
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

PMSGAN: Parallel Multistage GANs

for Face Image Translation

Changcheng Liang, Mingrui Zhu , Nannan Wang , Member, IEEE,

Heng Yang, and Xinbo Gao , Senior Member, IEEE

Abstract— In this article, we address the face image translation
task, which aims to translate a face image of a source domain to
a target domain. Although significant progress has been made by
recent studies, face image translation is still a challenging task
because it has more strict requirements for texture details: even
a few artifacts will greatly affect the impression of generated
face images. Targeting to synthesize high-quality face images
with admirable visual appearance, we revisit the coarse-to-fine
strategy and propose a novel parallel multistage architecture
on the basis of generative adversarial networks (PMSGAN).
More specifically, PMSGAN progressively learns the translation
function by disintegrating the general synthesis process into mul-
tiple parallel stages that take images with gradually decreasing
spatial resolution as inputs. To prompt the information exchange
between various stages, a cross-stage atrous spatial pyramid
(CSASP) structure is specially designed to receive and fuse the
contextual information from other stages. At the end of the
parallel model, we introduce a novel attention-based module
that leverages multistage decoded outputs as in situ supervised
attention to refine the final activations and yield the target
image. Extensive experiments on several face image translation
benchmarks show that PMSGAN performs considerably better
than state-of-the-art approaches.

Index Terms— Atrous spatial pyramid, face image translation,
generative adversarial networks, parallel multistage.

I. INTRODUCTION

IMAGE-TO-IMAGE translation is a meaningful and active

field of computer vision and has achieved many surprising
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Fig. 1. Face images translation samples.

applications [1]. Specifically, a vital application of image-to-

image translation is to generate a new style of face images that

can be used for digital entertainment and animation produc-

tion. However, synthesizing visually realistic and semantically

plausible images while surpassing the considerable discrepan-

cies (color, texture, and shape) barrier is highly challenging.

This article mainly focuses on the translation of a highly

abstract style (as shown in Fig. 1). It is different from general

image (such as scenery and anime) translation in that it is

more sensitive to facial features and has strict standards for

the consistency of facial structure, which means the flaws

(missing or redundant lines) in faces will become more

apparent, and small traces (e.g., around the mouth) may also

be noticed. Under strict semantic constraints, the task of face

image translation is challenging. Therefore, synthetic images

of conventional image-to-image translation studies [2], [3]

are far from satisfactory. Recently, a series of researches for

specific style translation of face images is proposed that utilize

the prior information or make various strategies for different

facial regions. With the additional prior information and useful

strategies, certain progress has been made by these methods

in face image translation.

However, the loss of texture details in synthetic images still

exists. We think it is caused by the following two reasons:

1) imperfect prior acquisition methods or coarse stacking

strategies may lead to the loss of facial information and

damage the quality of the generated image and 2) sampling

operation during encoding and decoding will lead to the loss

of contextual details of latent features. A large proportion of

methods [4] uses skip connections to connect the activations

in the encoder and decoder to preserve the contextual infor-

mation. Even so, the problem is still not completely solved
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because there is no strict pixel-level spatial correspondence

between the encoded and decoded features which belong to

different domains.

To tackle the above problems, we revisit the coarse-

to-fine strategy and modify the general single-stage

encoding–decoding framework to present a novel GAN-based

[5] parallel multistage encoding–decoding architecture

specifically for face image translation. The proposed model

includes three parallel encoding–decoding stages that take

three source images with high-to-low spatial resolution as

inputs and generate three outputs, which can make the

learning focus of each stage different and significantly reduce

the training difficulty. To diminish information loss of the

contextual details of the encoding–decoding process and

improve multistage synergy, a cross-stage atrous spatial

pyramid (CSASP) structure is specially designed for each

stage to receive and fuse the contextual information from

other stages. Meanwhile, a multiscale supervised attention

module is introduced to gather and utilize multistage

decoded outputs as in situ supervised attention to refine

the final activations and improve the quality of the final

output. The contributions of this work are summarized as

follows.

1) We propose a novel parallel multistage architecture

for face image translation that is capable of synthesizing

contextually enriched and spatially accurate outputs without

additional prior information.

2) The proposed CSASP structure enables the information

of multiple stages to flow with each other and improves the

efficiency of feature fusion.

3) A multiscale supervised attention module that utilizes

multistage decoded outputs as supervision is proposed to refine

the final activations and improve the quality of the final output.

4) Extensive experiments on several face image transla-

tion benchmarks demonstrate the superiority of the proposed

method over state-of-the-art methods.

