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Fig. 1. We propose a method to extract a sketch from a colorized image with the style similar to that of a reference sketch and with the content identical to

that of the colorized image. © left to right in reference style: Comete_atr, TK_painter, Ayul_oekaki, Chobi_chu, Comete_atr, SeoulCityBrand; up to down in

colorized image: Comete_atr, Ayul_oekaki, SamsungLions, AkaneNagano, SeoulCityBrand, SSG Landers Professional Baseball Team.

We propose a model that extracts a sketch from a colorized image in such

a way that the extracted sketch has a line style similar to a given refer-

ence sketch while preserving the visual content identically to the colorized

image. Authentic sketches drawn by artists have various sketch styles to

add visual interest and contribute feeling to the sketch. However, existing
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sketch-extraction methods generate sketches with only one style. Moreover,

existing style transfer models fail to transfer sketch styles because they

are mostly designed to transfer textures of a source style image instead

of transferring the sparse line styles from a reference sketch. Lacking the

necessary volumes of data for standard training of translation systems, at

the core of our GAN-based solution is a self-reference sketch style generator

that produces various reference sketches with a similar style but different

spatial layouts. We use independent attention modules to detect the edges

of a colorized image and reference sketch as well as the visual correspon-

dences between them. We apply several loss terms to imitate the style and

enforce sparsity in the extracted sketches. Our sketch-extraction method

results in a close imitation of a reference sketch style drawn by an artist and

outperforms all baseline methods. Using our method, we produce a synthetic

dataset representing various sketch styles and improve the performance

of auto-colorization models, in high demand in comics. The validity of our

approach is confirmed via qualitative and quantitative evaluations.

CCS Concepts: · Computing methodologies → Artificial intelligence;

Computer vision; Computer vision problems.

Additional Key Words and Phrases: Sketch-extraction, Auto-colorization,
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1 INTRODUCTION

Sketches play an important role in manga and anime, widely studied

in the computer graphics literature [Li et al. 2017; Liu et al. 2013,

2015; Sasaki et al. 2017, 2018; Simo-Serra et al. 2018b; Xie et al. 2020,

2021]. Sketching is the fundamental first step for expressing and

communicating artistic ideas, which reflects the main structure and

content of drawn images [Liu et al. 2015; Peng et al. 2021; Simo-

Serra et al. 2018a, 2016a]. A sketch is a relatively simple construction,

centering on the properties of its constituent lines. The thickness,

angle, continuity and shape of each of the lines typically contribute

to the unique style of a sketch, designed to appeal to a viewer [Fish

et al. 2020]. Drawing with one basic line for which the width does

not change is monotonous and boring.

In order to make sketch drawings more interesting, artists add

variety to each line by varying the line quality or equivalently the

line weight1. Line quality refers to the thickness or thinness of the

line, which contributes to the style of a sketch. Line quality is an

essential element for creating engaging line art or sketches and

is known to be one of the most important aspects of manga and

comic storytelling, but is often disregarded2. Using many different

types of lines is a way to add feeling or mood to a drawing3 (e.g.,

smooth and easy or rough and aggressive). To this end, each artist

has his/her unique style when drawing sketches for anime charac-

ters, as presented in the various line styles from authentic sketches

shown in Figure 2.

Authentic sketches drawn by artists have various sketch styles.

However, existing sketch-extraction methods such as Canny [Canny

1986], XDoG [Winnemöller 2011], SketchKeras [lllyasviel/sketchKeras

2018], and Anime2Sketch [Xiaoyu Xiang 2021] extract a sketch from

a colorized image with only one style, as shown in Figure 2. For

example, the Canny method extracts sketches with noisy dotted

lines. Line styles extracted by SketchKeras are similar to pencil

strokes, which are uniformly thicker or thinner than lines drawn

in authentic sketches. The XDoG method mis-paints some parts of

the character’s body in black, visually different from the original

design. The Anime2Sketch model fails to imitate the eyelash style

or black inked areas of the authentic sketches.

In addition to sketch-extractionmethods, there are several general-

purpose edge-detection techniques [Bertasius et al. 2014; Liu et al.

2019a; Xie and Tu 2015] required for various classical computer vi-

sion processes [Isola et al. 2017; Li et al. 2019; Yang et al. 2002; Zhang

et al. 2016]. The main focus of these studies is not on anime char-

acters as in our case, and similar to sketch-extraction techniques,

these methods extract edges or sketches from a colorized image

with only one style.

One naive solution by which to extract sketches from colorized

images with various styles is to use style transfer models such as

1https://thevirtualinstructor.com/line-quality-cross-contour.html
2https://www.clipstudio.net/how-to-draw/archives/163108
3http://www1.udel.edu/artfoundations/drawing/linequality.html

the model proposed by Gatys et al. [2016] and MUNIT [Huang et al.

2018]. Style transfer aims to modify the style of an image while

preserving its content, which is closely related to image-to-image

translation [Huang et al. 2018]. A style transfer algorithm should be

able to extract the semantic image content from a target image (i.e.,

a colorized image in our case) and then inform a texture transfer

procedure to render the semantic content of the target image in the

style of the source image (i.e., a reference sketch in our cause) [Gatys

et al. 2016]. However, when we trained style transfer models such

as the model proposed by Gatys et al. and MUNIT using authentic

sketches, they failed to generate satisfactory results, as shown in

Figure 2. The underlying reason is that sketches are different from

colorized style images in that they are constructed by lines which

are more spatially sparse in the image space. In addition, in a sketch,

the line quality contributes more than the texture to award the

sketch its unique style [Fish et al. 2020]. However, in most style

transfer models, the goal is to learn to transfer the texture from a

given reference style image.

In this article, we propose a model that extracts a sketch from a

colorized image in such a way that the extracted sketch has a line

style similar to that of a given reference sketch while preserving

the visual content identically to the colorized image, as shown in

Figure 1. Imitating a reference sketch style is a challenging task.

Such a method must precisely detect edges from a colorized image

and reference sketch yet must also learn to imitate the line quality.

In addition, the method must be able to find visual correspondences

between the colorized image and reference sketch for the sketch

style transfer because anime characters in these two images may be

drawn in different poses or shapes.

Embracing these challenges, we propose a GAN-based solution

for sketch style imitation. Lacking the necessary volumes of data

for the standard training of translation systems, at the core of our

method lies a self-reference sketch style generator that produces

various reference sketches with a similar style but different spatial

layouts for each pair of a colorized image and its corresponding

sketch. In addition, our method leverages three independent atten-

tion modules to detect the edges of a colorized image and reference

sketch separately as well as the visual correspondences between

them. We apply several loss terms to imitate the style and enforce

sparsity in the extracted sketches.

We also use our sketch-extraction method to improve the per-

formance of auto-colorization models. Sketch colorization is an

expensive, time-consuming, and labor-intensive task in the illustra-

tion industry [Kim et al. 2019]. The colorization of sketch images is

facing strong demand in relation to comics, animation, and other

content-creation applications. However, the industry suffers from

information scarcity of authentic sketch images (i.e., drawn by an

artist) and their corresponding colorized images [Lee et al. 2020], as

there is no well-known large public dataset containing both authen-

tic sketches and their corresponding colorized images. Therefore,

most auto-colorization techniques [Kim et al. 2019; Seo and Seo 2021;

Zhang et al. 2017, 2018b] and industrial software [style2paint 2018]

train their models using synthetic sketches extracted by Canny,

XDoG, or SketchKeras from colorized images. Unfortunately, these

methods generate sketches in a fixed style, different from authen-

tic sketches that may be used for colorization. Using our method,
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Fig. 2. Authentic sketches drawn by artists have various sketch styles. However, existing sketch-extraction methods extract a sketch from a colorized image

with only one style. Moreover, existing image-to-image translation and style transfer models fail to transfer the line style of a reference sketch. © up to down:

Dolphilia, AkaneNagano, AonoriwaKame, Comete_atr.

we produce a synthetic dataset with various sketch styles, more

representative of real-world scenarios. We show that using our

method to produce a synthetic dataset improves the performance

of auto-colorization results.

