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Abstract

The semantic controllability of StyleGAN is enhanced by

unremitting research. Although the existing weak super-

vision methods work well in manipulating the style codes

along one attribute, the accuracy of manipulating multi-

ple attributes is neglected. Multi-attribute representations

are prone to entanglement in the StyleGAN latent space,

while sequential editing leads to error accumulation. To

address these limitations, we design a Dynamic Style Ma-

nipulation Network (DyStyle) whose structure and parame-

ters vary by input samples, to perform nonlinear and adap-

tive manipulation of latent codes for flexible and precise at-

tribute control. In order to efficient and stable optimiza-

tion of the DyStyle network, we propose a Dynamic Multi-

Attribute Contrastive Learning (DmaCL) method: includ-

ing dynamic multi-attribute contrastor and dynamic multi-

attribute contrastive loss, which simultaneously disentangle

a variety of attributes from the generative image and latent

space of model. As a result, our approach demonstrates

fine-grained disentangled edits along multiple numeric and

binary attributes. Qualitative and quantitative comparisons

with existing style manipulation methods verify the superi-

ority of our method in terms of the multi-attribute control

accuracy and identity preservation without compromising

photorealism.

1. Introduction

Recent development in Generative Adversarial Networks

(GANs) has provided a new paradigm for realistic im-

age generation. As one of the most celebrated GAN

frameworks, StyleGAN and a series of upgraded works

[13, 14, 15], can produce diverse and high fidelity images

with unmatched photorealism. Due to the introduction of

scale-disentangled latent space, StyleGAN provides pos-
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Figure 1: The multi-attribute-conditioned image editing results

with our approach, achieved by manipulating the latent codes of

four different pre-trained StyleGAN2 models.

sibilities for flexible and controllable manipulation of at-

tributes.

Thus, one stream of research is to manipulate the latent

codes of unconditional GANs, without retraining the gener-

ator. By operating the code to walk in the StyleGAN latent

space, resulting in continuous changes of different degrees

of a single attribute. Manipulating individual attribute of

generated images has yielded satisfactory results [22, 5, 25].

However, performing edits along one attribute may lead to
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unexpected changes in other semantics due to entanglement

between different semantics in the latent space. Prior meth-

ods always produce semantic confusion when jointly ma-

nipulating multiple attributes. We analyzed several reasons:

1. The static structure of single-attribute sequential editing

is prone to error accumulation. E.g. InterfaceGAN [22], the

identity similarity drops sharply as the number of edited at-

tributes increases; 2. The static structure of multi-attribute

parallel [32, 5] input fails to adapt to random combinations

of attributes during inference. Since the structure and pa-

rameters are fixed after training, all attributes must be cal-

culated forward regardless of whether they are selected or

not; 3. Training parallel static structures requires simulta-

neously optimizing all attributes in one forward pass, which

makes learning disentangled latent space more difficult.

We argue that the style editing network should be able to

adapt to wide varieties of attribute configurations, and when

training the style editing network for multiple attribute ma-

nipulation, any biases of the distribution of attribute con-

figurations would easily result in systematic control errors.

Take realistic portrait editing as an example, for one case

we only change the hair color of the portrait. For another

case, we change both the hair color and age of the portrait.

We wish the two attribute configurations are sampled with

equal probability and are both well handled by the style

editing network. We made two efforts to address this is-

sue, we evenly sample the attribute configurations during

training instead of using static set of training samples. To

make this possible, we employ pre-trained knowledge net-

works to provide “on-the-fly” supervisions rather than using

static labels. In addition, we employ a dynamic style edit-

ing network consisting of multiple experts, each of which

is responsible for the manipulation of one attribute. We dy-

namically activate a subset of the experts based on whether

the corresponding attributes are edited or not. That means,

the structure and parameters of the style editing network

vary by different input samples. Experiments show that the

Dynamic Style Manipulation Network (DyStyle) that pro-

cesses each sample with data-dependent architectures and

parameters can well adapt to various types of attribute con-

figurations.

