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HRInversion: High-Resolution GAN Inversion for

Cross-Domain Image Synthesis
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Abstract—We investigate GAN inversion problems of using
pre-trained GANs to reconstruct real images. Recent methods
for such problems typically employ a VGG perceptual loss to
measure the difference between images. While the perceptual
loss has achieved remarkable success in various computer vision
tasks, it may cause unpleasant artifacts and is sensitive to changes
in input scale. This paper delivers an important message that
algorithm details are crucial for achieving satisfying performance.
In particular, we propose two important but undervalued design
principles: (i) not down-sampling the input of the perceptual
loss to avoid high-frequency artifacts; and (ii) calculating the
perceptual loss using convolutional features which are robust to
scale. Integrating these designs derives the proposed framework,
HRInversion, that achieves superior performance in reconstruct-
ing image details. We validate the effectiveness of HRInversion
on a cross-domain image synthesis task and propose a post-
processing approach named local style optimization (LSO) to
synthesize clean and controllable stylized images. For the evalu-
ation of the cross-domain images, we introduce a metric named
ID retrieval which captures the similarity of face identities of
stylized images to content images. We also test HRInversion on
non-square images. Equipped with implicit neural representation,
HRInversion applies to ultra-high resolution images with more
than 10 million pixels. Furthermore, we show applications of
style transfer and 3D-aware GAN inversion, paving the way for
extending the application range of HRInversion.

Index Terms—GAN inversion, perceptual loss, image synthesis.

I. INTRODUCTION

G
ENERATIVE Adversarial Networks (GANs) [1]–[10]

have made considerable progress in generating photo-

realistic images. Recently, there has been a growing interest

in projecting real images into the latent space of pre-trained

GANs, also known as GAN inversion [11]–[13]. Because

the pre-trained generator contains prior knowledge, which is

helpful for image restoration and editing, leveraging the prior

has promoted a large number of tasks such as super-resolution

and image manipulation [14]–[17].

To solve the GAN inversion task, a VGG perceptual loss has

become a de-facto standard loss. The perceptual loss captures

This work was supported by National Science Foundation of China
(U20B2072, 61976137). This work was also partially supported by Grant
YG2021ZD18 from Shanghai Jiaotong University Medical Engineering Cross
Research (Corresponding author: Bingbing Ni). Peng Zhou and Bingbing
Ni are with the Department of Electronic Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China (e-mail: {zhoupengcv, nibing-
bing}@sjtu.edu.cn).

Lingxi Xie and Qi Tian are with Huawei Cloud BU, Shenzhen, Guangdong
518129, China (e-mail: 198808xc@gmail.com; tian.qi1@huawei.com). Lin
Liu is with the University of Science and Technology of China, Hefei, Anhui
230052, China (e-mail: ll0825@mail.ustc.edu.cn).

(a) Input image (real image) (b) Inversion with input down-sampled

(c) Input down-sampled + noise maps regularized (d) Input not down-sampled (HRInversion)

(e) Diverse styles of images

Fig. 1. (a) Input image. (b) Inverted image with input down-sampled
for the perceptual loss. Down-sampling the input of the perceptual loss
causes artifacts when optimizing the latent code w and the noise maps n

simultaneously. (c) Inverted image with input down-sampled and noise maps
regularized. Regularizing noise maps alleviates the artifacts but compromises
the reconstruction quality. (d) Inverted image with input not down-sampled.
The reconstructed image is close to the original input image. (e) Our method
is capable of synthesizing various styles of cross-domain images without
unpleasant noise. Please zoom in to see details.

differences between high-level image feature representations

extracted from a pre-trained VGG model. Compared to pixel-

wise losses such as MSE, perceptual losses measure the

semantic similarity of images rather than low-level pixel differ-

ences. It has been found that perceptual metrics are in line with

human perception [18]. As such, perceptual losses have been

applied to many tasks such as style transfer [19], [20], super-

resolution [21], [22], and image-to-image translation [23],

[24].

Although the VGG perceptual loss has many applications

in computer vision, we find that people usually use it as an

off-the-shelf module. There are a few comprehensive studies

for perceptual losses [18], [21]. Nevertheless, previous works

mainly focus on tasks such as super-resolution and style

transfer. Some of their conclusions for perceptual losses may

be out of date and no longer apply to the emerging GAN

Copyright © 2022 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must
be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3222456

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on February 14,2023 at 17:09:52 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Real image Style gallery

Generators

Inversion

s
w { }i

t
w

(b)

swap( , )i

s t
w w w=

(d)

lerp( , )i

s t
w' w w=

lso( )w w'=
(c)

lerp( , )i

s t
w w w=

(a)

s
w w=

① Projecting ② Blending models or latent codes ③ Post-processing

s
G

t
G LS( , )

s t
G G LS( , )

s t
G G WI( , )

s t
G G WI( , )

s t
G G

LS: layer swapping WI: weight interpolation lerp: linear interpolation lso:  local style optimization

Fig. 2. The framework of cross-domain image synthesis. The common inversion-based cross-domain image synthesis method consists of two steps: (i)
projecting the images into the latent space; and (ii) mixing latent codes or models. We propose a post-processing algorithm, local style optimization (LSO),
as step 3, to further improve the synthesis quality. There are three mixing methods: (a) Only replace the high-resolution layers of the source generator with
the corresponding layers of the target generator, i.e., layer swapping [28]. The disadvantage of this method is that it only generates one style for a real image.
(b) Replace not only the layers but also the latent code w. We construct a style gallery {wi

t
} through GAN inversion. This method can generate images in

a diverse style, but is not robust and may cause unpleasant noise. (c) Linearly interpolate the weights of the generators and the latent code w. This method
can fully compound image styles but at the cost of losing pose and semantic properties. (d) We propose to amend the interpolated latent code w

′ with a
post-processing step, so as to restore pose and semantic properties of the real image and also remove noise (please see Sec. III-C for details).

inversion task. As a result, people may use perceptual losses

inappropriately, leading to suboptimal results for their tasks.

In this paper, we comprehensively diagnose perceptual

losses for GAN inversion in an analysis-by-synthesis manner.

We find some interesting properties for perceptual losses.

First, we find that not down-sampling the input of perceptual

losses is the key to recovering high-frequency details. For

GAN inversion, it has been noticed that joint optimization

of the latent code w and the noise maps n of StyleGAN

will cause a lot of high-frequency artifacts [25]. Regularizing

the noise maps alleviates the artifacts but compromises the

reconstruction accuracy1 (please see Fig. 1b and 1c). The

VGG model is pre-trained on ImageNet [26] at 2242 reso-

lution. Thus previous methods usually down-sample the input

image to 2562 resolution before presenting the image to the

VGG perceptual network [11], [27]. We find that the key to

avoiding high-frequency artifacts while restoring image details

lies in not down-sampling the input of the perceptual loss

(see Fig. 1d).

