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The sense of facial beauty has long been observed in both infants and nonhuman primates, yet the neural mech-

anisms of this phenomenon are still not fully understood. The current study employed generative neuralmodels to

produce facial images of varying degrees of beauty and systematically investigated the neural response of

untrained deep neural networks (DNNs) to these faces. Representational neural units for different levels of facial

beauty are observed to spontaneously emerge even in the absence of training. Furthermore, these neural units can

effectively distinguish between varying degrees of beauty. Additionally, the perception of facial beauty byDNNs

relies on both configuration and feature information of faces. The processing of facial beauty by neural networks

follows a progression from low-level features to integration. The tuning response of the final convolutional layer

to facial beauty is constructed by theweighted sum of themonotonic responses in the early layers. These findings

offer new insights into the neural origin of the sense of beauty, arising the innate computational abilities ofDNNs.
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In both everyday life and scientific research, there has been ongo-

ing debate about beauty. Interestingly, the fundamental questions of

the debate have changed little: What is beauty? From philosophy to

empirical aesthetics, from neuroaesthetics to computational aesthet-

ics, whether there exists a universally applicable aesthetic theory

remains a contentious issue (Seeley, 2013). While beauty lacks a

unified definition, a recurring debate revolves around the objectivity

or subjectivity of aesthetics (Fedrizzi, 2012). Both perspectives

found support among early Greek philosophers, with the

Pythagoreans attempting to prove the objectivity of beauty, while

sophists argued for its subjectivity. The objectivity of aesthetics

is based on the concept that beauty exists within objects and is

therefore measurable (Birkhoff, 1933). When considering faces,

various standards for evaluating facial beauty exist, such as the

golden ratio (Bashour, 2006), triple symmetry, and the five-eye

width ratio (H. K. Zhang et al., 2017). On the other hand, subjective

beauty in aesthetics focuses more on human experience and subjec-

tive evaluations. The current study aims to encompass the subjec-

tivity of beauty using human-assessed data and enrich the

understanding of image attributes influencing human aesthetics

(i.e., the objectivity of beauty) through deep neural network

(DNN) models. The term “aesthetics” originates from the ancient

Greek word “aisthesis,” which can be translated as “sensual per-

ception” (Reicher, 2015). It is evident that aesthetics is closely

tied to sensation (Santayana, 1896). A visual-image-based aes-

thetic model posits that aesthetic perception is a rapid, bottom-up,

and universal process (Redies, 2015). Consequently, we character-

ize “beauty sense” as the capacity or faculty to discern, appreciate,

and assess elements of beauty. With this in mind, the question then

arises: How is this ability to identify and judge beauty—referred to

as “beauty sense”—developed?

For decades, the debate has oscillated between whether our sense

of beauty is innate or an acquired predisposition. The argument

centered on its association with the acquisition of knowledge (Damon

et al., 2017; Sarasso et al., 2020). Recent research unraveling the

ties between beauty perception and neural circuitry activation posits

that such perception arises from motor-predominant, simultaneous
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perceptual processing within sensory cortices, which are linked to

reward-related circuits (Sarasso et al., 2020). The reward-related cir-

cuits exhibit complex interaction with learning progresses to seek

further knowledge acquisition. These findings have indicated that

the neural underpinnings of our perception of beauty span beyond

basic sensory processing, encompassing more complex, high-level

cognitive domains. However, the processes by which low-level sen-

sory properties innately shape and refine an aesthetic experience are

not fully understood.

Presently, leveraging deep generative neural networks to synthe-

size facial images presents a novel opportunity to quantitatively

investigate the neural underpinnings of aesthetic perception. Faces

have served as an ideal subject in aesthetics due to their distinctive

physiological and evolutionary properties (Geldart, Maurer, &

Carney, 1999; Grammer & Thornhill, 1994; Little, 2014).

Individuals often use facial beauty as a criterion to assess the poten-

tial mate value and health status of an individual (Fink & Penton-

Voak, 2002; Thornhill & Gangestad, 1993). Conducting research

on facial aesthetics provides an opportunity to gain insights into

the complex interactions between biological and psychological fac-

tors, as well as aesthetic perception. Human brains may have an

innate sense of beauty prior to the acquisition of visual experience

given that newborn infants tend to look at attractive faces for a longer

period (Slater et al., 1998). In addition, the effect of facial beauty on

6-month-old infants’ gaze could span race, gender, and age

(Langlois et al., 1991; Slater et al., 1998). However, it has not

been determined whether the preference for beautiful faces is due

to innate aesthetic schema or rapid acquisition of facial attributes

after birth (Damon et al., 2017; Goren et al., 1975; Johnson et al.,

2015). For example, Quinn et al. (2008) discovered that infants

aged three to four months exhibited preferential attention toward

the faces of cats and tigers, suggesting the potential for an inherent

aesthetic schema. Nonetheless, none of these studies completely

ruled out the influence of visual experience.

Investigating the innate and intuitive aspects of aesthetic percep-

tion presents significant challenges. On the one hand, it is difficult to

obtain valuable neural activity data from newborn infants. On the

other hand, adults’ sense of facial beauty is susceptible to various

environmental factors, such as culture, observer gender, and mental

state (Thiruchselvam et al., 2016; Vartanian et al., 2013; Y. Zhang

et al., 2016). In this context, DNN models that mimic brain informa-

tion processing offer a viable approach to studying aesthetic percep-

tion by eliminating numerous confounding factors. Crucially, they

enable the exclusion of visual aesthetic experience effects.

Recently, biologically inspired artificial neural network models

have been increasingly utilized to probe multiple dimensions of

visual information processing (Alzubaidi et al., 2021). Research

has demonstrated that a feedforward network, even when randomly

initialized and untrained, is capable of initiating a range of cognitive

functions (Ullman et al., 2012). Furthermore, a subnetwork within a

similarly randomized neural network setup can effectively execute

image classification tasks (Ramanujan et al., 2020). Evidence sug-

gests that even without the benefit of learning from visual experi-

ence, a randomly initialized network retains the capacity for visual

feature extraction. Among various deep neural models, AlexNet,

developed by Krizhevsky et al. (2012), emulates the processing pat-

tern of the ventral visual stream and has gained prominence in the

field of visual information processing. This model is rooted in a hier-

archical framework, initially capturing elementary visual features

and subsequently discerning more complex features at higher levels

of the hierarchy (Jo et al., 2019; Kravitz et al., 2013; Rust & DiCarlo,

2010; Tong, 2003). Remarkably, an untrained AlexNet demonstrates

selective responsiveness to numerosity and faces (Baek et al., 2021;

Kim et al., 2021). However, within the realm of facial beauty

research, considerable emphasis has been placed on utilizing

DNNs for the classification or prediction of facial attractiveness

(Bougourzi et al., 2022; Gan et al., 2014; Zhai et al., 2020), as

well as the extraction and synthesis of aesthetic features in faces

(Chiang et al., 2014; Schmid et al., 2008; Zhan et al., 2020).

