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a b s t r a c t

Automatic font image synthesis has been an extremely active topic in recent years. Various deep

learning-based approaches have been proposed to tackle this font synthesis task by considering it as

an image-to-image translation problem in a supervised setting. However, all such approaches mainly

focus on one-to-one font mapping, i.e., synthesizing a single font style, making it difficult to handle

more practical problems such as the font family synthesis, which is a one-to-many mapping problem.

Moreover, this font family synthesis is more challenging because it is an unsupervised image-to-image

translation problem, i.e., no paired dataset is available during training. To address this font family

synthesis problem, we propose a method that utilizes a single generator to conditionally produce

various font family styles to form a font family. To the best of our knowledge, our proposed method is

the first to synthesize a font family (multiple font styles belonging to a font), instead of synthesizing

a single font style. More specifically, our method is trained to learn a font family by conditioning on

various styles, e.g., normal, bold, italic, bold-italic, etc. After training, given an unobserved single font

style (normal style font as an input), our method can successfully synthesize the remaining styles (e.g.,

bold, italic, bold-italic, etc.) to complete the font family. Qualitative and quantitative experiments were

conducted to demonstrate the effectiveness of our proposed method.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Font designers refer to typography as the style and appearance

of the printed text. To specialize in typography, creativity and font

expertise are required which are not generally found in common

users. In addition, font design is a time-consuming task. It takes

from several weeks up to months to design a single font for Latin

alphabet characters. This time complexity increases massively for

some languages such as Chinese and Korean which consists of a

large number of characters (up to 50,000 characters for Chinese

and 11,172 characters for Korean). Moreover, the font designer

must design separate font styles when creating a single font

family.

Existing state-of-the-art methods in font synthesis mainly

consider this to be an image-to-image translation problem in a

supervised setting (paired dataset). All recent methods learn a

one-to-one mapping function from a source font to a target font
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conditioned on a single font style, where the font style is fused in
the form of a style label [1–4] or is disentangled using a separate
style encoder [5–8]. Although these supervised image-to-image
translation font synthesis methods are successful in style transfer
between the source and target fonts, the generalization capability
when synthesize a complete font family (consisting of multiple
fonts of that font family) from a single source font at the inference
time is beyond their reach. Specifically, a paired training dataset
is needed to learn this one-to-one mapping function conditioned
on a single target style, whereas font family synthesis is a one-to-
many mapping task in an unsupervised setting (unpaired training
examples) and it may be impractical or even impossible to ac-
quire a large number of font family paired datasets, making this
a more challenging problem.

This study is an attempt to bridge the gap between the font
designer and machine design capability by proposing an unpaired
font-family conditional generative adversarial network (UFFG),
which aims to synthesize a complete font family given a single
font as an input. To the best of our knowledge, the proposed UFFG
is the first method that automatically synthesizes a font family
using generative adversarial networks (GANs) [9]. We denote the
terms font family (FF) as a set of font styles (FS) referring to a
specific style of FF in which each FS is represented by its own
font style label (FSL). For example, Arial is a FF consisting of
various FS’s such as Arial Black and Arial-thin, each represented
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by its own FSL. Based on this, we train the UFFG to synthesize a

complete FF conditioned on a single FS image and the target FSL

as an input, where each FF may or may not contain all of the cor-

responding FSs thus making it an unsupervised image-to-image

translation problem. Please note that the term ‘‘unsupervised’’

refers exclusively to unpaired image-to-image translation, despite

the fact that we require FSLs as input and as the basis for our font

style classification loss function discussed in Section 3.3.

Specifically, we train our model to learn the global features

(thickness, thinness and slant) of all FSs by learning the FSLs.