On the other hand, no down-sampling causes a scale in-

consistency problem (resolution mismatch) because the VGG

model is pre-trained on images at low resolution but the input

is at high resolution. No down-sampling leads to degraded

PSNR compared to down-sampling. We find that the key to

the scale inconsistency problem lies in which features to use

to compute the perceptual loss. Specifically, the previous VGG

perceptual loss uses the features of relu layers to calculate the

loss, and the features are sparse. We find that dense features of

convolutional layers are more robust to scale than the features

of relu layers. Therefore, we propose to adopt convolutional

features to calculate the perceptual loss.

Integrating these two designs, i.e., no down-sampling and

using convolutional features, derives our method, named

HRInversion. We validate the effectiveness of HRInversion

on a cross-domain image synthesis task. Specifically, the

common inversion-based approach of cross-domain images

synthesis contains two steps: (i) projecting real images into

1https://github.com/NVlabs/stylegan2-ada-pytorch

the latent space of GANs; and (ii) mixing the latent codes

or models and then reconstructing cross-domain images. This

approach is one-shot and the reconstructed images may be

unsatisfactory. For example, the reconstructed image may be

noisy and lose the semantics of the original image (see the

examples in Fig. 2a, 2b, and 2c). To deal with this problem, we

introduce an additional post-processing step, named local style

optimization (LSO). LSO is based on the well-known semantic

hierarchical nature of GANs: the layer-wise latent codes of

GANs are specialized to different hierarchical semantics [29],

[30]. For example, the early and middle layers determine pose

and high-level semantics, and the later layers determine the

color scheme. LSO fine-tunes only part of the latent codes to

restore semantics and remove noise while keeping the style

unchanged (see Fig. 2d). Note that our method belongs to

optimization-based methods. Thus Fig. 2 summarizes three

ways of mixing latent codes without considering encoder-

based methods [31], [32]. The encoder-based methods adopt

an encoder to extract the style code of the reference image

and simultaneously optimize the generator and style-related

branches during training. To quantitatively evaluate different

algorithms, we introduce a quality measure named ID retrieval

for face stylization (see Sec. III-D).

As shown in Fig. 1e, LSO synthesizes high-resolution face

images with various styles, stably and controllably. We also

diagnose the perceptual loss for GAN inversion layer by

layer. The layer-wise analysis shows that low-level and high-

level features play different roles for GAN inversion. Low-

level features perform like pixel-wise losses, which induce

blurry images. Although high-level features have lower spatial

resolution than low-level features, they help recover high-

frequency details such as hair texture. This again proves

that the semantic space is superior to the pixel space in

reconstructing high-fidelity images. Furthermore, we find that

LSO benefits from a high-level perceptual loss discarding

low-level features because LSO focuses more on semantic

alignment rather than pixel alignment (see Fig. 14). It inspires

us that we need to adjust the perceptual loss appropriately
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Fig. 3. The framework of Style-INR-GAN. (a) StyleGAN2 uses a mapping network to map the input noise z to the W space and then uses w ∈ W to
modulate the feature maps of the synthesis network. (b) Compared to StyleGAN2, Style-INR-GAN is equipped with an INR network so that it can synthesize
images of arbitrary resolution and aspect ratio. Therefore Style-INR-GAN is more suitable for inverting non-square images than StyleGAN2.

according to the task. For example, we can use a perceptual

loss with only high-level features for semantic alignment or

with only low-level features for pixel alignment.

We adopt StyleGAN2 [3] as the base model. To invert

non-square images, we equip the generator with an implicit

neural representation (INR) network so that the generator can

generate images of arbitrary resolution and aspect ratio. HRIn-

version works well even for ultra-high resolution images (e.g.,

panoramic images, up to 1677 × 6143 resolution). We also

show applications of HRInversion in style transfer and 3D-

aware GAN inversion. The results are impressive, validating

its generalized ability and extending its range of applications.

To facilitate people using HRInversion in their tasks, we

provide a minimal implementation at our github open source

site https://github.com/PeterouZh/HRInversion.

II. RELATED WORK

Perceptual Metric. It is remarkably effective to use deep

features of neural networks as a perceptual metric for image

synthesis tasks [18], [27], [33]. For example, DeePSiM [33],

computing distances between deep neural network features,

enables a variational autoencoder to generate realistic high-

resolution images. Zhang et al. [18] propose a metric named

Learned Perceptual Image Patch Similarity (LPIPS) that agrees

surprisingly well with human judgments. Samuli Laine [27]

shows that a feature-based metric can produce more natural-

looking interpolations than the norm-based metric in the image

space. Deep features are also effective for style transfer [19]–

[21], [34], [35]. Gatys et al. [19], [20] define a style recon-

struction loss as the squared Frobenius norm of the difference

between the Gram matrices computed by deep feature maps.

Previous works usually adopt the perceptual loss as an off-the-

shelf module. In this paper, we analyze the perceptual loss for

the GAN inversion comprehensively. We demonstrate that no

down-sampling for the input is critical to reconstruct image

details for GAN inversion.

GAN Inversion. Based on GANs [36]–[39], there are two

mainstream approaches for GAN inversion [40]: (i) learning

an encoder to map a given image to the latent space; and (ii)

optimizing a randomly initialized latent code using gradient

descent. The encoder-based methods are fast but compromise

image quality [16], [41]–[48]. The optimization-based meth-

ods are time-consuming but produce high-fidelity results [11],

[12], [14], [15], [25], [29], [47], [49]–[58]. Inversion is an

effective method for image manipulation and restoration [14]–

[16]. For example, Abdal et al. [11], [25] propose to embed a

Reconstructed non-square image, optim(w,n) Real image

Reconstructed image, optim(w) Reconstructed image, optim(w,n)

Fig. 4. Illustration of GAN inversion. Style-INR-GAN enables reconstruction
of non-square images via GAN inversion. The latent code w is responsible for
reconstructing low-frequency contours. The noise maps n enable the genera-
tion of high-frequency details. optim(w): only optimizing w. optim(w,n):
optimizing w and n simultaneously. For the non-square image, the real image
is highlighted with a green bounding box.

given image into the latent space W+ of StyleGAN, enabling

semantic image editing to existing photographs. PULSE [14]

performs super resolution for face images by traversing the

high-resolution natural image manifold modeled by a pre-

trained generator of GANs. Chan et al. [16] propose an

encoder-bank-decoder architecture to leverage rich priors en-

capsulated in a pre-trained GAN. In this paper, we leverage

GAN inversion to do cross-domain image synthesis. We de-

velop a post-processing step to improve the quality of the

mixed image.

Image-to-Image Translation. Image-to-image translation

aims to transfer input images from the source domain to

the target domain [59]–[66]. However, creators are more

concerned with creating images of new domains. In particular,

given two images from source and target domains respectively,

cross-domain image synthesis aims to merge this two images

to generate an image of a novel domain. Style mixing [2] is

an effective method to merge images from the same domain.