Despite this focus, there is a paucity of studies investigating the

intrinsic developmental mechanism of aesthetics.

The DNN may employ a hierarchical processing mode for facial

beauty. The findings imply that brain regions conventionally associ-

ated with facial feature processing are also implicated in responses to

facial beauty. A “core system” for facial processing comprises the

inferior occipital gyrus (IOG), the fusiform gyrus (FG), and the

superior temporal sulcus (STS) (Haxby et al., 2000). The IOG is

engaged in the perception of facial features, while the STS and FG

recognize changeable and invariant features, respectively. The per-

ceptual processing of facial beauty extends beyond this core system

to include regions such as the amygdala, sublenticular extended

amygdala, ventral tegmental area, orbitofrontal cortex, and nucleus

accumbens (Senior, 2003). Specifically, the amygdala and ventral

tegmental area are principally implicated in the assessment of

beauty, whereas aesthetic processing culminates within the orbito-

frontal cortex and nucleus accumbens. Magnetic resonance imaging

studies have revealed a positive correlation between facial attractive-

ness and neural activity within the IOG and FG (Kranz & Ishai,

2006; Mende-Siedlecki et al., 2013; Tsukiura & Cabeza, 2011a,

2011b; Vartanian et al., 2013). Furthermore, activation of the STS

was regulated by facial beauty (Kranz & Ishai, 2006). According

to the dual-code theory of facial processing, this comprises two

primary types of information: configuration information, which per-

tains to the spatial arrangement of facial features, and feature infor-

mation, which entails the specific details of facial traits (Cabeza &

Kato, 2000). Both elements are integral to the overall processing

of faces (Yovel & Kanwisher, 2004). For instance, linear responses

of the posterior central gyrus, caudate nucleus, and bilateral inferior

frontal gyrus were observed for facial proportion-induced facial

attractiveness (Shen et al., 2016). Specifically, features such as ear

length, nose size, eye spacing, and distance between lips and chin

considerably contribute to these linear responses. These results indi-

cate that configuration and feature information play an important role

in the perception of facial beauty, and the nervous systemmay have a

linear response to these two kinds of information. Tanaka and

Simonyi (2016) posited that the recognition of complex objects,

including faces, requires a process from early processing of simple

low-level features to high-level of complex information. On this

basis, we hypothesize that the neural perception of facial beauty

may begin with a linear processing of configuration and feature

information, eventually leading to an integrated holistic representa-

tion of facial beauty.

The responses of the earlier layers in DNNs may be integrated in a

weighted sum to form the overall processing for facial beauty in the

final layer. Neuroeconomic research has demonstrated that values

can be constructed by considering different underlying features or

properties of stimuli (Farashahi et al., 2019; Koechlin, 2020). The

valuation process for a stimulus, including works of art, entails an

SHU ET AL.2

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al
A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al
u
se

o
f
th
e
in
d
iv
id
u
al
u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.



initial decomposition into distinct features followed by a weighted

recombination to derive a subjective evaluation of the whole entity

(Iigaya et al., 2021; O’Doherty et al., 2021). Combined with com-

puter vision and machine learning techniques, some studies have

proposed the Linear Feature Summation (LFS) Model as a frame-

work for understanding the construction of aesthetic value (Iigaya

et al., 2023). Visual stimuli are first decomposed into multiple visual

features representing the color or shape of the painting, which are

then transformed into abstract high-level features. Simple linear

regression analysis applied to these features can generate reliable

value judgments about novel visual stimuli. Given that attributes

of facial beauty possess gradable characteristics and considering

that neural responses to facial beauty are linearly triggered by

these attributes, we use a summation coding model to examine the

integrative process underlying the perception of beauty (Q. Chen

& Verguts, 2013). The proposed model aligns with the LFS

approach in terms of utilizing a linear weighted summation tech-

nique; however, it diverges by segmenting features into tuning

curves corresponding to neural units in the early layers that exhibit

monotonically increasing or decreasing responses. Building on

these foundations, we put forth the concept that the neural network’s

perception of facial beauty involves a form of summation encod-

ing—specifically, certain neural units in the early layers respond

monotonically to different levels of facial beauty, ultimately con-

structing the overall response to facial beauty.

Here, using a completely randomly initialized neural network, we

discovered that neural units selectively responsive to beauty sponta-

neously emerge within the network. These neural units can accom-

plish the task of beauty comparison. Additionally, the quantification

of facial beauty appears to be limited, reflected by the tuning curves

of neural units with varying preferences for beauty aligning along a

linear scale. Closer examination suggests that the response of the

untrained AlexNet model to facial beauty likely adopts a hierarchical

processing structure. These findings support the notion that different

layers within the neural network fulfill distinct roles in beauty per-

ception, and the culminating response observed at the last convolu-

tional layer comes from the contribution of inputs from earlier layers.

Therefore, drawing on insights from the LFS model and the summa-

tion coding model (Q. Chen & Verguts, 2013; Iigaya et al., 2021;

Stoianov & Zorzi, 2012), we investigated whether neural units

tuned to various levels of beauty emerge due to the assembly of

units in the early layers that exhibit monotonically increasing or

decreasing responses to beauty.

Method

DNN Model

AlexNet (Krizhevsky et al., 2012), which emulates the ventral

visual stream of the brain, was employed for the extraction of aes-

thetic features from visual stimuli. This model is composed of five

convolutional layers followed by three fully connected layers. We

initialized each convolutional layer by randomly assigning weights

drawn from either a normal or a uniform distribution, both with a

zero mean. The standard deviation (SD) for the weights was deter-
mined using the inverse square root of the count of neural units in

the previous layer to balance the influence of input signals through-

out the network’s convolutional layers (bias is set to 0; He et al.,

2015).

Stimulus Data Set

Stimulus sets were created using StyleGAN2 (Karras et al., 2019,

2020), an advanced generative algorithm developed by Nvidia capable

of producing high-resolution facial images. We initially utilized a pre-

trained model, which had been trained on the Flickr-Faces-

High-Quality (https://github.com/NVlabs/ffhq-dataset) data set, to gen-

erate and obtain latent codes for Asian female faces (a312863063,

2022). After purging distorted images resulting from the generation

process, we retained a total of 150 images (original dimensions:

1,024× 1,024× 3 pixels; resized to 227× 227× 3 pixels using

MATLAB). The stimuli were categorized into three sets based on

facial orientation: frontal, left profile, and right profile (refer to

Figure 1B). Each set comprised 50 distinct images. Subsequently,

these images’ latent codes were manipulated to adjust facial attri-

butes. By employing an embedding algorithm paired with a direction

vector derived from pretrained aesthetic labeling data, it became pos-

sible to edit the aesthetic qualities of faces.