By contrast, the local FS details (strokes and shapes) are learned

using a conditional input image. We show that by learning the

global features of each FS using its corresponding FSL, the model

learns generalized FS features that can be applied to an unseen

font (an unseen font refers to a FF that was never seen dur-

ing the training process) or an unobserved FS (an unobserved

FS is a FS, that was unavailable during training, whereas the

other FSs of that FF may have been available) at the inference

stage for synthesizing its corresponding FF. We conducted qual-

itative and quantitative experiments on the proposed dataset,

including comparison with the baseline methods to validate our

proposed network. We also conducted extensive ablation studies

to choose the architecture of the proposed network. Finally, our

cross-language evaluation demonstrates that our method can be

applied to any writing system (e.g., Korean, Chinese) that contains

a large number of font characters but not many font families.

The main contributions and features of the proposed method

are as follows:

• This paper provides the first automatic font family synthesis

method, which unlike existing methods focuses on complete

font family synthesis during the inference stage.

• This paper proposes a new font family dataset for Latin

characters that consists of 118,456 font images in eight FSs

which we refer to as a FF herein.

• The proposed UFFG can generate a style and character-

consistent FF given a single FS image as an input during the

inference stage

• In our experiments, we demonstrate the superiority of the

proposed method to the baselines not only on a font family

dataset but also on non-glyph datasets such as CelebA [10]

as demonstrated in the experiments section.

2. Related work

2.1. Image synthesis based on GAN’s

GANs [9] are a class of generative models that are widely

used for image synthesis tasks. GANs incorporate an adversarial

network that facilitates the synthesis of high-quality images using

a minimax game formulation. Since the invention of the vanilla

GAN, many variants have been proposed to improve the quality

and training stability of GANs [11–14].

Owing to recent advancements, many state-of-the-art meth-

ods in various computer vision applications utilize GANs, e.g.,

image-to-image translation [15], semantic-image-to-photo trans-

lation [16], text-to-image translation [17], face synthesis [18],

image in-painting [19], and super resolution [20].

A supervised image-to-image translation (I2I) framework [15]

aims to learn a conditional image synthesis function to map a

source domain image to a corresponding target domain image

given a paired dataset during training. By contrast, unsuper-

vised image-to-image translation methods [21–23] aim to learn

a conditional image synthesis function to map an source domain

image to a target domain image without a paired dataset. These

supervised or unsupervised approaches have shown great success

in uni-domain I2I tasks; however, they only consider a mapping
between two domains (one-to-one).

To address this domain scalability problem (also known as
multi-domain I2I), several studies have proposed a unified ar-
chitecture [24,25]. Such methods are based on a single gen-
erator to learn multiple domains (one-to-many) unlike previ-
ous methods that require m(m-1) generators for learning m1,2...

number of domains. Similarly, some studies have focused on
synthesizing images considering diverse styles also known as
multi-modality [26–28]. Several recent studies have also applied
few-shot image translation techniques [29,30].

2.2. Font synthesis based on GAN’s

Most font generation studies consider the font synthesis task
as an I2I task, where the goal is to transfer from an input font style
to a target font style conditioned on the target font style infor-
mation. The style information is either injected by the style label
or is disentangled with the help of a separate style encoder. We
discuss below some recent studies that follow these approaches.

2.2.1. Style label guided font synthesis
Zi2zi [1] proposed the first method based on I2I for Chinese

font synthesis. Zi2zi was based on pix2pix [15], AC-GAN [31], and
a domain transfer network [32]. A category label representing the
target font category (style) is concatenated with the character
vector from the encoder that guides the decoder to generate the
target style. The approach in [2] was built on the same idea for
generating Chinese handwriting; however, the authors used an
additional font feature reconstruction network to provide a style
vector in the latent along with a character vector and category
embedding.

In [3], the authors proposed a skeleton-guided font gener-
ation method for Chinese font synthesis. They created a stack
architecture for learning the skeletons of the target font followed
by two I2I methods based on category embedding to generate
smooth Chinese characters. Chang et al. [4] utilized cycleGAN
to synthesize Chinese characters in personalized handwriting.
Instead of using the default ResNet blocks [33] as used in the orig-
inal cycleGAN, they utilized DenseNet [34] in their architecture.
To generate Korean hangul characters, Ko et al. [35] proposed
a three-stage generator architecture guided by skeletons. Their
proposed network generates 2,350 of the most frequently used
hangul characters using the 114 basis characters.