Our sketch-extraction method results in a close imitation of a

reference sketch style drawn by an artist while providing a user

more flexibility in terms of generating sketches with various styles

in a short time. We evaluate our method in a number of qualita-

tive and quantitative experiments, the results of which prove that

our method outperforms all existing sketch-extraction techniques.

Furthermore, we introduce an evaluation metric which measures

how faithfully the model preserves a reference style in multiple con-

secutive sketch extractions. Finally, a large perceptual study with

200 participants suggests that people easily distinguish the visual

differences between various sketch styles and prefer our method

over existing baselines. The study confirmed that our method suc-

cessfully extracts a sketch similar to a given reference style.

2 RELATED WORK

General-purpose edge detectors: Edge detection includes a variety

of methods that aim to identify edges at which the image brightness

changes sharply. Several general-purpose edge-detection techniques

have been proposed for various classical computer-vision tasks such

as segmentation [Zhang et al. 2016], image recognition [Yang et al.

2002], image-to-image translation [Isola et al. 2017], and photo

sketching [Li et al. 2019]. For a detailed review, see Ziou and Tab-

bone [2000] and Gong et al. [2018]. General-purpose edge detectors

can be categorized into four groups based on the technique used

to process the given image [Soria Poma et al. 2020] as follows: 1)

Several studies leverage low-level features such as brightness or

color to detect edges by convolving the image with a Gaussian filter

or manually performed kernels [Canny 1986, 1983; Li et al. 2020;

Perona and Malik 1990; Winnemöller 2011]. 2) Based on edge forma-

tion analyses of the vision systems of monkeys, cats, and humans,

several studies have proposed brain-biologically inspired edge de-

tectors by modeling the retina or simple cells, or by using Gabor

filters or derivatives of Gaussian filters [Akbarinia and Párraga 2018;

Grigorescu et al. 2003; Mély et al. 2016; Yang et al. 2015]. 3) Some

methods are based on classical learning algorithms such as sparse

representation learning [Mairal et al. 2008], dictionary learning [Xi-

aofeng and Bo 2012], gradient descent [Arbeláez et al. 2011], and

decision trees [Dollár and Zitnick 2014]. 4) Recent methods employ

deep learning algorithms based on CNNs to improve the quality of

returned edges [Bertasius et al. 2014; Ganin and Lempitsky 2014;

Liu et al. 2019a; lllyasviel/sketchKeras 2018; Wang et al. 2017; Xi-

aoyu Xiang 2021; Xie and Tu 2015].

While all of these interesting methods indeed improve edge-

detection capabilities, the edges or sketches extracted from a col-

orized image are of only a single style, unlike our approach, which

imitates various sketch styles specifically for anime characters. In

addition, the goal of these studies differs from ours in that they

neither focus on improving the synthetic data quality required for

the training of auto-colorization models nor return aesthetically

pleasing sketches similar to an artist sketch style.
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Sketch simplification: Sketch simplificationmethods convert rough

sketches into clean line drawings [Simo-Serra et al. 2018a]. Among

many studies related to the sketch simplification [Arvo and Novins

2000; Bae et al. 2008; Favreau et al. 2016; Grabli et al. 2004; Hilaire

and Tombre 2006; Liu et al. 2015; Noris et al. 2013; Qi et al. 2015;

Shesh and Chen 2008; Wilson and Ma 2004], deep CNN based ap-

proaches have shown great potential in improving the sketch simpli-

fication [Simo-Serra et al. 2018a, 2016b; Xu et al. 2021]. Specifically,

Simo-Serra et al. [2016b] proposed a fully-convolutional network

to simplify sketches by using paired data and minimizing the MSE

loss. Simo-Serra et al. [2018a] further improved their method by

employing GANs and incorporating unlabeled real sketches into the

learning process. Xu et al. [2021] adopted the multi-layer perceptual

loss to preserve semantically important global structures and fine

details without incurring blurriness. Inspired by these studies, we

incorporate the perceptual loss in our network design and propose

a semi-supervised method to deal with a small size of authentic

paired data.

Auto-colorization models: Several studies have focused on devel-

oping auto-colorization models [Cao et al. 2021; Ci et al. 2018; Fang

et al. 2021; Furusawa et al. 2017; HATI et al. 2019; Huang et al. 2005;

Iizuka et al. 2016; Kim et al. 2019; Lee et al. 2020; Qu et al. 2006; Seo

and Seo 2021; Thasarathan and Ebrahimi 2019; Yuan and Simo-Serra

2021; Zhang et al. 2017, 2018b]. Due to the scarcity of paired sketches

and colorized images, most auto-colorization techniques train their

models using synthetic sketches extracted by 1) Canny [Huang

et al. 2005; Seo and Seo 2021; Thasarathan and Ebrahimi 2019], 2)

XDoG [Ci et al. 2018; Fang et al. 2021; HATI et al. 2019; Kim et al.

2019; Lee et al. 2020; Yuan and Simo-Serra 2021], or 3) SketchK-

eras [Cao et al. 2021; Kim et al. 2019; Seo and Seo 2021; Yuan and

Simo-Serra 2021]. However, these sketch-extraction methods gener-

ate sketches with only one style, different from authentic sketches

with various styles that might be used for auto-colorization. Using

our sketch-extraction method, we improve the performance of auto-

colorization models by generating a synthetic dataset containing

various sketch styles.

Image-to-image translation: One naive solution to extract sketches

from colorized images is to use image-to-image translation methods

that aim to transfer images from a source domain (e.g., a colorized

image) to a target domain (e.g., a sketch) while preserving the con-

tent representations. Image-to-image translation models have been

trained in both supervised [Isola et al. 2017; Park et al. 2019; Sha-

ham et al. 2021; Zhou et al. 2020; Zhu et al. 2017b] and unsuper-

vised [Cho et al. 2018; Huang et al. 2018; Kim et al. 2020; Park et al.

2020; Zhu et al. 2017a] settings. These image-to-image translation

models [Park et al. 2020; Zhu et al. 2017b] based on both supervised

and unsupervised learnings only accept a colorized image as their

input. Therefore, it is very difficult for a user to manipulate the

style of an extracted sketch. In contrast, our method allows a user

to control the style of an extracted sketch by providing an example

of the desired style as an extra input.

Example-guided style transfer: Example guided style transfer aims

to transfer the style of an example image to a target image. Deep

neural networks have been widely used for this purpose [Chang

et al. 2018; Gatys et al. 2016; Gu et al. 2018; Huang and Belongie 2017;

Huang et al. 2018; Johnson et al. 2016a; Liao et al. 2017; Luan et al.

2017; Ma et al. 2019; Yoo et al. 2019; Zheng et al. 2020]. While these

methods allow one to control the style of the result by providing

an example [Gatys et al. 2016; Huang et al. 2018], they are mostly

designed to transfer the texture style of a source image. In contrast,

our method is specifically designed to imitate the line quality which

contributes more than texture to award the sketch its unique style.

Domain gap: To fill the gap between synthetic and real domains,

domain adaptation methods have been employed in many computer

vision applications [Liu et al. 2020; Roberts et al. 2021] including

semantic segmentation, person re-identification, and object detec-

tion [Deng et al. 2018; Hoffman et al. 2018; Sankaranarayanan et al.

2018; Tsai et al. 2018]. There are various methods that aim to solve

the domain gap problem, such as learning domain-invariant repre-

sentations [Ganin and Lempitsky 2015; Ganin et al. 2016] or pushing

two domain distributions to be close [Gretton et al. 2012; Sun et al.