II. RELATED WORK

A. General-Purpose Image-to-Image Translation

Supervised image-to-image translation methods aim to

translate images across domains (e.g., summer-to-winter, day-

to-night, and edge-to-image). They often utilize conditional

generative adversarial networks [2] to learn a mapping from

input to output images. Several works extend it to deal

with superresolution [6] or video generation [7]. In terms

of unsupervised image-to-image translation methods without

paired databases, CycleGAN [3], DiscoGAN [8], and Dual-

GAN [9] preserve key attribution between the input and the

output by using a cycle-consistency loss. Based on Cycle-

GAN, MUNIT [10] and DRIT++ [11] enable multimodel

translations by decomposing the latent feature of images

into a domain-specific style space and a domain-invariant

content space to obtain diverse outputs. Another line of

methods improves CycleGAN to achieve transformation across

multiple domains at the same time, such as StarGAN [12].

Some studies pay attention to translation between domains

with a larger difference. For example, CoupledGAN [13]

and UNIT [14] utilize domain-sharing latent space, and

U-GAT-IT [15] focuses on attention modules for feature

choice.

B. Face Image Translation

Face image translation comprises various subtasks. Face

photo-sketch synthesis [16], [17], [18], [19] is an important

task that has been studied for a long time. Existing works

for face photo-sketch synthesis can be mainly divided into

two categories. Exemplar-based methods reconstruct target

images by mining correspondences between input images

(image patches) and images (image patches) in a refer-

ence set of photo-sketch pairs. Deep-learning-based meth-

ods attempt to predict the target image pixels from the

source image pixels through end-to-end convolutional neural

networks. Exemplar-based methods can be further grouped

into three types: subspace learning-based approaches [20],

sparse representation-based approaches [21], and Bayesian

inference-based approaches [22]. A detailed overview of exist-

ing exemplar-based methods can be found in [1]. Recently,

CNN-based and GAN-based approaches have emerged as

promising paradigms for face photo-sketch synthesis. Initial

effort [23] trained an end-to-end fully convolutional neural

network (FCN) for directly modeling the nonlinear mapping

between face photographs and face sketches. Limited by

shallow layers and pixel-level loss, however, it fails to capture

texture details and fails to preserve reasonable structures.

Several works follow ideas from image-to-image translation

and focus on improving face photo-sketch synthesis perfor-

mance by adding prior information. PS2MAN [24] proposes

a multiscale discriminator to provide adversarial supervision

on different image resolutions. SCAGAN [25] introduces

facial composition information as additional input to help the

generation of sketch portraits and proposes a compositional

loss based on facial composition information. To tackle the

problem of insufficient paired training data, Wild [26] proposes

a semisupervised learning method to augment paired training

samples by synthesizing pseudo-sketch features of additional

training photographs and learns the mapping function between

them. Sketch-Transformer [27] proposes to learn the key

elements of the Transformer architecture and adapt them to

the face photo-sketch synthesis task. Although great progress

has been made by the above approaches, undesirable artifacts

and distorted structures, however, are still exist, especially in

the results of real scenarios.

To generate artistic portrait drawings, APDrawingGAN [28]

introduces an architecture that comprises hierarchical gen-

erators and discriminators that combines both global net-

works and local networks. APDrawingGAN++ [29] is an

extended version of APDrawingGAN, which further intro-

duces a classification-and-synthesis approach for lips and hair.

U2-Net [4] is proposed for the segmentation task, but also

has a promising performance in portrait drawing generation.

A popular line of research focuses on the task of face

image cartoonization. AniGAN [30] proposes a double-branch

discriminator to learn both domain-specific distributions and

domain-shared distributions. Pixel2style2pixel [31] has been
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shown to perform well in tasks such as multimodal conditional

image synthesis, face frontalization, and superresolution.

C. Multistage Strategies

Among existing works, multistage strategies have achieved

great success in various directions. Many algorithms [32],

[33], [34], [35], [36] adopt the multistage strategy that dis-

integrates the general synthesis process into multiple stages

by transferring the current decoding feature or reconstructed

image to the next stage subnetwork as part of the input, and

continuously improve the quality of the synthetic image in the

form of stacked subnetworks. Such a design is effective since

it decomposes challenging vision tasks into smaller, more

manageable subtasks. In the unconditional image generation

task, SinGAN [37] uses the strategy that stacked subnet-

works and transfers the current generated image to the next

subnetwork. In the image translation tasks, SCAGAN [25]

uses the same multistage strategy as SinGAN. In the image

deblurring task, MT-RNN [38] proposes a strategy that stacked

subnetworks and transfers the feature maps from the decoder

at the previous iteration to the encoder at the next iteration.

In the image restoration task, MPRNet [39] uses the stacked

strategy and transfers the current decoded feature to the next

subnetwork. However, the common practice that connects each

subnetwork in series will lead to suboptimal results and high

computational costs. In this work, we rethink the multistage

strategy and propose a multistage learning strategy in which

each subnetwork learns image translation mapping at the

same time in the training stage. Different from the previous

work, the parallel multistage training strategy proposed in this

work enables information to flow between multiple substages,

promotes information exchange between the multistage sub-

networks, and improves the quality of the synthetic image of

the subnetworks at each stage. At the same time, the parallel

multistage strategy proposed in this work can greatly reduce

the training and testing time of the multistage strategy.