Following the creation of facial images across different beauty levels,

three adults (average age 25.6) assessed their physical authenticity.

They determined that images falling within a range of −21 to 25

most accurately reflected the structure of human faces as perceived

with the naked eye. Utilizing adjustment parameters set between −21

and 25, we established five degrees of beauty alterations (2, 3, 4, 5,

and 6). This resulted in the generation of sets containing 23, 16, 12,

10, and eight beauty levels, respectively. Consequently, a total of

(23+ 16+ 12+ 10+ 8)× 3× 50= 10,350 images was used to ana-

lyze the response of networks.

To elucidate the specific contributions of each layer within the DNN

to the perception of facial beauty, we subjected the facial images to a

series of manipulations. First, to eliminate the influence of feature pro-

portions and overall face contours whilemaintaining localized informa-

tion, we applied six levels of random scrambling to the original facial

images. Second, aiming to preserve the outline and proportions of facial

features and simultaneously exclude detailed facial data, we executed

four graded magic square scrambling procedures on the original

images. Furthermore, contour extraction was performed on the facial

images to remove background elements, color, and skin texture, thus

conserving only the contour and spatial arrangement of features.

Investigation of DNN Unit Responses

We conducted an analysis on the responses within AlexNet, a DNN

composed of eight layers, including five convolutional and three fully

connected layers. In light of the study’s aim to concentrate on the selec-

tive response of neural units, the three fully connected layers were

omitted from the analysis, thereby focusing exclusively on the

response of units in the fifth convolutional layer (see Figure 1C, top).

A network unit is identified as a beauty-selective unit if its response

exhibited a significant variation in relation to the level of beauty (two-

way analysis of variance, p, .01) without substantial fluctuations

caused by orientation or interaction between these two factors.

Conversely, a nonselective unit refers to a unit that is exclusively sen-

sitive to alterations in orientation (two-way analysis of variance,

p, .01) and remains unaffected by changes in the level of beauty or

their interplay. Namely, beauty-selective unit refers to a specific unit

within a neural network that demonstrates selectivity or responsiveness

to features associated with beauty. The preferred beauty (PB) for a unit

is defined as the beauty level at which the unit, on average, elicits its

maximal response across all examined levels of beauty.
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Figure 1

Spontaneous Emergence of Beauty-Selective Units in Untrained Neural Networks

Note. (A) Top: Image generation range diagram. Bottom: Examples of visual stimuli for facial beauty. (B) Top: The architecture of randomly initialized AlexNet.

Bottom: Examples of tuning curves for individual beauty-selective units observed in the untrained AlexNet. (C) The number of beauty-selective units under dif-

ferent conditions. The horizontal coordinate represents the number of levels under different stride lengths. (D) Top left: The proportion of emerging beauty-

selective units in five convolutional layers. Top right and bottom: The ratio of the five convolution layers’ selective units after scrambling and contouring the stim-

ulus images. The legends represent different degrees of scrambling. (E) The PB estimates measured with different stimulus conditions are significantly correlated

with each other. (F)When theweight variationwas substantially changed, the proportion of selective units in thefifth convolution layer under different initialization

conditions was consistently observed. Conv= convolutional layer; PB= preferred beauty; m8=magic square scrambling degree 8; m16=magic square scram-

bling degree 16; m32=magic square scrambling degree 32; m64=magic square scrambling degree 64; s4= random scrambling degree 4; s8= random scram-

bling degree 8; s16= random scrambling degree 16; s32= random scrambling degree 32; s64= random scrambling degree 64; s128= random scrambling degree

128. See the online article for the color version of this figure.
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The definition of the tuning width of each unit, as well as the meth-

odology for computing the average tuning curves for all beauty-

selective units, adheres to protocols established by Kim et al. (2021).

Specifically, the tuning width of each unit was considered as the SD
(sigma) of the Gaussian fit of the average tuning curve on a linear

scale of beauty. To determine the average tuning curves of all beauty-

selective units, the tuning curve of each unit was normalized and then

averaged across units using the PB level as a reference point. Further, to

obtain the average tuning curves across different beauty levels, the tun-

ing curve of each unit was averaged and normalized across units prefer-

ring the same beauty level.

Beauty Comparison Task for the DNN

To determine the efficacy of beauty-selective units in evaluating

facial beauty, we employed a beauty comparison task based on the

methods described by previous research (Kim et al., 2021).

Initially, we trained a support vector machine (SVM) by randomly

sampling the responses of 256 units (with 10 trials of sampling for

each untrained network). The SVM was provided with a sample

stimulus and a test stimulus to predict whether the sample stimulus

was more beautiful than the test stimulus. Specifically, we generated

100 sample stimuli for each level of beauty, followed by creating one

test stimulus for each sample stimulus, while ensuring that the test

stimuli do not align with the same level of beauty as the sample stim-

uli. Finally, unit tuning curves were normalized to calculate the aver-

age tuning curves of both correct and incorrect trials during the task.

To verify the homogeneity of the generated face images under

the same beauty level, we collected facial beauty ratings from 40

participants (14 male and 26 female, Mage= 21.18) using the

Psychotoolbox. During this assessment, we presented the participants

with two images of faces on a screen at the same time, asked them to

choose the face they thought was more beautiful and recorded their

press response. The images were selected from the conditions of beauty

range from 1 to 42 with a stride of 6 and a beauty level of 8. A total of

800 images were assessed, 400 of which were used as training sets and

the remaining 400 as testing sets, with 50 images for each of the 8 levels

of beauty. The two images presented were randomly selected 50 times

from 50 images at the same level.

Model Simulation for Weighted Summation of

Monotonically Responsive Units

Based on the statistics obtained from the untrained AlexNet, a

model was designed to simulate the activity of decreasing and

increasing units (Kim et al., 2021). The tuning curve of a model out-

put unit (R) was defined by:

R = ReLU
∑

w(Dec, i) r(Dec, i)+
∑

w(Inc, i) r(Inc, i)
[ ]

,

(1)

wherewDec,i andwInc,i are theweight of the ith decreasing or increasing
units, respectively, and rDec,i and rInc,i indicate their tuning curve. To
simulate the tuning curves in Conv4 of the untrained AlexNet, the

decreasing and increasing unit activities (r) were modeled as normal

distributions peaking at 1 and 42, respectively. The Gaussian distribu-

tion is modeled from the statistics measured in the untrained AlexNet,

M+ SD= 16.5+ 1.79 (decreasing), 17.1+ 1.63 (increasing), from

which the tuning width of 60 decreasing or increasing units was then

randomly sampled. The feedforward weight (w) was also randomly

sampled from the Gaussian distribution estimated from the untrained

AlexNet. Ten thousand output units were generated in a trial, and a

total of 1,000 trials were performed.

