
Physica 22D (1986) 247-259 
North-Holland, Amsterdam 

A SELF-OPTIMIZING,  NONSYMMETRICAL NEURAL NET FOR CONTENT 

ADDRESSABLE MEMORY AND P A T r E R N  RECOGNITION 

Alan LAPEDES and Robert FARBER 
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

A natural, collective neural model for Content Addressable Memory (CAM) and pattern recognition is described. The 
model uses nonsymmetrical, bounded synaptic connection matrices and continuous valued neurons. The problem of specifying 
a synaptic connection matrix suitable for CAM is formulated as an optimization problem, and recent techniques of Hopfield 
are used to perform the optimization. This treatment naturally leads to two interacting neural nets. The first net is a 
symmetrically connected net (master net) containing information about the desired fixed points or memory vectors. The second 
net is, in general, a nonsymmetric net (slave net), whose synapse values axe determined by the master net, and is the net that 
actually performs the CAM task. The two nets acting together are an example of neural self-organization. Many advantages of 
this master/slave approach are described, one of which is that nonsymmetric synaptic matrices offer a greater potential for 
relating formal neural modeling to neurophysiology. In addition, it seems that this approach offers advantages in application to 
pattern recognition problems due to the new ability to sculpt basins of attraction. The simple structure of the master net 
connections indicates that this approach presents r~o additional problems in reduction to hardware when compared to single 
net implementations. 

1. Introduction 

There is a long history [1] of attempts to model 

certain high level cognitive functions such as Con- 

tent Addressable Memory (associative recall), and 

pattern recognition, by the collective properties [2] 

of formal neural networks. Fixed points of the 

neural dynamics play a key role. Essential to the 

mathematics of most of these models is the physio- 

logically unreasonable assumption that the syn- 

aptic connection matrix is a symmetric matrix. 

In this paper we consider the general problem of 

finding bounded synaptic connection matrices, TO., 

that produce fixed points of neural dynamics at 

specified memory vectors, without imposing sym- 

metry. For  the CAM problem these fixed points 

correspond to the memories one is attempting to 

recall, while the associated basins of attraction 

correspond to the partial information used to evoke 

the full memory. In pattern recognition problems, 

the fixed points represent the objects to be iden- 

tified, while the basins of attraction represent par- 

tial information, or distortions of the object. 

In general, a given arbitrary T~j will not produce 

fixed-point behavior (of the dynamics described 

below) and our problem is to find those that do. 

Even if one limited the elements of an N × N T~j 

matrix to just two values, + 1 (representing excita- 

tion and inhibition) then a brute force search over 

all 2 N2 possible matrices would clearly be imprac- 

tical (also inelegant!). In the following, we show 

how this exponential search problem can be for- 

mulated as an optimization problem that is solved 

by another neural net consisting of N 2 neurons. 

Our technique is related to recent work of Hopfield 

[3], where he shows how a good optimum to the 

NP-complete Traveling Salesman Problem (which 

on the face of it requires O(N!) searches for the N 

city problem) can be found by the collective action 

of a neural net consisting of N 2 neurons. In a 

sense, we take the "optimum finding" properties 

of a neural net and instead of applying it to the 

external world (e.g. the Traveling Salesman Prob- 

lem), apply it to optimizing a second neural net. 

Our formulation thus naturally involves two 

n e t s - t h e  first net optimizes, or "programs", the 
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second net and the second net then does the job. 

We refer to this relation between the two nets 

as a master/slave relationship. This optimization 

method of neural programming provides for merg- 

ing two basins of attraction together (and separat- 

ing them again), weighting certain components of 

a fixed point so that it attracts more strongly 

("sculpting" the basins), and the division of neu- 

rons into inhibitory and excitatory subpopula- 

tions. It also offers a higher potential for relating 

formal neural net models to neurophysiology by 

virtue of the nonsymmetric T~j's and the ability to 

separate neurons intn excitatory/inhibitory neu- 

ron classes. 

2. Theory 

A neuron is assumed to sum up the impulses 

coming into it from other neurons in the net, but 

since the membrane is "leaky" a given potential 

will decay exponentially in time with a time con- 

stant #. We also assume that the postsynaptic 

effect on neuron " i "  from presynaptic potentials 

due to other neurons " j "  is described by a syn- 

aptic connection matrix, T~j, with positive or nega- 

tive elements describing excitation or inhibition. 