D. Attention Mechanisms

Attention mechanisms [40], [41] can model long-range

dependencies, which have played a key role in many tasks

in computer vision and machine learning including image

classification [42], [43], image segmentation [44], [45], neural

machine translation [46], image and video captioning [47],

[48], and visual question answering [49]. With the use of

the attention mechanism, all tasks have achieved performance

improvement. Kuen et al. [50] propose a recurrent attentional

convolutional-deconvolution network for saliency detection.

This supervised model uses an iterative approach to attend

to selected image subregions for saliency refinement in a

progressive way. Wang et al. [42] propose a residual atten-

tion network for image classification with a trunk-and-mask

attention mechanism. Recent studies [51], [52] show that the

incorporation of attention learning in GAN-based models leads

to more realistic images in image-to-image translation tasks.

In this article, we design a multiscale supervised attention

module, which can cooperate reasonably with the proposed

parallel multistage networks and significantly improve the

quality of the final output.

III. METHOD

In this section, details of the proposed parallel multistage

framework are presented. First, we describe the application

details of parallel multistage structure in face image transla-

tion. Then, the loss functions used to train the proposed model

are provided.

A. Parallel Multistage GANs for Face Image Translation

Given paired training samples {(xi , yi) ∈ (X, Y )}N
i=1, the

target of face image translation is to translate source images

of domain X into target images that obey the distribution of

domain Y. To improve the quality of synthetic images and

improve the efficiency of models, this work uses a three-stage

parallel multistage strategy to improve the quality of synthetic

images in the image translation tasks. The pipeline of the

proposed PMSGAN is shown in Fig. 2. It consists of five

closely related parts, including: 1) an ordinary encoder E and

a decoder D composed of a 3 × 3 convolution layer and

five modified residual blocks; 2) an encoded feature fusion

(EFF) module; 3) a CSASP module; 4) a decoded feature

fusion (DFF) module; and 5) a multiscale supervised atten-

tion (MSSA) module. The EFF, CSASP, and DFF modules

cooperate closely to facilitate asymmetric information to flow

efficiently between different stages. The input of multiple

stages is images with gradually decreasing spatial resolution.

We resize the original input xi to obtain an input image x2
i that

is half the height and width of xi and an input image x3
i that is

a quarter the length and width of xi . We obtain y2
i and y3

i from

yi in the same way.

1) Encoded Feature Fusion: Before inputting the

low-resolution input x
j

i ( j = 2, 3) into the encoder, the

encoded features of the high- and low-resolution stages are

fused across stages by the EFF module. The EFF module

takes Eout
j−1 and x

j

i as inputs, as shown in Fig. 3. It first extracts

the dense feature by inputting the low-resolution input into

the dense blocks [53]. Then, it applies a convolution layer

with a stride of 2 to Eout
j−1 and obtains (Eout

j−1)
↓
, which has the

same size as the dense feature. For the fusion of the dense

feature and (Eout
j−1)

↓
, the EFF module applies the feature

attention structure as [35] to actively emphasize or suppress

features of previous scales and learns the spatial importance

of features from the dense feature. More specifically, (Eout
j−1)

↓

and the dense feature are element-wise multiplied. Then the

multiplied features are passed through a 3 × 3 convolution

layer, which output is expected to include complementary

information for translation. The output is finally added to

(Eout
j−1)

↓
to be further refined through the following encoder.

2) Cross-Stage Atrous Spatial Pyramid: The feature salient

points extracted by the network in different resolution stages

are different. The middle features in the high-resolution stage

emphasize more small texture details, and the middle features

in the low-resolution stage emphasize more the general contour

of the face. To effectively fuse the features of different reso-

lution stages, we design the CSASP module. The architecture
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Fig. 2. Network architecture of the proposed PMSGAN framework.

Fig. 3. Structure of the EFF module.

of the CSASP module is shown in Fig. 4. It receives the

encoded features Eout
j ( j = 1, 2, 3) of all three stages in an

efficient manner. For the features of the high-resolution stage,

it uses low-rate convolution to process and captures more

texture details through small receptive fields. The difference

is that the features of the low-resolution stage utilize high-rate

convolution to process and capture a more complete facial

structure through a large receptive field. At the same time, a

1 × 1 convolution branch is used to replace the convolution

of a large enough rate for the features of the current stage

to obtain the global information. The recalibrated features

are concatenated and then passed through a channel attention

module to reevaluate the importance of each channel of the

concatenated features from all three stages. Finally, it utilizes

a 1 ×1 convolution layer to reduce the number of channels of

the cross-stage features.