However, because a generator can only generate images of

a domain, style mixing cannot merge images from different

domains. Layer swapping [28], [67] supports generating im-

ages in a new domain, but the synthesized images only have a

single style and are susceptible to background noise. We aim

to address these challenges: creating diverse styles of images

while preserving semantic similarity of the source image.

III. METHOD

In this section, we first introduce a Style-INR-GAN model

that can output images of arbitrary resolution and aspect
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Fig. 5. The overall flowchart of our method. HRInversion combined with
Style-INR-GAN has the ability to invert images of arbitrary resolution and
aspect ratio. Based on our studies on perceptual losses, we propose a local
style optimization algorithm capable of synthesizing clean and semantically
preserved cross-domain images. We also introduce a quality measure named
ID retrieval for face stylization algorithms.

ratio. We also present a mathematical form of GAN inversion

(Sec. III-A). Based on the pretrained Style-INR-GAN, we

study the influence of perceptual losses on GAN inversion

in detail (Sec. III-B). We find that the devil lies in details

for achieving satisfactory performance. We also observe that

high-level features of VGG help align the semantics of images

without degrading the background. Therefore, in Sec. III-C, we

propose a post-processing algorithm that exploits high-level

perceptual losses to refine the quality of synthesized cross-

domain images. In Sec. III-D, we introduce a quality measure

named ID retrieval for face stylization algorithms. To help

readers quickly grasp the structure of the paper, we illustrate

the overall flowchart of our method in Fig. 5.

A. Style-INR-GAN and GAN Inversion

Style-INR-GAN. As shown in Fig. 3, we remould Style-

GAN2 [3] to enable it to generate images of arbitrary aspect

ratio and size. We append an implicit neural representation

(INR) network [68]–[70] after the synthesis network of Style-

GAN2. Specifically, the INR network includes a grid sampling

layer, which samples features at (x, y) coordinates from the

output feature maps of StyleGAN2. Then, a concatenating

layer concatenates features and coordinates together, followed

by a 3-layer MLP to map the concatenated features to the

RGB space. The INR network can output images of arbitrary

aspect ratio and resolution, so it is suitable for GAN inversion

to invert non-square images (see an example in Fig. 4). We

name the model Style-INR-GAN, on which the experiments

in this paper are based.

GAN Inversion. Given an image x ∈ X , GAN inversion

aims to infer a latent code z ∈ Z , such that G(z) and x are

similar under a metric d(·) (G is a pre-trained generator). In

this paper, we adopt W+ [11] space of StyleGAN2 because

such space usually leads to high-quality inverted images. The

inversion can be formulated as a minimization problem:

min
w,n

d [G(w + ϵ,n),x] + λmsedmse [G(w + ϵ,n),x] , (1)

where w ∈ W+ can be initialized with the average latent code

w̄. n denotes the noise variables of StyleGAN2, encoding

high-frequency details [25]. ϵ is a random Gaussian noise

to facilitate optimization. Its dimension is equal to w and

variance gradually decreases with iterations [4], [71]. d(·)
denotes a metric function measuring the difference between

the synthesized image and the real image. dmse(·) means pixel-

wise MSE loss.

Eq. (1) can be solved by gradient descent, which usually

takes a few minutes for an image. We provide an example of

GAN inversion to illustrate the role of w and n. As shown

in Fig. 4, it is apparent that w is responsible for representing

low-frequency contours and n is for high-frequency details. w

is more editable than n because w encodes more semantics

than details.

B. HRInversion: The Devil Lies in Details

Relu-based Perceptual Loss. GAN inversion usually adopts

perceptual losses as the metric function. In contrast to MSE,

perceptual losses utilize a pre-trained VGG model to extract

features and compute the loss in the feature space. Previous

commonly used perceptual losses [11], [21] extract features

from relu layers, which are sparse. Besides, most GAN inver-

sion methods usually down-sample the input to 2562 resolution

before passing the high-resolution images through the VGG

network [11], [25], [27]. Thus the VGG relu-based perceptual

loss is given by:

d(relu)(x̂,x) =
∑

l

||λl

[

φrelu
l (ϕ(x̂))− φrelu

l (ϕ(x))
]

||22,

(2)

where x̂ and x are the reconstructed and target image, respec-

tively. φrelu
l (·) denotes the feature maps of the lth relu layer

of VGG. λl is the coefficient for the lth layer. ϕ(·) represents

the down-sampling operation. The reason for down-sampling

is that VGG [72] is pre-trained on ImageNet [26] at 2242

resolution. However, the images to be inverted are usually

of higher resolution (e.g., 10242 in this paper). Such scale

inconsistency will deteriorate PSNR (see Tab. II).

Conv-based Perceptual Loss. It has been noticed that

jointly optimizing the latent code w and the noise maps n re-

sults in a lot of high-frequency artifacts [25] (see Fig. 1b). We

find that the key to eliminating artifacts and restoring image

details lies in not down-sampling the input of the perceptual

loss. As shown in Fig. 1d, no down-sampling allows GAN

inversion to restore the details of the original image while

avoiding artifacts. Moreover, we also test other perceptual

losses such as ResNet and transformer-based perceptual losses.

No down-sampling also yields better results (please refer to

Sec. IV-B for details).

On one hand, for high-resolution GAN inversion, if we

down-sample the input, it will cause high-frequency artifacts

on the reconstructed image. On the other hand, if we do not

down-sample the input, the perceptual loss suffers from a scale

inconsistency problem (thus yielding suboptimal PSNR) be-

cause the perceptual network is pre-trained on low-resolution

images. We find that features from VGG convolutional layers

are more robust to scale than features from relu layers. To

avoid high-frequency artifacts while attenuating the influence

of scale, we propose a perceptual loss named HRInversion

which does not down-sample the input and computes the

perceptual loss using features of convolutional layers.

For HRInversion, the pre-trained VGG model comes from

the timm library [73]. We carefully selected five convolutional
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layers whose names are features 2, features 7, features 14,

features 21, and features 28, respectively, covering both low-

level and high-level layers. Thus our VGG conv-based percep-

tual loss is defined as

d(conv)(x̂,x) =
∑

l∈{2,7,14,21,28}

||λl [φ
conv
l (x̂)− φconv

l (x)] ||22,

(3)

where x̂ and x are the reconstructed and target image,

respectively. φconv
l (·) denotes the feature maps of the lth

convolutional layer of the pre-trained VGG. λl are set to be

0.0002, 0.0001, 0.0001, 0.0002, and 0.0005, empirically.

High-level Perceptual Loss. We study the nature of

perceptual losses in detail through extensive experiments

(see Sec. IV-G). Layer-wise diagnosis of perceptual losses

enables us to discover that the high-level features of perceptual

models concentrate on semantic details rather than pixels. This

prompts us to propose a high-level perceptual loss, dh(·),
which is dedicated to semantic alignment rather than pixel

alignment. The high-level perceptual loss is defined as:

dh(x̂,x) =
∑

l∈{21,28}

||λl [φ
conv
l (x̂)− φconv

l (x)] ||22, (4)

where dh(·) only uses two top convolutional layers of VGG

so that it can align images semantically without degrading the

background. In what follows, we propose a post-processing al-

gorithm that exploits the high-level perceptual loss to improve

the quality of cross-domain images.

