
StencilTorch: An Iterative

and User-Guided Framework for Anime

Lineart Colorization

Yliess Hati1,2(B) , Vincent Thevenin2 , Florent Nolot1 ,
Francis Rousseaux1 , and Clement Duhart2

1 University of Reims Champagne-Ardenne, Laboratory CReSTIC,
51 100 Reims, France

{florentnolot,francisrousseaux}@univ-reims.fr
2 Léonard de Vinci Pôle Universitaire, Research Center,

92 916 Paris La Défense, France
{yliess.hati,clement.duhart}@devinci.fr,

vincent.thevenin@edu.devinci.fr

Abstract. Automatic lineart colorization is a challenging task for Com-
puter Vision. Contrary to grayscale images, linearts lack semantic infor-
mation such as shading and texture, making the task even more difficult.
Modern approaches train a Generative Adversarial Network (GAN) to
generate illustrations from user inputs such as color hints. While such
approaches can generate high-quality outputs in real-time, the user only
interacts with the pipeline once at the beginning of the process. This
paper presents StencilTorch, an interactive and user-guided framework
for anime lineart colorization motivated by digital artist workflows. Sten-
cilTorch generates illustrations from a given lineart, color hints, and a
mask allowing for iterative workflows where the output of the first pass
becomes the input of a second. Our method improves previous work on
both objective and subjective evaluations.

1 Introduction

Motivation. Illustration can be summarized as the succession of four well
defined tasks: sketching, inking, coloring, and post processing. Referring to
Kandinsky’s work [19], the colorization process can change the meaning of an
entire piece of art by introducing color schemes, shading, and textures. These
last three properties of the painting process turn out to be challenging for the
Computer Vision task of automatic colorization. Contrary to its grayscale coun-
terpart [8,14,45], linearts lack semantic information making the task even more
difficult. Materials and 3D shapes can only be inferred from their silhouettes.

Problem. Previous work introduced the use of GAN [9] methods, one of the
most widespread neural architectures for image generation. These approaches
can generalize and produce perceptively qualitative illustrations. While some
work focused on the use of color-based hints [5,7,12,26,31,36], others are using

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
W. Q. Yan et al. (Eds.): IVCNZ 2022, LNCS 13836, pp. 1–17, 2023.
https://doi.org/10.1007/978-3-031-25825-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25825-1_1&domain=pdf
http://orcid.org/0000-0003-1711-3194
http://orcid.org/0000-0003-2085-7258
http://orcid.org/0000-0001-7198-2273
http://orcid.org/0000-0002-9619-0122
http://orcid.org/0000-0002-2727-789X
https://doi.org/10.1007/978-3-031-25825-1_1

2 Y. Hati et al.

Fig. 1. The figure shows a photo of a user interacting with our model StencilTorch and
a screenshot from our Web Application. The left canvas allows the user to provide or
draw a mask. Hint maps can be drawn or provided in the middle canvas. Hovering over
the hint section reveals a transparent lineart. In the right canvas, the user can upload
his lineart and see the resulting illustration. A toolbar with basic digital painting tools
is available at the very top, including a pen, an eraser, predefined brush sizes, and a
color picker.

style transfer [43] or tags [21] as color cues to condition the output of the model
to user intents. In such methods, feature extractors such as Illustration2Vec [35]
are used to enforce semantic information on the input.

Previous methods consist of a one-step process where the user is invited to
influence the generation process once, in the beginning, using information hints.
This type of pipeline is not ideal in the context of creation where the artist
wants to iterate and explore the design space of the illustration process. In this
paper, we instead formulate the task of automatic colorization as a Human-in-
the-loop process where the user collaborates with the machine in an iterative
and interactive process to produce the final piece of art.

Solution. We introduce StencilTorch, an iterative and user-guided framework
for anime lineart colorization. Our framework is motivated by human workflow
and is inspired by previous work done by Ci et al. [5], and follow-up work by Hati
et al. [12]. We train a conditional Wasserstein GAN with gradient penalty, c-
WGAN-GP for short, to generate illustrations from a given lineart, natural color
hints, and a mask describing the region of the image that has to be inpainted.

Our model is trained on images curated online using a similar approach to
PaintsTorch [12]. The illustrations are post-processed to extract a synthetic lin-
eart using an Extended Difference of Gaussians (xDoG) [41] and a displacement
map is extracted to remove lighting and limit the amount of colors from which
the color hints are sampled from.