Our model for neural net dynamics incorporating 

these assumptions is therefore 

 jot[ ] Ui(t ) = -~ e - ( ' - v ) / " E T i j g ( U j ( t ' ) )  + I i d t '  
J 

+ v, (o), (2) 

or, equivalently, 

We shall consider a formal neural network that 

encapsulates in a schematic form certain proper- 

ties of real neurons [4]. We assume that on a 

suitable timescale a neuron's output can be de- 

scribed as a firing rate of action potentials and we 

concentrate on the rate of firing, g(U~), not indi- 

vidual potentials. The firing rate of the i th neuron, 

g(U~), is a function of the membrane potential, U~, 

across the neural body and it rises from 0 to a 

maximum of 1 / r  e, where r e is the absolute refrac- 

tory period. It is thus a sigmoid shaped curve (fig. 

1) which for concreteness we take to be 

g(U~) = 2-~ (1 + tanh/3U~) 

(fl determines the slope). (1) 

1 
te 

I(U) 
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u 

Fig. 1. Sigmoidal firing ra te  curve  as a func t ion  of  m e m b r a n e  

potential. 

1u,+ ETug(g) + 4, (2a) 
J 

where I i represents the effect of an external cur- 

rent into neuron " i" .  These equations also de- 

scribe an electrical circuit involving operational 

amplifiers and resistors [5] and can be reduced to a 

parallel hardware implementation should that 

prove convenient for practical applications. 

Hopfield [4] considered the situation where T~j 

= Tji and showed that the following is a Lyapunov 

function for eq. (2a): 

- + 

ij i " 

V,. = g(U,.), (3) 

i.e. (2a) and (3) implies that d E / d t  ~_ 0, 

d E  
dt  = - ½ E g ' ( E ) "  E2 

i 

(g '  is positive semi-defim'te), (4) 

where "prime" represents differentiation with re- 

spect to the argument and "dot" denotes time 
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differentiation. Eq. (2a) will therefore decrease E 

until a minimum of E is reached (E is bounded), 

at which point from (4) we have ~. = 0 = U~ = 

constant, that is, a fixed-point is obtained. In the 

high gain limit (large /3) the integral makes a 

negligible contribution to E and the algorithm 

may be thought of as finding a minima of E l, 

where 

el  = - E r, v, v j -  E l ,  V,. 
O i 

A possible choice [3] for E x (with a suitable bias 

chosen for g) is 

e, = - {  E (v('). v) 2, (5) 
s - - 1  

where V ('), s = (1, 2 . . . . .  m ) is a particular choice 

of m memory states. This choice implies that Tq is 

n! 

T/j = E I~, '(")~ '( ') (6) 
s - - 1  

and thus is equivalent to Hopfield's original for- 

mulation [1] of the CAM problem. Tq is obviously 

symmetric and was determined by the ad hoc 

choice of E x. Although this choice works in the 

CAM problem, subject to limitations, it was cho- 

sen with "cleverness aforethought" and not by 

derivation, and is as we will see, not a general 

solution to the problem of inserting desired fixed 

points into the neural dynamics. 

We now consider the general problem of finding 

a Tq that produces fixed points at desireO memory 

states V~ (~), s = {1, 2 . . . . .  m ). Our concern is more 

that V~--g(U~) should evolve to desired values 

near 0 or 1/r  e, and not so much that U~ evolves to 

a specific value. Due to the form of g(U~) (fig. 1), 

there are many U~ values associated with V,. = 

g(U~)--0 or 1~re, and thus we can make signifi- 

cant "errors" in the exact value of U~ without 

affecting the results. To focus attention more 

closely on g(U~) we now reformulate equation (2a) 

slightly. 

Let 

1 
Vi( t ) = -~ fote-('-t')/~g( Ui( t') ) dt' (7) 

such that 

V,. + / ~  = g(Ui( t ) ) .  (8) 

Eq. (2a) becomes 

• . .  (I~ = 0 for simplicity). 

(9) 

When I~,. = 0, that is, at a fixed point of (9) we have 

from (8) that V~ = g(U/). 

Let us now express the requirement that a par- 

ticular set of m memory vectors V~ (~) for s = 1, m 

are fixed points of (9). Each vector must satisfy 

(from eq. (9)) 

v,(" = g (E  r, jv/ ' ) ,  
J 

(10) 

or, equivalently, 

= E r ,  for each s and i. (10a) 

We may rewrite (10a) as 

(11) 

with the requirement E I = 0. 