C. Cross-domain Face Synthesis

Given two face images xs and xt from source and target

domains respectively, we aim to synthesize an image of a novel

domain. The common inversion-based method consists of two

steps: (i) projecting the images into the latent space; and (ii)

mixing latent codes or models. This method is susceptible to

noise and at the risk of losing the semantics of the source

image. In what follows, we propose a post-processing step to

deal with these issues.

a) Projecting xs and xt into the W+ space: According

to Eq. (1), we get

ws = min
w

d(conv) [Gs(w + ϵ),xs] + λmsedmse [Gs(w + ϵ),xs] ,

wt = min
w

d(conv) [Gt(w + ϵ),xt] + λmsedmse [Gt(w + ϵ),xt] ,

(5)

where w ∈ W+ [11] is the latent code to be solved, and ϵ is

a random Gaussian noise to facilitate optimization. d(conv)(·)
is our conv-based perceptual loss defined in Eq. (3). Gs and

Gt are generators trained on source and target domain where

the Gt is fine-tuned from Gs. Note that we do not use noise

variables n because it is less editable than the latent code w.

b) Blending parameters and latent codes: We adopt

linear interpolation to mix generators and latent codes, respec-

tively. The mixing methods are given by

Gm = lerp(Gs, Gt, λ) = Gs + λ(Gt −Gs), (6)

wm = lerp(ws,wt, λ) = ws + λ(wt −ws), (7)

where 0 ≤ λ ≤ 1 is the coefficient of linear interpolation.

lerp(Gs, Gt) means to do linear interpolation for all parame-

ters of the generators. By default, λ is set to 0.2 for b4-b64

and 0.7 for b128-b1024. The same setting applies to the λ

of w. Note that layer swapping is a special case of Eq. (6),

where it swaps part of the generator parameters according

to the resolution level [28]. Given a source image xs, layer

swapping only synthesizes images of a single style because

the latent code ws is fixed (please see Fig. 2a). If we apply

layer swapping to latent codes as well, we can get various

styles of images, as shown in Fig. 2b. In this paper, we adopt

linear interpolation as the mixing method because it is flexible

for adjusting the degree of mixing.

Due to the outstanding nature of the StyleGAN, the recon-

structed image Gm(wm) is probably already on the natural

image manifold. However, Gm(wm) may lose the pose and

semantics of the source image, xs, as shown in Fig. 2c.

To make matters worse, Gm(wm) may hallucinate some

visual noise that do not exist in xs and xt, leading to

visually disappointing results. We hope to obtain clean and

semantics-preserved images of a new domain. Therefore, a

post-processing step is required.

c) Post-processing by local style optimization: Gm(wm)
already contains some semantic attributes of xs and xt. We

hope to amend wm so that Gm(wm) maintains current style,

restores the lost pose and semantics of xs, and removes noise.

This is achieved by a post-processing step. In particular, let

wm be the base latent code. We introduce a new optimization

variable wopt, which is initialized to small random numbers

around zero. The objective function is defined as

min
wopt,n

dh [Gm(wm +wopt + ϵ,n),xs] + λreg||wopt||
2
2, (8)

where wm ∈ W+ is the mixed latent code and keeps

fixed. wopt and n are variables to be optimized. n are

the noise variables of StyleGAN2. λreg is the coefficient

of L2 regularization. dh(·) is the high-level perceptual loss

defined in Eq. (4), which only uses the high-level convolutional

features of the VGG network. As a result, dh(·) focuses on

semantic alignment rather than pixel-wise alignment, which

is critical for restoring semantics while avoiding deteriorating

background (please see Sec. IV-G for details). We optimize

both wopt and n using the same Adam optimizer. wopt is

to restore pose and semantics, and n to finer details. We

empirically find that the contribution of n is negligible and

the main contribution comes from wopt. In the following, we

omit notation n for simplicity.

We adopt two constraints to ensure that wm+wopt is always

around wm. First, we only choose partial latent codes instead

of all to optimize, named selective optimization. In particular,

wm contains a total of 18 latent codes for StyleGAN2 at

1024 × 1024 resolution. It is acknowledged that the early

and middle layers control the pose and semantic attributes

of the generated images, and the last layers control the color

scheme [29], [30], [75]. Therefore, we can only optimize latent

codes of early layers (e.g., {wi
opt|i = 0, 1, 2, 3, 4}) to adjust

the pose and semantics of Gm(wm+wopt) while keeping the

current style unchanged.
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Real image in2562, optim(w) in2562, optim(w,n) in10242, optim(w,n)

(a) VGG relu-based perceptual loss

in2562, optim(w,n) in2562, optim(w) in2562, optim(w,n) in10242, optim(w,n)

(d) ResNet50-based perceptual loss (b) VGG conv-based perceptual loss

in2242, optim(w,n) in2562, optim(w) in2562, optim(w,n) in10242, optim(w,n)

(e) DeiT-based perceptual loss (c) Randomly initialized VGG conv-based perceptual loss

Fig. 6. Jointly optimizing w and n (i.e., optim(w,n)) recovers more detail, but suffers from high-frequency artifacts when down-sampling the input of
perceptual losses. No down-sampling eliminates high-frequency artifacts but deteriorates PSNR (see (a) and (b)) for the pretrained VGG perceptual network.
Note that the VGG conv-based perceptual loss is less affected by the scale shift issue than the VGG relu-based perceptual loss, namely 32.09−31.91(0.18dB ↓)
vs. 31.14 − 30.22(0.92dB ↓). Interestingly, the randomly initialized VGG does not suffer from scale shift problem but it induces non-smooth artifacts, as
shown in the green bounding boxes in (c). Please zoom in to see details. (e) DeiT [74] is a pre-trained transformer model whose input is at 224 × 224
resolution, suffering from lots of artifacts. in2562: input at 2562 resolution. Please refer to Sec. IV-B for details.

Second, we apply L2 regularization to wopt, which ensures

that wm + wopt does not become too specialized to cause

overfitting. Selective optimization and L2 regularization ensure

that wm + wopt is always around wm, so as to retain the

current style of Gm(wm). Meanwhile, optimizing partial latent

codes helps restore the pose and semantics of the source

image. Therefore, we call this step local style optimization

(LSO). LSO is a post-processing step that does not require

too many iterations. In practice, it is efficient and achieves

stable results with only 50 iterations.