Although dynamic networks are usually more flexible

than static networks, they also require appropriate optimiza-

tion methods to play its performance. Therefore, we pro-

pose dynamic multi-attribute contrastive learning (DmaCL)

methods cooperate with better optimization of DyStyle. In

general, we perform contrastive constraints from the im-

age space and latent space of model. For generated im-

ages, we employ a variety of pre-trained classifications or

regressions to capture related attribute features. Dynamic

multi-attribute contrastor are proposed to ensure the other

attributes of the image are unchanged when optimizing ac-

tivated attributes. Meanwhile, we propose dynamic multi-

attribute contrastive loss to constrain the embeddings ex-

tracted by the expert network. It can perceive and discrimi-

nate the correlation and difference between the activated at-

tributes to ensure disentanglement during training. To make

the training of the DyStyle network easier, we adopt a novel

easy-to-hard training procedure in which the DyStyle net-

work is trained for editing a single attribute at a time, and

then trained for jointly manipulating multiple randomly-

sampled attributes. Generally speaking, our contributions

include:

• A Dynamic Style Manipulation Network (DyStyle)

is carefully designed to perform multi-attribute-

conditioned editing of the StyleGAN latent codes, im-

plementing adaptability to wide varieties of attribute

configurations.

• We propose the Dynamic Multi-Attribute Contrasive

Learning (DmaCL) method, which is applied to fully

optimize the dynamic neural network to realize the dis-

entanglement of image space and latent space.

• Comprehensive evaluations on various datasets (re-

alistic faces, comics, artistic portraits, animal faces)

demonstrate improved attribute control accuracy and

better identity preservation of our approach over exist-

ing static architectures. The improvements are more

significant when jointly manipulating the styles along

multiple attributes.

2. Ralated Work

2.1. Unconditional GANs

Generative Adversarial Network (GAN) is first intro-

duced by Goodfellow et al. [8], and has been one of the

most active fields in deep neural networks. One research di-

rection is to improve the GAN architectures, loss functions,

and training dynamics for improved quality, diversity and

stability of training. In terms of the GAN architectures, DC-

GAN [20], ProgressiveGAN [12], BigGAN [6] and Style-

GAN series [13, 14, 29, 30] architectures are the top known

architectures in history of development. We build our work

on StyleGAN2 [29], as it achieves the best photorealism.

2.2. Attribute Conditional GANs

Conditional GANs [33] have given rise to many im-

age manipulation applications. Unlike unconditional GANs

that take random noises as input, conditional GANs take

meaningful priors (e.g., attribute [32, 5], text [18, 40, 25],

3D model parameters [23], sketches [41, 39], label maps

[34, 38]) as input and synthesizes relevant images, thus of-

fering users a certain level of control.

Some of unsupervised methods [28, 37] uses Principal

Component Analysis (PCA) to learn the most important di-

rections. Although these methods can find some principal
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Figure 2: The framework and training losses of our multi-attribute-conditioned style editing approach. The Dynamic Network is trained

for attribute-conditioned image editing while the StyleGAN2 Generator, the Style Mapping Network and the Encoder are held fixed.

components with clear semantics, they need to be artifi-

cially defined. Unlike unsupervised methods, supervised at-

tribute conditional GANs usually associate attribute labels

to GAN latent space to manipulate image generation. In-

terFaceGAN [22] uses labeled data to learn a SVM to dis-

cover the separation plane and the directions of certain at-

tributes. StyleRig [23] employs a 3D morphable face mod-

els (3DMMs) [1], and a rigging network to map 3DMM’s

semantic parameters to StyleGAN’s input. Although Sty-

leRig generates very nice results for the manipulation of

head pose and illumination, the detailed control of other

facial attributes did not work. StyleFlow [5] seeks contin-

uous and nonlinear normalizing flows in the latent space

conditioned by attribute features. However, the training

of StyleFlow does not explicitly enforce the control accu-

racy of attributes, and the assumption of normal distribution

with respect to any attribute configuration does not always

hold due to data biases. StyleCLIP [18] introduces text-

aware CLIP [35] to generative models, thereby enriching

manipulable semantics. ISFGAN [32] proposes an implicit

style function to straightforwardly achieve multi-modal and

multi-domain image-to-image translation from pre-trained

unconditional generators.