3) Decoded Feature Fusion: To promote the two-way

flow of information between stages, in the decoding stage,

Fig. 4. Structure of the CSASP module.

we design the DFF module to fuse the decoded features in the

low- and high-resolution stages. The architecture of the DFF

module is shown in Fig. 5. We apply the feature attention

structure to actively emphasize features of low-resolution

stages. More specifically, (Eout
j−1)

↓
and the dense feature are

element-wise multiplied. Then the multiplied features are

passed through a 3 × 3 convolution layer, which output is

expected to include global structure information.

4) Multiscale Supervised Attention: After the parallel mul-

tistage decoding process as described above, we initially

obtained multiscale translated images Dout
j (RGB), ( j = 1, 2, 3).

To further strengthen the connection between each stage and

improve the translation performance, we introduce a multi-

scale supervised attention module following the decoder. The

illustration of the proposed MSSA module is shown in Fig. 6.

With the help of supervised prediction of multiscale translated

images, we generate attention maps to suppress the less

informative features, retain useful features, and improve the

quality of translated images. Specifically, the MSSA module
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Fig. 5. Structure of the decode feature fusion module.

Fig. 6. Structure of the multiscale supervised attention module.

takes the translated images Dout
j (RGB) of all three stages as

input and concatenates them. Then, per-pixel attention masks

M ∈ R
H×W×C are generated from the concatenated feature

using a 3 × 3 convolution followed by the Softmax activation.

These masks are then used to reweight the decoded feature

Dout
1 , resulting in attention-guided features with multiscale

information. The attention-guided features are added to the

identity mapping path. Finally, a 3 × 3 convolution layer is

applied to obtain the final synthetic image yout.

B. Loss Function

The total loss of our model consists of two loss functions:

adversarial loss and perceptual loss.

1) Adversarial Loss: To constrain the distribution of the

generated images to be close to the real target domain dis-

tribution, we apply three independent discriminators DY j

( j = 1, 2, 3) to the outputs of the three scales of the generator

(yout, Dout
2(RGB), and Dout

3(RGB)). Ladv is formulated as

Ladv = Ey

[

(

DY1
(y)

)2
]

+ Ex

[

(

1 − DY1

(

yout
))2

]

+

3
∑

j=2

[

Ey

[

(

DY j

(

y j
))2

]

+ Ex

[

(

1 − DY j

(

Dout
j(RGB)

))2
]]

.

(1)

2) Perceptual Loss: We introduce the multiscale perceptual

loss [54] for the outputs of the three scales of the generator

(yout, D2(RGB), and D3(RGB)) to ensure that the generated

images and their ground truth are similar in semantic feature

level

Lp = Ex

[

1

Ck HkWk

∣

∣

∣

∣φk

(

yout
)

− φk(y)
∣

∣

∣

∣

1

]

+

3
∑

j=2

Ex

[

1

Ck HkWk

∣

∣

∣

∣φk

(

Dout
j(RGB)

)

− φk

(

y j
)∣

∣

∣

∣

1

]

(2)

where φk indicates feature maps of the kth layer of a pretrained

VGG-19 model [54], and Ck , Hk, and Wk indicate the channel

numbers as well as the height and width of the feature maps,

respectively.

3) Full Loss: By combining the above losses, we can

achieve our full loss

Lfull = λ1Ladv + λ2Lp. (3)

Referring to previous work, we empirically set λ1 = 1 and

λ2 = 5 to keep corresponding losses in the same order of

magnitude. The influence of coefficient change within a certain

range on the experimental results is not particularly significant.

IV. EXPERIMENTS

In this section, we first discuss the experimental settings.

Then, we conduct an ablation study to quantify the contri-

bution of different configurations to the overall effectiveness.

Then, we qualitatively and quantitatively compare our results

with state-of-the-art methods. Finally, we analyzed the run-

time, robustness, and failure cases, respectively.

A. Experimental Settings

1) Implementation Details: All models are trained on an

NVIDIA GeForce RTX3090 GPU using the Adam optimizer

with β1 = 0.5 and β2 = 0.99. The learning rate was fixed

at 0.0002. The batch size was set to 1 for all experiments.

Weights were initialized from a Gaussian distribution with a

mean of 0 and a standard deviation of 0.02. For the CUFS

and CUFSF databases, we scaled the size of the input images

to 256 × 256 and normalized the pixel value to the interval

[−1,1] before putting them into the model. For the APDrawing

and Sketch2Anime databases, we scaled the size of the input

images to 512 × 512 and normalized the pixel value to the

interval [−1,1]. During training, we update the generator and

discriminator alternatively at every iteration.

