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a b s t r a c t 

Existing 3D human pose estimation (3D-HPE) methods focus on reducing the overall joint error, resulting 

in endpoints and bone lengths with large errors. To address this issue, we propose a human structure- 

aware network, which is capable of recovering 3D joint locations from given 2D joint detections. We cas- 

cade a refinement network with a basic network in a residual learning manner, meanwhile fuse the fea- 

tures from 2D and 3D coordinates by a residual connection. Specifically, our refinement network employs 

a dual-channel structure, in which the symmetrical endpoints are divided into two parts and refined sep- 

arately. Such a structure is able to avoid the mutual interference of joints with large errors to promise 

reliable 3D features. Experimental results on the Human3.6M dataset demonstrate that our network re- 

duces the errors of both endpoints and bone lengths compared with existing state-of-the-art approaches. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

3D human pose estimation (3D-HPE) has various applications 

such as virtual reality (VR), action recognition [3] , and autonomous 

vehicles. Common strategy for obtaining 3D-HPE is inferring 3D 

joint locations from 2D joint detections, and this kind of methods 

can be roughly clarified into two categories: camera module based 

and deep learning based. Camera module based methods optimize 

the camera parameters in order to match the given 2D locations 

with their corresponding 3D representations [17] . However, these 

methods usually require an over-complete database [1,5] to cover 

various actions and also complex optimization methods [16,19–23] . 

Moreover, different camera models will have different effects on 

the results [18] . Deep learning based methods utilize the deep 

network models to recover 3D pose from given 2D locations, 

which achieve the state-of-the-art performance. Moreno–Nogue 

[11] regressed a 3D distance matrix via a Fully Convolutional 

Network(FCN) and then inferred the 3D poses by retrieving the 

joint locations which yield the same distance matrix. Martinez 

et al. [10] simply employed a multi-layer fully connected network 

to directly regress the 3D joint coordinates from 2D joint locations. 
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It outperforms most existing methods and requires less time to 

train on Human3.6M. 

All the above mentioned approaches deal with all joints equiv- 

alently, which concentrate on reducing the overall joint error, but 

ignore the articulated structure of the human body. The particular 

endpoints of such an articulated structure (i.e., elbows, wrists, 

knees and feet, namely hard joints ) have a much larger motion 

space than the other joints (see Fig. 1 ), making the estimation 

more challenging. Meanwhile, the joint errors of limbs present an 

increasing trend due to the error propagation along this articu- 

lated structure. In addition, without involving in the relationships 

between body joints, these methods may result in unreasonable 

human poses, e.g., hand raising with a very long arm. 

Motivated by the above observations, in this paper, we focus 

on designing a novel and deeper network model, which is to 

facilitate the 3D-HPE task. This proposed approach estimates 3D 

poses of body joints from a set of 2D joint locations via a human 

structure-aware fully connected neural network, which is a lying 

Y-shape network. The first part (front branch of the lying Y) of this 

network, a residual network (basic model), is for obtaining a set 

of 3D joint coordinate candidates. To exploit the structural infor- 

mation of human, we cascade the basic model with two individual 

fully connected networks (branches of Y) to refine the coordinates 

of hard joints. We named the two fully connected networks as 

refinement network. One is for refining the left hard joints (left- 

elbow, left-wrist, left-knee and left-foot), and the other is for the 
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Fig. 1. Motion spaces of joints. The green dots in (a) and the red dots in (b) respec- 

tively represent the 3D coordinates of a non-hard joint (left shoulder) and a hard 

joint (left wrist), in 1552 frames of action sequences. This figure clearly shows that 

the hard joints have very larger motion space than non-hard joints. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

right ones (right-elbow, right-wrist, right-knee and right-foot). This 

strategy avoids the inter-class influence between the left and right 

hard joints, and it enforces the inner-class relationship between 

the same group of hard joints. Furthermore, to reduce the loss of 

information during the translation from the basic network to the 

refinement network, we employ a residual connection between 

them. The effectiveness of the proposed approach are examined 

and compared against various state-of-the-art 3D-HPE approaches 

using the Human3.6M. 

2. Proposed method 

From Fig. 1 , we can observe that the hard joints move in a 

much larger motion space than the non-hard joints. We need a 

deeper network to fit the large motion space of hard joints in the 

deep learning based methods. Simply deepening the network for 

3D human pose estimation could reduce the length error of bones. 

However, it could not reduce joint errors. The joint error decreases 

first and then increases while increasing the network depth of a 

basic fully connected network, as depicted in our supplementary 

figure. Moreover, the joint error is mainly contributed by the hard 

joints. This observation inspires us that paying more attentions to 

hard joints in a deeper network benefits for reducing both joint 

errors and bone length errors. 