3. Method

3.1. Framework

As shown in Figure 2, our method manipulates the ex-

tended latent code W+ using a Dynamic Style Manipula-

tion Network (DyStyle). The extended latent code W+ con-

sists of 18 different 512-dimensional vectors, one for each

input layer of StyleGAN2 generator [14]. The W+ can be

either mapped from a random Gaussian noise vector z ⇠
N(0, 1) with the Style Mapping Network of StyleGAN2

[14] or embedded from a real photograph with the image-

to-style encoder of pSp [21] or E4E [24]. The DyStyle net-

work takes an attribute specification and W+ as inputs and

predicts a manipulated latent code Ŵ+. The attribute speci-

fication Attr is made up of a set of attribute values specified

by the user, defining the appearance of the desired image.

The attribute set, in our experimental setting, includes nu-

meric attributes (e.g., yaw, pitch of the head pose, age) and

binary attributes (e.g., glasses, smile, black hair, mustache,

close eye, open mouth). The number of attributes can be

expanded without modifying the framework.

The manipulated latent code Ŵ+ is fed to the Style-

GAN2 generator to generate the corresponding manipulated

image IM . In the meantime, the original latent code W+ is

mapped to the untouched image IU . IM is expected to main-

tain the identity of IU , while matching the target attribute

specification. Dynamic multi-attribute contrastor here is

utilized to learn the disentanglement between activated and

inactive attributes. Such constraint is enforced with the pre-

trained attribute predictors Nattr and a pre-trained identity

recognition model Nid.

3.2. Dynamic network architecture

The architecture of DyStyle is shown in Figure 3. As

shown, the DyStyle network manipulates each Wl+ code

separately, by taking the attribute configuration and Wl+ as

input and predicting the proxy code P which is further used

to linearly modulate the Wl+ code itself. By conditioning

the proxy code jointly upon the attribute configuration and

Wl+, rather than the attribute configuration solely, the net-

work is able to predict the proxy code adaptively for each

input case of W+, rather than generate a uniform modula-

tion parameters for all cases of W+. The DyStyle network

employs multiple experts to process the attributes separately

before they fused with cross-attention and element-wise ad-

dition. The proxy codes extracted by activated expert are
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Figure 3: The architecture of our Dynamic Style Manipulation Network (DyStyle). Wl+ (l ∈ {0, 1, ..., 17}) is one of the 18 vectors of

W+. Multiple experts are employed, in which each expert is responsible for the processing of one attribute before they are joined. Whether

an expert is activated is based on whether the corresponding attribute is intended for editing or not.

encoded into a unified latent space, so that the dynamic

multi-attribute contrastive loss is performed to constrain the

same attribute aggregation and different attributes to sepa-

rate from each other. Cross-attention allows different ex-

perts to communicate with each other and enables an ex-

pert adapt to the unexpected influences caused by the edits

of other attributes. This argument is well supported by the

ablation studies: see the Sec. 6.2 for more details. Addtion-

ally, the cross-attention module is well suited for a variable

number of attributes, which is an important feature of our

dynamic architecture.

We join the features after attribute-specific processing by

cross-attention and element-wise addition. Such a design

favors disentangled attribute editing and improved control

precision. The cross attention is computed as Eq. 1.

Pi =
X

j

Vj �
exp(Qi ·Kj)

P

j exp(Qi ·Kj)
(1)

where Qi,Ki, Vi i 2 {1, 2, ..., n}are the query, key and

value vectors computed from the proxy code Pi with an FC

layer respectively. As an extreme case, when n = 1, the

output of the cross-attention Pi = Vi.