2) Database: The experiments are conducted on four data-

bases: 1) the CUFS database [55]; 2) the CUFSF database [56];

3) the APDrwaing database [28]; and 4) a newly collected

Sketch2Anime database. The CUFS database consists of

188 identities from the Chinese University of Hong Kong

(CUHK) student database [57], 123 identities from the AR

database [58], and 295 identities from the XM2VTS data-

base [59]. Each identity has a photo-sketch pair under normal

light conditions and neutral expression. The CUFSF database

has 1194 identities from the FERET database [60]. There is

a photograph with illumination variation and a sketch with an

exaggerated structure for each identity. Therefore, face image

translation in the CUFSF database is more challenging than

in the CUFS dataset. All images of the CUFS database and

the CUFSF database are processed by aligning the center of
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TABLE I

PARTITION SETTINGS OF THE DATABASES

two eyes to the fixed position and cropping to the size of

200 × 250. We divide the training set and the test set in the

same way as [22]. The APDrawing database includes 140 pairs

of face photographs and corresponding portrait drawings.

To make the training set distribution more consistent, all

portrait drawings were drawn by a single professional artist.

All images and drawings of the APDrawing database are

aligned and cropped to the size of 512 × 512. We divide the

training set and the test set in the same way as [28]. We further

collect a Sketch2Anime database in which the anime images

are from Danbooru2018 [61] and the corresponding sketches

are generated by [62]. All anime images and sketches are

aligned and cropped to the size of 512 × 512. Finally, there are

135 509 pairs of images in total. We apply the database to the

more difficult sketch to anime task. 130 000 pairs of images

are randomly chosen for training and the remaining 5509 pairs

are used for testing. The configurations of the experimental

databases are shown in Table I.

3) Baselines: On the CUFS and CUFSF databases,

we compare our method with five state-of-the-art methods:

pix2pix [2], CycleGAN [3], PS2MAN [24], Wild [26], SCA-

GAN [25], Pixel2style2pixel [31], and Sketch-Transformer

[27]. On the APDrawing database, we compare our method

with five state-of-the-art methods: pix2pix [2], CycleGAN [3],

APDrawingGAN [28], APDrawingGAN++ [29], U2-Net [4],

and Pixel2style2pixel [31]. On the Sketch2Anime database,

we compare our method with four state-of-the-art methods:

pix2pix [2], CycleGAN [3], UGATIT [15], and DRIT++ [11].

In particular, to ensure the fairness of the comparative experi-

ment, we use paired data to train all supervised and unsuper-

vised methods.

4) Evaluation Metrics: Evaluating the quality of synthetic

images is an open and difficult task [63]. Classic measures,

such as the pixel-level L2 Euclidean distance, cannot assess

structured outputs such as images, as they assume pixelwise

independence; therefore, their evaluation conclusions are often

inconsistent with human visual perception. The structural

similarity index metric (SSIM) [64] and peak signal-to-noise

ratio (PSNR) were frequently used to evaluate the performance

of exemplar-based methods. However, we find that they are

not suitable for evaluating deep-learning models. One phe-

nomenon is that blurry and smooth synthetic images tend to

get a higher SSIM or PSNR score, which is contrary to the

human visual perception that is biased toward sharper images.

A perceptual metric that measures the similarity of two

images in a way that coincides with human judgment

is challenging. This crux has been fully studied by

TABLE II

ABLATION STUDY: FID, FSIM, AND LPIPS SCORES FOR DIFFERENT

VARIANTS OF CONFIGURATIONS, EVALUATED ON THE

APDRAWING DATABASE

Zhang et al. [65]. They collected a large-scale database of

human judgments and evaluated key questions about image

quality evaluation metrics. The most important conclusion is

that deep network activations work surprisingly well as a

perceptual similarity metric. Based on this discovery, they

proposed a learned perceptual image patch similarity (LPIPS)

metric by adding a linear layer on top of off-the-shelf

classification networks (SqueezeNet [66], AlexNet [67], and

VGG [54]). The LPIPS takes two images (image patches) as

the input, calculates the L2 distance between their normalized

deep feature embeddings, and predicts the perceptual judgment

score through the linear layer. We utilize three variants

[LPIPS(alex), LPIPS(squeeze), and LPIPS(vgg)] provided by

the authors (version 0.1 in [68]) to evaluate the perceptual

similarity between synthetic and real images. A lower score

indicates better quality of synthetic images.

The Fréchet inception distance (FID) [69] is representative

sample-based evaluation metrics for GANs. FID is designed

to capture the Fréchet difference between two Gaussians

(synthetic and real-world images). We compute the FID score

between the synthetic images and real ones. Lower FID scores

indicate better-quality synthetic images. Notably, although FID

can well evaluate the quality of natural images and has become

a commonly used metric in face image translation tasks, it is

not very suitable for the task of face sketch synthesis, which

does not pay attention to the diversity of generated images.

The feature similarity index (FSIM) [70] is a commonly

used metric for full-reference image quality assessment, which

captures the similarity between low-level features of images.

It shows higher consistency with human visual perception

compared with SSIM [65]. We calculated the average FSIM

score between synthetic images and real ones. A higher FSIM

score indicates better-quality synthetic images.