The objective of this paper is to deepen the basic network to 

allow the network to capture more information from both 2D 

and 3D locations for reducing errors of hard joints and also bone 

length errors. We propose to first estimate the joint 3D coordinate 

candidates and then refine the locations of hard joints. To ensure 

end-to-end learning, we cascade a refinement network with a 

basic network to instead two separate networks. As the motion 

spaces of left endpoints have little relation with right endpoints, 

and the mutual inference between hard joints may aggravate the 

transfer error, therefore, we divide all the joints into the left and 

right sets for refinement. Finally, we cascade the basic model with 

two individual fully connected networks to refine the coordinates 

of hard joints. 

Fig. 2 illustrates an overview of the proposed architecture. We 

first briefly review the structure of the basic network. Then a de- 

tailed discussion of our refinement network is presented. 

2.1. Basic network 

The basic network aims at directly regressing 3D joint loca- 

tions from the 2D pose. This network consists of multiple stacked 

residual modules, each containing two linear fully connected layers 

of dimension 1024. Every two fully connected layers are wrapped 

in a residual connection. Particularly, every fully connected opera- 

tion followed by Batch Normalization, RELU (Rectified Linear Units) 

[12] and Dropout [14] . With Kaiming initialization [2] , given 2D 

joints x ∈ R 2 n , and their corresponding 3D joints y ∈ R 3 n , where n 

is the number of joints, the basic network aims to learn a function 

f b : x 
2 n → y 3 n that regresses 3D joints locations with a loss function 

as: 

L 1 = 

n 
∑ 

i =1 

L ( f b (x i ) − y i ) , (1) 

where L is L 2 -Norm. 

We choose this network for its efficiency for 3D-HPE [10] , and 

it also takes less time to train in Human3.6M. However, all joints 

share the total neures in this network, and they have no explicit 

constraint among joints. This leads to large errors of hard joints 

and even a unreasonable pose with large bone length errors. For 

this issue, we explicitly refine the locations of hard joints and im- 

plicitly strengthen the relationship between joints by the proposed 

refinement network. 

2.2. Refinement network 

We first introduce a single-channel refinement network which 

aims at adjusting the hard joints for more precise coordinates, and 

then a dual-channel refinement network is introduced to further 

deal with the relationship between joints. 

Single-channel: By supervising the final layer of the basic net- 

work, we propose to follow a coarse-to-fine learning pattern. We 

first obtain a set of 3D locations from the basic network, includ- 

ing coarse locations of hard joints and precise locations of other 

joints. Then we treat all the 3D joint locations as the feature be- 

ing propagated to our refinement network. Finally, the refinement 

network explicitly learns accurate locations for hard joints given 

preliminary joint coordinates. The basic network and the refine- 

ment network are trained together in an end-to-end pattern using 

ground truth supervision. By doing so, the results of joints from 

the basic network stay the same level with those of the network 

in literature [10] , even though the depth of the whole network is 

deeper. The architecture of the proposed single-channel refinement 

network is depicted in Fig. 3 . To ensure an end-to-end learning 

pattern, we employ a binary vector as indication promising our re- 

finement network only back propagating the loss of hard joints. Let 

q denote the indication, our refinement network learns a function 

f r to refine the hard joints by a loss function as follows: 

L 2 = 

n 
∑ 

i =1 

q i × L ( f r ( f b (x i )) − y i ) , (2) 

where 

q i = 

{

1 , i f the i th joint is a hard joint, 
0 , otherwise. 

Dual-channel: Furthermore, we transform the above single- 

channel refinement network into a dual-channel module due to 

the special articulated structure of human body. In the above 

single-channel refinement network, 3D locations of all joints 

are considered as the input features of the refinement net- 

work. Differently, as shown in the Fig. 4 , we divide human 

body joints into two partial overlapping categories, namely 

A = { l e f t _ hand, l e f t _ el bow, l e f t _ knee, l e f t _ f oot, thorax, neck/nose, 

l e f t _ shoul d er, head , spine, le f t _ hip, pelv is } and B = { right _ hand, 

r ight _ elbow, r ight _ knee, head, right _ f oot, pelv is, neck/nose, right _ 

shoulder, thorax, spine, right _ hip} . In the learning phase, the net- 

work could implicitly take the constraint of bones into account. It 

explains why the bone errors decrease with the deeper network, 
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Fig. 2. Overall architecture of the proposed model. The proposed network contains two subnetworks: (a) a basic one and (b) a refinement one. The basic network consists 

of multiple stacked fully connected layers, and the refinement network possesses a dual-channel structure. The blue solid line indicates a residual connection. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Single-channel refinement network. The single-channel refinement network 

finetune the hard joint locations by using two fully connected layers. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 4. Joint groups. The whole human body is divided into A and B group. Each 

group contains 4 hard joints (i.e. elbow, hand, knee and foot on black bones) and 