3.3. Dynamic multi-attribute contrastive learning

The DyStyle network is trained with an objective con-

sisting of 4 types of losses, which is defined as

L = αattrLattr + αdmacLdmac + αidLid + αnormLnorm (2)

where Lattr is the attribute loss for various attributes (e.g.,

pose, age, black hair, glasses, smile), which are controlled

by a dynamic multi-attribute contrastor and used to enforce

the consistency of target attributes and measured attributes

of the manipulated image IM . Ldmac is designated to dis-

entangle the activated attributes in the latent space of the

model. Lid is the identity loss intended to preserve the iden-

tity of the original image, while Lnorm is the normaliza-

tion loss discouraging degradation of image quality. αattr,

αdmac, αid and αnorm are the corresponding coefficients

for each loss term.

3.3.1 Dynamic multi-attribute contrastor

Similar to some weakly supervised methods [3, 18], we

employ pre-trained models to extract attribute information.

Since the training mode of the framework relies on dy-

namic attribute input, the goal of dynamic multi-attribute

contrastor is to ensure the generated image after manip-

ulated contains activated attributes, while the inactive at-

tributes remain consistent with randomly generated images.

The form of Lattr that relies on a set of contrastors differs

for numeric attributes and binary ones. We design specific

losses for different types of pre-trained estimators.

Specifically, the contrastive loss for numeric attribute Ak

is defined as

LAk

attr =

(�

�Ak
M �Ak

U

�

� , if ∆
gt

Ak
is none

max(
�

�

�
Ak

M �Ak
U �∆

gt

Ak

�

�

�
� TAk , 0), otherwise

(3)

where Ak
M , Ak

U are attribute value of Face IM , IU measured

by a pre-trained attribute estimation network NAk . ∆
gt

Ak is

the ground-truth pose variation of IM to IU , specified at the

input of DyStyle. If ∆
gt

Ak is none, it means Ak is inactive.

TAk are constant thresholds, which is set to 3 for yaw and

pitch, and 5 for age.

For binary attributes, the input attribute values are either

0 or 1, and they represent the status of the target attributes

(1 means “with” and 0 means “without”). We employ a pre-

trained multi-task or multi-class network (NAk ) to predict
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all the binary attributes of an image, thus Ak
M = NAk(IM ),

Ak
U = NAk(IU ).
The attribute loss of the binary attributes is written as

LAk

attr =

8

>

<

>

:

1�
embA

k

M

kembA
k

M
k
·

embA
k

U

kembA
k

U
k
, if Ak

gt == Ak
U or Ak

gt is None

�
P

Ak [Ak
gt logA

k
M + (1�Ak

gt) log(1�Ak
M )], otherwise

(4)

where embAk

M (or embAk

U ) is the activation of the second

last layer of the pre-trained multi-attribute predictor NAk

given IM (or IU ) as input. Ak
gt is the ground-truth (or tar-

get) attribute specification. The similarity score of embAk

M

and embAk

U is enforced to 1 when no edits are intended.

Further, the cross-entropy loss is calculated separately for

each binary attribute, and finally summed up.

The original face IU and the manipulated face IM are

expected to have the same identity. Therefore, the identity

loss are computed as

Lid = 1� cos similarity(embid
M , embid

U ) (5)

where embid
M (or embid

U ) is the feature embedding of the

face in IM (or IU ), extracted with a pre-trained face recogni-

tion model. When the editing targets are not realistic faces,

the conventional face recognizer does not serve as an effec-

tive identity representation. In this cases (e.g., comics or

animal faces), we employ LPIPS loss [27] as the identity

loss.

Practically, we choose αyaw = 0.05, αpitch = 0.05,

αage = 0.02, αAk = 1.0 (if Ak is binary attribute), αid =
1.0 and αnorm = 0.001 in our experiments. Not that the

hyperparameters are adjusted to scale the different types of

losses to the same magnitude.

3.3.2 Dynamic multi-attribute contrastive loss

The proposed dynamic model will randomly select at-

tributes for activation in a training iteration. The dy-

namic multi-attribute contrastor can capture the difference

between the active and inactive attributes during training.

However, a variety of attributes come from different pre-

trained estimators. It is difficult for the contrastor to dis-

entangle the attributes that are activated at the same time.

Therefore, we apply contrastive loss Ldmac on the simulta-

neously activated attributes in the latent space of the model.

The principle of the Ldmac is to ensure that the editing di-

rections of a single attribute is fully gathered, while increas-

ing difference between the editing directions of multiple at-

tributes as much as possible.

