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ABSTRACT

Existing unsupervised disentanglement methods in latent

space of the Generative Adversarial Networks (GANs) rely on

the analysis and decomposition of pre-trained weight matrix.

However, they only consider the weight matrix of the fully

connected layers, ignoring the convolutional layers which

are indispensable for image processing in modern generative

models. This results in the learned latent semantics lack inter-

pretability, which is unacceptable for image editing tasks. In

this paper, we propose a more generalized closed-form factor-

ization of latent semantics in GANs, which takes the convolu-

tional layers into consideration when searching for the under-

lying variation factors. Our method can be applied to a wide

range of deep generators with just a few lines of code. Exten-

sive experiments on multiple GAN models trained on various

datasets show that our approach is capable of not only finding

semantically meaningful dimensions, but also maintaining the

consistency and interpretability of image content.

Index Terms— Latent Semantic Interpretation, Genera-

tive Adversarial Network, Image Synthesis, Deep Learning

1. INTRODUCTION

Nowadays, Generative Adversarial Networks (GANs) [2]

have become a leading paradigm of generative modeling in

the computer vision domain. The stateof-the-art GANs like

BigGAN [3] and StyleGAN [1, 4], are powerful image syn-

thesis models that can generate a wide variety of high-quality

images. The exceptional generation quality paves the road to

ubiquitous usage of GANs in applications, e.g., image edit-

ing [5, 6], super-resolution [7] and many others.

Given their powerful capabilities, current research inter-

est is shifted to generating controllable images, some of pre-

vious works attempt to add user control over the output focus
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on supervised learning of latent directions with labeled im-

ages. To be specific, [8,9] propose to add regularizers into the

training process to explicitly learn an interpretable factorized

representation. However, they heavily rely on the attribute

predictors to get the label and require expensive manual su-

pervision for each new control to be learned. Another line of

researchers study unsupervised semantic discovery in GANs

[10–12], Specifically, [10] jointly learn a candidate matrix and

a classifier such that the semantic directions in the matrix can

be properly recognized by the classifier. [11] perform PCA

on the sampled data to find primary directions in the latent

space. [12] studies the generation mechanism of GANs and

propose a closed-form factorization method by analyzing the

eigenvalue decomposition of the pre-trained weight matrix,

which is independent of training or sampling.

The above papers need to analyze and decompose the

pre-trained weight matrix, but they only consider the fully

connected layers. Convolutional layesr are indispensable in

the state-of-the-art GAN models, thus the above methods can

only be applied to models dominated by fully connected lay-

ers (e.g. StyleGAN), not all GAN models. Figure 1(a) illus-

trates the difference between traditional generator architec-

ture and style-based generator architecture. To overcome this

limitation, we propose to decompose the matrix of all layers

in the model (including the convolutional layers and the fully

connected layers) to obtain latent dimensions with better con-

sistency and interpretability.

To be concrete, [12] only investigate the first projection

step because the matrix decomposition of the fully connected

layers does not require extra operations, while we investi-

gate the whole network by taking convolutional layesrs into

consideration. [13] computes the largest singular value of a

convolutional layesr using a power iteration method, which

proved to be a useful heuristic for regularization. [14] pro-

vides a more efficient way to characterize the singular val-

ues of the linear transformation associated with a standard 2D

multi-channel convolutional layer.

With matrix decomposition methods for fully connected

layers and convolutional layers respectively, we propose a

generalized closed-form method that can identify versatile se-

mantics from the latent space by merely using the pre-trained

weights of the generator. More importantly, these variation

factors are accurate and in a wider range compared to the

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 M

ul
tim

ed
ia

 a
nd

 E
xp

o 
(IC

M
E)

 |
 9

78
-1

-6
65

4-
85

63
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
M

E5
29

20
.2

02
2.

98
59

69
2

 



Latent Z€ Z Latent z € Z 

Mapping 

Noise        Synthesis network g      
  

  
Style-based generator Traditional 

(a) Traditional generator architecture and style-based generator architec- 
ture. A mapping network (fully connected layers) is used in Style-based 
‘generator to encode the input vector into an intermediate vector for control- 
ling different visual features. Figure from [1]. 

Sa
mp
le
 

ay
er
 O

41 

LOO 
S| & ¢ : 

  

(b) The first row is a sample from a pre-trained generator, the second row 
(only weight matrices of layers 0-1 are considered) and third row (weight 
matrices of all layers are considered) show the output images by moving 
the latent code on the interpretable direction (gender here). 

