ytax)f 
-00 -00 

(5.163) 
while c = 0 for a > 1. Figure 5.17 shows the results c(a) for different 

teacher slopes 'Yt. Surprisingly, for 'Yt > 1. 33, the generalization error in­

creases with a when only a small number a of examples has been learned. 

5.5.9 UNSUPERVISED LEARNING 

In the previous sections, a teacher function presented answers to random 

inputs to a student network. Hence, the teacher classified the input pat­
terns. 

However, sometimes one would like to find a classification of input pat­
terns without knowing the answer of a teacher; hence, the input patterns 
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Fig. 5.11. Generalization errors for student and teacher with a "tanh(r·)" trans­

fer function. 'YT is the gain factor of the teacher. 

ek have a structure that the student network has to find out. Recently 

this problem of unsupervised learning was studied in the framework of the 

statistical mechanics of simple perceptrons [58]. 

The inputs are no longer completely random, but they have an internal 

structure defined by a teacher vector Wt: The patterns ek belong to two 

"clouds" with respect to the overlap to the teacher. The distribution of 
U = Wt' t;.k/ffi is a double Gaussian, that is, each peak has a width 1 and 
the two peaks are separated by 2p/ffi with a parameter p = 0(1). Note 

that the patterns have only a very weak overlap p/ffi with the teacher 

vector Wt. In contrast to the previous problems, the student does not know 

the sign of u. 
Learning again is expressed as minimizing a cost function E, and statis­

tical mechanics of the phase space of all students W s is used to calculate 

the overlap R = Wt . wslN after having learned o:N many examples ek 
taken from the double peak distribution. 

Two cost functions have been considered: 

(5.164) 

EB = - L O(K -Iws . ekll..fN) . (5.165) 
k 

The first corresponds to principal component analysis [56] and the second 

to finding the perceptron of maximal stability K, i.e., one maximizes K with 

EB = 0, if possible. 

In both cases, one finds a critical value o:c below which the student 

cannot generalize (R = 0). Only if the number of learned examples is larger 
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than acN can the student develop an overlap with the teacher direction. 

Of course, the sign of the classification cannot be deduced, since it is not 

shown by the teacher (unsupervised learning). Figure 5.18 shows the critical 

number ac as a function of p, which measures how strong the double peak 

structure of the cloud of patterns shows up. For the first case, ac diverges 

with P > 0, and one finds 

(5.166) 

But, surprisingly, the perceptron with maximal stability cannot generalize 

if the distinction p of the two classes of input patterns is smaller than 

Pc = \1'2. And, even for a -+ 00, the generalization error does not decrease 

to 0, but one has 

R(a -+ 00) = ± v'1- 2/p2 for a> v2 . (5.167) 

5.6 Summary and Outlook 

We set out to convince the reader that the study of simple mathematical 

models is a promising way to understand at least part of a neural network's 
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abilities to learn from examples. Thus, in the first part of this chapter we 

tried to review a few of the basic theoretical ideas and tools which are 

currently discussed in the computer science and statistical physics hterature 

on neural networks. 

The Vapnik-Chervonenkis method, well known in theoretical computer 

science, is able to bound the generalization error using only a single pa­

rameter of the class of networks, rather than their complete architecture. 

The statistical physicist's tools, which mainly are based on the replica 

method, are designed for very large nets and allow for the exact calcula­

tion of learning curves in a variety of circumstances. Here, however, one is 

practically restricted to simple architectures and some hopefully "natural" 

probability distributions for the examples to be learned. 

In the second part of the chapter we concentrated on the statistical physi­

cist's methods and presented a variety of learning problems that can be 

treated exactly for a special network, the perceptron, which is far from 

being a toy model. Although there is a great interest to study more com­

plicated, multilayer nets [2], the amount of recent results for perceptrons 

suggests that there are still more interesting facts to be discovered for this 

machine. 

We found a rich structure of learning curves that may not be easily re­

covered within the VC framework. This stems from the fact that problems 

such as overjitting, discontinuous learning, or intelligent dilution are es­

sentially related to either specific learning algorithms or specific features of 

the network architecture. On the other hand, comparing the VC predictions 

and the concrete learning curves for the perceptron, we found that the VC 

bounds match the correct order of magnitude for the typical asymptotic 

behavior in many cases. Thus, it seems that the asymptotic region can be 

estimated correctly by using only a few parameters of a neural network. 
It would be a challenge to combine statistical physics methods based on 

the replica trick and the VC techniques. Such an approach may be helpful 

and important in treating multilayer nets when the complex structure of 

the network's phase space makes exact replica calculations a hard task. 