2016; Sun and Saenko 2016; Tzeng et al. 2014]. See Wang and Deng

[2018] for a review of existing methods. In case of solving the do-

main gap between synthetic and authentic sketches, imitating the

sketch style of human drawings and increasing the style variation of

synthetic sketches are required. Our method imitates various sketch

styles and generates sketches that better resemble the authentic

sketches drawn by artists.

3 METHOD

Trainingmodels related to sketches suffers from scarcity of authentic

paired data. To address this problem, as one example Simo-Serra et al.

[2018a] uses a small set of paired data and a large set of samples

only for the target domain to improve the sketch simplification.

Similar to this case, training a reference based sketch-extraction

model requires a large number of paired data for each sketch style.

Unfortunately, only few samples might be available for a specific

sketch style. To address this problem, we propose a semi-supervised

method that can generate a large number of similar style sketches

with different positional layouts using a small set of paired data.

3.1 Overview

Our model extracts a sketch from a colorized image in such a way

that the style of the extracted sketch is visually similar to a given

reference sketch. As illustrated in Figure 3, the input to our model

is a colorized image 𝐼𝑐 and reference sketch 𝑆𝑟 . The output is an

extracted sketch with a similar style to the given reference sketch.

Our algorithm performs the following steps to train our sketch-

extraction model imitating a reference sketch style:

(A) To generate the reference sketch style 𝑆𝑟 using an authentic

sketch, we first apply the thin plate splines (TPS) transforma-

tion or random flips to a ground truth sketch 𝑆𝑔𝑡 (Section 3.2).

The transformed sketch has a similar style to the ground truth

sketch with a spatially different layout.

(B) The colorized image and the generated reference sketch are

then fed into two independent encoders 𝐸𝑐 (𝐼𝑐 ) and 𝐸𝑟 (𝑆𝑟 ),

followed by two independent Convolutional Block Atten-

tion Modules (CBAM) [Woo et al. 2018]:𝐶𝐵𝐴𝑀𝑐 (𝐸𝑐 (𝐼𝑐 )) and

𝐶𝐵𝐴𝑀𝑟 (𝐸𝑟 (𝑆𝑟 )). The attention modules are designed to learn
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Fig. 3. Overview of our sketch style imitation. We apply the thin plate splines (TPS) transformation to a ground truth sketch for the self-reference generation.

We use three independent Convolutional Block Attention Modules (CBAM) to detect edges of the colorized image and reference sketch as well as the visual

correspondences between them. © SeoulCityBrand.

spatially important features of the colorized image and refer-

ence sketch style such as their edges.

(C) The encoded features are then concatenated and in parallel,

passed through several residual blocks as well as another

CBAM attention module 𝐶𝐵𝐴𝑀𝑐𝑜𝑟 . Here, the attention mod-

ule learns to encode spatial correspondences between the col-

orized image and reference sketch style features (Section 3.2).

(D) Finally, the output of the residual blocks and the attention

module are concatenated and fed into a generator to extract

a sketch similar to the reference sketch style 𝑆𝑟 . The discrim-

inator, as an adversary of the generator, has an objective to

distinguish the generated sketch images from the real ones.

3.2 Self Reference Sketch Style Generation

Inspired by Yu et al. [2017] and Lee et al. [2020], we use augmenta-

tions to increase the volume and diversity of sketches for training.

To generate reference sketch styles 𝑆𝑟 in the training phase, we ran-

domly apply one of two augmentations to ground truth sketches 𝑆𝑔𝑡 :

1) a random flip, or 2) a TPS transformation. While the generated

reference sketches have a style similar to the ground truth sketches

(e.g., thickness of lines), they have different spatial layouts (e.g., the

position of eyes). These spatial variations in the generated reference

sketches help our network to deal with unseen reference sketches

that might have a similar line style but different position layouts or

character body shapes. See the supplementary material for more

details about the augmentations. When we did not apply any trans-

formations during the training phase, the reference sketch became

identical to the ground truth sketch. Therefore, the trained model

lazily learned to generate output identical to that of the reference

sketch without learning any content from the colorized image.

3.3 Attention Mechanism

Our model extracts a sketch from a colorized image in such a way

that the extracted sketch has a line style similar to that of a given

reference sketch while representing the same visual content as the

colorized image. To this end, our model should have mechanisms to

learn three essential features: 1) the content of the colorized image,

2) the style of the reference sketch, and 3) the visual correspon-

dences between the colorized image and reference sketch. Inspired

by the use of attention modules in example-guided image-to-image

translation models [Iizuka and Simo-Serra 2019; Lee et al. 2020],

we use the attention mechanism to learn these features. We chose

the CBAM [Woo et al. 2018] attention module because it is com-

putationally more efficient and requires less learnable parameters

in comparison with others [Iizuka and Simo-Serra 2019; Lee et al.

2020]. See the supplementary material for details.

To extract the content from the colorized image and style from the

reference sketch, we apply an independent CBAM attention module

to each of the last convolutional layers of the encoded colorized

image 𝐶𝐵𝐴𝑀𝑐 (𝐸𝑐 (𝐼𝑐 )) and reference sketch style 𝐶𝐵𝐴𝑀𝑟 (𝐸𝑟 (𝑆𝑟 )).

These two CBAM attention modules independently learn to attend

more to edges drawn in the colorized image and reference sketch.

We sequentially apply the channel and spatial attention modules of

CBAM so that our network adaptively learns which spatial infor-

mation to emphasize or suppress on the given colorized image and

reference sketch.

To learn visual correspondences between the colorized image

and reference sketch, we apply another 𝐶𝐵𝐴𝑀𝑐𝑜𝑟 attention module

to the concatenated features of the colorized image and reference

sketch encoders. This attention module learns to attend more to

corresponding edges between the colorized image and reference

sketch. One example would be eyes drawn in both of the colorized

image and reference sketch but depicted in various positions and

line styles. The following equation summarizes the CBAM attention

modules used in our network design:

𝑥𝑐 = 𝐶𝐵𝐴𝑀𝑐 (𝐸𝑐 (𝐼𝑐 )),

𝑥𝑟 = 𝐶𝐵𝐴𝑀𝑟 (𝐸𝑟 (𝑆𝑟 )),

𝑥𝑐𝑜𝑟 = 𝐶𝐵𝐴𝑀𝑐𝑜𝑟 ( [𝑥𝑐 ;𝑥𝑟 ]),

(1)
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where the 𝑥 (.) symbols are encoded features in which subscripts 𝑐 , 𝑟 ,

and 𝑐𝑜𝑟 denote the colorized image, the reference sketch style, and

the visual correspondences between them, respectively. In addition,

each 𝐶𝐵𝐴𝑀(.) attention module sequentially computes and applies

channel𝑀𝑐ℎ
(.)

and spatial𝑀
𝑠𝑝

(.)
attention maps, as follows:

𝐶𝐵𝐴𝑀𝑐 = 𝑀
𝑠𝑝
𝑐 ⊗ 𝑀𝑐ℎ

𝑐 ⊗ 𝐸𝑐 (𝐼𝑐 ),

𝐶𝐵𝐴𝑀𝑟 = 𝑀
𝑠𝑝
𝑟 ⊗ 𝑀𝑐ℎ

𝑟 ⊗ 𝐸𝑟 (𝑆𝑟 ),

𝐶𝐵𝐴𝑀𝑐𝑜𝑟 = 𝑀
𝑠𝑝
𝑐𝑜𝑟 ⊗ 𝑀𝑐ℎ

𝑐𝑜𝑟 ⊗ [𝑥𝑐 ;𝑥𝑟 ],

(2)

where ⊗ indicates element-wise multiplication.

Our ablation study described in Section 5.3 confirms both quali-

tatively and quantitatively that without using any attention mech-

anism, our sketch-extraction performance will not be satisfactory.