Findings. We evaluated StencilTorch on our curated test dataset against
previous work by Zhang et al. [44], PaintsChainer [31], Ci et al. [5], and
PaintsTorch [12]. The models are benchmarked using both objective metrics,
Fréchet Inception Distance (FID), Learned Perceptual Image Patch Similarity
(LPIPS), and a subjective metric Mean Opinion Score (MOS) obtained by con-
ducting a user study. StencilTorch improves previous work on each of those
metrics.

StencilTorch 3

Fig. 2. StencilTorch can paint a lineart given user hints and a mask. The diagram illus-
trates an iterative workflow. The artist explores a potential colorization for its drawing
on the left and explore an alternative colorization on the right after the introduction
of shading and lighting in the input image.

Our approach not only enables iterative and collaborative workflows between
the human and the computer but also captures the additional painting style
introduced by the user, such as shading and illumination.

Contributions.

– A new synthetic dataset curation pipeline for producing qualitative input
and output pairs for automatic anime lineart colorization. Our pipeline par-
tially removes texture and shadow information from the illustrations, and uses
semantic color segmentation to produce better synthetic hints for training.

– StencilTorch, an interactive and user-guided framework for anime lineart col-
orization. Given a lineart, color hints and a mask, StencilTorch generates a
colored illustration. The colored output can be used as input for the next iter-
ation enabling natural workflows between the human and the machine. Our
model introduces a guide network for the generator’s decoder during training
and is trained for both illustration generation and inpainting.

– A study showing that StencilTorch improves previous work on our curated
dataset both objectively with the FID and LPIPS metrics, and subjectively
with an MOS. We also provide an ablation study to justify our design choices.

– An interactive open-source web application of the StencilTorch framework
using TensorFlowJS and Web Canvases to simulate digital art programs.

Implication. Previous work focused on improving the perceptual quality of
the generation process [5,12,31,45]. Our contribution is orthogonal and can be
combined with such improvements enabling seamless and natural digital illus-
tration workflows. Stenciltorch allows the artist to collaborate with the machine,
as shown in Fig. 2. We believe that such approaches will allow AI-driven tools
to be part of the creative environment and enable fast and broad exploration.

Reproduction. For reproducibility and transparency, we published our imple-
mentation and experimentation at www.github.com/yliess86/PaintsTorch2.

www.github.com/yliess86/PaintsTorch2

4 Y. Hati et al.

2 Background and Related Work

Generative Adversarial Network (GAN). GAN [9] approaches have proven
to be one of the best end-to-end methods for generating high-quality images beat-
ing previous methods such as autoencoders [16], variational autoencoders [22],
and flow networks [23]. GAN driven pipelines are competing with transformer-
based architectures [40] and denoising diffusion probabilistic models [17]. They
are efficient at inference, enabling closed-to or real-time applications.

Vanilla. The vanilla GAN introduced by Goodfellow et al. [9] consists of a
generator G trained to produce images G(z) similar to the data distribution fed
to a discriminator D trained to differentiate fake images from true images x. The
networks are jointly trained to optimize a Min-Max objective shown in Eq. 1 and
can be further split as distinct objectives as shown in Eq. 2.

min
D

max
G

Ex[log(D(x))] + Ez[log(1 − D(G(z)))] , (1)

1

m

m∑

i=1

[log(D(xi)) + log(1 − D(G(zi)))] ,
1

m

m∑

i=1

[log(D(G(zi)))] . (2)

In practice, this formulation is unstable. The generator often saturates if it
does not keep up with the discriminator, which task is most of the time easier
to optimize. It also suffers from vanishing gradients and mode collapse, where
the generator finds a simple solution that fools the discriminator failing at gen-
erating diverse enough outputs. The literature includes techniques to overcome
those issues, such as the hinge loss [25], the Wasserstein distance [2], gradient
penalty [10], and the use of batch [18] and spectral [30] normalization strategies.

Wasserstein Distance. One powerful alternative to the vanilla formulation is
the Wasserstein GAN or WGAN for short [2]. It resolves both the mode collapse
and the vanishing gradients issues. The output activation of the discriminator is
changed from a sigmoid to a linear function. This change turns the discriminator
network into a critic rating the quality of the generated output rather than
discriminating the fake from the real. The critic and generator objectives are
shown in Eq. 3. Gradient clipping is used to satisfy the Lipschitz constraint.

1

m

m∑

i=1

[D(xi)] − [D(G(zi))] ,
1

m

m∑

i=1

[D(G(zi))] . (3)

Gradient Penalty. Instead of gradient clipping, Gulrajani et al. [10] enforce
a constraint on the critic such that its gradients with respect to the inputs are
unit vectors. The critic loss is augmented with an additional term shown in Eq. 4
where x̂ is sampled from a linear interpolation between real and fake samples to
satisfy the critic’s Lipschitz constraint.