2 non-hard joints (i.e. shoulder, hip on blue bones) on the left and right sides re- 

spectively, and shares all the rest joints (i.e. head, neck/nose, spine and thorax on 

blue bones). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

as is shown in Fig. 1 of supplementary. While refining the hard 

joints all together as in the single-channel refinement network, the 

large error hard joints of left offer wrong constraint information 

to the right hard joints. 

In order to avoid the inter-class inference [7] between the left 

body and the right body hard joints and enforce the inner-class 

influence between the same group of joints, we employ two 

individual fully connected sub-networks to refine hard joints 

of left body and right body separately. Given obtained 3D joint 

coordinates by the basic network, we isolate A to be the input of 

the top channel, and finetune hard joints in A . Meanwhile, hard 

joints in B are refined by the bottom channel. The two channels 

of the refinement network correspond to f Ar and f Br respectively, 

Eq. (2) will be updated as: 

L 3 = 

∑ 

x i ∈ A 

q i × L ( f Ar ( f b (x i )) − y i ) , (3) 

L 4 = 

∑ 

x i ∈ B 

q i × L ( f Br ( f b (x i )) − y i ) , (4) 

where q i is set to 1 if the i th joint is a hard joint in A or B . 

Feature fusion: In geometry, 3D pose reconstruction heavily 

requires its 2D information [18] . The camera pose estimation 

problem aims to estimate the extrinsic parameters i.e., the rotation 

matrix R and the translation vector t , and possibly all or a subset 

of the intrinsic parameters K. K is expresses as 

K = 

[ 
α f s u 
0 f v 

0 0 1 

] 

, (5) 

where f denotes the focal length, ( u, v ) denotes the principal point, 

α is an aspect ratio, and s is the skew. Given 2D and 3D point 

correspondences, X and Y , the relationships for 2D and 3D joints 

admit the following projection equation: 

X = K[ R, t] Y. (6) 

Due to the intermediate supervision of the basic network, the 

outputs of the basic network are the predicted 3D location fea- 

tures, and they are the input for our refinement network. If the 3D 

location refinement is only based on the 3D location features from 

the basic network, the geometrical relationship between 2D and 

3D is seriously weakened. In order to fuse 2D advanced features 

with 3D features, and to reduce the loss of information during the 

translation from the basic network to the refinement network, we 
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Table 1 

Results on the Human3.6M. Comparison of overall average errors (mm) for different methods using the Human3.6M dataset. ‘ ∗ ’ repre- 

sent the method is camera module based method. ‘–’ means that the result of corresponding work is not reported. ‘wo dual’ indicates 

the proposed model is implemented using a single-channel model, and ‘w dual’ for a dual-channel model. ‘wo res’ means that our 

model has no residual connection between the basic network and the refinement network. 