Acknowledgments. We thank Andreas Mietzner for assistance and acknowl­

edge support from the Deutsche Forschungsgemeinschaft and the Volkswa­

genstiftung. 

Appendix 5.1: Proof of Sauer's Lemma 

As can be easily seen, the first inequality of Eq. (5.4) is proved if we can 

show the following theorem: 

Consider a sequence of inputs eP = e l' ... , e p. If there is an integer d, 
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such that the number N(e P ) of cells or output configurations fulfills 

(5.168) 

then we can find a subsequence of these inputs, of length d + 1, for which 

N(edH ) = 2dH. 

The proof is by induction on P and d. It is easy to see that the theorem 

holds d = O. It also holds for any P ~ d because, in this case, the premise 

(5.168) can never be fulfilled: The sum of binomials is then 2:: 2P . But 

N(eP ) must always be ~ 2P . 

Let the assertion be true for all d ~ do and all numbers of inputs. Now, 

assume that the theorem is also true for d = do + 1 and for P < Po inputs. 

We then will show that it holds for all P. 
We add a Po + 1st input e and assume the premise (5.168): 

(5.169) 

If, on the first Po inputs, we had N(e PO ) > L:1~6I (~o), then, by the in­

duction assumption, the theorem is true. 

So let us discuss the other case: 

We divide the old cells (those for the first Po inputs) into two groups: a 
group M2 , which contains cells that will split into two subcells on presenting 

the new input, i.e., both outputs are possible on e. The remaining cells, 

i.e., those which do not split, are contained in MI' Obviously, 

(5.170) 

The bars denote the number of cells in the groups. Now, we study two 

possibilities: If IM21 ~ L:1~o (~O), then, by Eq. (5.170), we would have 

N((Po+l) ~ ~' (~o) + ~ (~o) = 

doH (Po + 1) L . , 
i=O Z 

(5.171) 
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by a standard addition theorem for binomials. But this contradicts our 

condition (5.169). So we are left with the second possibility: 

IM21 > t, (~o). 
By the induction assumption we can find a subsequence of length do + 1 

out of the first Po inputs, such that the teachers of the cells in M2 produce 

2110+1 cells. Since these are able to give both possible answers on the new 

input ~, we have constructed a subsequence of length do + 2 with 2110+2 

output combinations. This completes the proof. 

Appendix 5.2: Order Parameters for ADALINE 

For a < 1 it is well known [59J that the coupling vector can be explicitly 

written as 

Ws = N-1/ 2 2: Uk(O-l)kl~' (5.172) 
kl 

with Okl = N-l~k • ~l. The length of the coupling vector is then 

qo = N-1w· W = N-1 2:Uk(O-l)kIUI. (5.173) 
kl 

The basic idea is to calculate the order parameters from an average over 
the teacher. Technically, it is useful to choose Gaussian distributed teacher 

vectors with density 

g(Wt) = (21r)-N/2 . exp( -~Wt . Wt). 

This realizes a homogeneous distribution on the surface of a sphere. The 

outputs are then Uk = sign(uk), where the fields Uk = N-l/2Wt . ~k are 

Gaussian variables with 

(Uk Ul) = Oklo 

For random inputs, Okl is typically of order N-1/ 2 for k =/: l, and 

for k = 1 
for k =/: l. 

One can show [IJ that for random inputs and N -+ 00, 

N-1 ~(O-l)kk = ~. 
L..t I-a 

k 

(5.174) 

(5.175) 

(5.176) 

Using this equation, and inserting Eq. (5.175) into Eq. (5.173), we get 

(5.177) 



R=N7}(w; = N7}2—1).:(uz sign(u)) = a? (5.178)

The case a > 1 can be treated by the same method. We will not give the
details here [60]. We only mention that w, is the minimumof the quadratic

learning error

S(on — N7?w - &)?. (5.179)
k

Taking the gradient, we get explicitly for the ith component

ws(i) = S(BO)ij fj, (5.180)
k

with

By = N~DSEK()

and

fp = NV?©one (3).
k

Again, the order parameters can be claculated by averaging over the teacher
vector.
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