2.2.2. Style disentangle guided font synthesis
Recent font synthesis methods attempt to disentangle the

style and content representations by splitting the style and con-
tent encoders in this I2I translation setup. The content encoder
extracts the character content information; by contrast, the style
encoder extracts style information such as the strokes and thick-
ness. Azadi et al. [5] proposed a two-stage network architecture
for synthesizing stylish alphabet glyph characters. The first stage
network learns the target shape from a few characters, and the
second stage network style transfers the target texture on the
learned shape from the first stage network. Gao et al. [6] im-
proved the approach in [5] by proposing a top-down generator
architecture along with a local texture discriminator and tex-
ture refinement loss for stylish alphabet and Chinese character
synthesis.

Cha et al. 2020 [7] proposed a component-guided font synthe-
sis method restricted to complete compositional scripts, such as
Korean and Thai handwritings. This method cannot be applied to
other complex writing systems such as Chinese, which consists
of complex glyph structures and diverse local styles. Inspired by
low-rank matrix factorization, LF-Font [8] was recently proposed,
which learns to disentangle the glyph structure and local style
representations to generate complex Chinese handwriting.
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2.2.3. Additional image and font synthesis studies

Lopes et al. [36] proposed a sequential generative model based

on variational auto encoders [37] for disentangling the style as

well as a stacked LSTM [38] and an MDN [39] guided SVG decoder.

GlyphGAN [40] modified the DCGAN architecture to generate font

styles in a multimodal setting by fusing the style information as

a random sample from a Gaussian distribution to the generator.

FontRNN [41] focuses on tracing writing trajectories by utilizing a

monotonic attention mechanism to synthesize Chinese handwrit-

ings. In [42], the authors proposed an image-to-image translation

method for generating skeletons of font images. They demon-

strated in their paper that the synthesized skeletons from their

model are of high quality than the state-of-the-art mathematical

methods of skeletonization.

Some studies [43,44] have focused on a controllable image

synthesis by controlling the image attributes, e.g., controlling

the output image attributes such as hair color and age for faces

images. Attribute2Font [45] was recently proposed to allow user-

controllable font synthesis. They embedded an attribute attention

module to improve the model performance.

All of the above-mentioned font synthesis studies achieve

good results in one-to-one font synthesis tasks, i.e., given a con-

tent font input, the goal is to learn an I2I function that transfers

the style to a single target font conditioned on the style informa-

tion. The style information in these studies represents a single

target font style, which limits their usage for many complex

problems such as the font family synthesis. In addition, these

methods require a paired training dataset during training, which

makes their usage impossible for the font family synthesis prob-

lem where paired dataset is unavailable. To address this font

family synthesis problem, in this paper an I2I based model is

proposed that directly generates the complete font family given a

single font style. Our model is trained in an unsupervised setting,

i.e., no paired training data are used. More details of our method

are described below.

3. Unsupervised font family GAN

The goal of the proposed UFFG method is to learn the global

FS features of all styles that form a complete FF. To achieve this,

the UFFG aims at mapping an input image from any FS into an

output image conditioned on the target FSL. To train the UFFG,

we use images from a set of FSs called style classes. The existence

of paired images does not exist during training (i.e., a normal

font may not have a corresponding font in bold or italic, etc.

FS). To learn the target FS, we utilize the style class images that

guide the network to learn the local style (strokes, shape, and

content) along with the target FSL, which guides the network to

learn the global style (e.g., bold and italic). At the inference stage,

we provide the model any single FS image of a novel font, and

the model should generate the remaining FSs with a global style

guided by the FSL and the local style guided by the style class

image (input image).

Our model consists of a conditional generator G and a multi-

task discriminator D. Here, G simultaneously takes an input im-

age x and a set of randomly generated FSLs c as an input and

generates the output image y using

y = G(x, {c1, c2, . . . , ck}).