As shown in Figure 3, attributes are independently en-

coded by experts as proxy codes, which contains the direc-

tion of attribute changes. In order to perform contrastive

learning, activated proxy codes are mapped into the uni-

fied latent space. Here, the encoder simply applies a Mul-

tilayer Perceptron (MLP). We calculate the attribute auto-

correlation and cross-correlation respectively. For auto-

correlation, we calculate it on the batch dimension which

the similarity measured between attributes by dot product.

The formula is

Ikac =
X

i,j2Nb,i 6=j

Sk
i · Sk

j (6)

where Nb is the training batch size, and Sk
i represents the

i-th dimention of the k-th attribute code in the unified la-

tent space. For the cross-correlation coefficient, the attribute

codes other than itself are regarded as negative samples, so

the formula is

Ikcc =
X

q2Nk,q 6=k

Sk · Sq (7)

where Nk represents that k attributes are activated by the

current dynamic network. The form of our function Ldmac

follows InfoNCE [17], which is calculated as

Ldmac =
X

k2Nk

� log
exp

�

Ikac
�

exp (Ikac) + exp (Ikcc)
(8)

Note that each activation attribute is traversed in a single

training iteration to calculate the loss sum. The form of

Ldmac can be easily realized using softmax cross-entropy

loss.

For Ŵl+ output by the dynamic network, the normaliza-

tion loss is defined as

Lnorm =
X

l

k(Ŵl+)� Wavgk (9)

where Wavg is the statistic center of the W space of the

pre-trained StyleGAN2 generator [14], and Ŵl+ is the ma-

nipulated style vector corresponding to the l-th layer. As

discussed in [21], being closer to Wavg means higher ex-

pected quality of the generated image.

3.3.3 Two-stage training strategy

The DyStyle is trained with randomly sampled W+ codes

with the Style Mapping Network and evenly-sampled at-

tribute configurations. The training is conducted by fol-

lowing a two-phase procedure. In this first stage, the net-

work is trained for single-attribute manipulation, by ran-

domly choosing an attribute for editing and evenly sample

the target attribute value. That means, only an expert (or

branch) for the edited attribute is activated at a time in this

phase. Note that the loss is not changed. This phase al-

lows each expert to focus on one attribute at a time and get

used to easy editing cases. In the second stage, the DyStyle

network is trained to adapt to situations when multiple at-

tributes are manipulated jointly. In this phase, a combina-

tion of attribute set are randomly sampled and set as the
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Figure 4: Comparisons of our method and competing methods in terms of multiple-attribute manipulation. As shown, the compared

methods saw significant identity variation and semantic entanglement.

input of the DyStyle network, so that the experts learn to

communicate with each other and adapt to more complex

attribute configurations.

4. Experimental Results

4.1. Experiment setups

We experimented our style manipulation network on four

pre-trained StyleGAN2 models, the one trained on FFHQ

dataset [13] for realistic face generation, the one trained

on MetFace [15] for artistic face synthesis, that trained on

AFHQ [7] for animal face synthesis and the one trained on

comics dataset [2] for comic face generation. The expanded

experimental setups are reflected in the supplementary ma-

terials.

Various attribute manipulation results of our approach

are presented in Figure 1. Some more attribute-controlled

image generation results for each datasets are presented in

Figure 15 (realistic faces), Figure 16 (artistic faces), Figure

18 (Comics) and Figure 19 (animal faces) in the supplemen-

tary materials. Some more high-resolution (1024⇥1024)

realistic face editing results by our approach are presented

in Figure 17 in the supplementary materials. With the

image-to-style encoder provided in [21], we also conducted

attribute-conditioned editing of real photos and present the

results in Figure 20 in the supplementary materials.