Methods Direct Discuss Eating Greet Phone Pose Purchase Sitting 

Ionescu PAMI’14 [4] 132.71 183.55 133.37 164.39 162.12 205.94 150.61 171.31 

Li ICCV’15 [8] – 138.88 96.94 124.74 – 168.08 – –

Tekin CVPR’16 [15] 102.41 147.72 88.83 125.28 118.02 112.38 129.17 138.89 

Zhou ∗ CVPR’16 [22] 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78 

Moreno CVPR’17 [11] 67.44 63.76 87.15 73.91 71.48 69.88 65.08 71.69 

Martinez ICCV’17 [10] 53.30 60.80 62.90 62.70 86.40 57.80 58.70 81.90 

Zhou ∗ PAMI’18 [23] 68.70 74.80 67.80 76.40 76.30 84.00 70.20 88.00 

Proposed/w dual/wo res 54.00 61.28 64.35 63.62 87.32 58.74 60.62 83.72 

Proposed/wo dual 52.57 60.39 61.88 62.25 86.37 56.99 57.74 80.98 

Proposed/w dual 52.83 59.90 61.58 61.95 85.47 57.03 58 81.29 

Methods SittingDown Smoke Photo Wait Walk WalkDog WalkTogether Average 

Ionescu PAMI’14 [4] 151.57 243.03 162.14 170.69 177.13 96.6 127.88 162.1 

Li ICCV’15 [8] – – – – 132.17 69.97 – –

Tekin CVPR’16 [15] 224.9 118.42 182.73 138.75 55.07 126.29 65.76 124.97 

Zhou ∗ CVPR’16 [22] 124.52 199.23 107.42 118.09 114.23 79.39 97.7 112.91 

Moreno-Noguer CVPR’17 [11] 98.63 81.33 93.25 74.62 76.51 77.72 74.63 76.47 

Martinez ICCV’17 [10] 99.80 69.10 82.40 63.90 50.90 67.10 54.80 67.50 

Zhou ∗ PAMI’18 [23] 113.80 78.00 98.40 90.10 62.60 75.10 73.60 79.90 

Proposed/w dual/wo res 100.92 69.49 84.97 64.83 51.75 67.92 56.37 68.66 

Proposed/wo dual 98.42 68.60 81.42 63.4 49.77 66.79 54.12 66.78 

Proposed/w dual 98.29 68.27 81.32 63.29 49.42 65.83 53.79 66.55 

Fig. 5. Errors of hard joints. Average errors (mm) of hard joints of both the basic network and the proposed networks (single-channel model and dual-channel model). 

‘lelbow’ denotes the left elbow of body, ‘relbow’ for the right one, and others in a similar fashion. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

employ a residual connection among the two networks. By doing 

this, the refinement network can refine hard joints by processing 

the preliminary 3D locations with further aid of 2D locations ev- 

idence. This provides a strong connection between joints without 

unnecessary interference, and maintains the indispensable geomet- 

rical relationship without complex optimization algorithm. 

Finally, we formulate our loss function to minimize the predic- 

tion error as: 

L = min (L 1 + L 3 + L 4 ) . (7) 

3. Experiments 

3.1. Implementation details 

We evaluate our proposed approach on a publicly available 

dataset, namely Human3.6M. Human3.6M is a large scale dataset 

for 3D human pose sensing, which consists of 3.6 million 3D poses 

of 11 subjects performing 15 different actions under 4 viewpoints. 

In this paper, we follow the standard protocol [10] , partitioning all 
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Fig. 6. Examples of selected poses using Human3.6M dataset. The images from left to right in each triplet correspond to the given 2D pose (in a square), overlapping 3D 

pose pair of the proposed network, and overlapping 3D pose pair of the basic network, respectively. In each overlapping 3D pose pair, the one in red is the ground truth and 

the other in green is the prediction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

subjects of dataset for testing ( S 1, S 5, S 6, S 7, S 8) and training ( S 9, 

S 11). 

Network architecture: In the proposed approach, the Stacked 

Hourglass Network [13] is adopted to obtain 2D joints locations, 

which achieves sufficient accuracy for our 3D-HPE task, unless 

stated otherwise. The network captures and consolidates informa- 

tion across all scales of image by a repeated bottom-up, top-down 

structure, and takes full advantage of the good performance of 

Fully Convolutional Network [9] in 2D human pose estimation (2D- 

HPE). 

The basic network f b is realized by 2 residual modules, and 

each residual module contains 2 fully connected layers as shown 

in Fig. 2 . The refinement network is realized by 2 channels, a to- 

tal of 4 fully connected layers. We empirically set the dimensions 

of every fully connected layer to 1024, and each layer has Batch 

Normalization, ReLU activation function and Dropout. 

Training details: We use Adam [6] to optimize the network 

on a server with dual physical cores (Intel Xeon CPU E5-2690 

v4 2.60GHz), one piece of GPU(Tesla P100-PCIE-16GB) and 256GB 

main memory, a mini-batch size of 64 for 300 epoches in our 

work. The learning rate is initialized as 1 × 10 −3 and exponential 

decay. 

3.2. Quantitative results 

Following previous works, we quantitatively evaluate our 

method by calculating the Root Mean Square Error (RMSE) be- 

tween all predicted 3D joint coordinates and the ground truth. 

The RMSE of our proposed method is compared with those of 

some related state-of-the-art methods. Although we use a simple 

fully connected network, the results summarized in Table 1 show 

that our approach outperforms the state-of-the-art methods. It 

is probably because that our human structure-aware module 

makes a distinction between joints. Specially, work [11] explicitly 

constraints distances between joints by a distance matrix, and 

gets smaller errors on poses with high complexity, i.e. Phone 

and Sitting. This illustrates the importance to consider about the 

human structure for complex pose estimations. 