The reason for randomly generating c is not only to generalize

the model but also to learn the global features of all FSs and

make the model flexible for translating any FSs to the rest at the

inference stage. In addition, G conditionally maps an input image

x to an output image y such that y shares a similar structure and

content with the input image but different FSs depending on the

conditional FSL.

3.1. Font family image generator

The font-family generator G consists of an encoder Ex and

decoder Dx. The encoder input is an image concatenated with

the target FSL on the channel axis. This input is passed through

several 2D convolutional layers. It maps the input to a latent

code zx. This latent code is then passed to the decoder, which

consists of a series of upscaling convolutional layers to generate

the target FS image y. We also use skip-connections between the

encoder and decoder layers, i.e., every layer in the encoder is

connected with the corresponding layer in the decoder excluding

the first and last layer of the encoder and decoder, respectively.

The key purpose of using skip-connections is to preserve high-

level features. Later in the experiments, we demonstrate the

effectiveness of using skip-layers. ReLU is used as an activation

function for every encoder and decoder layer except the last layer

of the decoder, which uses hyperbolic tangent activation.

3.2. Multi-task discriminator

Our discriminator D simultaneously performs adversarial and

FSL classification tasks during training. The adversarial task in

our discriminator is a binary classification task that determines

whether an input image is a real image from the training dis-

tribution or a synthesized image from the generator. The FSL

classification task in our discriminator is a multiclass classifi-

cation task that determines the FS of the input image. For the

adversarial loss, we use the PatchGAN discriminator which clas-

sifies whether the patch in the input image corresponding to the

n x n output is real or fake. For the multiclass task, we add an

additional fully connected layer at the top of the discriminator to

predict the FSL.

3.3. Learning

The learning objective for the proposed UFFG is composed of

four loss functions given by the following:

min
D

max
G

Ladv(D,G) + λCLcyc(G) + λCRFLfsc(D,G) + λFLfm(G), (1)

where Ladv(G,D), Lcyc(G), Lfsc(D,G), Lfm(G) are the adversarial loss

for GAN, cycle consistency loss, font style classification loss, and

feature matching loss.

Adversarial loss. We use the conditional GAN loss as our adver-

sarial loss given by the following:

min
D

max
G

Ladv(D,G) = Ex[− logD(x)] + Ex,c[log(1 − D(y))], (2)

where the discriminator D tries to minimize this loss function

by predicting x as a real image and y as a fake image from the

generator G, where y = G(x, ck). By contrast, the generator tries

to fool D by maximizing y as a real image.

Cycle consistency loss. Unlike the other state-of-the-art super-

vised font synthesis methods where the ground truth (GT) image

is used for character content reconstruction, i.e., l1 = (GT −

y) (where l1 is the mean absolute error (MAE), and y is the

image generated by the generator), our problem is in unpaired

setting, where we do not have the GT images for each font style.

Therefore, to have an identical character content for the input

and generated image, we utilize the cycle consistency loss. This

is given by

Lcyc(G) = Ex, c, c
∗[∥(x − G(G(x, c), c∗))∥1], (3)

where G takes the synthesized image G(x, c) and the font style

label c∗ of input image x and attempts to generate an identical

3
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Fig. 1. Visual demonstration of the proposed adversarial, cycle-consistency, and the font style classification losses.

image as the input image x. This loss helps G learn the reconstruc-

tion translation model. Specifically, in cases in which the input

and target labels c∗ and c , respectively, belong to the same FS,

this loss pushes G to synthesize an output image indistinguishable

from the input.

Font style classification loss. Our goal is to synthesize various FSs

in a FF conditioned on the FSL as an input to the generator.

Specifically, we would like our model to learn the global features

of the possible FSs belonging to a FF. To achieve this, we add a

fully connected layer on the top of the discriminator that plays

the role of a classifier and impose a font style classification loss to

differentiate between various FSs belonging to a FF. This font style

classification loss is for both the real images and the synthesized

images. The discriminator is optimized to minimize the first part

of the loss function for real images, whereas the generator is

optimized to minimize the second part of this loss for the fake

images to learn different FS’s (For simplicity we have written the

two losses for D and G in a single equation). The loss is given by

the following:

Lfsc(D,G) = Ex,c∗ [− logD(c∗|x)] + Ex,c[− logD(c|y)], (4)

where x is the input image, c∗ is the original FSL of x and y is the

synthesized image conditioned with a target FSL c i.e. y = G(x, c).