Fig. 1. (a) shows the traditional generator architecture and 

style-based generator architecture. Note that the traditional 
generator is mainly composed of convolutional layers, while 
the style-based generator uses fully connected layers to find 
latent vectors in the initial stage. (b) shows some results of 

considering only the fully connected layers and all layers (in- 
cluding the fully connected layer and the convolutional layer) 
on BigGAN, which adopts a traditional GAN architecture as 

backbone. 

state-of-the-art supervised and unsupervised approaches. Fig- 
ure 1(b) shows some results produced by the proposed gener- 
alized closed-form factorization of latent semantics in GANs. 

Note that we consider all layers, including convolutional lay- 
ers and fully connected layers, while [12] only consider the 

fully connected layers in the initial stage. We provide quali- 
tative and quantitative results through extensive experiments 
to show that our approach is efficient and applicable to most 
popular GAN models that are trained on different datasets. 

2. METHOD 

2.1. Unsupervised Semantic Factorization With Fully 

Connected layers 

We first introduce how GANs generate images. The goal of 
a generator G(-) in GANSs is to learn a mapping from a latent 
space Z C R¢ in a lower dimension to a higher dimensional 
image space Z C R?*W*3 je, J = G(z) where I ¢ I 
and z € Z denote the output image and the input latent code 
respectively. In the training process of GANs, G(-) projects a 
given latent code randomly sampled from the latent space to 
the final image space step by step. Each step learns a trans- 
formation from one space to another. In particular, it can be 
formulated as an affine transformation as 

Gi(z) y= Az+b, a 

where y is the projected code. Suppose y € R™, then A € 
R™*¢ and b € R™ denote the weight and bias used in the ith 
transformation step G;(-) respectively. 

Then we introduce how to manipulate the generation pro- 
cess in GAN latent space. The latent space of GANs has re- 
cently been shown to encode rich semantic knowledge. These 
semantics can be further applied to image editing with the 
vector arithmetic property [15]. More concretely, prior work 
proposed to use a certain direction n € R¢ in the latent space 
to represent a semantic concept. After identifying a semanti- 
cally meaningful direction, the manipulation can be achieved 
via the following model 

edit(G(z)) 4 G(2) = G(z +.an), 2) 

which is commonly used in the existing approaches. Here, 
edit(-) denotes the editing operation. In other words, we can 
alter the target semantic by linearly moving the latent code z 
along the identified direction n, and a indicates the manipu- 

lation intensity. 
As discussed above, the generator in GANs can be viewed 

as a multi-step function that gradually projects the latent 
space to the image space. To reveal the explanatory factors 
(ie., the direction n in Eq. 2) from the latent space of GANs, 

we simplify the manipulation model in Eq. 2 as 

9 G2) =Gi(z+an), 
GB) =Az+b+aAn=y +aAn. 

Note that the manipulation process is instance independent 
according to Eq. 3. That’s to say, given any latent code z
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Fig. 2. Qualitative Results. The images in the first row are samples from a pre-trained BigGAN generator on anime faces, the

following three rows show the output images when moving the the latent vector on the interpretable direction as the number of

layers increases. Note that our method can better maintain the consistency of the image content.

together with a certain latent direction n, the editing can be

always achieved by adding the term αAn onto the projected

code. From this perspective, the weight parameter A should

contain the essential knowledge of the image variation. Thus

the important latent directions could be discovered by decom-

posing A. For semantic factorization by solving the following

optimization problem

n⋆ = argmax
nTn=1

∥An∥
2
, (4)

where ∥·∥ denotes the l2 norm.

This problem aims at finding the directions that can cause

large variations after the projection of A. Intuitively, if some

direction n̂ is projected to a zero-norm vector, i.e., An̂ = 0,

the editing operation in Eq. 3 turns into ŷ = y, which will

keep the output synthesis unchanged, let clone alter the se-

mantics occurring in it. When the case comes to finding k

most important directions n1, n2, n3, · · · , nk, we expand Eq.