For simplicity let us first consider the case where 

the synapse values, T/j, are bounded, say between 

- 1 and 1, thus allowing for bounded amounts of 

inhibition and excitation. Parameterizing T,.j as 

Tij= 2. S i j -  1, where Sij=g(Uij), 
(12) 

U,.j = (another independent Variable) 

and where g(Uij ) is another sigmoidal curve be- 
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tween 0 and 1 achieves o u r  purpose. No other 

restrictions, such as symmetry, are placed on Tq. 

Note  that Vj c*) and g-l(Vj(*)) are known numbers 

and that our condition, (11), that eq. (9) have fixed 

points at the known values V,. (~), becomes a condi- 

tion that E 1 (below) is at a global minimum 

= E -  EI, jg(u,j) 
Okt ~j 

(13) 

+ constant. (13a) 

We briefly note here, however, that a good mini- 

mum of E 1 (eq. (11)) is generally found, that T~y is 

in general non-symmetric, (although Tuk t is sym- 

metric), and that the check of the desired fixed- 

point generally succeeds. Also, as was emphasized 

to us by J. Denker and E. Mjolsness [6], the 

simplicity of the form of Tqk t, eq. (13b), reduces 

the double sum in eq. (14) to N operations and eq. 

(14) can be rewritten in a local form by use of a 

linear intemeuron. This is important for practical 

hardware implementations of this algorithm. 

3. Discussion 

The T~jk, and lij in (13a) are determined by 

expanding the squares in (13) and are clearly 

known constants depending on the chosen mem- 

ories V/s). Note  that T~jkt = Tkn j. Also note that 

Tqk t is of a very simple form, i.e. 

Tqk ̀ ffi --4 E ~k,Vj(')V/"), (13b) 
$ 

Adding a suitable integral places our minimiza- 

tion problem (13a) in exactly the form of eq. (3) if 

U~ ---) U~j, T~y ---) To.k1 and I i -)  Iij. In other words, 

we can now determine T~j -- 2g(U,.j) - 1 by solving 

the new set of neural net equations similar to (2a), 

~ Uq + ~j  ffi ~kt T~jktg(Uk') + IV" (14) 

U U will evolve under (14) to a fixed point, U,.j 

(because Tcikt ffi Tknj) , and we then take 

r,j-- - 1 ( i s )  

as the solution to our problem. As a check we 

insert the calculated Tq back into eq. (9) and 

verify by numerical simulation that the desired 

fixed-points, ~(~), are present. Results on the 

numerical integration of (14) are presented later. 

Before proceeding to the simulation results, we 

wish to discuss the interpretation of the procedure 

outlined above. The equation set (14) describes a 

set of N 2 neurons, indexed by Uq (i, j ~ [1, N]), 

called the master net, that are symmetrically con- 

nected (T~ikt = Tklij ) and subject to an external 

current, lo.. This master net of neurons evolves to 

its own fixed-point, U~j, at which point the master 

neurons are firing at sustained rates g(Uq). These 

master neurons are connected to a second net of N 

neurons, called the slave net, and the master neu- 

rons modulate the synaptic connections Tq of the 

slave net such that T q - - 2 g ( U q ) -  1 (see fig. 2). 

Thus each sustained neuronal firing rate in the 

master net determines a synaptic connection be- 

tween two neurons in the slave net. These slave net 
• / 

connecttons need not be symmetrical. Simulations 

show that if the slave net is now evolved with the 

Master Net Slave' Net 
(symmetric connections) (asymmetric connections) 

Fig. 2. Symmetric master net modulating synaptic connections 
of nonsymmetric slave net. 
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synaptic weights given by T ~ j - - 2 g ( ~ j ) -  1, then 

the slave net evolves to one of the desired memory 

values. 

This model suggests that if certain cognitive 

tasks are performed by a neurophysiological im- 

plementation of this model for CAM, then one 

might expect to find a larger net of -- N 2 recipro- 

cally connected inhibitory neurons modulating the 

synaptic connections of a smaller network of --- N 

nonsymmetrically connected neurons. We pursue 

this suggestion elsewhere. Also we note that if the 

Tq values were given by + 1 instead of a continu- 

ous interpolation between these values, then this 

formalism could be loosely interpreted as a search 

by the master net over the 2 Na configurations of 

the T/j, much as Hopfield's [3] neural net for the N 

city Traveling Salesman Problem can be thought 

of as searching over d~(N !) tours (of course neither 

net actually performs this search explicitly). 