The adversarial, cycle consistency, and the font style classification

losses are demonstrated in Fig. 1.

Feature matching loss. In our experiments, we found that the fea-

ture matching loss improves the quality of the generated images.

The generated characters are smoother when trained with this

loss function. We utilize D as our feature extractor, denoted as

Df instead of using a separate feature extractor such as VGG etc.

During training, we use the features from the feature extracting

layer of Df (by removing the real/fake prediction layer and style

classification layer from D). We then extract features from the

input image x and the generated image y when both conditioned

with the same font style labels c and c∗, respectively, and mini-

mize using the l1 norm. This process is visually demonstrated in

Fig. 2. The loss is given by the following:

Lfm(G) = Ex, c, c
∗[∥(Df (x) − Df (y))∥1]. (5)

4. Experiments

4.1. Implementation and network architecture

For loss function hyperparameters, we use λC = 10, λCRF =

1, andλF = 1. We use the non-saturated GAN loss as our ad-

versarial loss which performs better than the saturated loss [46].

Our main objective in Eq. (1) is trained using the Adam optimizer

with a learning rate of 0.0002. We use 256 × 256 × 3 sized

images as our inputs. Our generator consists of an encoder–
decoder architecture. The encoder takes an input image x and the
target FSL as an input, both concatenated on the channel axis.
The dimension of the input thus becomes 256 × 256 × (3 + NFS),
where NFS is the total number of FSs in a FF. Here, NFS is deter-
mined before training depending on the chosen FSs to represent
a FF. The encoder then maps this concatenated input to a latent
vector zx of size 16 × 16 because there are 4 down-sampling
layers with a stride of 2. This latent vector is then up-sampled
using 4 up-sampling layers. All of the convolutional layers in the
encoder are followed by instance normalization [47] and ReLU
activation function respectively. As mentioned in Section 4.2, our
discriminator is a PatchGAN [15]. We use LeakyReLU [48] as our
activation function in the discriminator with no normalization
layer. The architecture of our network is shown in Fig. 3. Each
block in G represents the number of filters in that layer.

4.2. Dataset

There are a few datasets available for font synthesis problem
such as the stylish Latin alphabet dataset proposed by [5] or the
stylish Chinese dataset proposed by Gao et al. [6]; however, there
are no publicly available datasets for the font family synthesis
problem. Therefore, we built our own dataset for this font family
synthesis task.

4.2.1. Dataset description
Google Fonts2 is an open-source font catalog consisting 1023

font families in approximately 29 different languages including
English Alphabets, Chinese, and Korean, etc. We downloaded all
font families from 3740 fonts in total from Google fonts (all fonts
were stored in a single directory with no class subdivision). We
then converted these font files into images of English alphabet
letters for a total of 52 characters (upper and lower case). We
conducted a data preprocessing on the generated images, similar
to an image analysis, and discovered that there are fonts that do
not support Latin alphabets. Thus, the generated images are blank
with no characters. We also found that some of the fonts are too
artistic and cursive, and do not fall within our font family synthe-
sis problem. We removed these fonts from the original dataset;
hence, our final dataset contains 2,278 font files (52 × 2,278
images). We then split our fonts into eight FSs (black, black-italic,
bold, bold-italic, regular, italic, medium, light) all having various
numbers of fonts, which we refer to as a FF in our paper. Each
FS in a FF is represented by its own FSL, i.e., a one-hot vector
representing the FS. We then converted all fonts into an image
size of 256 × 256 and then randomly divided them into training
and testing datasets with a 90% to 10% ratio. Fig. 4 shows example
images of the dataset.

2 https://fonts.google.com/.
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Fig. 2. Visual demonstration of the proposed feature matching loss.