Moreover, as shown in Table 1, the ablation study also quantitatively

confirms that our sketch extraction model using three independent

CBAM attention modules outperforms the same model trained with

only one CBAM attention module employed after feature concate-

nation. In addition, the visualization of attention maps presented

in Section 5.4 and in the supplementary material suggest that two

CBAM attention modules used after 𝐸𝑟 and 𝐸𝑐 attend more to the

edges of the colorized image and reference sketch, while the one

employed after feature concatenation attends more to visual corre-

spondences between the colorized image and reference sketch.

3.4 Objective Functions

Sparse Attention Loss: Sketches usually have more white space

than colorized images, and hence lines making a sketch are depicted

sparsely in the image space. Therefore, we also apply the L1 regular-

ization loss to the spatial attention map of our 𝐶𝐵𝐴𝑀𝑐𝑜𝑟 attention

module to encourage the elements of 𝑥𝑐𝑜𝑟 to be spatially sparse, as

follows:

L𝑠𝑝𝑎𝑟𝑠𝑒 = | |𝑀
𝑠𝑝
𝑐𝑜𝑟 | |1 . (3)

This sparse attention loss encourages our model to attend only

to the most important spatial areas of the concatenated colorized

image and reference sketch feature maps. In addition, we show that

this objective function helps our generator to extract sketches with

sharp lines and without unnatural artifacts such as faded lines. See

our ablation study described in Section 5.3 and Figure 4 for more

details.

Reconstruction Loss: Given a colorized image and a reference

sketch, generator G is trained to produce a sketch that is similar to

the ground truth in terms of a pixel-wise L1 loss function. We use

the L1 loss instead of L2 because it encourages less blurring [Isola

et al. 2017]. This reconstruction loss penalizes the network for the

pixel-wise difference between the generated sketch 𝐺 (𝐼𝑐 , 𝑆𝑟 ) and

ground truth sketch 𝑆𝑔𝑡 , as follows:

L𝑟𝑒𝑐 = E𝑆𝑔𝑡 ,𝐼𝑐 ,𝑆𝑟 [| |𝐺 (𝐼𝑐 , 𝑆𝑟 ) − 𝑆𝑔𝑡 | |1] . (4)

Adversarial Loss: The discriminator 𝐷 , as an adversary of the

generator, has the objective of distinguishing the generated sketches

from the real ones. The output of real/fake discriminator𝐷 computes

the probability that an arbitrary sketch is a real one. On the other

hand, the generator𝐺 attempts to deceive the discriminator 𝐷 by

creating an output sketch 𝐺 (𝐼𝑐 , 𝑆𝑟 ) that looks similar to a ground

truth sketch 𝑆𝑔𝑡 via a conditional adversarial loss function. The loss

for optimizing the discriminator 𝐷 is formulated as the standard

crossentropy loss, as follows:

L𝑎𝑑𝑣 = E𝑆𝑔𝑡 ,𝐼𝑐

[

log
(

𝐷 (𝑆𝑔𝑡 , 𝐼𝑐 )
) ]

+ E𝐼𝑐 ,𝑆𝑟
[

log
(

1 − 𝐷
(

𝐺 (𝐼𝑐 , 𝑆𝑟 ), 𝐼𝑐
) ) ]

.
(5)

Perceptual Loss: Training with the perceptual loss allows the

model to better reconstruct fine details and edges [Johnson et al.

2016b]. Because the perceptual loss depends on high-level features

from a pretrained network and measures image similarities more

robustly than per-pixel losses, it is less sensitive to pixel-wise shifts.

The use of the perceptual loss also encourages a network to produce

an output that is more perceptually plausible as evidenced by sketch

simplification methods [Xu et al. 2021]. Therefore, we employ a

form of perceptual loss that penalizes the differences in interme-

diate activation maps between the generated sketch 𝐺 (𝐼𝑐 , 𝑆𝑟 ) and

ground truth sketch 𝑆𝑔𝑡 from the ImageNet [36] pretrained network.

We use activation maps from both high-level and low-level layers

of the pretrained network to penalize the corresponding high-level

semantic and low-level style differences between the generated and

ground truth sketch, as follows:

L𝑝𝑒𝑟𝑐 = E𝐼𝑐 ,𝑆𝑟 ,𝑆𝑔𝑡 [
∑︁

𝑙

| |𝜙𝑙 (𝐺 (𝐼𝑐 , 𝑆𝑟 )) − 𝜙𝑙 (𝑆𝑔𝑡 ) | |1], (6)

where 𝜙𝑙 denotes the activation map from the 𝑙 th layer of a VGG16

network, pretrained on ImageNet.

In summary, the overall loss function for the generator G and

discriminator D is defined as follows:

min
𝐺

max
𝐷

L𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑠𝑝𝑎𝑟𝑠𝑒L𝑠𝑝𝑎𝑟𝑠𝑒 + 𝜆𝑝𝑒𝑟𝑐L𝑝𝑒𝑟𝑐

+ 𝜆𝑟𝑒𝑐L𝑟𝑒𝑐 + 𝜆𝑎𝑑𝑣L𝑎𝑑𝑣,
(7)

where the 𝜆(.) symbols are the penalty weights that define to which

degree we want to enforce each loss term. We empirically derived

the penalty weights used in our experiments based on the quality

of extracted sketches when imitating a reference sketch style. We

set 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 = 0.1, 𝜆𝑝𝑒𝑟𝑐 = 1, 𝜆𝑟𝑒𝑐 = 10, and 𝜆𝑎𝑑𝑣 = 1. 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 helps

generate a sparse sketch and eliminate inaccurate dense edges from

the colorized image. The supplementary material shows that if we

increase 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 , the sparsity of the extracted sketch will increase.

3.5 Implementation Details

The sizes of the input colorized images and reference sketches

are fixed at 256x256 for every dataset. We use the Adam opti-

mizer [Kingma and Ba 2014] with 𝛽1 = 0.5, and 𝛽2 = 0.999. The

learning rates for both the generator and discriminator are initially

set to 0.0002. The total number of epochs was 1500, and the learning

rate decayed slightly after 750 epochs. We applied augmentations

during training. The detailed network architectures of our discrimi-

nator and generator are described in the supplementary material.

4 DATASET

Twitter Dataset: We collected over 2000 pairs of colorized images

and their corresponding authentic sketches (i.e., manually drawn

by line artists) from Twitter using a tag-based search. We manually

eliminated mis-pairs and low-quality image pairs. After filtering, the

final dataset contained 1300 pairs of sketches and colorized images,
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partitioned into 1000 pairs for training and 300 pairs for validation of

our sketch-extraction model. In this dataset, artists were anonymous

and drew sketches with various sketch styles. According to Twitter’s

regulation [twitter policy 2021], one can legally use this dataset for

research purposes. This dataset was used to train the model and for

the experiments described in Section 6 (Evaluation 2), Section 5.4,

Section 5.5, and Section 6.1. Examples of our Twitter dataset are

shown in the supplementary material.

Four Artists Dataset: We additionally gathered paired sketches

and their corresponding colorized images, drawn and colorized by

four different artists using illustration software. In this dataset, the

identities of the artists are known, and each artist has his/her own

unique sketch style. For each individual artist, the dataset contains

up to 20 pairs of sketches and their corresponding colorized images.

Because the identities of the artists are known, it is possible to

group the sketches based on the artist’s identities and explore the

differences between their sketch styles. For example, while artist B

uses more details to depict his/her sketches, artist A’s sketches are

more abstract and sparse. Artist C paints eyelashes with black colors

while artist D draws just the borderlines of eyelashes. The four artist

dataset can be used for research purposes upon an agreement with

the original artists. This dataset was only used as a test set and for

conducting the experiments described in Section 6 (Evaluation 1),

Section 5.2, Section 5.3, and Section 6.1. Examples of the Four Artists

Dataset are shown in the supplementary material.