B. Ablation Study

Under different experimental configurations, we compute

the average LPIPS score between the translated images and

ground truth on the APDrawing test database. We conduct

the ablation study on five configurations: 1) a single-stage

encoding–decoding baseline model that does not use any

components during training; 2) using the proposed parallel

multistage encoding–decoding model with the EFF module;

3) adding a DFF module based on (2); 4) adding CSASP

structure based on (3); and (5) adding MSSA module based

on (4). The comparison results are shown in Table II and

discussed below.
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Fig. 7. Some synthetic portrait drawings synthesized by different configurations in the ablation study.

Fig. 7 shows some synthetic portrait drawings synthesized

by different configurations in the ablation study. We can get

the following conclusions by comparing and analyzing the

results. The single-stage architecture will produce distorted

patches on the hair and black flecks on the face. In the case

of configuration (b), distorted patches on the hair are smaller

than (a). It means that the EFF module can actively emphasize

or suppress features of previous stages and progressively learn

the translation function by disintegrating the general synthesis

process into multiple parallel stages, thus showing a higher

performance. In the case of configuration (c), distorted patches

are greatly reduced, but there are still unreasonable patches on

the face. It means that the DFF module facilitates the flow of

information between stages. Configuration (d) achieves a great

improvement in LPIPS scores. The distorted patches on the

face have been improved, the lips have the correct color, and

the distorted patches in the hair can also be ignored, but the

white lines on the hair are not realistic enough. It means that

the CSASP structure can gather contextual information about

all stages and promote linkages between them. In the case of

configuration (e), unreasonable patches no longer appear on

the face, and the lines of hair are more realistic. By adding the

MSSA module to further strengthen the connection between

each stage and improve the translation performance, the full

model can achieve the best performance.

Overall, we can get the conclusion that each module of the

overall framework plays a significant role and jointly promotes

the excellent performance of the overall model.

C. Comparison With Baselines

1) Qualitative Comparison: Fig. 8 shows some synthetic

face photographs from different methods on the CUFS

database and the CUFSF database. The results of pix2pix,

CycleGAN, PS2MAN, and SCAGAN have noticeable artifacts

and noise. Pixel2style2pixel is unable to reconstruct facial

details and has poor visual quality. Sketch-Transformer has

made great improvements in the details of the reconstructed

image, but there are still some defects in the beard and

hair that cannot be ignored. By comparison, the proposed

method can generate photographs with the most reasonable

texture distribution and considerable structure and therefore

has the best quality. Fig. 9 shows some synthetic face

sketches from different methods on the CUFS database and

the CUFSF database. The results of FCN and DGFL are too

blurry. The Pixel2style2pixel cannot synthesize sketches with

facial details. The GAN-based methods (pix2pix, CycleGAN,

PS2MAN, SCAGAN, and Sketch-Transformer) can synthesize

sketches with certain sketch styles. However, some unac-

ceptable textures are generated in the critical region (e.g.,

eye, mouth, and hair). Wild has strong robustness against

environmental noise but tends to produce over-smooth results.

The proposed PMSGAN can generate the most sketch-like

texture while maintaining reasonable semantics.

Fig. 10 shows the qualitative comparison of PMSGAN with

other state-of-the-art methods on the APDrawing database.

pix2pix has a large proportion of artifacts and undesirable

messy lines. CycleGAN fails to mimic the artistic portrait

style well and cannot generate detailed textures of the mouth

area. APDrawingGAN and APDrawingGAN++ can generate

reasonable results that capture different texture details in

different face regions and have delicate white lines in the hair.

Pixel2style2pixel cannot learn the correct style. However, their

results still have many artifacts. Synthetic images of U2-Net

can preserve the structure of the facial region and have smooth

hair lines. However, unreasonable background artifacts and
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Fig. 8. Examples of synthetic face photographs on the CUFS dataset and the CUFSF dataset. From top to bottom: the examples are selected from the CUHK
student database, the AR database, the XM2VTS database, and the CUFSF database, respectively.

Fig. 9. Examples of synthetic face sketches on the CUFS dataset and the CUFSF dataset. From top to bottom: the examples are selected from the CUHK
student database, the AR database, the XM2VTS database, and the CUFSF database, respectively.

some minor incoherent textures affect the overall appearance

of the results. The proposed PMSGAN can well maintain the

delicate structure of each facial region and learn the realistic

artist portrait style.

Fig. 11 shows the qualitative comparison of PMSGAN with

other state-of-the-art methods on the Sketch2Anime dataset

that we collected. pix2pix has obvious artifacts and cannot

fill the hand with reasonable colors. CycleGAN fails to

preserve reasonable structures in the hair area and cannot

obtain the right color distribution in the facial region. The

results of UGATIT have deformation in the hair area and

cannot distinguish the color of hair and clothes. DRIT++

is unable to generate reasonably colored anime images. The

proposed PMSGAN protects the integrity of texture and struc-

ture and can generate anime images with impressive visual

appearance. PMSGAN can easily color even subtle facial

lines.