λEx̂[(||∇x̂D(x̂)||2 − 1)2] . (4)

StencilTorch 5

User Conditioning. A GAN network can be further conditioned on user inputs
such as class labels [29] and transformed into a multi-modal model. The final user
is granted fine-grain control over the generated output by conditioning both the
generator and the discriminator or critic networks on such input. This approach
is called a conditional GAN or c-GAN for short.

Color Hints. User-guided automatic colorization through color hints is one of
the leading approaches. It enables fine-grain control on the image generation
process by pin-pointing colors in the regions where a specific color is intended.
This type of color control has been popularized by Zhang et al. [45] and is used
by the majority of the following methods [5,7,12,26,36,44].

In their work, Zhang et al. [45] claim that randomly activating pixels from
the original illustration during training as color hints is enough to enable fine-
grain control on the output. However, Hati et al. [12] demonstrate that this is not
enough. The lack of semantic information, shading, and texture is to blame. They
propose using simulated strokes to represent the user inputs more faithfully.

Both approaches employ a U-Net [33] architecture with ResNetXt blocks [13]
using dilated convolution to increase the receptive field and favor speed, and
Pixel Shuffling [37] to limit the generation of artifacts.

Style Transfer. An alternative input style for color hints is the use of style
transfer. The user provides a target illustration from which the network has
to learn the style properties while conserving the content of the given lineart
using VGG16 [38] or VGG19 features as perceptual loss proxies. This approach
has been extensively studied in previous work [8,14,43]. Style transfer can be
combined with color palette conservation to transfer colors from the style image.

Tags. Tag-based automatic colorization has been explored by Kim et al. [21].
They introduce feature attribute vectors to condition the network for lineart
colorization. By describing features such as hairstyle, hair color, eye color, and
others, the network can transfer the user intent into the painting. They also
introduce SECat, a neural network module to help the model focus on details.

3 Proposed Method

Our method, StencilTorch aims at generating colored illustrations from a given
lineart, color hints, and a mask to favor iterative and creative workflows where
the output of the first pass can become the input of a second. This section
discusses the importance of the data curation process, the input generation, our
model architecture, the introduction of inpainting, and our training curriculum.

3.1 Dataset Curation

The challenge of anime lineart colorization suffers from a lack of qualitative
and publicly available datasets. Finding corresponding pairs of lineart and illus-
trations in abundance is a challenge. Online scrapping of anime drawings and
synthetic lineart extraction are the preferred methods [5,12,45].

6 Y. Hati et al.

Fig. 3. StencilTorch input generation process diagram. An illustration is sampled from
our curated dataset. This illustration is used to generate a synthetic lineart using the
xDoG method. A displacement network DisNet is trained to generate displacement
maps from colors illustrations used to produce color regions. The color regions are
then quantized and reduced via k-means clustering to eliminate most of the lighting,
shading, and texture-specific colors. The regions are sampled to produce a mask and
color hints. The synthetic lineart, the mask, and the color hints are combined into a
single input.

The few public datasets available to the community we are aware of are
inconsistent in terms of perceptual quality, the nature of the images (e.g. comics
pages, photos), and present illustrations from artists of different backgrounds,
levels, and styles. For these reasons, we have curated a custom dataset.

Our dataset contains 21, 930 scrapped anime-like illustrations for training,
3, 545 for testing, and is manually filtered to ensure a perceptive quality across
all samples and remove inappropriate (e.g. gore, mature, and sexual) content.
This process is motivated by previous work on PaintsTorch [12] where the authors
demonstrate the implications of the dataset quality in the generation process.

We find important to highlight that any dataset [1] used for the challenge of
anime-like line art colorization is biased. They are reflections of the anime sub-
culture and communities from which they are drawn. The drawings are mostly
figures of female characters with visible skin. This may justify the overall salmon
watercolor tone attributed to the illustrations produced by current works.

3.2 Input Generation

The lack of lineart and illustration pairs require the use of complex input gener-
ation pipelines. Previous work [5,12] proposed to generate synthetic linearts out
of the curated paintings. xDoG [41] is the technique used to extract such infor-
mation. It produces qualitative and clean lines from complex colored drawings.