The definition of increasing (or decreasing) units in Conv4 of the

untrained AlexNet was adapted from previous work (Stoianov &

Zorzi, 2012). The beauty is expressed linearly, and those monotonic

units were defined by regressing the response of unit i (Ri) with the

beauty level (B) and the coefficient that manipulates beauty (C).

Ri = bBB+ bCC + 1. (2)

For a unit, if the regression explains at least 10% of the variance in its

response and the regression coefficient of adjustment amplitude is

less than 0.1 when editing the beauty degree, βC, it is defined as an

increasing (or decreasing) unit.

Validation Analysis

To ascertain the stability of the research results across different

sampling trials, all experiments concerning DNNs in this study

went through 20 trials, each with varying weight sampling of the

convolutional layers in random initialization.

In order to further verify the stability of the untrained DNN’s rep-

resentation of facial beauty, we used randomly initialized VGG-16

(Visual Geometry Group 16-layer network) to respond to beautiful

images to exclude the effects of network depth, convolution kernel

size, etc. Specifically, we examined the selective response to the

beauty of the 13 convolution layers of untrained VGG-16 and the

monotonic response to the beauty of the first 12 convolution layers.

In an effort to corroborate the generalizability of beauty-selective

units, we selected 200 female faces (average age 28.39) from the

Chicago Face Database (https://www.chicagofaces.org/) as a validation

set (Figure 7A). This data set comprises 57 Asian American faces, 52

Indian faces, 90 White faces, and one multiracial American face

(Lakshmi et al., 2021; Ma et al., 2015, 2021), all displaying neutral

expressions. We recruited 100 participants (average age 23.08, 31

male and 69 female) to evaluate the attractiveness level of these

faces. The newly collected data was used as labels for the validation

set, testing the generalization capability of beauty-selective units in per-

forming comparative tasks.

Statistical Analysis

All sample sizes, exact p values, and statistical methods are indicated

in the corresponding texts or figure legends. The one-sided Wilcoxon

rank sum test was used for most comparison analyses. Shaded areas

or error bars indicate the SD in Figures 1D and 1F, 2A–2D, 3B–3E,

4C, 4F and 4G, 5, 6B–6I, and 7B, and indicate the standard error

(SE) in Figures 1B and 6A.

Results

Quantification of Facial Beauty

We used StyleGAN2 to generate facial images with different

degrees of beauty and found that the level of facial beauty could

be quantified with a unique scale beyond the boundaries of this

scale, facial stimuli failed to maintain their physiological plausibility

(Figure 1A, top). Consequently, we confined the adjustment
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parameters between −21 and 25 to represent the different levels of

facial beauty (Figure 1A, bottom).

Beauty-Selective Units in Untrained DNNs

We found that therewere neural units selectively responding to dif-

ferent degrees of facial beauty (Figure 1B, bottom) in the last layer

(Conv5) of the untrained AlexNet (Figure 1B, top). By investigating

the neural responses in the Conv5 of beauty stimulus images with

strides of 2, 3, 4, 5, and 6, we found that for the same number of clas-

ses, more selective units were foundwith the increase of stride length.

Roughly, at the same stride length, more selective units emerged in

the network when the number of classes was higher (Figure 1C).

We focused on the condition exhibiting the highest proportion of

beauty-selective units, namely, the condition of six strides-and-eight

levels, to explore other properties of the network’s response to facial

beauty. We examined the proportion of beauty-selective units in all

five convolution layers and found that the proportion of beauty-

selective units showed a decreasing trend from the first layer to the

fifth layer (Figure 1D, top left).

To investigate the response characteristics of different network lay-

ers, we made scrambling and contour processing of face images. The

degree of random scrambling indicates the randomization and segmen-

tation of the face stimuli. We found that the proportion of beauty-

selective units began to decline sharply from the first layer, and the

decline trend disappeared with the scrambling degree increased. The

same phenomenon was observed when we applied magic square

scrambling to the stimuli, which largely remained the configuration

information of the face. In contrast, when only the facial contour was

used in the network, the proportion of beauty-selective units varied lit-

tle across the five convolutional layers with the majority emerging in

the later three layers (Figure 1D, top right and bottom).

Beauty-selective units consistently emerged within the untrained

AlexNet. The face orientation did not affect the PB outcomes

(Figure 1E). Additionally, neither the method of random initializa-

tion nor variations in weight distributions impacted the emergence

of beauty-selective units (Figure 1F). We changed the width of the

random weight distribution (normal and uniform) of each layer

under different initialization methods and confirmed that beauty-

selective units were continuously observed even when the weight

variation was greatly reduced under different initialization conditions.

Notably, responses to beauty were more concentrated in the mini-

mum and maximum levels of beauty (Figure 2A). Furthermore, neural

unit responses to the preference for beauty exhibited a Gaussian

Figure 2

Tuning Properties of Beauty-Selective Units in the Untrained Network

Note. (A) Distribution of PB level in the untrained network. (B) Average tuning curves of different beauty levels on a linear scale and a logarithmic scale.

(C) Left: The goodness of the Gaussian fit (r2) is greater on a linear scale. *p, 1.84× 10−5, Wilcoxon rank sum test. Orange (dark gray) bars represent the

linear scale, and lilac (light gray) bars represent the logarithmic scale. Right: The tuning width (sigma of the Gaussian fitting) is U-shaped on a linear scale

and remains constant on a logarithmic scale. (D) Left: Beauty-selective units emerging in the untrained AlexNet are more than trained. *p, 6.8× 10−163,

Wilcoxon rank sum test. Orange (dark gray) bars represent the untrained neural network, and lilac (light gray) bars represent the pre-trained neural network.

Right: When the average of weights shifted to−0.008, the beauty-selective units disappeared. Orange (dark gray) triangles indicate the average of weights

−0.008. PB= preferred beauty. See the online article for the color version of this figure.
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distribution (Figure 2B), with linear models demonstrating superior fit

compared to logarithmic ones (Figure 2C, left). The Gaussian fit’s SD
(σ) of the mean tuning curve displayed a U-shaped pattern across linear

scales corresponding with increases in PB; however, it remained stable

on logarithmic scales (Figure 2C, right).

We also observed that the untrained AlexNet exhibited a greater

number of beauty-selective units in the fifth layer compared to

an AlexNet trained on natural images for classification (2.4% of

Conv5 units in the untrained network vs. 1.39% in the pretrained

network; Figure 2D, left; *p, 6.8× 10−163, Wilcoxon rank sum

test). Further analysis indicated a negative shift in the average con-

volutional weight at the fifth layer of the pretrained network relative

to the untrained counterpart (−0.13, in units of the SD of convolu-

tional weights). However, while introducing a similar negative offset

to the weights of the untrained network caused a decline in the pro-

portion of beauty-selective units, this reduction did not align with

the pretrained network’s level at −0.13, but rather, the proportion

decreased to zero when the weight shift reached −0.008

(Figure 2D, right).