5 EXPERIMENTS

In this section, first we introduce the quantitative evaluation metrics

used in our experiments (Section 5.1), after which we compare our

method with several baselines (Section 5.2) both qualitatively and

quantitatively, and ablate the loss functions as well as attention

modules to analyze their effects (Section 5.3). Finally, we visualize

the attention maps of our network design (Section 5.4) and introduce

our cyclic evaluation metric to measure the quality of our sketch

style transfer method (Section 5.5). In the supplementary material,

we show that our method can deal with imitating different poses,

e.g., the face is in a very different location between the colorized

image and the reference sketch.

5.1 Evaluation Metrics

For a quantitative analysis, we utilized the widely used Peak Signal-

to-Noise Ratio (PSNR) [Wang et al. 2004], the Learned Perceptual

Image Patch Similarity (LPIPS) [Zhang et al. 2018a], and the Frèchet

Inception Distance (FID) [Grigorescu et al. 2003] metrics that assess

the pixel-wise difference, the perceptual distance based on neu-

ral network features, and the Frèchet distance between two data

collections, respectively. We consider LPIPS as our main evalua-

tion metric to measure the perceptual similarity because it learns

representations of images that correlate well with perceptual judg-

ments [Zhang et al. 2018a]. We used both low-level and high-level

features for computing LPIPS. Moreover, in Evaluation 1 of our user-

study, people preferred sketches extracted by our method, and the

average LPIPS score of these sketches outperforms others similar to

the human preference in sketch selections. PSNR focuses on pixel-

wise differences that fail to account for many nuances of human

perception [Wang et al. 2004], and FID requires a large number of

test sets (e.g., 50k) to compare the statistics of generated samples to

those of real samples accurately [Borji 2021].

Proposed cyclic evaluation metric: We also propose a novel evalua-

tion metric to measure how faithfully our model preserves the style

of a reference sketch in multiple consecutive sketch-extraction steps.

The key idea behind this is that if our model extracts a sketch using

a reference style, one should also be able to produce an identical

reference style using the extracted sketch from the previous step. We

provide a detailed explanation of the proposed evaluation metric as

well as its corresponding results in Section 5.5.

5.2 Comparison with Baselines

All the baseline models reported in Table 1 were trained using our

Twitter dataset and tested on our Four Artist Dataset when official

training codes or details were available. We used the original code

and augmentations of each baseline. For training, we used 1000 pairs

from the Twitter training set. We only used pre-trained models of

SketchKeras and Anime2Sketch. In the supplementary material, we

provide more details about the relation between our method and

these baselines regarding the technique used to process a given

colorized image and incorporated loss terms.

We compared our sketch-extraction method against four sketch-

extraction approaches: 1) Canny [Canny 1986], 2) XDoG [Win-

nemöller 2011], 3) SketchKeras [lllyasviel/sketchKeras 2018], and 4)

Anime2Sketch [Xiaoyu Xiang 2021]. To verify the effectiveness of

our method, we conducted both qualitative and quantitative com-

parisons on four different datasets. Each dataset contains sketches

drawn and colorized by an artist based on his/her own artistic style.

Figure 4 shows the overall qualitative results of our sketch-extraction

model and the four baselines. The supplementary material contains

more examples. The Canny method extracts sketches with noisy dot-

ted lines while the XDoG and Anime2Sketch approaches mis-paint

some parts of the character’s cloth, head, or eyelashes in black. Line

styles extracted by SketchKeras are similar to pencil strokes, which

are thicker than the lines of the ground truth sketch drawn by the

artist. In contrast, the sketch extracted using our algorithm more

closely resembles the ground truth drawn manually by the artist.

For example, our method draws only the borderlines of eyelashes

and pupils, similar to the ground truth, and avoids mis-painting

the character’s body. This suggests that our method is superior at

establishing visual correspondences between the extracted sketch

and the reference style. In addition, the thickness of the lines ex-

tracted by our method varies at different parts of the character’s

body, making the result more similar to the ground truth.

We report in Table 1 the LPIPS, PSNR, and FID scores calculated

over the four different datasets. On average, our sketch-extraction

method outperforms the existing baselines on all reported scores,

demonstrating that our method is robustly capable of producing

sketches similar to the original style of an artist, on the four different

datasets examined here.

We also compared our model both qualitatively and quantita-

tively against out-of-the-box image-to-image translation models, in

this case pix2pix [Isola et al. 2017], BicycleGAN [Zhu et al. 2017b],

and CUT [Park et al. 2020] as well as the example-guided style
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Fig. 4. Qualitative results of comparison with baselines and ablation study. Our method draws only the borderlines of eyelashes, similar to the ground truth.

Without sparse loss, the output sketch contains inaccurate dense lines. Without our attention mechanism, the character’s eyelashes are mis-painted in black.

Without the perceptual loss, the output sketch contains incomplete edges. See the supplementary material for more examples. © Ayul_oekaki.

Table 1. Quantitative results of comparison with baselines and ablation study. The best LPIPS score is annotated in bold while other best scores are underlined.

Dataset A Dataset B Dataset C Dataset D AVERAGE

Methods LPIPS↓ / PSNR↑ / FID↓

L𝑠𝑝𝑎𝑟𝑠𝑒+L𝑝𝑒𝑟𝑐+L𝑟𝑒𝑐+L𝑎𝑑𝑣+3 𝐶𝐵𝐴𝑀 0.1340/34.71/66.76 0.1350/34.85/100.95 0.0986/34.54/63.16 0.1950/32.84/81.80 0.1406/34.23/78.16

L𝑠𝑝𝑎𝑟𝑠𝑒+L𝑝𝑒𝑟𝑐+L𝑟𝑒𝑐+L𝑎𝑑𝑣+1 𝐶𝐵𝐴𝑀𝑐𝑜𝑟 0.1407/34.66/73.36 0.1429/34.53/109.01 0.0974/34.25/69.99 0.2191/32.37/82.29 0.1500/33.95/83.66

L𝑝𝑒𝑟𝑐+L𝑟𝑒𝑐+L𝑎𝑑𝑣+3 𝐶𝐵𝐴𝑀 0.1350/34.65/69.10 0.1408/34.80/116.89 0.1027/34.42/62.27 0.2043/32.74/82.88 0.1457/34.15/82.78

L𝑝𝑒𝑟𝑐+L𝑟𝑒𝑐+L𝑎𝑑𝑣 0.1361/34.59/72.50 0.1385/34.71/105.88 0.1059/34.35/69.68 0.2117/32.78/90.92 0.1480/34.10/84.74

L𝑟𝑒𝑐+L𝑎𝑑𝑣 0.1381/34.53/77.41 0.1399/34.72/105.17 0.1051/34.31/63.03 0.2164/32.64/95.01 0.1498/34.05/85.15

Canny [Canny 1986] 0.1682/33.94/103.55 0.1569/34.77/116.58 0.1207/34.54/124.17 0.2253/32.55/94.62 0.1677/33.95/109.73

XDoG [Winnemöller 2011] 0.2311/33.98/146.61 0.1718/34.91/175.28 0.1008/34.50/104.69 0.2174/32.55/125.63 0.1802/33.80/138.05

SketchKeras [lllyasviel/sketchKeras 2018] 0.2112/34.99/97.95 0.1667/34.55/131.30 0.1093/34.26/81.19 0.2063/32.35/92.78 0.1733/34.03/100.80

Anime2Sketch [Xiaoyu Xiang 2021] 0.1633/34.51/95.28 0.1572/35.05/131.60 0.1171/34.02/71.08 0.2328/32.58/80.96 0.1676/34.04/94.73

Pix2pix [Isola et al. 2017] 0.1532/34.81/113.71 0.1733/34.35/119.90 0.1115/34.04/100.40 0.2154/32.35/114.52 0.1633/33.88/112.13