D. Performance Measure

Before presenting the experiments, we introduce a quality

measure for face stylization approaches. Most related works

adopt FID between generated images and style images to

measure the performance of the algorithm. However, we

consider it insufficient as it cannot assess the similarity of face

identities between content and stylized images. If the stylized

image loses the face identity of the content image, we consider

the result meaningless. To evaluate whether the stylized image

is consistent with the content image in terms of face identity,

inspired by FaceShifter [76], we propose a metric named ID

retrieval. The details of ID retrieval are as follows.

ID retrieval. We select the first 100 images of CelebA-

HQ [77] as content images, which are not seen by the model

during training. We randomly synthesize 50 stylized images

for each content image, so there are 5000 stylized images in

total. We extract face identity vectors for content and stylized

images with a pre-trained face recognition network [78]. For

each stylized image, we search for its nearest face in the

content images and check if the nearest face matches the orig-

inal content face. The distance adopts the Euclidean distance

between the face identity vectors. ID retrieval is the accuracy

rate equal to the proportion of successfully matched images

to all stylized images. To facilitate others using this criterion

to evaluate their algorithms, we have released the ID retrieval

implementation at https://github.com/PeterouZh/ID retrieval.

IV. EXPERIMENTS

We perform extensive experiments to verify the effec-

tiveness of our method. First, we point out that no down-

sampling is the key to avoiding high-frequency artifacts for

GAN inversion, and propose to employ convolutional features

to calculate the perceptual loss to reduce the impact of

scale inconsistency (see Sec. IV-B). Second, we quantitatively

study several perceptual losses and find that relu features

are indeed more sensitive to scale than convolutional features

(see Sec. IV-C). In Sec. IV-D, we show that LSO is an effective

post-processing step to remove noise and preserve style qual-

itatively. In Sec. IV-E, we adopt ID retrieval to quantitatively

evaluate our method. Finally, we show applications of HRIn-

version for high-resolution panoramic images and 3D-aware

GAN inversion (see Sec. IV-F). For reproduction purpose, we

will release code and pre-trained models at our github open

source site https://github.com/PeterouZh/HRInversion.
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Content Toonify [28] Huang et al. [67] CycleGAN [61] b32–b1024 b64–b1024 b128–b1024 LSO (Ours)
Layer swapping

Fig. 7. Top: LSO helps restore semantics of the content image, align the pose, and remove noise existing in the mixed images. More importantly, LSO
does not change the current style of the mixed image. Middle: Our method is capable of synthesizing images of various styles for a content image. Bottom:
Other methods lose the semantics of the content and suffer from disturbing noise. In contrast, our method supports different styles while preserving more
face identities. b32-b1024: swap the blocks of the source generator from block b32 to b1024 with the corresponding blocks of the target generator.
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Content Refercence Ours DualStyleGAN [65]

Fig. 8. As a reference-based method, the quality of the stylized images
synthesized by our method is influenced by the quality of the reference
image. As demonstrated in the bottom images, blurred reference images may
deteriorate the quality of the stylized images. This phenomenon also exists
for DualStyleGAN [65].

A. Experimental Details

We first train Style-INR-GAN on FFHQ [2] for 25, 000k

images with the default setting of StyleGAN2-ADA [4]. FFHQ

contains 70, 000 face images at 1024 × 1024 resolution. We

augment the training images with horizontal flipping. The

model pre-trained on FFHQ is regarded as the source model.

We employ transfer learning to obtain the target model, where

the source model is fine-tuned on the target domain dataset

containing 317 Disney-style images [28]. We fine-tune the

model for only 1000k images with ADA augmentation as fine-

tuning converges faster than training from scratch. The pre-

trained perceptual models come from the timm library [73].

Tab. I presents more details of the method. We deliver two

messages. First, the training time of Style-INR-GAN is slightly

longer than that of StyleGAN2 (7d 20h vs. 6d 3h, using

8*V100 GPUs) because Style-INR-GAN has an additional

INR sub-network compared to StyleGAN2. Style-INR-GAN

is slightly worse than StyleGAN2 in terms of FID (3.26 vs.

2.94). The difference may be because we did not employ

path length regularization [3] during training. Nonetheless,

Style-INR-GAN is more flexible than StyleGAN2 because it

supports inverting non-square images. Second, our face styl-

ization method belongs to optimization-based methods. Given

a content image, we need to project it into the latent space of

GANs. Therefore, its time efficiency is worse than encoder-

based methods. However, our method outperforms encoder-
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Fig. 9. Visual comparison of reference-based face stylization. StarGANv2
overfits the reference images and ignores the content images. DualStyleGAN
is good at transferring style but not at preserving face identities, especially for
the Anime style. The strength of our method lies in preserving face identities.

TABLE I
DETAILS OF TRAINING AND INVERSION.

Training
(FFHQ)

Resolution GPUs Batch size GPU mem
Time

(25, 000 kimg)
FID

StyleGAN2 [3]
10242 8 32

8.3 GB 6d 03h 2.94
Style-INR-GAN 8.9 GB 7d 20h 3.26

Style-INR-GAN
(fine-tuning on disney)

10242 8 32 8.9 GB
8h 43m

(1, 000 kimg)
17.8

Resolution GPUs Batch size GPU mem Iterations Time

Inversion

10242 1 1
5.89 GB 1, 000 2m 18s

LSO 5.38 GB 50 8s
Generation 0.78 GB - 32ms

TABLE II
TESTING PERCEPTUAL LOSSES ON CELEBA-HQ AT 1024× 1024
RESOLUTION WITH 1000 ITERATIONS FOR GAN INVERSION. NO

DOWN-SAMPLING CONSISTENTLY IMPROVES THE PERCEPTUAL METRIC,
LPIPS. PLEASE REFER TO SEC. IV-C FOR DETAILS.

Method
Input

resolution
PSNR ↑

(dB)
LPIPS ↓

optim(w) Image2StyleGAN [11] 256× 256 24.36 0.4226
optim(w,n) Image2StyleGAN++ [25] 256× 256 30.44 0.3590

Relu-based

LPIPS [18] 256× 256 31.69 0.2587
LPIPS 1024× 1024 31.24 0.0591

VGG relu 256× 256 31.04 0.3533
VGG relu 1024× 1024 30.62 0.0523

Conv-based

VGG conv 256× 256 31.62 0.3394
VGG conv 1024× 1024 33.16 0.0703

ResNet50 256× 256 32.14 0.3285
ResNet50 1024× 1024 32.87 0.1346

based methods in preserving face identities of content images.

In Sec. IV-E, we adopt ID retrieval to quantitatively compare

our method with encoder-based methods (StarGANv2 [63]

and DualStyleGAN [65]). We find that current encoder-based

methods are still unsatisfactory in preserving face identities.

B. Perceptual Losses: Diagnostic Studies

We investigate the properties of several perceptual losses:

TABLE III
QUANTITATIVE COMPARISON OF REFERENCE-BASED FACE STYLIZATION.
HIGHER ID RETRIEVAL INDICATES THAT THE STYLIZED IMAGES RETAIN

MORE FACE IDENTITIES. LOWER FID DOES NOT NECESSARILY IMPLY A

BETTER APPROACH BECAUSE THE STYLIZED IMAGE MAY HAVE LOST THE

FACE IDENTITY OF THE CONTENT IMAGE. WE PROVIDE QUALITATIVE

RESULTS AND EXPLANATIONS IN FIG. 9.