Beauty Comparison Task

We investigated the capability of beauty-selective units to execute

comparison tasks across levels and beauty within levels (Figure 3A).

The findings indicated that beauty-selective units were indeed able

to differentiate between different levels of beauty more effectively

than nonselective units and pixel-based image information

(Figure 3B; orange open bar: beauty units vs. nonselective units,

*p= 9.03× 10−5, Wilcoxon rank sum test; lilac solid bar: beauty

units vs. images, *p= 8.47× 10−5, Wilcoxon rank sum test).

However, when comparing the beauty of faces at the same level,

the SVM did not demonstrate the ability to reliably distinguish

Figure 3

Beauty Comparison Performance of Beauty Units

Note. (A) Beauty comparison task. (B) Task performance of the response of beauty units, nonselective units, and the pixel values of raw stimulus images at the

different levels (orange (dark gray) open bar: beauty units versus nonselective units, *p= 9.03 × 10−5, Wilcoxon rank sum test; lilac (light gray) solid bar:

beauty units versus images, *p= 8.47× 10−5, Wilcoxon rank sum test). The dashed line indicates the chance level. (C) Task performance of the response of

beauty units, nonselective units, and the pixel values of raw stimulus images at the same level. (D) The performance increases as the beauty difference increases

and is significantly higher than the chance level for all cases (*p= 4.78× 10−5, Wilcoxon rank sum test). (E) Average activity of beauty-selective units as a

function of the beauty level distance. The response during correct trials is significantly higher than that during incorrect trials (*p= 4× 10−9, Wilcoxon rank

sum test). SVM= support vector machine. See the online article for the color version of this figure.
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beauty (Figure 3C; orange open bar: beauty units vs. nonselective

units, p= .22, Wilcoxon rank sum test; lilac solid bar: beauty

units vs. images, p= .32, Wilcoxon rank sum test).

Moreover, the network performed better as the distance from

beauty increased (Figure 3D). To further investigate the contributions

of the beauty-selective units for correct choices, we compared

Figure 4

Emergence of Beauty Tuning From the Weighted Sum of Increasing and Decreasing Unit Activities

Note. (A) Summation coding model. (B) Monotonically decreasing/increasing neuronal activities as the beauty level increases were observed in Conv4 of

untrained AlexNet. (C) Top left: The ratio of monotone units in the first four convolutional layers of the network. Top right and bottom: The monotone

unit ratio of the first four convolutional layers of the network after scrambled and contoured face images. (D) According to the model’s assumptions, units

tune to lower levels of beauty to receive stronger inputs from decreasing units, weaker inputs from increasing units (orange (dark gray) vs. lilac (light gray);

*p= 9.77×10−4), and vice versa (orange (dark gray) vs. lilac (light gray); *p= 9.77×10−4). Right: The average weights of units preferring beauty level 6

and 36. (E) Left: Distributions of the PB level from the model simulation. Right: The tuning width on linear and logarithmic scales predicted by the model.

(F) Weight bias of all beauty units observed in Conv5 of the untrained AlexNet. The results of untrained AlexNet and model simulation are basically consistent.

(G) Monotonic units in Conv4 provide stronger inputs to beauty units than to the other units in Conv5 (orange vs. green; *p= 9.13× 10−5, Wilcoxon rank-sum

test). Beauty units in Conv5 also connect to monotonic units more strongly than the other Conv4 units (orange vs. blue; *p= 1.1× 10−3). W1–W2= examples

of the weight of units; Conv= convolutional layer; PB= preferred beauty; W dec= the weight of decreasing units; W inc= the weight of increasing units;

m8=magic square scrambling degree 8; m16=magic square scrambling degree 16; m32=magic square scrambling degree 32; m64=magic square scram-

bling degree 64; s4= random scrambling degree 4; s8= random scrambling degree 8; s16= random scrambling degree 16; s32= random scrambling degree

32; s64= random scrambling degree 64; s128= random scrambling degree 128. See the online article for the color version of this figure.
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the average tuning curves obtained in correct and incorrect trials.

The results showed that the average response to the PB in correct

trials was significantly greater than that in incorrect trials

(Figure 3E).

Beauty Tuning by Weighted Sum of Monotonically

Responsive Units

We analyzed the emergence of beauty-selective units in untrained

neural networks by employing a summation coding model and

assessed how monotonically responsive units represented beauty

across hierarchical layers (Figure 4A; Q. Chen & Verguts, 2013;

Stoianov & Zorzi, 2012). We identified neural units exhibiting mono-

tonically increasing or decreasing responses to beauty levels within the

early network layers (Figure 4B), with the highest proportion of such

monotonic units occurring at the second layer (Figure 4C, top left).

Further experimentation involving random scrambling of faces

revealed a gradual reduction in the ratio of monotonic units from the

first to the fourth layer, where the overall proportion typically

decreased as the degree of scrambling intensified (Figure 4C, top

right). Even after applying magic square scrambling—designed to pre-

serve facial contour information—the proportion of monotonic units

still peaked at the second layer. This peak diminished when more pro-

found degrees of scrambling were introduced, pointing toward a con-

sistent decrement from the first layer onward (Figure 4C, bottom left).

After contour treatment, the proportion of monotonic units reached the

peak at the second layer, but the whole proportion was much smaller

than in other treatment conditions (Figure 4C, bottom right).

Using computational simulations, we discovered that the beauty tun-

ing curves are the result of integratingweighted contributions from both

increasing and decreasing unit activities (Figure 4B and 4C). As PB

tends to 1 or 42, the number of tuned units increases (Figure 4E,

left). The simulated sigma of Gaussian fitting of the average tuning

curve was stable on a logarithmic scale but did not show a U-shape

on a linear scale (Figure 4E, right).Moreover, the simulationswere con-

sistent with the hypothesis that units tuned to low levels of beauty

receive stronger inputs from decreasing units (Figure 4D, top right;

*p= 9.77× 10−4), while units tuned to high levels of beauty receive

stronger inputs from increasing units (Figure 4D, bottom right; *p=
9.77× 10−4), showing a feedforward bias. We also observed this

bias in Conv5 of the untrained AlexNet (Figure 4F; orange solid

curve). Further, we observed that monotone units in Conv4 contributed

more to beauty-selective units than other units in Conv5 (Figure 4G;

orange vs. green; *p= 9.61× 10−21, Wilcoxon rank-sum test).

Validation Analysis

The results of experiments with DNNs vary very little from trial to

trial (Figure 5).