The color hints are randomly selected by sampling parts of the illustration or
averaging colors from random locations. However, we claim that this approach is

StencilTorch 7

Fig. 4. StencilTorch architecture schematic. The pipeline employs five neural networks:
a generator G responsible for generating fake illustrations from a black and white
lineart, color hints, a mask, and a feature vector, a feature extractor F1, a VGG16
content extractor F2, a guide network responsible for guiding the generation process,
and a discriminator network D.

not appropriate for proper colorization. Such processes do not distinguish mid-
tone colors from lighting, shading, nor texture, leading to misrepresentations of
the user intent. Randomly activating pixels does not account for color bleeding
and messy inputs. In this paper, we present a new color hint scheme selection
process solving the aforementioned issues and better matching the behavior of
our end users. Our pipeline is summarized in the diagram shown in Fig. 3.

The new StencilTorch input pipeline relies on color regions extraction. We
train a ResNet [13] model to regress displacement maps from colored illustra-
tions on the DanbooRegion dataset [28]. The displacement map is robust to
noise and is used to extract unique color sections. We assign each region to its
median color and further process the output by reducing the number of colors
to 25 using k-means clustering. We empirically selected the number clusters to
apply color quantization in RGB space without sacrificing too much detail. This
process limits the shading, lighting, and texture information present in the input
illustration. The color hints are finally sampled from this image and drawn to
the hint texture as circles of various sizes to simulate a variety of user strokes.

3.3 Model Architecture

The model architecture used in StencilTorch is a c-WGAN-GP inspired by previ-
ous work by Ci et al. [5] and Hati et al. [12]. Our adversarial framework consists
of five neural networks: a generator, a discriminator, also called a critic, a fea-
ture extractor, a style network, and a guide network. A schematic of the entire
architecture is shown in Fig. 4.

8 Y. Hati et al.

The Generator is a U-Net [33] autoencoder with inverted ResNeXt
blocks [42]. The architecture takes advantage of the dilated depth-wise separable
convolutions [4] to augment the network capacity while being computationally
efficient. The discriminator network presents similar properties.

The missing semantic information is recovered by a conditioning feature vec-
tor extracted by Illustration2Vec [35], a ConvNet F1. The vector is fed to both
the generator and the discriminator to condition the generation process.

StencilTorch is train to optimize a weighted mix of losses shown in Eqs. 5
and 6: an adversarial loss, a content preserving loss, a guide loss for the generator,
a Wasserstein distance and a gradient penalty for the discriminator.

LD = Lw + Lgp , (5)

LG = λadvLadv + Lcont + Lguide . (6)

The adversarial loss Ladv shown in Eq. 7 trains the generator to fool the
discriminator. We choose to optimize the hinge loss [25] as it stabilizes training
while improving the perceptual quality. The loss is weighted by λadv = 1e − 4.

Ladv = E
Ŷ

[max(1 − D(Ŷ ,F1(X)), 0)] . (7)

The content loss Lcont shown in Eq. 8 ensures the preservation of the original
content present in the lineart. The content information is provided by a VGG16
model we refer to as F2 pretrained on ImageNet [34].

Lcont =
1

chw
||F2(Ŷ) − F2(Y)||2 . (8)

The guide loss Lguide shown in Eq. 9 helps the decoder disentangling feature
maps to recover flat colorization in early stages. The loss is inspired by previous
work by Zhang et al. [43]. The guide network is used during training, removed
at inference time, and has the same architecture as the generator decoder. It
produces an output S̄ we optimize to be close to the quantized illustration S

obtained in the input generation process.

Lguide =
1

chw
||Ŝ − S||2 . (9)

The Wasserstein loss Lw shown in Eq. 10 is responsible for training the dis-
criminator. For the adversarial loss, we optimize its hinge formulation.

Lw = E
Ŷ

[max(1 + D(Ŷ ,F1(X)), 0)] + EY [max(1 − D(Y,F1(X)), 0)] . (10)

StencilTorch optimizes an additional gradient penalty term Lgp shown in
Eq. 11. As proposed by Karras et al. [20] the gradient penalty is augmented
with a drifting term to further enforce stabilization during the training of the
discriminator. The gradient penalty is weighted by the hyperparameter λgp = 10
and a drifting weight ǫdrif = 1e − 3.