BicycleGAN [Zhu et al. 2017b] 0.1756/34.62/114.52 0.1964/34.71/131.59 0.1257/34.32/83.79 0.2375/32.38/122.48 0.1838/34.00/113.09

CUT [Park et al. 2020] 0.2614/34.19/111.74 0.2460/34.29/181.31 0.2817/34.24/176.99 0.3335/32.15/100.76 0.2806/33.71/142.70

Gatys et al. [2016] 0.3128/33.26/140.52 0.3321/33.20/151.14 0.3022/33.42/122.87 0.3487/31.12/166.87 0.3239/32.75/145.35

MUNIT [Huang et al. 2018] 0.4112/31.98/189.45 0.4250/31.81/201.11 0.4017/31.04/210.99 0.4042/31.04/198.54 0.4105/31.46/200.02

Lee et al. [2020] 0.1638/34.27/107.58 0.1774/34.16/120.34 0.1289/33.55/111.46 0.2357/32.14/113.06 0.1764/33.53/113.11

Simo-Serra et al. [2016a] 0.2143/31.16/146.86 0.2279/30.54/143.59 0.1637/31.46/123.80 0.2363/29.92/99.52 0.2105/30.77/128.44

transfer models MUNIT [Huang et al. 2018], Gatys et al. [2016],

and Lee et al. [2020]. We used the BicycleGAN and CUT models

for supervised and unsupervised learning settings, respectively,

as these models show the best performance on the UT-Zap50K

dataset [Yu and Grauman 2014] on the edge2shoes task [Pang et al.

2021] compared to other supervised and unsupervised image-to-

image translation methods [Cho et al. 2018; Huang et al. 2018; Isola

et al. 2017; Kim et al. 2020; Zhu et al. 2017a]. The model proposed by
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Gatys et al. is considered as the standard in style transfer [Jing et al.

2020], andMUNIT also shows better performance on the UT-Zap50K

dataset on the edge2shoes task [Pang et al. 2021] compared to the

alternatives [Cho et al. 2018]. As shown in Figure 2, the sketches

extracted via these methods are not visually similar to authentic

sketches. In addition, the quantitative results shown in Table 1 con-

firm that our method outperforms all of these methods. In addition,

our attention mechanism based on CBAM outperforms the attention

mechanism of Lee et al. [2020]. We also compared our approach with

a sketch-simplification method [Simo-Serra et al. 2016a] and showed

the superiority of our method. See the supplementary material for

more qualitative comparisons with the baselines.

5.3 Ablation Study

We ablate the attention module and loss functions individually to

analyze their effects qualitatively, as shown in Figure 4, and quan-

titatively, as shown in Table 1. When we remove the sparse loss,

the output sketch contains inaccurate dense lines emerging in the

eye and shoulder areas that are not visually similar to the original

sketch, which is depicted with more sparse lines. Without our atten-

tion mechanism and with only one 𝐶𝐵𝐴𝑀𝑐𝑜𝑟 attention module, the

character’s eyelashes are mis-painted in black, which does not com-

ply with the reference sketch style depicting only the borderlines

of the eyelashes. Without the perceptual loss, the output sketch

contains incomplete edges on the character’s cloth and shoulders.

The supplementary material contains more qualitative examples of

the ablation study.

Quantitatively, on average, our method using all losses and the

attention module performs best out of all others. Table 1 shows that

removing each of the losses (perceptual or sparse loss) or the spatial

attention module (rows 2 and 4) will adversely affect the sketch-

extraction performance. In our ablation study, adding the sparse

loss leads to the greatest improvement in the LPIPS, PSNR, and FID

scores, followed by adding the attention modules and then the per-

ceptual loss.

We conducted the ablation study on the size of our training set. In

the supplementary material, we showed that if we train our model

with 30% of our dataset (i.e., 300 pairs), our method can extract

sketches similar to reference styles with fine quality, thanks to the

TPS augmentation.

5.4 Visualization of Attention Maps

As shown in Figure 3, we leveraged three CBAM attention modules

in our network design. Figure 5 shows an example of spatial atten-

tion maps𝑀
𝑠𝑝

(.)
learned by these CBAM attention modules, which

are located in our network design after the colorized image encoder

(a), reference style encoder (b), and concatenated features of the

colorized image and reference style encoders (c). First, we observed

that the spatial attention modules of the encoded colorized image

(a) and reference style (b) learn to attend more to the edges of the

colorized image and reference style, respectively. In addition, the

spatial attention module applied to the concatenated features (c)

learns to attend more to visual correspondences between the col-

orized image and the reference style (e.g., eyelashes). The ability of

our network to find visual correspondences between the colorized

Fig. 5. Visualization of our attention. Detecting edges of the colorized image

(a), reference sketch (b), and visual correspondences (c). © Ayul_oekaki.

image and reference style leads to the extraction of a sketch from

the colorized image with thick eyelash lines, similar to the reference

style. The supplementary material contains more examples of our

visualization of attention maps.

5.5 Cyclic Evaluation Metric

Our goal is quantitatively to assess how our model preserves the

reference sketch style in multiple consecutive sketch extractions.

Our assumption is that if we use a reference style to extract a sketch

from a colorized image, the extracted sketch should have a style

similar to that of the reference style. Therefore, one should be able to

use the extracted sketch as a reference to generate precisely the same

reference style used during the first sketch-extraction step. To this

end, first we randomly select a pair consisting of a colorized image

𝐼𝑐1 and its corresponding ground truth sketch 𝑆𝑔𝑡1 from our dataset.

Second, we use the ground truth sketch 𝑆𝑔𝑡1 as a reference to extract

a sketch from another random colorized image 𝐼𝑐2 . The extracted

sketch𝐺 (𝑆𝑔𝑡1 , 𝐼𝑐2 ) should have a style similar to 𝑆𝑔𝑡1 . Third, we use

the extracted sketch 𝐺 (𝑆𝑔𝑡1 , 𝐼𝑐2 ) as a reference to extract a sketch

from the colorized image 𝐼𝑐1 , which results in generating a sketch

𝐺 (𝐺 (𝑆𝑔𝑡1 , 𝐼𝑐2 ), 𝐼𝑐1 ) with the same content and style as 𝑆𝑔𝑡1 . Finally,

we compare𝐺 (𝐺 (𝑆𝑔𝑡1 , 𝐼𝑐2 ), 𝐼𝑐1 ) and 𝑆𝑔𝑡1 using LPIPS, FID, and PSNR

metrics. A representative example of our cyclic evaluation process

is shown in Figure 6 and is summarized as follows:

𝑆𝑔𝑡1 , 𝐼𝑐2
𝐺
−→ 𝐺 (𝑆𝑔𝑡1 , 𝐼𝑐2 ),

𝐺 (𝑆𝑔𝑡1 , 𝐼𝑐2 ), 𝐼𝑐1
𝐺
−→ 𝐺 (𝐺 (𝑆𝑔𝑡1 , 𝐼𝑐2 ), 𝐼𝑐1 ),

Cyclic LPIPS = LPIPS(𝐺 (𝐺 (𝑆𝑔𝑡1 , 𝐼𝑐2 ), 𝐼𝑐1 ), 𝑆𝑔𝑡1 ) .

(8)

We report in Table 2 the cyclic LPIPS, PSNR, and FID scores

calculated using our model when imitating a reference sketch style

as well as two example-guided style transfer models: Gatys et al.

[2016], Lee et al. [2020], andMunit [Huang et al. 2018]. In all reported

scores, our model outperforms the general-purpose example-guided

style transfer models in imitating and preserving a reference sketch

style in multiple consecutive sketch extractions.

ACM Trans. Graph., Vol. 41, No. 6, Article 207. Publication date: December 2022.