4.2. Comparisons

To verify the effectiveness of the proposed method, we

compared our approach with the state-of-the-art style ma-

nipulation methods including InterFaceGAN [22], Style-

Flow [5], StyleCLIP [18] and ISFGAN [32]. To assure fair

comparisons, these methods are designated to manipulate

the latent space of the same pre-trained StyleGAN2 model

which was trained on FFHQ dataset [13]. According to the

common attributes of the official open source of different

methods, the comparisons only account for the editing of

four attributes (yaw, age, glasses and smile). StyleCLIP

[18] and ISFGAN [32] are compared separately due to their

lack of ability to edit poses. As the separation plane of Inter-

FaceGAN only specifies the directions of attribute control,

we toughly estimated the physical meaning of scales based

on a few labeled examples. Note that StyleCLIP [18] does

not participate in quantitative evaluation, as CLIP-encoded

[35] textual information cannot be quantified consistently

across scales.

With the same set of 5000 attribute-configuration-and-

W+ pairs as test set, we conduct quantitative evaluations

on these methods. Specifically, we evaluate the accuracy

(or precision) of attribute control, preservation of identity

and image quality respectively with well-defined metrics.

To evaluate the precision of attribute control, we employ

the pre-trained attribute predictors to predict the attribute

labels of manipulated images and then compare them with

target labels. For assure fairness, we employ a different

set of attribute predictors that are excluded from those used

for training. Specifically, the pose estimator is the official

pre-trained model from [26], and the age estimator is offi-

cially provided by [4]. The glasses and smile classifier is a

multi-task ResNet50 classifier [9] trained by ourselves with

CelebA dataset [16]. With the predicted labels, we compute

the Mean Absolute Error (MAE) of yaw and age, and the

classification accuracy of “glasses” and “smile” attributes.

As for identity preservation, we calculate the average cosine

similarity score of manipulated faces and original ones: see

Table 1. In terms of image quality, we evaluate the dis-
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Table 1: Quantitative comparisons of different attribute-conditioned style editing approached in terms of the identity preservation and

attribute control accuracy. Note that we compute Mean Absolute Error for numeric attributes (e.g., yaw, age) and Classification Acc. for

binary attributes (e.g., glasses, smile). The identity similarity score is between the original face and the manipulated.

single-attribute editing multi-attribute editing

wwwwwwattribute type yaw age glasses smile glasses+smile yaw+glasses

method Identity Similarity Score(")

InterFaceGAN ([22]) 0.78 ± 0.05 0.82 ± 0.06 0.84 ± 0.12 0.95±0.05 0.74 ± 0.05 0.68± 0.15

StyleFlow ([5]) 0.82 ± 0.07 0.86 ± 0.08 0.85 ± 0.1 0.96 ± 0.05 0.83 ± 0.12 0.78 ± 0.12

ISFGAN [32] - 0.85 ± 0.13 0.88 ± 0.03 0.96± 0.03 0.85 ± 0.08 -

Ours (w/o Lid) 0.85 ± 0.04 0.86 ± 0.03 0.87 ± 0.08 0.97 ± 0.02 0.85 ± 0.12 0.82 ± 0.24

Ours (w/ Lid) 0.95 ± 0.05 0.89 ± 0.08 0.90 ± 0.09 0.98 ± 0.1 0.87 ± 0.1 0.85 ± 0.09

Attribute Control Accuracy

method yaw(#) age (#) smile (") glasses (") glasses(") smile(") yaw(#) glasses(")

InterFaceGAN ([22]) 12.95 13.50 0.894 0.93 0.832 0.877 15.33 0.826

StyleFlow ([5]) 6.41 12.78 0.975 0.981 0.944 0.921 8.58 0.925

ISFGAN [32] - 13.97 0.963 0.985 0.935 0.901 - -

Ours 6.33 13.77 0.976 0.988 0.963 0.955 7.26 0.961

Figure 5: Fixing a specific property while continuously manipulating other properties. Glasses are chose to fix due to their instability. As

shown, our method stably manipulates pose and age attributes while minimizing changes in glasses shape and color. Furthermore, our

method clearly has the best consistency with the original image for unedited attributes, such as smiling expressions.

tance between the distribution of manipulated images and

that of real images (FFHQ dataset) with the Fréchet In-

Table 2: The FID comparisons between manipulated faces IM .