Lgp = λgpE
Ŷ

[(||λ
Ŷ

D(Ŷ ,F1(X))||2 − 1)2] + ǫdriftEY [D(Y,F1(X))2] . (11)

StencilTorch 9

3.4 Mask Inpainting

Selection masks are part of the tools used by digital artists to select regions of
the illustration and avoid bleeding artifacts. Inspired by this kind of workflow,
we introduce the use of selection masks to limit the GAN generation process
to specific areas of the input. This process allows for partial inpainting of the
illustration. It is responsible for our iterative workflow where the output of a first
pass can be used as the input of a second pass, with or without intermediate
modification. As shown in Fig. 2, it allows the generator to pick insights from
the artist’s style and naturally fits the standard digital artist workflow.

During training, masks are generated by sampling and merging the color
regions computed in the input generation process. The selection mask is first used
for the synthetic lineart and its corresponding colored illustration compositing.
The lineart is drawn where the mask is white, the illustration where it is black.
The composite input is stacked with the mask and is used instead of the black-
and-white lineart to feed the generator. The mask is finally reused for inpainting
when computing the final generated output illustration and acts as attention
weights during the entire process.

3.5 Curriculum Learning

Curriculum leaning [3,6] is a type of pipeline in which a model is trained on
tasks that gradually increase in difficulty. It has been shown to increase models’
performances in convolutional neural networks [11].

In StencilTorch, we apply curriculum learning by progressively increasing
the number of regions used for inpainting during training. In early stages, the
surrounding pixels are used to provide context for inpainting. At the end of
training, the model is forced to paint the entire black-and-white lineart. This
feature is implemented by sampling the proportion of regions to inpaint p =
max(ǫ, u), u ∼ U(0, 1) where ǫ is linearly annealed over time ǫ = 0.9 → 0.

4 Implementation

StencilTorch is trained using the PyTorch library for fast prototyping and itera-
tions. Pytorch is, however, not suited for building client-side Web Applications.
More actions have to be taken.

Model Export. We exported the PyTorch model as an ONNX model using
the TorchScript intermediate representation. Some layers must be adapted to
account for supported operations between the two frameworks. The ONNX
model is then transpiled into a TensorFlow model that is further processed to
be exported as a TensorFlowJS instance. This final instance of the model can
be used in a client-side Web App.

10 Y. Hati et al.

Web Application. We also implement a Web Application that provides similar
tooling to digital painting software, such as a brush, an eraser, a color picker, a
color wheel with different brush sizes, and a canvas. A screenshot of the Web App
is provided in Fig. 1. The user is invited to draw or import a lineart, a mask, and
color hints. The inputs are processed by the TensorFlowJS model and outputted
on a result canvas in real-time. The user can download every input and output
for reproduction or integration with their favorite digital art tool.

5 Evaluation Setup

Data. We evaluate and train our method on our custom dataset containing
illustrations scrapped from the web and filtered manually, 21, 930 for training,
and 3, 545 for test. The images are resized to 512 on their smallest side and
randomly cropped to 512×512 during training, and center cropped at test time.

Metrics. To measure the perceptual quality of the generated images, the GAN
literature reports evaluations of both objective and subjective metrics. Art is a
subjective matter, human evaluation is required.

Concerning the objective metrics, we measure two neural feature-based scores
in our test set, the FID [15], and the LPIPS [44]. Those metrics uses an ImageNet
[34] pretrained neural network, respectively InceptionNet [39], and AlexNet [24],
to measure similarities between a pair of images, a fake one, the generated image,
and a real one, the target, in feature space.

To assess subjective preferences, we conducted a user study to evaluate an
MOS. The study consists of showing colorized linearts to the user whose task is
to rate the quality of the illustration on a scale from 1 (bad) to 5 (excellent).
Our study consists of 20 images for each model. Our study population comprises
46 individuals aged from 16 to 30, with 26% women and 35% experienced in
drawing or colorization.

Baseline. We evaluate StencilTorch against previous works: PaintsChainer [31],
Ci et al. [5], Zhang et al. [45], and PaintsTorch [12].

Training. The models are trained end-to-end using the AdamW optimizer [27]
with a learning rate α = 1e − 4 and beta parameters β1 = 0.5 and β2 = 0.9.
They are trained for 40 epochs using a batch size of 32 on each of the four GPUs
during 24 hours straight.

Measurements. All experiments and measurements are realized on a DGX1-
station from NVidia equipped with an Intel Xeon E5-2698 20-Core Processor,
512 Go of DDR4 RAM, and four V100 GPUs with 32 Go of VRAM each.

StencilTorch 11

Table 1. Benchmark and ablation of StencilTorch against previous works [5,12,31,45].
The table reports both FID and LPIPS evaluations. BN stands for Batch Normaliza-
tion, G for Guide network, and C for Curriculum Learning. In average StencilTorch
improves previous work. The evaluation use different amount of color hints, No Hints,
regular Hints, and Full Hints.