As with untrained AlexNet, we found that beauty-selective units

also spontaneously emerged in untrained VGG-16 (Figure 6A),

and the selective response to beauty appeared at the first convolu-

tional layer, the proportion of beauty-selective units decreased

from the first layer to the last layer (Figure 6B). Moreover, these

beauty-selective units were more distributed at low and high levels

of beauty (Figure 6C). Again, just like in the untrained AlexNet,

the response of beauty-selective units in untrained VGG-16 was

more consistent with linear scale expression (Figure 6D). As the

level of beauty increases, the σ of Gaussian fitting is U-shaped on

the linear scale and remains stable on the logarithmic scale

(Figure 6E, right).These beauty-selective units could also perform

the beauty comparison task (Figure 6F), the units performed better

as the distance from beauty increased (Figure 6G). In untrained

VGG-16, we found units that monotonically increased or decreased

in response as the level of beauty increased. However, the distribu-

tion trend of monotonic units in the first 12 layers of untrained

VGG-16 showed a horizontal S-shape (Figure 6H). We examined

the weight contribution of untrained VGG-16 convolution layer

monotonic units at the 12th to selective units at the last convolution

layer and found that monotonic units in Conv5_2 provided stronger

inputs to beauty units than to the other units in Conv5_3 (Figure 6I,

right; orange vs. green; *p= 9.13× 10−5, Wilcoxon rank-sum test).

Using images generated by StyleGAN2 as the training set for SVM

and the real human images from the Chicago Face Database as its test

set (Figure 7A), the results revealed that compared to nonselective

units and pixel information, the beauty-selective units performed bet-

ter in distinguishing levels of beauty in natural images (Figure 7B;

orange open bar; beauty units vs. nonselective units, *p= 6.81×

10−5, Wilcoxon rank sum test; lilac solid bar; beauty units vs. images,

*p= 4.05× 10−7, Wilcoxon rank sum test; dashed line; beauty units

vs. chance level, *p= 1.17× 10−6, Wilcoxon rank sum test).

Figure 5

Validation Analysis of the Neural Network’s Iterations

Note. The proportion of beauty-selective units among the five convolutional layers remained consistent across 20 trials. Conv= convolutional layer. See the

online article for the color version of this figure.
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Figure 6

Validation Analysis of Untrained VGG-16

Note. (A) Top: Architecture of randomly initialized VGG-16. Bottom: Examples of tuning curves for individual beauty-selective units observed in the

untrained VGG-16. (B) The proportion of emerging beauty-selective units in thirteen convolutional layers. (C) Distribution of PB in the untrained

VGG-16. (D) Average tuning curves of different beauty levels on a linear scale and a logarithmic. (E) Left: The goodness of the Gaussian fit (r2) is greater
on a linear scale. *p, 7.77× 10−18, Wilcoxon rank sum test. Right: The tuning width (sigma of the Gaussian fitting) is U-shaped on a linear scale and remains

constant on a logarithmic scale. (F) Task performance of the response of beauty units in untrained VGG-16, nonselective units, and the pixel values of raw

stimulus images at the different levels (orange [dark gray] open bar; beauty units vs. nonselective units, *p= 3.3× 10−4, Wilcoxon rank sum test; lilac

[light gray] solid bar; beauty units vs. images, *p= 1.37× 10−4, Wilcoxon rank sum test). (G) Beauty distance effect (*p= 3.17× 10−6, Wilcoxon rank

sum test). (H) The ratio of monotone units in the first 12 convolutional layers of the VGG-16. (I) Monotonic units in Conv5_2 provide stronger inputs to beauty

units than to the other units in Conv5_3 (orange vs. green; *p= 9.13× 10−5, Wilcoxon rank-sum test), implying that beauty tuning in Conv5_3 arises from the

monotonic units in Conv5_2. Beauty units in Conv5_3 also connect to monotonic units more strongly than the other Conv5_2 units (orange vs. blue; *p=
2.9× 10−3). VGG=Visual Geometry Group; Conv= convolutional layer; PB= preferred beauty. See the online article for the color version of this figure.
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Discussion

In the process of generating face stimuli with StyleGAN2, we iden-

tified a scale for measuring beauty. Using untrained DNNs, after

excluding the effects of low-level visual features (e.g., orientation)

and random initialization methods, we found that beauty-selective

units spontaneously emerged inDNNs and that these units can perform

beauty comparison tasks. Within the scale of beauty that we found the

tuning curve of the response followed the linear distribution. The units

tuned to different levels of beauty came from the construction of units

that monotonically increase and decrease in response to the level of

beauty in the early layers. The random-initialized DNN processed

facial beauty in a hierarchical manner. Verification was performed

using an untrained VGG-16, which showed similar representations

of facial beauty, suggesting that the architecture of the DNN does

not affect the innate representation of beauty.

Echoing Pythagoras’s assertion that beauty resides in the proportion-

ality and harmony of numbers, the quantification of beauty is often

anchored in mathematical criteria. Research leveraging geometric fea-

tures to quantify facial attractiveness has discovered that facial config-

urations occupy a narrow and specific region within a space (D. Zhang

et al., 2011). Similarly, our use of StyleGAN2 to generate facial images

has revealed the existence of a measurable range of facial beauty.

Faces that deviate significantly from this established continuum tend

to deteriorate in aesthetic value and may even lose physiological

believability. This suggests a central bias in aesthetic preferences,

with extreme alterations to facial features—either excess or

insufficiency—leading to a departure fromwhat is conventionally rec-

ognized as beautiful.

While previous studies have revealed that infants might possess an

inborn facial representation (Slater & Kirby, 1998; Slater et al., 1998),

they have not ruled out visual experience or further explored innate rep-

resentation patterns of facial beauty. In light of our study’s findings, we

proposed that representations of beauty emerged independent of

experience-based learning, suggesting that beautymay exhibit an intrin-

sic development pattern within untrained DNNs. Additionally, our

results indicated that representations of beautymanifest in the network’s

early layers, implying that the primary processing of facial beautymight

commence at the structural encoding phase—a stage as early as when

facial features begin to be systematically organized. In fact, facial beauty

processing occurs so early that brain regions involved in facial feature

processing are already involved in facial beauty processing (Haxby

et al., 2000; Kranz& Ishai, 2006). This supports the notion that the neu-

ral substrates for feature-based facial processing overlap with, and likely

contribute to, the circuits evaluating facial beauty. Evidence from elec-

troencephalography studies indicated that powerful neural representa-

tions of facial beauty appear within the visual range of 150–200 ms

(Kaiser & Nyga, 2020; Lu et al., 2014). Besides, event-related potential

studies on face recognition have shown that components sensitive to

facial configuration information and feature information appear at

90–120 and 200–260 ms, respectively (H. L. Wang et al., 2015, 2016).

In the untrained AlexNet, we discovered neural units capable of

detecting subtle differences in facial beauty. This suggests that single

units do have the ability to differentiate beauty.While no single-neuron

studies of human facial beauty have yet been conducted in humans,

single-neuron studies in nonhuman primates have found face-selective

neurons in the inferotemporal cortex (Gross, 1994; Tsao et al., 2003).