Datasets Methods ID Retrieval↑ FID↓ (10242) FID↓(2562)

Disney cartoon [28]
StarGANv2 [63] 1.06% - 39.35

DualStyleGAN [65] 11.98% 23.72 25.91

Ours 60.30% 56.80 65.29

Caricature [79], [80]
StarGANv2 0.98% - 37.03

DualStyleGAN 21.64% 22.54 25.56

Ours 80.76% 48.71 49.65

Anime [81]
StarGANv2 1.10% - 40.13

DualStyleGAN 1.34% 12.63 14.29

Ours 7.52% 53.81 58.62

a) Perceptual loss without down-sampling: Abdal et

al. [25] found that the VGG relu-based perceptual loss is in-

compatible with noise maps n. For example, Fig. 6a (middle)

suffers from lots of high-frequency artifacts. We find that the

reason for high-frequency artifacts is that previous methods

generally down-sample the input of 1024 × 1024 resolution

to 256 × 256 resolution. No down-sampling eliminates high-

frequency artifacts, achieves better perception quality, but

deteriorates PSNR, as shown in Fig. 6a (right). We refer

to this phenomenon as a scale inconsistency problem [11],

[27] in that the VGG model is trained for images at lower

resolution. We also have tested other types of perceptual

networks such as ResNet50 [82] and DeiT [74] (cf . Fig. 6d

and 6e). DeiT [74] is a pre-trained transformer model whose

input is at 224×224 resolution. We found that down-sampling

the input consistently leads to high-frequency artifacts.

b) VGG conv-based perceptual loss: We notice that the

previous VGG perceptual loss usually uses the feature maps of

relu layers. The output feature maps of relu are sparse, where

most of the elements are zero. This limits the gradients of the

backpropagation, which may limit the perceptual ability [83].

Fig. 6b shows the results of the VGG conv-based perceptual

loss 2. For VGG conv-based perceptual loss, down-sampling

also causes high-frequency artifacts. The reconstructed image

without down-sampling is of high perception quality and its

PSNR is better than that of the VGG relu-based perceptual

loss (Fig. 6b vs. Fig. 6a). Nevertheless, no down-sampling

deteriorates the PSNR for the VGG conv-based perceptual

loss. However, the VGG conv-based perceptual loss is less

affected by the scale inconsistency issue than the VGG relu-

based perceptual loss, namely 32.09 − 31.91(0.18dB ↓) vs.

31.14− 30.22(0.92dB ↓).

c) Randomly initialized VGG perceptual loss: Liu et

al. [84] claimed that using a randomly initialized network as

the perceptual model could achieve a similar effect to the pre-

trained network. The randomly initialized network is scale-

independent because the weights of the network have not been

trained on images at a specific resolution. Fig. 6c shows the re-

constructed images obtained using a randomly initialized VGG

2Be careful that the convolutional layer and the relu layer share the same
output memory by default in the PyTorch VGG implementation (i.e., the
inplace argument of relu is true).
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(a) Real image

(b) HRInversion result (at 441× 2048 resolution) (c) Real image

(d) HRInversion result (at 1677× 6143 resolution)
Fig. 10. HRInversion results for ultra-high resolution images with arbitrary aspect ratio. We adopt the generator of Style-INR-GAN because it can output
images of arbitrary resolution and aspect ratio, and thus is friendly to inverting non-square images. The perceptual loss adopts the features of the pre-trained
VGG convolutional layers and the input is not down-sampled.

Style image Reconstructed G(ws) Content image Reconstructed G(ws,nc)
Fig. 11. An example of style transfer using HRInversion. Given a style image, we use GAN inversion to get the latent code ws. The noise maps n use the
default noise maps of the generator and remain fixed. The reconstructed image G(ws) cannot recover the details of the original image because the style image
is not on the manifold of the training data. For the content image, we initialize the latent code with ws, keep the latent code unchanged, and only optimize
noise maps. Because noise maps have the ability to reconstruct image details, the reconstructed image G(ws,nc) achieves the effect of style transfer.

conv-based perceptual loss. Down-sampling still causes high-

frequency artifacts. To our surprise, the reconstructed image

without down-sampling (Fig. 6c (right)) are even better than

those of the pre-trained models in terms of PSNR. However,

although the randomly initialized network has a higher PSNR,

it causes a lot of non-smooth artifacts. Please zoom in to

see the artifacts in the green bounding boxes of Fig. 6c. In

summary, the properties of randomly initialized models and

pre-trained models are different. Randomly initialized models

are not specific to images at a specific resolution. However,

randomly initialized models will induce non-smooth artifacts,

deteriorating human perception quality.

C. Perceptual Losses: Quantitative Results

To quantitatively evaluate different perceptual losses, we

adopt CelebA-HQ [77] at 10242 resolution as the testbed and

use PSNR and the perceptual metric, LPIPS [18], to measure

the similarity between the original images and the reconstruc-

tions. Table II shows the results. First, jointly optimizing latent

code w and noise maps n significantly improves PSNR (Im-

age2StyleGAN vs. Image2StyleGAN++). Second, relu-based

perceptual losses are more sensitive to scale than conv-based

perceptual losses. For example, the LPIPS and VGG relu

achieve worse PSNR at 10242 resolution than at 2562 res-

olution. In contrast, both VGG conv and ResNet50 achieve

better PSNR at 10242 resolution than at 2562 resolution.

Third, no down-sampling consistently improves the perceptual

metric, LPIPS. This is in line with human perception, as down-

sampling causes artifacts despite potentially high PSNR. Last

but not least, we find that LPIPS is a biased metric. VGG-

based perceptual losses help to improve the LPIPS metric. For

example, the VGG-based perceptual losses (LPIPS, VGG relu,

and VGG conv) achieve better LPIPS than the ResNet-based

perceptual loss at 10242 resolution. It is reasonable because

LPIPS is computed based on the VGG model.

D. Cross-Domain Image Synthesis: Qualitative Results

We validate the effectiveness of local style optimization

(LSO). LSO is a post-processing step that provides us with an

opportunity to repair the initially unsatisfactory mixed images.

As shown at the top of Fig. 7, LSO effectively restores the

semantics of the input image for the mixed image, aligns the

pose, and removes noise existing in the mixed images. These

effects are completed without changing the style of the mixed

images. Since we mix generator parameters and latent codes

simultaneously, we can synthesize images of various styles for

an input image by constructing a style gallery. Fig. 7 (middle)

shows a number of different styles of images synthesized by

our method.

Fig. 7 (bottom) presents some results for other methods.