Fig. 3. The generator in our network accepts the input image x and the font style label FSL as inputs, and generates a translation output y that contains the local

style information from x and global style information from the FSL. The discriminator is used to classify images as real or fake, to classify font styles, and to extract

feature maps for the feature matching loss. Note that the other FF generated images, layer details of the discriminator, activation functions, and normalization layers

are not included in the figure for simplicity.

Fig. 4. Examples from the proposed font family dataset.

4.3. Baseline

The font family synthesis problem lays in two categories
i.e., unsupervised I2I translation and multi-domain I2I. In an
unsupervised I2I setting, the model learns a translation function
between two domains, where the training dataset is not paired.
CycleGAN [21], is the first state-of-the-art two domain translation
model in the unsupervised setting. We picked CycleGAN as our
first baseline and trained it for our font family synthesis problem.
As CycleGAN is incapable of managing this multiple FS problem,
we trained N number of CycleGANs for learning N FS’s from
a FF. More specifically, we treat regular FS as the first domain
and all the other FS’s as the second domain (black, black-italic,
bold, bold-italic, regular, italic, medium, and light). This results
in N = 8 CycleGAN models per each FS in our training dataset.

In addition, the font family synthesis problem is also a multi-
domain I2I translation problem, where a single generator is used
to learn N number of domains in an unpaired setting. Existing
font synthesis methods rely on paired datasets but follow the
same encoder–decoder architecture trained with an adversarial
loss. StarGAN [24] can also manage this unsupervised setting of
multi-domain I2I and has achieved some remarkable results. As
a result, we also selected StarGAN as the second baseline for this
study.

We trained CycleGAN and StarGAN using the authors source
code and default parameters, but extended them to solve the font
synthesis problem using our proposed font family dataset.

4.4. Evaluation

To measure the effectiveness of our proposed model, we con-

ducted qualitative and quantitative evaluations. We trained the

baselines with the default settings including the hyperparame-

ters, architecture, and source code provided by the authors.

Qualitative evaluation. For a qualitative evaluation, we visualized

the results of the proposed model on the font family dataset

shown in Fig. 5. We can observe from the figure that the proposed

model generates high-quality results compared to the baselines.

CycleGAN produces better results on various FSs of a FF than

StarGAN, however the approach for learning multiple FSs of a FF is

computationally expensive and impractical as the number of FSs

increases. The synthesized font images from our model are more

photorealistic. One possible reason for this is the architecture

and loss functions we used for our model. We conducted several

ablation studies to justify the architecture and loss functions of

our model in Section 4.5. Additional qualitative results are shown

in Appendix A.1.

Quantitative evaluation. Existing font synthesis methods are

mostly evaluated on the structural similarity index (SSIM), multi-

scale structural similarity index (MSSIM), or pixel by pixel dif-

ference metrics such as the mean absolute error (MAE) or mean

square error (MSE) because they have the ground truth font

images in their respective tasks. However, we cannot evaluate

5
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Fig. 5. Visual comparison of our model with CycleGAN and StarGAN. We highlight some of the characters where our model produces realistic and better quality

results than the baselines.

Fig. 6. FF results by changing loss functions. The first column demonstrates the loss functions where w/o means without.

Fig. 7. Comparison of U-Net based generator and Res-Net based generator. We highlight some of the results where the Res-Net based generator is unable to capture

the global FSs on the other hand U-Net based generator captures the global style like italic FS.

6
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Fig. 8. Comparison of various number of layers in the Generator.

Fig. 9. U-Net based generator consisting of skip layers results in higher quality synthesized FSs.

Fig. 10. Korean hangul characters synthesized by the proposed model. Note that these language characters were never observed by the model during training stage.

our method using these metrics because our setting is unpaired

(no ground truths). Therefore, for the quantitative evaluation, we

computed the font character classification error and the Frechet

Inception Distance (FID) score [49].

Font character classification measure. We measured the accuracy

of the synthesized characters by training a classifier for the char-

acter classification task, i.e., whether a generated character has

the same character content as the ground truth.