4 into

N⋆ = argmax
nT

i
n=1

k
∑

i=1

∥Ani∥
2
, (5)

where N = {n1, n2, n3, · · · , nk} correspond to the top-k se-

mantics. To solve this problem, we introduce the Lagrange

multipliers {λi}
k

i=1
into Eq. 5 as

N⋆ = argmax
k

∑

i=1

∥An∥
2
−

k
∑

i=1

λi

(

nT

i
ni − 1

)

,

= argmax

k
∑

i=1

(

nT

i
ATAni − λin

T

i
ni + λi

)

.

(6)

By taking the partial derivative on each ni, we have

2ATAni − 2λini = 0. (7)

All possible solutions to Eq. 7 should be the eigenvectors of

the matrix ATA. To get the maximum objective value and

make {ni}
k

i=1
distinguishable from each other, we choose

columns of N as the eigenvectors of ATA associated with

the k largest eigenvalues.

2.2. The Eigenvalues of Convolutional Layers

Almost all state-of-the-art GAN models [1, 3, 4] typically

adopt convolutional neural networks as the generator archi-

tecture. The remaining problem is to find a characterization

of the eigenvalues of a convolutional layer.

Some regularization methods have been proposed to im-

prove the generalizability of deep learning models by impos-

ing constraints on the weight matrices to reduce the sensitivity

to input perturbation. To be more specific, consider a convo-

lutional layer with m input channels, m output channels, and

a kw × kh-sized kernel, and the sizes of input and output fea-

ture map are both n × n. To keep things simple, here we

consider the stride is 1 and input channel equals output chan-

nels. [13] proposed to reshape the given m × m × kw × kh
kernel into a mk2 × m matrix, and compute its largest sin-

gular value using a power iteration method. [14] push this

further, they calculated all singular values of a convolutional

layer by first apply Fast Fourier Fransform (FFT) on the ker-

nel and then perform Singular Value Decomposition (SVD),

the whole process takes O(n2m2(m+ log n)) time.

However, as discussed in the last section, we only need

top k largest eigenvalues in semantic factorization, that is why

 



we propose our method: we first apply FFT on the convolu-

tional kernel as suggested in [14], then we reshape the result

transform matrix A into mn2 ×m, and finally we only need

to solve the m eigenvalues in ATA. The whole calculation

process can be implemented by the following lines of code.

def EigenValuesOfCNN(kernel, input_shape):

# kernel.shape = C_out, C_in, k_h, k_w

# input_shape = [H_in, W_in]

A = np.fft.fft2(kernel, input_shape, axes

=[-2, -1])

C_out, C_in, H_in, W_in = A.shape

A = A.reshape(C_out*H_in*W_in, C_in)

return np.linalg.eig(A.T.dot(A))

Here kernel denotes the learnable convolution kernel and

input shape is the shape of the feature map to be convolved.

The algorithm first performs m2 2D FFT on n × n input,

which takes O(m2n2 log n)), and then performs eigenvalue

decomposition algorithm in O(m3), the whole process takes

O(m2(m+n2 log n))) time. Practically, this process may be

executed in parallel, resulting in O(max(m3, n2 log n)) time

complexity.

Algorithm 1 Characterizing eigenvalues of a convolutional

layer.

weights = []
for layer in layers do

weight = layer.weight

shape = layer.weight.shape

if layer is a convolutional layer then

weight = np.fft.fft2(weight, shape)
Cout, Cin, Hin,Win = weight.shape

weight = weight.reshape(Cout∗Hin∗Win, Cin)
else if layer is a fully connected layer then

weight = weight

end if

weights.append(weight)
end for

A = np.concatenate(weights, axis = 1)
transform = A.T.dot(A)
return np.linalg.eig(transform)

Specifically, for a generator G(·) containing both convo-

lutional layers and fully connected layers, we pass the weight

matrix of the convolutional layers through an FFT, leaving

the weight matrix of the fully connected layers unchanged.

Finally, we concatenate all the weight matrices to get A, and

perform eigen-decomposition on ATA. The specific imple-

mentation is shown in Algorithm 1.

Exposing the eigenvalues of a convolutional layer opens

the door to find a more accurate semantic dimension in the la-

tent space in GANs, the results in the following section show

the effectiveness of our method.