The problem of other methods is that they are one-shot and
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Blurry (see the hair) Sharp (see the hair)

Real image MSE b1024 b512 b256 b128 b64 b32 b16 b8

Fig. 12. Layer-by-layer analysis for the perceptual loss. MSE is a pixel-wise loss and the reconstructed image tends to be blurry. The low-level features of
the perceptual loss (from block b1024 to b256) play a role similar to MSE, and neither can reconstruct the details of the hair. The high-level features (from
block b128 to b8) help restore high-frequency details such as the hair texture. b1024 denotes that the features are at 10242 resolution.

thus uncontrollable. It is possible to lose the semantics of the

input image and suffer from a lot of noise. We also show the

results of layer swapping, which are not very satisfactory. We

think there are two problems with layer swapping: (i) it is not

easy to determine at which layer to start the swapping; and (ii)

it only exchanges the weights of the last layers and ignores

the weights of the early layers, resulting in incomplete style

fusion compared to interpolating all the weights. Although

interpolating all weights may change the semantics of the

mixed image, LSO alleviates this problem by finetuning the

early latent codes.

Our method belongs to reference-based style transfer, and

the quality of the stylized images are affected by the quality of

the reference images. As shown in Fig. 8, when the reference

image is sharp, the stylized image is also sharp. If the reference

image is of poor quality, the stylized image becomes blurred.

This phenomenon also exists for DualStyleGAN [65], the

SOTA method of face toonification.

E. Cross-Domain Image Synthesis: Quantitative Results

We compare with state-of-the-art methods StarGANv2 [63]

and DualStyleGAN [65] on three datasets Disney cartoon [28],

Caricature [79], [80], and Anime [81]. The data processing

pipeline follows DualStyleGAN. We use ID retrieval to assess

how well the algorithm retains face identities. We also provide

FID to measure the distance between the distribution of

stylized images and the reference images. Note that the default

resolution of StarGANv2 is 256×256. We trained StarGANv2

with the official default settings, so we only provide results

at 256 × 256 resolution for StarGANv2. Nevertheless, the

difference in resolution does not affect the ID retrieval criterion

because the images will be resized to 112× 112 before being

passed to the face recognition model.

As shown in Tab. III, the ID retrieval values of StarGANv2

are close to the random value of 1% on all three datasets (the

total number of content images is 100, so the random value

for ID retrieval is 1%). This indicates that the synthesized

images of StarGANv2 completely lose the face identities of

the content images. DualStyleGAN achieves the best FID on

all three datasets, indicating that the distribution of images

synthesized by DualStyleGAN is close to that of the reference

images. However, the ID retrieval of DualStyleGAN is inferior

(e.g., 11.98% on Disney cartoon and 21.64% on Caricature).

To make matters worse, the ID retrieval of DualStyleGAN on

Anime is only 1.34%, which is close to random. ID retrieval

quantitatively reveals the flaw that DualStyleGAN may lose

the face identities of content images.

In contrast, our method consistently achieves the best ID

retrieval on all three datasets. Nonetheless, the FID metric of

our method remains to be improved. Our results indicate that

there is a trade-off between ID retrieval and FID. We still

look forward to better methods for this field to improve both

metrics simultaneously. Fig. 9 shows the qualitative results.

It is evident that StarGANv2 overfits the reference images

and ignores the content images. The results of DualStyleGAN

are similar in style to the reference images, but lose the face

identities of the content images, especially for the Anime style.

Our results take into account both preserving the face identities

of the content images and transferring the style of the reference

images.

Overall, our results reveal the properties of current methods.

For example, StarGANv2 nearly completely ignores the face

identity of the content image. DualStyleGAN is good at

transferring style but not at preserving face identities. The

strength of our method lies in preserving face identities. We

have released the evaluation code of ID retrieval. We believe

it will facilitate future research.

In addition, we also use the perceptual metric, LPIPS, to

measure the similarity between the stylized and the content

images. We select 70 real images from CelebA-HQ and

synthesize 187 stylized images for each real image. Therefore,

there are 13, 090 stylized images in total. As shown in Fig. 13,

LSO improves LPIPS for most images. Some exceptions

appear at the points of large LPIPS (highlighted by the blue

ellipse), where the semantics between the mixed and input

images are quite different. We conjecture the reason is that

LSO is a locally optimizing approach, so it may fail when

the semantic gap is large. Overall, LSO is an effective post-

processing technique for most cross-domain images.

F. Applications of HRInversion

To reconstruct high-definition images while avoiding the

scale inconsistency problem, we propose HRInversion which

uses convolutional features for the perceptual loss without

down-sampling the input. We verify the effectiveness of

HRInversion on ultra-high resolution panoramas and 3D-aware

GAN inversion respectively.
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Fig. 13. LSO improves the perceptual metric, LPIPS.
Each dot corresponds to a cross-domain image. After
LSO, most of the images have been improved in terms
of LPIPS (most points are below the red diagonal).

Content

Refercence

−→ Post-processing iterations (LSO) −→

Mixed image Low-level pixel alignment (VGG perceptual loss with low-level features)

Mixed image Low level + high-level (VGG perceptual loss with all features)

Mixed image High-level semantic alignment (VGG perceptual loss with high-level features)

Fig. 14. Using high-level perceptual loss for LSO and aligning images in semantic space. Top: The low-level features of the perceptual loss
align images in a pixel-wise manner as MSE does. The low-level perceptual loss cannot fix the artifacts of the mixed images (see the green
bounding box) and causes a lot of background noise after LSO (see the red bounding box). Middle: Using all features can remove the artifacts
of the mixed image, but low-level features still deteriorate the background. Bottom: High-level features align the mixed image with the content
image at the semantic level, remove noise, and do not deteriorate the background.

a) HRInversion for Ultra-High Resolution Images: To

project ultra-high resolution panoramas, we train an Style-

INR-GAN using transfer learning on DIV2K dataset [85].

The model is initialized with the source model pre-trained

on 1024× 1024 FFHQ dataset. Style-INR-GAN can produce

images of arbitrary resolution and aspect ratio, and is friendly

to inverting non-square images. As shown in Fig. 10, we

show two panoramas with different resolutions, proving the

effectiveness of HRInversion. For the ultra-high resolution

image (Fig. 10c), which contains 6143 × 1677 pixels, the

reconstructed image is impressive (Fig. 10d). Compared with

the original image, the color of the reconstructed image is

slightly changed (see the color of the trees in Fig. 10c

and 10d). We conjecture that the reason is that the latent

code w is injected through channels and is responsible for

the global color scheme of the image. The spatial noise maps

n are responsible for reconstructing the high-frequency details

of the image. Therefore, the color of the trees are affected by

the global color of the image. We can use this property to do

style transfer. As shown in Fig. 11, we combine the latent code

ws of the style image and the noise maps nc of the content

image, so that the reconstructed image G(ws,nc) achieves the

effect of style transfer.

b) HRInversion for 3D-aware GAN inversion: We

trained a 3D-aware GAN [86] and then use the generator

to do 3D-aware GAN inversion. The perceptual loss adopts

the HRInversion that uses VGG conv-based perceptual loss

and the input is not down-sampled. As shown in Fig. 15,

because the generator is 3D aware, we can reconstruct multi-

view images for a single real image using GAN inversion.