7
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Table 1

Quantitative evaluation of proposed method and the base-

lines. ↑ means that larger numbers are preferable, while

↓ means smaller numbers are preferable.

Method Accuracy [%] ↑ mclean-FID ↓

CycleGAN 0.9273 57.39

StarGAN 0.9143 61.14

UFFG (Ours) 0.9387 53.48

For this experiment, we trained a classifier with a dataset

having a 80% to 20% training and testing split. The classifier

consisted of five convolutional layers and a fully-connected layer

for character classification. Each convolution layer was followed

by the ReLU activation function. In addition, dropout and batch-

normalization were applied after the fully-connected layer. The

size of the fully connected layer was measured based on the total

number of the characters in the dataset, i.e., 52 characters for

English alphabets (upper and lower cases) in this setting. We

then trained the classifier on the training set and evaluated the

classifier with the testing set, which resulted in 99% training and

98% testing accuracy. Next, we trained the proposed method and

the baselines with the same training dataset and generated the

results on the testing dataset. Finally, we used the synthesized

images generated by the methods to test the accuracy of the

trained classifier. The results are shown in Table 1.

Frechet Inception Distance (FID). Frechet Inception Distance (FID)

is a widely used metric for evaluating generative models. We

used FID to evaluate our model’s and the baselines synthesized

images for the quantitative evaluation. We computed the dif-

ference between two distributions, such as the test set and the

samples generated by our generator, using the recently proposed

clean-FID score [49].

More specifically, we used the proposed network to synthe-

size FF’s from the FS’s in the test set. We then computed the

clean-FID between each of the FS in the validation set and the

corresponding FS generated by our model. This produces |N|

clean-FID scores, where |N| denotes the total number of FS’s (8

in our case). The mean of these |N| clean-FID scores is then used

to calculate our final clean-FID metric, which is referred to as

the mean clean-FID (mclean-FID) in our paper. Similarly, for the

baselines, we calculate the mclean-FID and visualize the results

in Table 1. The proposed method also outperforms the baselines

on mclean-FID metric.

4.5. Ablation study

We conducted various experiments to analyze the impact of

our loss functions, generator architecture, proposed network gen-

eralization capability, and performance of the proposed method

for applications other than font family synthesis.

Impact of loss functions. To determine the impact of the individ-

ual components of our objective in Eq. (1), we conducted ablation

studies. We conducted an experiment in which we compared

our full model (model trained with Eq. (1)) against its variations,

i.e., by removing each loss at a time. We found the visual effects

of each loss function such as the classification loss, the cycle

consistency loss, and the feature mapping loss by training N

variations, where N = 3 as per the losses mentioned above.

Fig. 6 demonstrates the visual effects of these variations, and

the proposed model, all trained on the same dataset. The feature

matching loss when added smoothens the synthesized characters.

Adding all terms together results in the best performance by

minimizing the artifacts.

Fig. 11. Results of our proposed method trained with Korean characters.

Fig. 12. Chinese characters synthesized by the proposed model trained with only

Korean hangul characters. Note that these Chinese characters and font styles

were never observed by the model during training stage.

Analysis of the generator architecture. To determine the effec-
tiveness of our proposed generator architecture, we conducted
various ablation studies, as mentioned below.

Choosing between the Res-Net and U-Net architectures. Both
ResNet and U-Net-based architectures are widely used in I2I
applications. All of these architectures are inspired by jhonson
et al. [50] proposed architecture for style transfer which uses
Res-blocks and a U-Net-based architecture [51] which uses skip
connections. To choose an architecture for our font family synthe-
sis problem among these two types, we conducted an experiment
in which we trained our model with a generator using Res-
blocks [33] versus a model trained using a U-Net generator [15].
Both of these variations were trained on the same dataset and
same hyperparameters.

As shown in Fig. 7, the U-Net-based architecture performs
better than the Res-Net-based architecture. We highlight some

8
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Fig. 13. Comparison of StarGAN and the proposed UFFG. We highlight the cases where our proposed model performs better than the StarGAN model.

of the characters where the Res-Net-based generator is unable to

learn the global features of a FS.