The basic formalism can also be extended in 

various ways. One such extension is to modify the 

sum of squares form for E 1 (eq. (13)) by putting 

constants C[ ~} in front of each term so the E1 

becomes 

(16) 

For simplicity, first consider the coefficients C[ ~) 

to depend only on (s), i.e. just have a different C 

for each s. This weights the fixed points that have 

higher C's more than the others, and has the effect 

that by adjusting C Cs) one can make .basins of 

attraction either fuse, or pull apart, from each 

other. The more complicated case, where the 

coefficients depend on i as well as s, allow one to 

weight certain components of a fixed point more 

than other components in the same, or different, 

fixed points. In attempting to use CAM's in pat- 

tern recognition it is obviously advantageous to 

weight certain features of a pattern more than 

others, and thus if the neuronal firing rates are 

considered to be outputs of feature detectors, then 

varying C[ s) helps to accomplish this objective. 

This weighting is impossible in implementations 

which use Hamming distance as a measure of the 

basins of attraction [1]. 

Finally, we remark that for unsaturated T 0. 

([number of memories m] ~ N) the nature of the 

eqs. (14) tend to clrive_g(Uo. ) to the limits of 0 or 1 

and hence T~i--2g(U,.j)- 1 to d-1. We refer to 

this as the "black/white" case. (Of course by 

scaling T~ by a constant A, the limits can be 

changed to +A.) A "grey level" discretization of 

T,.j between the "black/white" values of +A can 

be achieved by reparameterizing T O. as 

r,j=a((2/2r- 1). E 2kg(U,~ "k)) - 1 , (17) 
k - O  

where K" is the number of "grey levels". Of course 

there are now ~'N 2 neurons in the master net 

which would complicate the simulation slightly. 

4. Simulations 

A complete numerical investigation of the sys- 

tem was not attempted. However, a sufficient num- 

ber of runs were completed to verify the credibility 

of the formalism. The reasons for not collecting 

complete statistics at this stage are twofold. First, 

it is necessary to integrate N2+N differential 

equations (for the U/j and the U~) for an N-neuron 

slave net. This takes a considerable amount of 

computer time. (Most of the time, however, is 

spend in mapping the basins of attraction of the 

N-neuron system. The computation for the N 2- 

neuron system occurs only once and is relatively 

quick.) Secondly, there are a large number of 

parameters, C[ s), that affect the system, and unless 

the effects of these are systematically mapped out 

as well, then statistics degenerate to a test of skill 

in parameter twiddling. In short, the system be- 

havior is very rich, and we choose to verify only a 

few of its properties. 

The numerical integration routine used was a 

simple Euler method. For the master net, where a 
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Lyapunov function E is defined, we scaled dt by 

1.1 if E decreased on the previous time step, and 

scaled dt by 0.5 if E increased (and performed 

that time step again.) This modification was sug- 

gested to us by E. Baum [7] and dramatically 

accelerates convergence to a fixed point. This is 

not possible for the nonsymmetrically connected 

slave net and the majority of computer time was 

used in mapping the basins of attraction in the 

slave net. It is quite probable that a cleverer al- 

gorithm, or a coarser map of the basins of attrac- 

tion can greatly increase simulation speed when 

mapping basins. 

Initial conditions for the master net were always 

chosen to be U~j = 0, which is a state of no particu- 

lax bias in any direction, with all master neurons 

firing at a rate midway between the minimum and 

maximum rates. The slave net neurons were al- 

ways evolved from an initial state in which their 

individual firing rates were either at a maximum 

(1) or a minimum (0). We chose these initial 

values for the slave net because the initial state of 

the slave net in both the CAM and pattern recog- 

nition problems contains the initial information to 

be processed by the net. This information is as- 

sumed to be coded into a pattern of l 's  and O's. 

We have not investigated system performance with 

indefinite initial information, i.e., with initial slave 

net rates equal to a decimal value between 0 and 

1. The membrane time constants, g, were chosen 

to be 5 for both nets and the absolute refractory 

periods, r e, were chosen to be 1. The units of time 

axe arbitrary, and if it is chosen to be 1 millisec- 

ond, then these time constants axe physiologically 

reasonable. However, these values are not critical 

to the results. The parameters controlling the slope 

of firing rate curves, g(x), were both chosen to be 

25. This value seemed to work acceptably well and 

variation by a factor of 10 did not make a signifi- 

cant difference. 