As in the comparison with related state-of-the-art methods (in 

Table 1 ), the baseline method [10] has the most close errors with 

our method. Therefore, two statistic tests ( T -test and Wilcoxon 

signed-rank test) are performed between testing errors of our 

network and the baseline method (in Table 1 ) to show if the differ- 

ences are significant or not. Given null hypothesis that the errors 

of our dual-network in each action are greater than or equal to the 

baseline [10] , we have P < α(0.05) in most of the poses (except for 

the action of Phoning) for T -test . Given null hypothesis that the es- 

timation errors of paired samples of our network and the baseline 

come from the same distribution, we have P < α(0.05) in all actions 

for the Wilcoxon signed-rank test . Therefore, we reject both null 

hypothesis. The T -test and the Wilcoxon signed-rank test prove 

that the errors of our network are significantly smaller than those 

of the baseline (more details are shown in the supplementary file). 

To further demonstrate our potential, we show two different 

structures of our model, which correspond to the single-channel 

and the dual-channel refinement networks respectively. It is 

notable that our dual-channel model obtains a relatively slight 

performance improvement compared with the one obtained by a 

single-channel, while this is meaningful for 3D-HPE. This feasible 

idea motivates us to concern the mutual inference between joints 

in the future work. 

In addition, we explore the importance of our feature fusion 

operation by the residual connection from the basic network to 

the refinement network. Without involving with the feature fusion 

operation (i.e without residual connection), the average joint error 

of our dual-channel network reaches up to 68.66 (mm) , which 

is worse than the basic network and our model with residual 

connection. Refining hard joint coordinates from their 3D location 
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Table 2 

Errors of limb lengths. RMSE (mm) of the bone length for the basic network 

and the proposed networks (single channel model and dual channel model). ‘lu- 

arm’ denotes the upper left arm and ‘ll-arm’ for the lower left arm. Similarly, 

‘ru’ denotes the upper right ones and ‘rl’ for the lower right ones. 

Basic Single Dual 

lu_arm 16.90 15.33 14.69 

ll_arm 28.29 21.93 20.37 

lu_leg 17.21 16.20 15.8 

ll_leg 27.15 24.45 24.43 

ru_arm 16.45 14.45 14.22 

rl_arm 29.99 23.75 21.28 

ru_leg 16.62 15.86 15.34 

rl_leg 26.98 23.64 23.65 

avg 22.45 19.45 18.72 

features is likely to be insufficient. Because it enforces to perform 

location searching in a giant space. After introducing 2D location 

features, projection clues and constraints between joints could 

work together, yielding better performance. The experimental 

results prove this observation. 

For more discussion of the effectiveness of our refinement 

network, the errors of hard joints are separately analyzed and 

compared, which is shown in Fig. 5 . The errors of hard joints 

are significantly reduced by using our single-channel and dual- 

channel refinement networks when compared with those of the 

basic network. With dual-channel network, the errors of wrists 

reduce 4 mm , and those of elbows and feet reduce 2 mm. Specif- 

ically, we classify the knees as hard joints due to its structural 

information with feet, while knees have small errors. As such, 

our single-channel network gets a worse effect at the right knee, 

and our dual-channel network gets the best results at all hard 

joints. The improvement demonstrates the effectiveness of our 

method. Meanwhile, it shows that those hard joints can be further 

optimized as they still have large errors. 

Furthermore, the advantage of our method on reducing the 

bone length errors is also analyzed, and the results are reported in 

Table 2 . As is depicted, our approach estimates a more reasonable 

3D human pose whose limbs length errors reduce significantly by 

16% . Among them, our dual-channel module gets more significant 

effect on limbs length errors than the single-channel module 

except lower legs. This is because the purpose of our dual-channel 

module is to avoid mutual interference of hard joints. In this case, 

both of the single-channel and dual-channel modules have small 

errors at knees. The length errors of legs are very close between 

these two refinement modules. 

3.3. Qualitative results 

Finally, we show some qualitative results on Human3.6M in 

Fig. 6 . As shown in the first two lines, given 2D poses, the end- 

points of estimated 3D poses based on the basic network gravely 

deviate from the actual coordinates, while our arms extend to a 

more correct direction. In addition, for the poses in the next two 

lines, both methods are obviously incorrect in left-wrists, but our 

poses show more accurate arm lengths. 

4. Conclusion 

We have proposed a novel human structure-aware network 

which cascades a dual-channel refinement network with a basic 

fully connected network for 3D-HPE. The symmetrical structure 

is designed to avoid the mutual interference of joints with large 

errors and to promise reliable 3D features. Consideration of the 

special articulated structure of human body makes a positive 

contribution to the accurate and reasonable pose learning. Ex- 

tensive experimental results on Human3.6M have demonstrated 

the superior performance of the proposed method over various 

classical and state-of-the-art ones. Also, the experimental results 

inspire us to pay more attention to hard joints, since they always 

possess large errors, which is the main challenge in 3D-HPE. 
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