Choosing number of layers for the generator. The U-Net-based

generator [15] used 7 layers in the encoder decoder respectively.

To find the best possible number of layers for our font family

synthesis problem, we conducted the present ablation study. We

trained various variations of our model. For each variation, we

reduced the number of layers, i.e., 7, 6, 5, and 4. Fig. 8 demon-

strates the results of this experiment. From these experimental

results, we chose 4 layers for our generator (encoder–decoder

respectively).

Impact of skip layers. We conducted this experiment to deter-

mine the effectiveness of the skip layers. We trained our model

with the proposed U-Net generator (4-layer generator) and the

encoder–decoder generator. The encoder–decoder generator is

created simply by removing the skip layers from the proposed

U-Net generator. As shown in Fig. 9, the generated fonts from

the encoder–decoder are poor in quality. The U-Net architecture

clearly achieves a better quality than a simple encoder–decoder,

thus demonstrating its effectiveness.

Generalization ability. We conducted the following two experi-

ments to verify the generalization ability of the proposed net-

work.

Cross language evaluation. Can the network generate a font family

for the unobserved characters, i.e., the characters that were not

seen during training by the model? Can the network generate

high-quality results on unseen language characters? To answer

these two questions, we conducted a single experiment. We

trained our model on the Latin alphabet dataset; however, during

testing, we fed the trained model with Korean Hangul characters,

which had not been seen by the model.

As depicted in Fig. 10, we can see that the font family synthe-

sized by our model is also impressive. We also prepared a dataset

for Korean font families and trained the network on the Hangul

dataset. The results of our model trained with the Korean Hangul

dataset are depicted in Fig. 11. Additionally, we fed Chinese

characters to this pre-trained model (model trained with Korean

characters) during inference time. Fig. 12 illustrates the results.

Given that the model has never encountered these Chinese char-

acters and FS’s during pre-training, the model generates plausible

results.

Cross application evaluation. We conduct this experiment to

demonstrate that, in addition to the font family synthesis task,

our model also produces high-quality images on different data-

sets. To demonstrate this, we trained our proposed model and

StarGAN on the celebA [10] dataset.

As shown in Fig. 13, our model performs better on the facial

dataset than the baseline, which was originally proposed for

this multi-domain face synthesis task. The synthesized faces are

smoother and more realistic than the baseline. This experiment

demonstrates the effectiveness of our proposed architecture and

the combination of loss functions.

4.6. Failure cases and future work

From our experiments, we noted that the proposed model

does not synthesize high-quality images when given cursive font

as an input during testing, probably because the model did not

see a sufficient number of cursive font styles during training.

Our proposed model is currently able to learn a specified font

family, i.e., the font family styles are predefined, and the model

learns them based on the font style label, which is a one-hot label

in our current setting. Learning a new font style as a part of the

font family is impossible with the current model and may require

a further fine-tuning step (transfer learning). To solve this issue,

we plan to modify our current architecture by adding few-shot

learning strategies in a future study.

9
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Fig. 14. Additional qualitative results on alphabets of our proposed method.

Fig. 15. Additional qualitative results on Korean hangul characters of our proposed method. Zoom in for better view.

10
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Fig. 16. Additional comparison of our proposed method with StarGAN on CelebA dataset. We highlight the cases where our proposed model performs better than

the StarGAN model.

5. Conclusion

In this paper, we introduced a new problem of a font family

synthesis and proposed a network to solve this problem based

on conditional GANs. We showed that, unlike other state-of-the-

art font synthesis models, that rely on paired datasets during

training (supervised image-to-image translation) to generate a

single font at a time, our model can generate a full font family

in an unpaired setting (unsupervised image-to-image transla-

tion). We conducted qualitative and quantitative experiments to

demonstrate the effectiveness of the proposed method. Extensive

ablation studies were also conducted to show the effectiveness of

the architecture of the proposed network and the generalization

capability of the method.
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