The code developed to perform the simulations 

consists of a menu-driven, highly interactive front- 

end written in C, and a calculational-backend 

module written in FORTRAN. Simulations were 

performed on VAX780's and Crays. It is worth 

pointing out that machine precision has little effect 

on final answers, but can radically affect the time 

taken to converge to a final answer. 

The simulations are presented below as six sets 

of data. Simulation I reports an attempt to insert 5 

fixed points into a 10-neuron slave net. Simulation 

II gives a rough idea of the information packing 

possible by seeing how performance degrades in 

an attempt to insert 10 fixed points into a 10-neu- 

ron slave net. Simulation III shows how 5 fixed 

points may be inserted into a 5-neuron slave net 

by appropriately choosing the C/(~ parameters 

(they were previously held fixed at 1.0). Simulation 

IV further investigates the control that the C~ t~) 

parameters have over the net by inserting 2 fixed 

points in a 5-neuron slave net, and then adjusting 

the C~ '~ to merge, and emerge, basins of attrac- 

tion. Simulation V gives an example of how the 

C~ ~) can be used to control not only the size, but. 

also the shape, of the basins of attractions. Finally, 

Simulation VI shows how additional constraints 

can easily be imposed on the net such that the 

slave net can have at least one fixed point when 

constrained to be made up of purely inhibitory 

and purely excitatory subpopulations. This divi- 

sion into excitatory/inhibitory subpopulations is a 

reasonable requirement on any model that pur- 

ports to have some relation to real neurophysi- 

ology. 

Simulation I (100 masters neurons, 10 slave neu- 

rons, 5 fixed-i~oints) 

This simulation consisted of 100 master neurons 

and 10 slave neurons. We attempted to have the 

net self-organize according to the equations in 

section 2, such that the slave net would have 5 

distinct fixed points for the firing rates. These 

fixed-points were chosen at random as 5 distinct, 

10-bit long strings of l 's  and O's representing the 

final values of the firing rates, V/= g(U/), of the 

slave net. The C(~)(i) parameters were all set to 1. 

When the master net settled to its own fixed point 

we than took that computed set of values for the 

synaptic connections, T,.j, of the slave net and ran 

5 runs of the slave net, with the initial values equal 
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to the 5 putative fixed points in order to see how 

many of them actually were present. 

Having then determined how many fixed points 

were present in the slave net, we then investigated 

their basins of attraction. This was accomplished 

by choosing 100, distinct, 10-bit long strings of l 's  

and O's as 100 initial values for the slave net firing 

rates and recording the final values to which they 

evolved in 100 separate runs. The final rates were, 

with the net parameters described above, always 1 

or 0, to within 0.01. 

The whole process was repeated six times with 

six different sets of five fixed points. We thus 

ended up with statistics based on six attempts to 

insert five random fixed points into a 10-neuron 

slave net. These simulations are recorded below in 

table I as run 1 through run 6. "Strays" refer to 

how many final values of the slave net (computed 

from the 100 initial values for each run) that did 

not end up at one of the five putative fixed-points. 

Table I 

(100 master neurons, 10 slave neurons, 5 possible fixed points) 

Stability Basin of attraction 

Run 1: 3 of 5 stable 

Run 2: 2 of 5 stable 

Run 3: 4 of 5 stable 

Run 4: 3 of 5 stable 

Run 5: 2 of 5 stable 

Run 6: 2 of 5 stable 

0 strays out of 100 initial values 

0 strays out of 100 initial values 

0 strays out of 100 initial values 

0 strays out of 100 initial values 

0 strays out of 100 initial values 

27 strays out of 100 initial values 

Summary. In an attempt to insert 5 fixed-points 

into a 10 neuron slave net, with parameter values 

described above, somewhat more than. half are 

stable with strong basins of attraction. 

Simulation 11 (100 master neurons, 10 slave neu- 

rons, 10 fixed-points) 

This simulation is similar in all respects to 

simulation I, except that insertion of 10 fixed 

points into the slave net was attempted in order to 

obtain an idea of the information packing that is 

possible. Two hundred initial values were evolved. 

Results for 7 runs are in table II. 