Model No Hint Hints Full Hints Mean

FID ↓

Zhang et al. 134.06 274.87 242.58 245.33

PaintsChainer 54.97 99.63 112.16 93.02

Ci et al. 52.48 96.22 106.73 85.14

PaintsTorch 51.54 95.71 98.37 81.87

StencilTorch 51.16 94.40 106.05 81.63

StencilTorch + BN 70.50 118.82 106.33 96.78

StencilTorch + G 85.00 91.60 93.80 89.98

StencilTorch + G + C 103.12 159.27 153.42 136.03

LPIPS ↓

Zhang et al. 0.28 0.46 0.26 0.37

PaintsChainer 0.28 0.71 0.60 0.54

Ci et al. 0.23 0.62 0.59 0.48

PaintsTorch 0.18 0.59 0.56 0.44

StencilTorch 0.16 0.51 0.58 0.40

StencilTorch + BN 0.19 0.50 0.56 0.41

StencilTorch + G 0.31 0.50 0.58 0.46

StencilTorch + G + C 0.21 0.30 0.55 0.36

Table 2. Mean Opinion Scores, and the 95% confidence t-test p-values for the mean
comparing StencilTorch to previous works [5,12,31,45] on our curated test set. Sten-
cilTorch improves previous contributions.

Model MOS ↑ STD ↓ p-value ↓

PaintsChainer 1.79 0.51 6.04e
−23

Ci et al. 2.18 0.56 7.72e
−18

Zhang et al. 2.83 0.67 9.84e
−08

PaintsTorch 3.05 0.42 9.15e
−09

StencilTorch 3.71 0.28

6 Results

We quantitatively in Table 1, 2, and qualitatively in Fig. 2, 5, and 7 show that
StencilTorch outperforms previous works [5,12,31,45] in FID, LPIPS and MOS.

12 Y. Hati et al.

Fig. 5. Mosaic of inputs and output pairs generated with one StencilTorch pass. The
top image represent the colorization, bottom right the lineart, bottom center the
inpainting mask and bottom right the color hints.

Benchmark. StencilTorch is benchmarked against previous contributions in
FID, LPIPS and MOS evaluations on our curated test set. One challenge for such
evaluation is the generation of consistent color hints for every lineart of the test
set. We propose to evaluate every approach using no hints, regular hint sampling,
and full hints, meaning dense color sampling from the color region extracted
during the input generation. On average, our approach improves previous work
by Zhang et al. [45], PaintsChainer [31], Ci et al. [5], and PaintsTorch [12].

Ablation. The ablation study evaluates the impact of our design choices. We
report the FID and the LPIPS on our test set. Our curriculum strategy helps the
generator handle color hints on every of the three hint quantities we evaluated.

StencilTorch 13

Limitations. Although our approach allows the generation of illustrations given
a black-and-white lineart, a mask, and a hint map, the generated output often
lacks shadows and textures compared to previous work by Hati et al. [12]. Such
phenomena can be observed in Fig. 7. The flat coloring produced by our method
is certainly due to the guide network involved in the entire decoding process
during training. It seems, however, that the problem fades away when our model
is used for inpainting as it was intended (see Fig. 2).

Fig. 6. Impact of the hint concentration on StencilTorch output. The lineart and mask
are shown in the first column. Column 2 to 4 demonstrate different concentration, from
no hint to a sufficient amount. Top rows represent the outputs, and bottom rows the
hints. The last illustration is manually refined by an artist.

Fig. 7. Comparison of StencilTorch, PaintsTorch [12], and PaintsChainer [31] from left
to right given the same lineart and hint map. The illustration generated by StencilTorch
is the result of a single pass without any user in the loop. StencilTorch and PaintsTorch
provide cleaner outputs. The colors of StencilTorch appear flat but do not present
artifacts in comparison to PaintsTorch. The output of our model can be refined in
collaboration with the user using inpainting mode.

14 Y. Hati et al.

7 Conclusion

Our work StencilTorch addresses the need for AI-driven tools that naturally inte-
grate into the artist workflow and allow fast prototyping and iteration in collab-
oration with the machine. While current approaches have focused on improving
the generation of user-guided anime lineart colorization, we explored the use of
inpainting masks. This reformulation of the colorization process allows natural
workflows to emerge. The output of a first pass is a potential input for a second.
Our study demonstrates that our approach beats previous work on subjective
metrics, FID, LPIPS, and objective metrics, MOS.