In addition to GAN inversion, as a perceptual loss, HRIn-

version can be applied to other scenarios such as super-

resolution and image restoration. To facilitate people using

HRInversion in their own tasks, we provide a minimal im-

plementation of the perceptual loss at our github open source

site https://github.com/PeterouZh/HRInversion.

G. Ablation Studies

We perform ablation studies for the perceptual loss and

local style optimization (LSO) to understand their individual

contributions.

a) Layer-wise diagnosis of perceptual loss: To under-

stand the properties of the perceptual loss in detail, we analyze

the loss layer by layer. Like DGP [15], we adopt the pre-

trained discriminator as the perceptual network because it has

feature maps of distinct resolution from 10242 to 82. It is

easy for the noise maps n to overfit the input image and

impede the analysis for the perceptual loss. Therefore we only

optimize the latent code w for this experiment. As shown

in Fig. 12, the MSE and the low-level features (from block

b1024 to b256 of the discriminator) help restore the low-

frequency information of the input image. The reconstructed

images are blurry (see the hair). The high-level features (from

block b128 to b8) help restore high-frequency details, such

as the hair texture. This is a bit counter-intuitive because the

higher the layer, the lower the feature resolution. However,

it is the low-resolution features that guide the generator to

synthesize detailed textures. This indicates that alignment in

semantic space (high-level features of the perceptual loss)

plays a more important role in reconstructing image details

than in pixel space (MSE, low-level features of the perceptual

loss).

b) Using high-level perceptual loss for LSO: We notice

that the mixed image and the original image tend to have

semantic correspondences rather than pixel correspondences. It

inspires us not to use pixel-wise losses such as MSE and low-

level perceptual losses when using LSO for post-processing.

As shown in Fig. 14 (top), we find that the low-level features of

VGG cannot remove the artifacts of the mixed image (see the

green bounding box). To make matters worse, the low-level

features deteriorates the background (see the red bounding

box) because they align images in a pixel-wise manner as

the MSE does. Using all features for the perceptual loss does

remove artifacts, but the background becomes worse after

LSO. Using only high-level features achieves the best results,

where LSO aligns images in semantic space and removes

noise.

c) Local optimization is critical: LSO employs two

strategies to improve the quality of the mixed images while

maintaining the style, namely optimizing only latent codes of

early layers and applying L2 regularization to the optimized

variables. We perform ablation studies to help understand the
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Real image Reconstructed images

Fig. 15. 3D-aware GAN inversion. We adopt HRInversion as
the perceptual loss. Given a single image, we can reconstruct it
from different viewpoints.

Content

Refercence

−→ Post-processing iterations (LSO) −→

Mixed image Optimizing latent codes of all layers

Mixed image Optimizing latent codes of early layers

Mixed image Optimizing latent codes of early layers with L2 regularization

Fig. 16. Local optimization is the key to LSO. Top: Directly optimizing latent codes of all layers degenerates the mixed image into the
content image. Middle: Optimizing only latent codes of early layers without L2 regularization retains the color scheme but loses the style
(see the eyes). Bottom: Optimizing only latent codes of early layers with L2 regularization achieves a satisfactory result, where it restores the
semantics while keeping the style of the mixed image unchanged.

Refercence Content All codes All codes
+ DC (K=5)

All codes
+ DC (K=30)

Early codes
+ DC (K=30)

Early codes

Fig. 17. Effect of direction constraints (DC). K=5 means that only the first
five eigenvectors are used as basis vectors. Using too few eigenvectors (K=5)
cannot restore semantics, and using too many eigenvectors (K=30) impairs
style. Optimizing only latent codes of early layers yields the best results
because it exploits the semantically hierarchical nature of the generator. All
codes: optimizing latent codes of all layers. Early codes: only optimizing
latent codes of early layers.

contributions of each component. As shown in Fig. 16, if we

directly optimize the latent codes of all layers, the mixed image

will degenerate into the input image. Optimizing only the

latent codes of early layers without L2 regularization retains

the color scheme of the mixing image but loses the style (see

the eyes). Optimizing the latent codes of early layers with L2

regularization aligns the semantics of the mixed image with

the input image while retaining the style.

d) Optimization Direction Constraints: We implement

a direction-constrained approach and compare it with our

approach that only optimizes the early latent codes. Specif-

ically, we use closed-form factorization [75] to obtain the

eigenvectors of the latent space of the mixed generator Gm.

Let ei ∈ R
512, i ∈ {1, 2, . . . , 512} denote eigenvectors and

e1 is the eigenvector corresponding to the largest eigen-

value. w represents the parameter to be optimized, w =
[w1, w2, . . . , wK ]T ∈ R

K ,K ≤ 512. The objective function

is given by

min
w,n

dh

[

Gm(wm +

K
∑

i=1

wiei + ϵ,n),xs

]

+ λreg||w||22, (9)

where wm ∈ W+ is the mixed latent code and keeps fixed. w

and n are variables to be optimized. n are the noise variables

of StyleGAN2. xs is the image of the source domain (namely,

the content image). dh(·) is the high-level perceptual loss.

λreg is the coefficient of L2 regularization. In such case, the

optimization direction is restricted to the subspace formed by

the basis vectors {ei}
K
i=1.

Fig. 17 presents the results. We deliver several messages.

First, directly optimizing latent codes of all layers leads to the

stylized images losing their style (third column). Second, using

only the first 5 eigenvectors can preserve the style but cannot

restore the semantics because the search space is too small

(fourth column). Third, using the first 30 eigenvectors restores

semantics but impairs style (column 5). In contrast, only

optimizing codes of early layers restores semantics without

compromising style (column 6 and 7). Furthermore, imposing

direction constraints does not significantly improve the results

of only optimizing latent codes of early layers (column 6 vs.

7). These results indicate that optimizing only latent codes of

early layers is important to preserve style while recovering

semantics.

V. CONCLUSION

This paper diagnoses perceptual losses comprehensively on

the GAN inversion task. We find that the input resolution of

the perceptual loss is important and propose to use the features

of convolutional layers to compute the perceptual loss to

attenuate the effect of scale. We apply HRInversion to a cross-

domain image synthesis task and propose a post-processing

approach, LSO, to improve the initially unsatisfactory stylized

images. Experiments validate that our approach is capable of

synthesizing images of various styles. Our approach reveals

that different layers of the perceptual loss play different roles.

It is necessary to adjust the perceptual loss according to

different tasks. We also apply HRInversion to other tasks

such as non-square image GAN inversion, style transfer, and

3D-aware GAN inversion, demonstrating its wide range of

applications.
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