207:10 • A. Ashtari et al.

Table 2. Quantitative results of our cyclic and dissimilarity evaluations.

Cyclic Evaluation LPIPS↓/PSNR↑/FID↓

Ours 0.1931/33.97/114.41

Lee et al. [2020] 0.2455/31.22/182.04

Gatys et al. [2016] 0.4119/27.79/253.41

MUNIT [Huang et al. 2018] 0.4138/27.50/244.81

Dissimilarity Evaluation (ours) 0.2495/33.30/153.02

Because general-purpose example-guided style transfer models

are not specifically designed for the sketch style transfers, unlike

our method, we conducted another experiment to justify the com-

puted scores of our cyclic metrics. Specifically, we use a similar

process to generate sketches with content identical to that used to

compute the cyclic metric but with different sketch styles. To this

end, the experiment proceeded as follows: First, given the same pair

of the colorized image 𝐼𝑐1 and its corresponding ground truth sketch

𝑆𝑔𝑡1 from our dataset, we extracted a sketch from the colorized im-

age 𝐼𝑐1 using another random reference style 𝑆𝑔𝑡2 , i.e., 𝐺 (𝑆𝑔𝑡2 , 𝐼𝑐1 ).

Second, we used the extracted sketch 𝐺 (𝑆𝑔𝑡2 , 𝐼𝑐1 ) as a reference to

extract a sketch from the colorized image 𝐼𝑐1 , which results in the

generation of a sketch𝐺 (𝐺 (𝑆𝑔𝑡2 , 𝐼𝑐1 ), 𝐼𝑐1 ) with the content identical

to and a style different from those of 𝑆𝑔𝑡1 . Finally, we compared

𝐺 (𝐺 (𝑆𝑔𝑡2 , 𝐼𝑐1 ), 𝐼𝑐1 ) and 𝑆𝑔𝑡1 using the LPIPS, FID, and PSNR scores.

Because the sketches generated using this evaluation process have

different sketch styles while representing the same content, we

refer to this evaluation process as the dissimilarity metric. We ap-

plied our sketch-extraction model twice to the colorized image 𝐼𝑐1
because we wanted to ensure a fair comparison with our cyclic met-

ric, which also uses two sketch-extraction steps. A representative

example of our dissimilarity evaluation is shown in Figure 6 and

is summarized below.

𝑆𝑔𝑡2 , 𝐼𝑐1
𝐺
−→ 𝐺 (𝑆𝑔𝑡2 , 𝐼𝑐1 ),

𝐺 (𝑆𝑔𝑡2 , 𝐼𝑐1 ), 𝐼𝑐1
𝐺
−→ 𝐺 (𝐺 (𝑆𝑔𝑡2 , 𝐼𝑐1 ), 𝐼𝑐1 ),

Dissimilarity LPIPS = LPIPS(𝐺 (𝐺 (𝑆𝑔𝑡2 , 𝐼𝑐1 ), 𝐼𝑐1 ), 𝑆𝑔𝑡1 ) .

(9)

As shown in Table 2, the cyclic LPIPS, PSNR, and FID scores out-

perform the corresponding dissimilarity scores while both cyclic and

dissimilary metrics are computed over the generated sketches with

content identical to that in the ground truth sketches. In the cyclic

evaluation, the style of the generated sketches are preserved to be

similar to the ground truth sketches. However, in the dissimilarity

evaluation, the generated sketches have slightly different sketch

styles but the exactly same content as the ground truth. This quanti-

tative result suggests that our sketch-extraction model reflects small

changes of a reference style in the extracted sketches.

6 PERCEPTUAL STUDY

Several previous studies have leveraged anonymous human eval-

uators to validate the quality of sketches drawn by a network

model [Chen et al. 2017; Liu et al. 2019b]. To qualitatively assess

our sketch-extraction algorithm, we conducted two evaluations, as

described below.

Fig. 6. Proposed cyclic and dissimilarity evaluation metrics. We measure

how faithfully our model preserves the style of a reference sketch in multiple

consecutive sketch-extraction steps. © AonoriwaKame (𝐼𝑐1 ), Tk_painter (𝐼𝑐2 ).

Evaluation 1 [Ours vs. Baselines]: We compared sketches drawn

by our algorithm with five different sketch-extraction baselines: 1)

Canny, 2) XDoG, 3) SketchKeras, 4) Anime2Sketch, and 5) Bicycle-

GAN. To this end, we asked participants to choose a sketch that

best resembles an artist’s original sketch style (i.e., ground truth)

among six sketches extracted by the five baselines as well as our

algorithm that imitates the artist’s original sketch style. See Figure 7

for an example of this comparison and the supplementary material

for more comparisons conducted in this study.

Evaluation 2 [Style imitation performance]: The goal is to check

whether our sketch-extraction method can imitate various sketch

styles. To this end, given a colorized image, we compared four

sketches drawn by our algorithm, with each extracted to imitate the

specific sketch style represented in a reference style. Given one of

the four reference styles as the ground truth, we asked participants

to choose the sketch that best resembled the ground truth reference

style among four extracted sketches: one imitating the same style as

the ground truth and three imitating other styles. These styles were

randomly selected. Figure 7 presents an example of this comparison.

The supplementary material contains more comparisons used in

this study.

Evaluation 1 and 2 setup: For a fair visual comparison of the

sketches, we used the same image size for all of the extracted

sketches. For each comparison, we placed extracted sketches in

a side-by-side configuration, each to a randomly assigned slot in
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Fig. 7. A representative example of our perceptual study and its results. Note that we did not show the reference styles, presented here in the blue boxes, to the

participants. We asked the participants to choose the sketch that best resembles the ground truth. In Evaluation 1, we compared our sketch-extraction method

against five baselines. In Evaluation 2, we checked whether our sketch-extraction method can imitate various reference styles. © Evaluation 1: Ayul_oekaki;

Evaluation 2: AonoriwaKame, KiwoomHeroes, Comete_atri, Chobi_chu.

a group of extracted sketches. Each participant made twenty com-

parisons for each evaluation. The sketches in each comparison set

were extracted from the same colorized image. The participants

were asked: łWhich sketch represents the ground truth sketch style

the best?ž. They had to select one from six and four sketches in

each comparison set for Evaluation 1 and Evaluation 2, respectively.

There were 100 participants for each evaluation (200 participants

in total). The results of our evaluations should not depend on the

specifics of any demographic distribution and we did not therefore

focus on any specific groups of people. We used the four artists

dataset in Evaluation 1 because we required an example of each

artist’s sketch to imitate his/her style. In Evaluation 2, we used the

Twitter dataset because the participants compared the style similar-

ity between the extracted sketch and the reference sketch. These

sketches were selected from the Twitter test-set (300 pairs), and

styles were randomly selected.

6.1 Results of the Perceptual study

Evaluation 1 presented in Figure 7 shows that 71.2% of the partici-

pants selected sketches extracted by our algorithm, which focuses

on imitating the artist’s style over the five baseline methods. This

suggests that people can easily distinguish visual differences be-

tween various sketch styles. It also confirms that the state-of-the-art

methods cannot imitate a specific sketch style due to the fact that

they extract the same style for all given colorized images.

For Evaluation 2, presented in Figure 7, 90.4% of the participants

selected the intended sketch targets corresponding to the ground

truth. This shows that our method can imitate various sketch styles

that are visually similar to given ground truth sketch styles. Re-

garding the 9.6% who selected different sketch targets, these likely

stemmed from certain challenging comparisons in which the ground

truth sketch style was indeed visually similar to other sketch styles,

making it difficult for the participants to distinguish the small dif-

ferences between them. All of the comparisons used in Evaluation 2

are presented in the supplementary material.