2) Quantitative Comparison: We introduce five metrics to

quantitatively evaluate the quality of synthetic images. Among

these metrics, LPIPS (alex), LPIPS (squeeze), and LPIPS (vgg)

were verified to be more consistent with human perception

in [65]. Therefore, we suggest paying more attention to the

evaluation results of these three metrics. FSIM is a commonly

used full-reference image quality assessment metric. In this
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Fig. 10. Examples of synthetic artistic portrait drawings on the APDrawing dataset.

Fig. 11. Examples of synthetic anime images on the Sketch2Anime dataset.

work, we use it as one of the evaluation metrics. FID is

designed to capture the Fréchet difference between two Gaus-

sians (synthetic and real-world images). We also use it as one

of the evaluation metrics.

The quantitative results of the comparison with state-of-the-

art methods on face image translation of the CUFS database

and the CUFSF database are shown in Table III. The analysis

of Table III shows that all three variants of LPIPS show

a preference for GAN-based methods. The reason is that

GAN-based methods tend to produce more realistic synthetic

images with high perceptual quality. Among these GAN-based

methods, our PMSGAN model surpasses the other models

in almost all LPIPS scores. The CUFSF database is more

challenging, and the photographs inside have light changes.

Compared with SCAGAN, our method does not use the

prior information of face photographs, which is the reason

why PMSGAN does not achieve the best performance in the

photograph face translation task of the CUFSF database. For

the evaluation metric of FSIM, although PMSGAN does not

get the best score, PMSGAN still gets a score close to the best

score.

The quantitative results of the comparison with state-of-

the-art methods on face image translation of the APDrawing

database are shown in Table IV. The analysis of Table IV

shows that the PMSGAN model achieves the best score in

all the evaluation metrics. The reason is that the PMSGAN
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TABLE III

QUANTITATIVE RESULTS OF THE COMPARISON WITH STATE-OF-THE-ART METHODS ON SYNTHETIC FACE

PHOTOGRAPHS/SKETCHES OF THE CUFS DATABASE AND CUFSF DATABASE

TABLE IV

QUANTITATIVE RESULTS OF THE COMPARISON WITH STATE-OF-THE-ART METHODS ON

SYNTHETIC ARTISTIC PORTRAIT DRAWINGS OF THE APDRAWING DATABASE

TABLE V

QUANTITATIVE RESULTS OF THE COMPARISON WITH STATE-OF-THE-ART METHODS

ON FACE SKETCH COLORIZATION OF THE SKETCH2ANIME DATABASE

model can minimize the loss of information in the process of

encoding and decoding.

The quantitative results of the comparison with state-of-the-

art methods on face image translation of the Anime2sketch

database are shown in Table V. The analysis of Table V shows

that the PMSGAN model achieves the best score in the FID

and the FSIM metric. The best performance in multiple data-

bases further proves the advantages of our parallel multistage

network and the effectiveness of our proposed feature fusion

collaboration module.

Since image quality evaluation itself is a topic to be further

studied, it is not sufficient to evaluate the model only by
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Fig. 12. Left column: Examples of synthetic sketches on the APDrawing database. Middle column: Examples of synthetic portrait drawings on a mixed
dataset. Right column: Examples of synthetic anime drawings on wild data.

TABLE VI

USER STUDY ON THE CUFS AND CUFSF DATABASES: PERCENTAGE OF

VOTES OBTAINED BY EACH METHOD IN FIVE SATISFACTION LEVELS

TABLE VII

USER STUDY ON THE APDRAWING DATABASE: PERCENTAGE OF VOTES

OBTAINED BY EACH METHOD IN FIVE SATISFACTION LEVELS

the above evaluation metrics. Hence, we conduct three user

studies to compare our models (PMSGAN) with state-of-the-

art methods on the CUFS database, the CUFSF database,

the APDrawing database, and the Sketch2Anime database.

For the method of the user study, we adopt mean opinion

score (MOS) testing, where participants are asked to assign

perceptual quality scores to tested images. Typically, the scores

are from 1 (very unsatisfactory) to 5 (very satisfactory) and the

TABLE VIII

USER STUDY ON THE SKETCH2ANIME DATABASE: PERCENTAGE OF

VOTES OBTAINED BY EACH METHOD IN FIVE SATISFACTION LEVELS

final MOS is calculated as the arithmetic mean overall ratings.