Methods
FID(#)

age glasses smile avg

InterFaceGAN [22] 64.32 62.66 57.91 61.63

StyleFlow [5] 53.5 51.85 51.34 52.23

StyleCLIP [18] 51.23 47.45 47.54 48.74

ISFGAN [32] 52.87 51.3 47.78 50.65

Ours 47.73 42.69 41.55 43.98

ception Distance (FID) [10]: see Table 2. As shown, our

model exhibits higher control precision of all attributes ex-

cept for age. When joint manipulating multiple attributes,

the control precision and identity similarity scores of com-

pared methods deteriorate significantly while our method

performs consistently well. In addition, we cancel the iden-

tity loss as the ablation experiment, in order to ensure con-

sistency with the evaluation methods, see Table.1. Although

the quantitative index is slightly lower than using the iden-

tity constraint, it still has the best similarity compared with

other approaches.

4.3. Extended ablations studies

We qualitatively and quantitatively analyze and compare

ways of multi-attribute fusion (cross-attention instead of
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Figure 6: Qualitatively demonstrate the stability of binary attribute

under the condition of continuous editing of numerical attributes.

Table 3: The evaluation of ablation controls the accuracy of indi-

vidual attribute of glasses, as well as the accuracy of the attribute

of glasses under the condition of editing yaw or age.

Model
Attribute Control Accuracy(")

glasses glasses|yaw glasses|age

w/o CA & Ldmac 0.943 0.921 0.919

w/o CA 0.975 0.947 0.936

w/o Ldmac 0.951 0.932 0.924

full 0.988 0.965 0.96

MLP) and the performance of Ldmac loss on multi-attribute

joint editing. As shown in Figure 10 and Table 3, both tricks

independently contribute to the stability of multi-attribute

editing.

To verify the effectiveness of the proposed dynamic

architecture and two-stage training procedure, we pre-

pared two validation datasets separately for multi-attribute-

conditioned realistic (FFHQ) editing and comic face edit-

ing. We started three trainings, which include the static ar-

chitecture (all branches are activated regardless of the in-

put as in Figure 3) trained for joint multi-attribute editing,

the dynamic architecture trained with the two-stage train-

ing procedure, and that trained for multi-attribute editing

only (single-stage). We visualize how the validation losses

(Lid, Lattr, LAi

attr as defined in the method section) change

against the number of training steps. As shown in Figure

8 in the supplementary materials, for both experiments, the

static architecture cannot converge as well as the dynamic

architecture, implying its invulnerability in adapting to vari-

ous kinds of attribute configurations. As for the dynamic ar-

chitecture, the single-stage training procedure is highly un-

stable and achieves worse identity preservation and average

control accuracy. Visual comparisons are illustrated in Fig-

ures 9, Figure 10 in the supplementary materials. More ab-

lation studies on the architecture features and training tech-

niques are presented in the supplementary materials.

4.4. User Study

Figure 7: User study of jointly manipulating multi-attributes, cor-

responding to qualitative comparisons.

To perceptually evaluate multi-attribute editing perfor-

mance, we conducted a user study. We evaluate the sequen-

tial editing results of two sets of multiple attributes: the first

set is yaw, age and glasses, where the presence of pose at-

tribute allows us to compare only InterfaceGAN [22] and

StyleFlow [5]; the second set is age, glasses, smile, we eval-

uate StyleCLIP [18] and ISFGAN [32]. We collected 600

votes from 20 participants to evaluate each set of 30 im-

ages. In conclusion, our method received more than half of

the first approvals.

5. Conclusion

In this paper, we propose a dynamic neural network

that enables nonlinear and adaptive style manipulations for

multi-attribute conditioned image generation. Additionally,

our dynamic multi-attribute contrastive learning method ef-

fectively solves the entanglement problem of multi-attribute

joint editing. Compared with other static style manipula-

tion approaches, our model exhibits higher average preci-

sion of attribute-control and improved competency of iden-

tity preservation. When manipulating multiple attributes,

the superiority of our approach becomes more significant.

Future work should focus on more fine-grained division of

model latent space in order to ensure the stable joint editing

of more attributes.
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