7 MORE APPLICATIONS

7.1 Improving automatic sketch colorization

As mentioned in Section 1, training auto-colorization models suf-

fers from information scarcity of authentic sketches (i.e., drawn by

an artist) and their corresponding colorized images. Therefore, ex-

isting auto-colorization methods use sketch-extraction techniques

to produce synthetic sketches from colorized images for training

their models. In this experiment, we used our sketch extraction

technique to improve the performance of auto-colorization models

by producing more realistic synthetic sketches in comparison with

the synthetic sketches generated by four baselines: Canny, XDoG,

SketchKeras, and Anime2Sketch. We evaluate the impact of sketch-

extraction techniques on the quality of auto-colorization models,

both qualitatively, as shown in Figure 8, and quantitatively, as shown

in Table 3. In this evaluation, we used synthetic sketches for training

and authentic sketches for testing of the auto-colorization models.

See the supplementary material for more details. Both qualitative

and quantitative results suggest the following.
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Fig. 8. Our sketch-extraction method improves the quality of auto-colorization models by improving the quality of synthetic sketches used for training them.

We improve the synthetic sketches by imitating an artist’s sketch style (a), or by generating sketches with various styles similar to authentic ones (b). © up to

down (a): Ayul_oekaki, Okera_sz, Comete_atr (rows 3 & 4); (b): Tk_painter, Maromayu, BioTroy, AonoriwaKame.

Table 3. Quantitative results of improving auto-colorization models using

our sketch-extraction technique. The best LPIPS scores are bolded while

other best scores are underlined.

Four artist dataset Twitter dataset

Methods LPIPS↓/PSNR↑/FID↓

Ours 0.1895/31.81/122.50 0.4360/29.03/148.59

Canny 0.2629/30.94/224.43 0.5834/28.24/214.43

XDoG 0.2477/30.99/231.20 0.5223/28.40/213.10

SketchKeras 0.2501/30.91/198.25 0.5278/28.50/207.40

Anime2Sketch 0.2764/30.46/219.90 0.5294/28.40/211.34

(1) The quality of an auto-colorization model is highly depen-

dent on the sketch-extraction technique used to produce the

synthetic data.

(2) Using our sketch-extraction method improves the quality of

auto-colorization models when we have only one sample of

authentic sketches drawn by an artist for whom we want

to colorize his/her sketches automatically, as shown in Fig-

ure 8(a). For this evaluation, we used the four artists dataset

and randomly chose only one authentic sketch from each

artist as a reference style to imitate his/her sketch style for

the synthetic dataset generation.

(3) Our sketch-extraction method in general improves the qual-

ity of auto-colorization models by improving the quality of

synthetic data, as shown in Figure 8(b). For this evaluation,

we used our method to generate sketches with ten random

styles for each colorized image of the Twitter dataset.

Auto-colorization model trained using our synthetic dataset outper-

forms all existing baselines both qualitatively and quantitatively.

7.2 Extracting sketches from real-world and face images

Our method can be used as a general-purpose edge detector to

extract edges from any colorized photo as long as we provide a

proper training dataset. Therefore, one direction worthwhile of

exploration is to train our model as a general-purpose edge detector

Fig. 9. Our method can be applied to non-anime characters, such as actual

photos, if a proper dataset is provided.

using a dataset that focuses not only on anime characters. Then,

our method can also be used to generate artistic sketches from real-

world photos. As a representative example, we trained our model

using only 100 pairs of real-world images and their corresponding

sketches. As shown in Figure 9, our method successfully extracts

sketches with various styles from the unseen real-world images.

Moreover, we trained our model on real face images. Using CUHK

face-sketch dataset [Wang and Tang 2009], we made 3 different

styles of portrait sketches for 30 real face images (i.e., only 90 pairs in

total for training). As shown in Figure 10, our method can generalize

on extracting sketches from unseen real-face images, similar to the

given reference styles.

8 LIMITATIONS AND FUTURE WORK

Our model extracts a sketch from a colorized image in such a way

that the extracted sketch has a line style similar to that of a given

reference sketch. We showed both qualitatively and quantitatively

that our method is capable of imitating various sketch styles, com-

monly used in drawing anime characters (Evaluation 2 in Section 6,

Section 5.2, and Section 5.5). However, our method sometimes fails

if the style of the reference sketch is not a line art (e.g., pointillism

sketches), as shown in Figure 11. One might address this problem

by providing examples of these styles in our training set. More-

over, if we increase the penalty weight of the sparse loss 𝜆𝑠𝑝𝑎𝑟𝑠𝑒
in Equation (7), the sparsity of the extracted sketches will increase.
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Fig. 10. Our method can generalize on extracting sketches from unseen

real-face images [Wang and Tang 2009], similar to the given reference styles.

Fig. 11. Failure cases occurred when reference sketches are the pointalism

art, considerably different from the line art. © SeoulCityBrand (Input), Kang

(Reference).

Therefore, the extracted sketches sometimes might contain inaccu-

rate dense lines or missing lines, if the penalty weight of the sparse

loss 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 is not tuned correctly with exceedingly low or high

values, as shown in Figure 12 and the supplementary material.

Given a reference sketch style, we applied our model to extract

sketches from colorized videos (see the supplementary video). While

the extracted sketches frommost of the video frames are satisfactory,

in some consecutive video frames with sudden motions or scene

changes, our method fails to achieve temporally coherent results.

This occurs because our model is designed to extract a sketch from a

single frame and therefore does not explicitly enforce any temporal

consistency constraints. A future direction worthwhile to explore

is to enforce temporal consistency to expand our method into the

video domain. Moreover, most learning-based sketch-extraction

approaches suffer from resulting low-resolution sketches. Therefore,

Fig. 12. If we increase the penalty weight of the sparse loss 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 , the

sparsity of the extracted sketches will increase. Therefore, without tuning

the sparse loss weight, extracted sketches might contain inaccurate dense

lines (a) or missing lines (b) with exceedingly low or high 𝜆𝑠𝑝𝑎𝑟𝑠𝑒 values.

© left to right: Ayul_oekaki, Comete_atr.

another possible research direction is to increase the resolution of

the extracted sketches.

We showed both qualitatively and quantitatively that the quality

of an auto-colorizationmodel depends on the sketch-extraction tech-

nique used to produce synthetic datasets for training. In addition,

using our Twitter dataset, we proved that our model can improve

auto-colorization performance by extracting sketches with various

styles. As future work, similar to extracting sketches with various

styles from our Twitter dataset, one can use our method to extract

sketches with various styles from different datasets commonly used

for training auto-colorization models, such as in Aizawa et al. [2020]

and Danbooru database [DanbooruCommunity 2021; Zhang et al.

2020]. Then, the synthetic dataset generated by our method can be

used as a benchmark training set to train auto-colorization models.

9 CONCLUSION

We presented the first approach to extract a sketch from a colorized

image with the style similar to the given reference sketch and with

content identical to that in the colorized image. Lacking the neces-

sary volumes of paired authentic sketches and colorized images data,

we proposed a novel training scheme by integrating a self-reference

sketch style generator to produce various reference sketches with

a similar style but different spatial layouts. In our network design,

we use three independent attention modules to enable our model

to detect edges of a colorized image, learn the line style of a ref-

erence sketch, and transfer the line style of the reference sketch

to visually corresponding parts of the colorized image edges. We

apply several loss terms to imitate the sketch style and enforce

sparsity in the extracted sketches. We used our sketch-extraction

technique to improve the performance of auto-colorization models

by producing a realistic synthetic dataset to train these models. We

evaluated our method in a number of qualitative and quantitative

experiments. The results suggest that our method outperforms all

existing sketch-extraction techniques. Moreover, we introduced a

new cyclic evaluation metric to measure how our model preserves

a reference sketch style in multiple consecutive sketch extractions.

Finally, our user-study results confirmed that participants can easily

distinguish the visual differences between various sketch styles and

that they preferred our method over existing baselines.
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