Future Work. The use of curriculum learning to progressively inpaint the lin-
eart does not seem to generate good quality illustrations when no hints are pro-
vided as shown in Fig. 6. Recent advances in the domain of Denoising Diffusion
Probabilistic Model (DDPM) such as DALL-E 2 [32] demonstrate unprecedented
performance in image generation while providing natural conditioning. In future
work, we want to explore the use of such a technique for automatic anime lineart
colorization in the continuity of our quest for human-computer collaboration.

References

1. Anonymous, community, D., Branwen, G.: Danbooru 2020: A large-scale crowd-
sourced and tagged anime illustration dataset, January 2021. https://www.gwern.
net/Danbooru2020

2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: Proceedings of the 34th International Conference on Machine Learning. Pro-
ceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR, International
Convention Centre, Sydney, Australia, 06–11 Aug 2017. https://proceedings.mlr.
press/v70/arjovsky17a.html

3. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pp.
41–48. ICML 2009, Association for Computing Machinery, New York, NY, USA
(2009). https://doi.org/10.1145/1553374.1553380

4. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1800–1807 (2017). https://doi.org/10.1109/CVPR.2017.195

5. Ci, Y., Ma, X., Wang, Z., Li, H., Luo, Z.: User-guided deep anime line art col-
orization with conditional adversarial networks. In: Proceedings of the 26th ACM
International Conference on Multimedia, pp. 1536–1544. MM 2018, Association
for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/
3240508.3240661

6. Elman, J.L.: Learning and development in neural networks: the importance of
starting small. Cognition 48(1), 71–99 (1993)

7. Frans, K.: Outline colorization through tandem adversarial networks. CoRR
abs/1704.08834 (2017). arxiv:1704.08834

8. Furusawa, C., Hiroshiba, K., Ogaki, K., Odagiri, Y.: Comicolorization: semi-
automatic manga colorization. In: SIGGRAPH Asia 2017 Technical Briefs, SA
2017, Association for Computing Machinery, New York, NY, USA (2017). https://
doi.org/10.1145/3145749.3149430

https://www.gwern.net/Danbooru2020
https://www.gwern.net/Danbooru2020
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1145/3240508.3240661
https://doi.org/10.1145/3240508.3240661
http://arxiv.org/abs/1704.08834
https://doi.org/10.1145/3145749.3149430
https://doi.org/10.1145/3145749.3149430

StencilTorch 15

9. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th
International Conference on Neural Information Processing Systems, vol. 2, pp.
2672–2680. NIPS 2014, MIT Press, Cambridge, MA, USA (2014). https://dl.acm.
org/doi/10.5555/2969033.2969125

10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. In: Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc. (2017), https://proceedings.neurips.cc/
paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf

11. Hacohen, G., Weinshall, D.: On the power of curriculum learning in training
deep networks. In: Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA. Proceedings
of Machine Learning Research, vol. 97, pp. 2535–2544. PMLR (2019). https://
proceedings.mlr.press/v97/hacohen19a.html

12. Hati, Y., Jouet, G., Rousseaux, F., Duhart, C.: PaintsTorch: a user-guided anime
line art colorization tool with double generator conditional adversarial network.
In: European Conference on Visual Media Production. CVMP 2019, Association
for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/
3359998.3369401

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016

14. Hensman, P., Aizawa, K.: CGAN-based manga colorization using a single train-
ing image. In: 2017 14th IAPR International Conference on Document Analysis
and Recognition (ICDAR), vol. 3, pp. 72–77. IEEE Computer Society, Los Alami-
tos, CA, USA, Nov 2017. https://doi.org/10.1109/ICDAR.2017.295, https://doi.
ieeecomputersociety.org/10.1109/ICDAR.2017.295

15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium.
In: Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, pp. 6629–6640. NIPS’17, Curran Associates Inc., Red Hook, NY,
USA (2017)

16. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

17. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural.
Inf. Process. Syst. 33, 6840–6851 (2020)

18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training
by reducing internal covariate shift. In: Bach, F., Blei, D. (eds.) Proceedings of
the 32nd International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 37, pp. 448–456. PMLR, Lille, France, 07–09 July 2015.
https://proceedings.mlr.press/v37/ioffe15.html

19. Kandinsky, W., Sadleir, M.: Concerning the Spiritual in Art. Dover Publications,
New York (1977). (oCLC: 3042682)

20. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs
for improved quality, stability, and variation. CoRR abs/1710.10196 (2017).
arxiv.org:1710.10196