Studies of facial identity perception have found that monkey neurons

show a tendency to tune around the average human face using a carica-

torialized axis (Leopold et al., 2006) and that such neurons can reliably

differentiate between extremely subtle differences in successive faces.

Furthermore, the units in the network that were sensitive to facial

beauty functioned in a linear response mode, but the sigma of the tun-

ing curve presented a “U” shape on the beauty scale. This indicates that

the units in the network that respond preferentially to extreme beauty

are very active, and they also respond strongly to nearby beauty. One

possible explanation is that the units responding to both extremes of

beauty levels have cognitive functions associated with rewards or pun-

ishments, and therefore, they exhibit broader responses compared to

units favoring intermediate beauty levels (Liang et al., 2010).

By scrambling and contouring the images, we provide a glimpse into

the hierarchical processing of facial beauty by randomly initialized

Figure 7

Validation Analysis of the Chicago Face Database

Note. (A) Examples of visual stimuli of different facial beauty in the Chicago Face Database. (B) Task performance of the beauty units, nonselective units and

the pixel values of raw stimulus images at the different level used the Chicago Face Database (orange [dark gray] open bar; beauty units vs. nonselective units,

*p= 6.81× 10−5, Wilcoxon rank sum test; lilac [light gray] solid bar; beauty units vs. images, *p= 4.05× 10−7, Wilcoxon rank sum test; dashed line; beauty

units vs. chance level, *p= 1.17× 10−6, Wilcoxon rank sum test). The dashed line indicates the chance level. Visual stimuli are from “The Chicago Face

Database: A Free Stimulus Set of Faces and Norming Data,” by D. S. Ma, J. Correll, and B. Wittenbrink, 2015, Behavior Research Methods, 47,
pp. 1122–1135 (https://www.chicagofaces.org/). CC BY 4.0. See the online article for the color version of this figure.
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neural network models and confirm the contribution of configuration

information and feature information to the representation of facial

beauty. The configuration and feature information of faces are very

important for the brain, which lacks knowledge of beauty, to process

aesthetic values (Leo & Simion, 2009; Slater et al., 2000). It has

been widely discussed whether configuration information or feature

information is more important in facial aesthetics (Abbas &

Duchaine, 2008; Liu et al., 2022; Orghian & Hidalgo, 2020). The

research findings indicate that individuals make accurate attractiveness

judgments of faces only when the upper and lower parts of the face are

aligned (Abbas & Duchaine, 2008). Blurred faces, which retain the

main configuration information but lose most of the feature informa-

tion, receive higher attractiveness ratings compared to normal faces

(Orghian & Hidalgo, 2020; Sadr & Krowicki, 2019). Other studies

have shown that presenting only a part of the face, such as the left or

right half, can lead to higher attractiveness ratings than presenting the

entire face (Liu et al., 2022; Orghian & Hidalgo, 2020; Sadr &

Krowicki, 2019). Certain facial features play important roles in facil-

itating attractiveness judgments, such as women’s faces with features

like large eyes, small noses, and narrow chins often receiving higher

attractiveness ratings (Baudouin & Tiberghien, 2004; Rhodes, 2006).

It can be observed that both configuration information and feature

information are crucial for attractiveness judgments of faces, and it

is difficult to discern which is more important. Based on the current

research findings, we believe that configuration information and fea-

ture information may have different roles in different processing

stages, and both contribute to the completion of aesthetic processing.

In terms of monotonic response, when the structure of the face was

randomly disturbed or the degree of magic square scramblingwas high,

the peak value of the second layer disappeared, which implies that the

second convolution layer may have a unique monotonic response to

configuration information such as face contouring and the arrangement

of facial features. In the case of random scrambling, the distribution of

monotone responses in the convolutional layers shows a decreasing

trend, indicating that the early layers aremore involved in themonotone

processing of feature information. Meanwhile, contour processing did

not affect the monotonic response distribution, but the overall ratio was

sharply reduced, implying that the feature information is very important

for the linear processing of facial beauty.

In the case of beauty-selective response, it was a different story.

Magic square scrambling had little effect on the selective response

trend and the high ratio of selective response units after contouring

indicated that configuration information contributes a lot to the

beauty-selective response. As the degree of random scrambling

deepened, it was difficult to extract local information and the advan-

tage of early layer processing disappeared, which showed the contri-

bution of feature information to low-level feature processing in early

layers. The performance after contour processing could support not

only the importance of configuration information in overall facial

processing but also the contribution of feature information in feature

extraction at earlier layers. In summary, our results filled a gap in the

neural processing of innate aesthetics and validated the hierarchical

processing of facial beauty by an untrained neural network.

By applying the summation coding model, we discovered that

neuronal representations of facial beauty emerge as a result of inte-

grating linearly responsive neural units with varying weights within

the network’s early layers. A recent study that utilized neuroimaging

and DNNs demonstrated that the aesthetic valuation of artwork is

computed hierarchically through the linear weighted summation of

low-level and high-level stimulus features, tracing a pathway from

the early visual cortex to the parietal and prefrontal cortices

(Iigaya et al., 2023). This finding underscores that both cognitive

neural processes in the brain and computational models in artificial

neural networks can manifest similar patterns in appraising aesthetic

value, transcending differences in the vehicles of knowledge and

conception of beauty. Neural units tuned to lower levels of beauty

tend to receive more pronounced inputs from units displaying

decreasing responses, while those tuned to higher levels of attrac-

tiveness are predominantly influenced by units with increasing activ-

ity profiles. This suggests that neural units with monotonically

increasing responses may be more attuned to specific attractive fea-

tures. Corresponding with previous empirical findings, certain

aspects of facial attractiveness, such as larger eyes, smaller

nose, and chin, follow a linear trend along a scale of perceived

beauty (Baudouin & Tiberghien, 2004; Cunningham et al., 1995;

Shen et al., 2016), thereby indicating that incrementally responsive

neural units could be selectively attuned to these attributes.

Overall, the results of this study fill a gap in the research on the neural

computation of intrinsic aesthetic perception, revealing the hierarchical

processing pattern of facial beauty by untrained neural networks.

Aesthetics is a crucial part of knowledge acquisition (Perlovsky,

2014; Perlovsky & Schoeller, 2019; Sarasso et al., 2020), where indi-

viduals, while appreciating a piece of art, gather meanings and

engage in learning (Tracy, 1946). Aesthetic appreciation triggers

the instinct to seek knowledge, enabling individuals to gather infor-

mation and learn from their environment (Schoeller & Perlovsky,

2016; Schoeller et al., 2018). Our research findings indicated that a

sense of beauty can emergewithout prior learning, potentially support-

ing an innate sense of aesthetic perception, suggesting that humans

might have an inherent ability to learn from aesthetics. Furthermore,

perception and evaluation of facial beauty contribute to our ability to

identify and select social partners, establish and maintain social con-

nections, and aid in our survival and reproduction in social environ-

ments (J. Chen et al., 2012; Eagly et al., 1991; J. Wang et al., 2017).