For the CUFS database and the CUFSF database, there are

ten and four synthetic images of the four methods listed in

Table VI. For the APDrawing database, there are five groups

of satisfaction rating requirements in the study. Each group

includes one real image and five synthetic images of the five

methods listed in Table VII. For the Sketch2Anime database,

there are four groups of satisfaction rating requirements in

the study. Each group includes one real image, one sketch

image, and five synthetic images of the five methods listed

in Table VIII. The real image is given in the title, and the

synthetic images are given in the answer area. The placement

order of the synthetic images is shuffled. According to the

satisfaction with the synthetic images with respect to the real

image, the respondents rate each synthetic image with a score

between 1 and 5. For each user study, we collect a total of

20 returned questionnaires and calculate the percentage of

votes obtained by each method in the five satisfaction levels,

as shown in Tables VI–VIII.
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TABLE IX

COMPARISON OF THE RUNTIME OF THE STATE-OF-THE-ART METHODS ON SYNTHETIC ARTISTIC

PORTRAIT DRAWINGS OF THE APDRAWING DATABASE

Table VI shows that our PMSGAN model gets the most

votes (16.09%) on the “very satisfactory” level and a total

of 86.96% of the votes above the “average” judgment. This

result indicates that our PMSGAN model can produce quite

satisfactory synthetic images. Sketch-Transformer gets a total

of (84.78%) of the votes above the “average” judgment, second

only to the PMSGAN model. Pixel2style2pixel gets the most

votes on the “very unsatisfactory” level, which indicates that

its results have serious defects, which we think are unrea-

sonable texture, artifacts, and noise. SCAGAN gets the most

votes (40.00%) on the “average” level, but also many “very

satisfactory” and “unsatisfactory” votes, which indicates that

the model produces inconsistent and relatively poor results.

Table VII shows that our PMSGAN model gets the most

votes (35.00%) on the “very satisfactory” level and a total

of 96.00% of the votes above the “average” judgment. This

result indicates that our PMSGAN model can produce very

satisfactory synthetic images. Pixel2style2pixel gets the most

votes at 91.00% on the “very unsatisfactory” level, which

indicates that its results have poor quality. Both U 2 Net and

APDrawingGAN get the most votes on the “unsatisfactory”

level, which indicates that their results have some defects,

which we think are unreasonable texture, artifacts, and noise.

APDrawingGAN++ gets a total of (85.00%) of the votes

above the “average” judgment, second only to the PMSGAN

model.

Table VIII shows that our PMSGAN model gets the most

votes (60.71%) on the “very satisfactory” level and a total of

96.42% of the votes above the “average” judgment. This result

indicates that our PMSGAN model can produce very satisfac-

tory synthetic images. pix2pix gets the most votes 48.81% on

the “satisfactory” level, which indicates that its results have

good quality. DRIT++, UGATIT, and CycleGAN get the most

votes on the “unsatisfactory” level, which indicates that their

results have some defects, which we think are unreasonable

texture, artifacts, and noise.

3) Runtime Analysis: We compare the runtime of the

proposed method with the state-of-the-art methods in the

APDrawing dataset and further analyze the efficiency advan-

tages of the proposed model. A comparison of the runtime

of the state-of-the-art methods on synthetic artistic portrait

drawings of the APDrawing database is shown in Table IX.

The analysis of Table IX shows that the runtime of PMSGAN

is second only to pix2pix and very close to pix2pix. Ben-

efiting from the parallel multistage strategy, the time spent

in the inference process of PMSGAN is not affected by the

introduction of the multistage strategy.

4) Robustness Analysis: We test the robust performance of

the model on sketch and portrait synthesis tasks by using wild

Fig. 13. Examples of failed results.

data. Specifically, we use the PSMGAN model trained on the

CUFS dataset to test the test data in the APDrawing dataset,

use the PMSGAN model trained on the APDrawing dataset to

test the test set of the mixed dataset composed of the CUHK

dataset and the CelebA dataset, and finally use the PMSGAN

model trained on the Sketch2Anime dataset to test the wild

data. Fig. 12 indicates that PMSGAN has good robustness,

which further verifies the effectiveness of PMSGAN.

5) Analysis of Failure Cases: Although the PMSGAN

model proposed in this article has strong learning ability and

generalization ability and can also achieve excellent results in

wild data, in some extreme cases (such as the side face, the

ambient brightness is too bright or too dark), PMSGAN will

also produce some failure cases. Fig. 13 shows examples of

failed results. Failure cases are usually caused by insufficient

data, which makes the model unable to learn the cross-domain

translation of face images in extreme cases.

V. CONCLUSION

In this article, we revisit the coarse-to-fine strategy and

propose a parallel multistage model for face image translation

tasks. The proposed PMSGAN is driven by three insights:

parallel multistage strategy, CSASP, and multiscale supervised

attention module. Together, they promote highly efficient

information exchange and effective function learning. Qual-

itative and quantitative results demonstrate that the proposed

method achieves significant improvements in retaining struc-

tural information and generating detailed textures. We will

explore a more effective information fusion mechanism in

future work.
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