3. EXPERIMENTS

3.1. Models, Datasets and Metrics

We compare our method with [12] on a wide range of the

state-of-the-art GAN models, including StyleGAN [1], Style-

GAN2 [16] and BigGAN [3]. Note thet StyleGAN like ar-

chitectures use fully connected layers in the initial stage to

learn the latent code that controls the generated image style,

while BigGAN like models are entirely composed of convo-

lutional layers without any fully connected layer. Details are

as follows:

StyleGAN. StyleGAN [1] firs proposed the style-based

generator to improve traditional generators. Instead of pro-

ducing the first spatial feature map from the latent code, Style-

GAN employs a constant feature map as the input. Mean-

while, the latent code, which is learned from a series of fully

connected layers, is fed into each convolution layer to mod-

ulate the feature map. In particular, for each layer, the latent

code is transformed to a style code, which is used to alter the

channel-wise mean and variance of the feature map through

the Adaptive Instance Normalization (AdaIN) [17] operation.

For this GAN type, the content of the generated images is

mainly controlled by the style code, so reasonable results can

be obtained by considering only the fully connected layers,

but taking the convolutional layers into account allows us to

find dimensions with semantic information in a larger latent

space (bigger step). Experimental results are shown in Figure

2 and Figure 3.

BigGAN. BigGAN [3] is a large-scale GAN model pri-

marily designed for conditional generation. The latent code

is both mapped to the initial feature map and fed into each

convolution layer to control the conditional batch normaliza-

tion (BN) operation. BigGAN uses the traditional generator

architecture, which is mainly composed of convolutional lay-

ers. In the following experiments, we can observe that as the

number of layers considered increases, if only the fully con-

nected layer is considered, then the generated image will not

guarantee the semantic validity, and our method can guaran-

tee that the generated image is consistent with the original one

semantically.

Datasets and Metrics. For qualitative results, we use

models trained on human faces (FF-HQ [18]) and anime faces

[19]. For quantitative comparison, we use Fr´echet Inception

Distance (FID) [20], which indicates the distribution match-

ing between the real and generated images, to evaluate the

quality of samples generated by GANs, the lower the value of

FID, the higher the quality of the generated images.

3.2. Qualitative Results.

Figure 2 and Figure 3 show the qualitative results. To be spe-

cific, Figure 2 compares the results of our method with [12].

Notice that as the number of layers increases, our method

can still guarantee the interpretability of the latent vector,

 



S
am

p
le

O
u

rs
S

h
en

 e
tc

.

Fig. 3. Qualitative results: (a) Source samples from pre-trained BigGAN on FF-HQ. (b) and (c) are obtained by moving the

latent code on the interpretable direction (hair style here) with the same step α = 30. Note that our method can keep the

consistency of the content with larger step size, while [12] fail to maintain the semantic meaning.

while they only consider fully connected layers in the initial

stage, result in uninterpretable results. In addition, we are

able to find latent code in a larger space with the proposed

method, i.e., with a larger step size α. As shown in Figure 2,

with the same step size, the results produced by [12] fail to

maintain the content, yet the results produced by our method

keep the main content of the image remains unchanged with

only hairstyle changed. This feature allows us to fine-tune the

details of the image, e.g., the length of the hair.

3.3. Quantitative Results.

We conduct experiments on the state-of-the-art models

trained on various datasets, where we randomly generated the

step size α ∈ [−100, 100] and generate 10,000 images to cal-

culate FID for quantitative comparisons. It can be seen that

in SytleGAN like architectures, which uses a fully connected

layer to learn hidden code in the initial stage, our method pro-

duce comparable results to the SOTA method. However, in

BigGAN like architectures, which entirely consist of convolu-

tional layers, the proposed method improve the results greatly.

The results are shown in Table 1.

In addition, we further compare the method proposed in

this paper with the method proposed in [14] for solving the

eigenvalues of a convolutional layer, and the experimental

results are illustrated in Figure 4, where Full represents the

brute force solution which would take O(n6m3) time. We

can see that our method will be much faster when we only

need to solve the top k largest eigenvalues for semantic fac-

torization.

shen etc. Ours

StyleGAN 8.22 8.31

StyleGAN2 7.78 7.65

BigGAN 10.42 6.52

Table 1. Quantitative comparison with StyleGANs and Big-

GAN on FF-HQ.

4. CONCLUSION

In this work, we propose a generalized closed-form factor-

ization of latent semantics to improve the factorized latent se-

mantics learned by GANs. Our method takes into account

both the fully connected layers and the convolutional layers,

which allows us to decompose semantics in a wider latent

space, and maintain that the main content of the generated

images when applied to a wide range of deep generators.
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