Facial aesthetics are closely linked to information such as mate selec-

tion and genetic inheritance (Fink & Penton-Voak, 2002; Little et al.,

2011; Thornhill&Gangestad, 1999). Therefore, aesthetic abilities may

have played a significant role in human evolution, and revealing the

inherent neural computational patterns of facial aesthetics can help

us gain deeper insights into the origins and evolution of social cogni-

tion and adaptive behavior in human evolution.

While our study was not a substitute for neuroimaging studies, it bore

a striking resemblance to functional neuroimaging studies of adult aes-

thetics of artworks (Iigaya et al., 2023). This suggests that the emer-

gence of initial beauty sense has a similar neural mechanism to the

formation of adult aesthetic value, which makes sense why infants

would prefer to focus on faces rated as attractive by adults (Quinn

et al., 2008; Samuels & Ewy, 1985). Due to the limitations of existing

technology in directly studying the neural processing patterns of human

intrinsic aesthetic perception, this study, conducted using biologically

inspired DNN models, offers a neurocomputational perspective on

the inherent developmental patterns of aesthetics. It provides an

interpretable approach to understanding the mechanisms underlying

aesthetic value generation.

Although our current study identified units that respond specifi-

cally to facial beauty in untrained neural networks and made a pre-

liminary exploration of the response patterns of these units, there are

still gaps that need to be filled by more systematic and rich studies.
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Firstly, based on the current algorithms used in this research, it is still

difficult to rigorously control factors like lighting, background, facial

shape, and hairstyle. While it is challenging to avoid certain system-

atic alterations, it also retains the authenticity of the natural facial fea-

tures. Moreover, we have validated our beauty-selective units by

utilizing additional data sets, confirming their response to facial

beauty rather than systemic facial changes. In the future, achieving

fine control over specific dimensions of the face might require over-

coming certain technical challenges in the field of artificial intelli-

gence. Second, the standards of facial beauty are not uniform. The

current study only verified the activity of units under one standard,

more research is needed in the future to focus on different standards

of beauty (such as averageness, symmetry, nose size, eye spacing,

and so on). Morton and Johnson (1991) propose the “CONSPEC”

mechanism, arguing that infants are born with some information

about facial structure, indicating the presence of an innate aesthetic

pattern. Exploring beauty representation using different criteria

helps identify the innate aesthetic pattern. Finally, although facial

beauty is representative in aesthetic terms, the scope of beauty is

not limited to the face. Humans can find beauty in bodies, faces,

landscapes, fine works of art, and even mathematical proofs

(Chatterjee, 2013). In terms of the initialized brain, infants can not

only preferentially gaze at the attractive faces of the field (Quinn

et al., 2008) but also distinguish and respond preferentially to paint-

ings (Cacchione et al., 2011; Krentz & Earl, 2013), suggesting that

infants may have an innate preference for general structural features

(Turati et al., 2002; Wilkinson et al., 2014). More specifically, the

initial setup of our perceptual system prompts infants to prefer look-

ing at certain entities becausewe have a range of preferred perceptual

features, including but not limited to certain specific features such as

large eyes (Geldart, Maurer, & Carney, 1999) and complex geomet-

ric properties (Cassia et al., 2004; Geldart, Maurer, & Henderson,

1999). The initial neural responses of aesthetic objects such as nat-

ural landscapes, nonhuman faces, and paintings can be further stud-

ied to systematically explain the internal mechanism of beauty sense

in the randomly initialized DNNs.

Conclusion

In conclusion, our research explored the neural origin of beauty

sense from the innate computational abilities of DNNs. We found

that there are units selectively responsive to facial beauty in the

completely randomly initialized DNNs, and the responses of these

units are linearly distributed. Additionally, representations of beauty

have emerged in the initial layers of DNNs. Untrained DNNs per-

ceive facial beauty in a hierarchical manner, where both configura-

tion information and feature information of faces contribute to the

completion of aesthetic processing. The selective responses in the

final layer of the DNN are constructed through linear weighting of

monotonic responses in the early layers.
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Figure S1. Validation analysis of the neural network's iterations. The proportion of 

beauty-selective units among the five convolutional layers remained consistent across 20 

trials.
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Figure S2. Validation analysis of untrained VGG-16. (A) Top: Architecture of randomly 

initialized VGG-16. Bottom: Examples of tuning curves for individual beauty-selective units 

observed in the untrained VGG-16. (B) The proportion of emerging beauty selective units in 

thirteen convolutional layers. (C) Distribution of preferred beauty in the untrained VGG-16. (D) 

Average tuning curves of different beauty levels on a linear scale and on a logarithmic. (E) Left: 

The goodness of the Gaussian fit (r2) is greater on a linear scale. *P < 7.77×10−18, Wilcoxon rank 

sum test. Right: The tuning width (sigma of the Gaussian fitting) is U-shaped on a linear scale 

and remains constant on a logarithmic scale. (F) Task performance of the response of beauty 

units in untrained VGG-16, nonselective units, and the pixel values of raw stimulus images at the 

different level (orange open bar; beauty units versus nonselective units, *P = 3.3 × 10−4, 

Wilcoxon rank sum test; lilac solid bar; beauty units versus images, *P = 1.37 × 10−4, Wilcoxon 

rank sum test). (G) Beauty distance effect (*P = 3.17 × 10−6, Wilcoxon rank sum test). (H) The 

ratio of monotone units in the first twelve convolutional layers of the VGG-16. (I) Monotonic 

units in Conv5_2 provide stronger inputs to beauty units than to the other units in Conv5_3 

(orange vs. green; *P = 9.13×10-5, Wilcoxon rank-sum test), implying that beauty tuning in 

Conv5_3 arises from the monotonic units in Conv5_2. Beauty units in Conv5_3 also connect to 

monotonic units more strongly than the other Conv5_2 units (orange vs. blue; *P = 2.9×10-3).
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Figure S3. Validation analysis of the Chicago Face Database. (A) Examples of visual stimuli 

of different facial beauty in Chicago Face Database. (B) Task performance of the beauty units, 

nonselective units and the pixel values of raw stimulus images at the different level used the 

Chicago Face Database (orange open bar; beauty units versus non-selective units, *P = 6.81 × 

10−5, Wilcoxon rank sum test; lilac solid bar; beauty units versus images, *P = 4.05 × 10−7, 

Wilcoxon rank sum test; Dashed line; beauty units versus chance level, *P = 1.17 × 10−6, 

Wilcoxon rank sum test). The dashed line indicates the chance level.
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