21. Kim, H., Jhoo, H.Y., Park, E., Yoo, S.: Tag2pix: line art colorization using text
tag with Secat and changing loss. In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 9055–9064 (2019). https://doi.org/10.1109/ICCV.
2019.00915

https://dl.acm.org/doi/10.5555/2969033.2969125
https://dl.acm.org/doi/10.5555/2969033.2969125
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.mlr.press/v97/hacohen19a.html
https://proceedings.mlr.press/v97/hacohen19a.html
https://doi.org/10.1145/3359998.3369401
https://doi.org/10.1145/3359998.3369401
https://doi.org/10.1109/ICDAR.2017.295
https://doi.ieeecomputersociety.org/10.1109/ICDAR.2017.295
https://doi.ieeecomputersociety.org/10.1109/ICDAR.2017.295
https://proceedings.mlr.press/v37/ioffe15.html
http://arxiv.org/abs/1710.10196
https://doi.org/10.1109/ICCV.2019.00915
https://doi.org/10.1109/ICCV.2019.00915

16 Y. Hati et al.

22. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14–16, 2014, Conference Track Proceedings (2014). arxiv.org:1312.6114

23. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1 × 1 convolu-
tions. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

25. Lim, J.H., Ye, J.C.: Geometric GAN (2017)
26. Liu, Y., Qin, Z., Wan, T., Luo, Z.: Auto-painter: cartoon image generation from

sketch by using conditional Wasserstein generative adversarial networks. Neuro-
computing 311, 78–87 (2018)

27. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. CoRR
abs/1711.05101 (2017). arxiv.org:1711.05101

28. Zhang, L., Ji, Y., Liu, C.: DanbooRegion: an illustration region dataset. In: Vedaldi,
A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp.
137–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0 9

29. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

30. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for gen-
erative adversarial networks. CoRR abs/1802.05957 (2018). arxiv.org:1802.05957

31. Pixiv: Pelica Paint. https://petalica-paint.pixiv.dev/index en.html (2017)
32. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-

conditional image generation with clip LATENTs. arXiv preprint arXiv:2204.06125
(2022)

33. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

34. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vision (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-
015-0816-y

35. Saito, M., Matsui, Y.: Illustration2vec: a semantic vector representation of illus-
trations. In: SIGGRAPH Asia 2015 Technical Briefs, pp. 5:1–5:4. SA 2015, ACM,
New York, NY, USA (2015). https://doi.org/10.1145/2820903.2820907

36. Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: controlling deep image
synthesis with sketch and color. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp.
6836–6845. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.
723

37. Shi, W., et al.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015,
Conference Track Proceedings (2015). arxiv.org:1409.1556

39. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1711.05101
https://doi.org/10.1007/978-3-030-58601-0_9
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1802.05957
https://petalica-paint.pixiv.dev/index_en.html
http://arxiv.org/abs/2204.06125
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/2820903.2820907
https://doi.org/10.1109/CVPR.2017.723
https://doi.org/10.1109/CVPR.2017.723
http://arxiv.org/abs/1409.1556

StencilTorch 17

40. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances
in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017).
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a
845aa-Paper.pdf

41. Winnemöller, H., Kyprianidis, J.E., Olsen, S.C.: XDOG: an extended difference-
of-Gaussians compendium including advanced image stylization. Comput.
Graph. 36(6), 740–753 (2012). https://doi.org/10.1016/j.cag.2012.03.004, www.
sciencedirect.com/science/article/pii/S009784931200043X, 2011 Joint Symposium
on Computational Aesthetics (CAe), Non-Photorealistic Animation and Rendering
(NPAR), and Sketch-Based Interfaces and Modeling (SBIM)

42. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transfor-
mations for deep neural networks. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5987–5995 (2017)

43. Zhang, L., Ji, Y., Lin, X., Liu, C.: Style transfer for anime sketches with enhanced
residual u-net and auxiliary classifier GAN. In: 2017 4th IAPR Asian Conference
on Pattern Recognition (ACPR), pp. 506–511 (2017). https://doi.org/10.1109/
ACPR.2017.61

44. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)

45. Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors.
ACM Trans. Graph. 36(4), 1–11 (2017). https://doi.org/10.1145/3072959.3073703

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1016/j.cag.2012.03.004
www.sciencedirect.com/science/article/pii/S009784931200043X
www.sciencedirect.com/science/article/pii/S009784931200043X
https://doi.org/10.1109/ACPR.2017.61
https://doi.org/10.1109/ACPR.2017.61
https://doi.org/10.1145/3072959.3073703