Table II 

(100 master neurons, 10 slave neurons, 10 fixed points) 

Stability Basin of attraction 

Run 1: 4 of 10 stable 

Run 2: 1 of 10 stable 

Run 3: 0 of 10 stable 

Run 4: 3 of 10 stable 

Run 5: 2 of 10 stable 

Run 6: 3 of 10 stable 

Run 7: 3 of 10 stable 

0 strays out of 200 initial values 

156 strays out of 200 initial values 

200 strays out of 200 initial values 

200 strays out of 200 initial values 

6 strays out of 200 initial values 

145 strays out of 200 initial values 

182 strays out of 200 initial values 

Summary. In an attempt to insert 10 fixed-points 

into a 10 neuron slave net, about 1/3 were stable 

with relatively small basins of attraction and ad- 

ditional parasitic fixed-points occurring. This de- 

gradation is similar to what happens using the 

symmetric T~j of Hopfield [1]. 

In run 2 we also lowered the C parameters of 

the one stable fixed point by a factor of 10 and 

found that now 5 fixed points were stable. In run 4 

we also increased the C's of the 3 stable fixed 

points by a factor of 10 and reran the 200 initial 

values of the slave net, resulting in 143 strays. This 

indicates that results might be significantly im- 

proved by judicious choice of the C parameters. 

The choice is intuitively clear: the higher the C ('), 

the stronger the associated fixed point. 

Simulation 111 (25 master neurons, 5 slave neu- 

rons, 5 fixed-points) 

A further test of information packing was per- 

formed by adjusting the C (s) parameters so that 5 

random fixed points were inserted into a 5-neuron 

slave net. With all C <s) parameters initially set to 

1.0, only 2 out of the 5 possible fixed points were 

stable. It was quickly found that if three C <s) 

parameters remain at 1.0 while the other two were 

set to 0.1 and 10.0, then all 5 fixed points were 

stable. Mapping of the 32 possible initial firing 

rates resulted in 7 strays, however, each stray 

Table III 

(25 master neurons, 5 slave neurons, 5 possible fixed points) 

Stability Basin of attraction 

Run 1: 5 of 5 stable 7 strays out of 32 initial values 
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value differed only in one bit from one of the 5 

possible fixed points. 

Summary. In an attempt to insert 5 fixed points 

into a 5-neuron slave net, all 5 could be stabilized 

by judicious choice of the C °) parameters. 

Simulation IV (25 master neurons, 5 slave neurons, 

2 fixed points) 

Further testing of the control over basins of 

attraction by the C o) parameters was accom- 

plished by inserting two fixed points into a 5-neu- 

ron slave net. The Ccs) were then separately scaled 

by a factor of 10 resulting in either the first, the 

second or both fixed points being present in three 

separate runs. 

Table IV 

(25 master neurons, 5 slave neurons, 2 fixed-points) 

Stability Basin of attraction 

Run 1: 2 of 2 stable 0 strays out of 32 initial values 

Run 2: 1 of 2 stable 0 strays out of 32 initial values 

Run 3: 1 of 2 stable 0 strays out of 32 initial values 

Summary. Changing the C °) parameters over a 

range of 10 allows one to have either the first, the 

second or both fixed points present in the slave 

net. This exemplifies how one can merge or emerge 

basins of attraction by manipulating the C c') 

parameters in an intuitive way: the higher the 

C Cs), the stronger the associated fixed point. 

Simulation V (36 master neurons, 6 slave neurons, 

2 fixed points) 

This simulation exemplifies the ability to sculpt 

basins of attraction, i.e., to deform the shape of 

the basin in distinction to the simulation above 

which changed only the size of the basin. Two 

fixed points for the slave net firing rates (110 0 0 0) 

and (0 0 01 1 0), were chosen, and we attempted to 

adjust the individual C¢9(i) values so that one 

component of one fixed point attracted more than 

other components. We arbitrarily selected the sec- 

ond component of the first fixed point (reading 

from left to righ0, and proceeded to adjust the 

Table VA 

Fixed point # 1 
(++ . . . .  ) 

Fixed point ~ 2 
( - - - + + - )  

( + + + + + + )  

( + + - - + + )  

( + + + - + + )  

( + + - - + + )  

( + + + + - + )  

( + + - + - + )  

( + + + - - + )  
( - + + - - + )  
( + - + - - + )  

C - - + - - + )  
( + + - - - + )  
( - + - - - + )  
(+ . . . .  +) 
( +) 
( + + + + + - )  

( + + - + + - )  

( + + + - + - )  

/ 

( + + - - + - )  

( + + + + - - )  

( + + - + - - )  

( + + + - - - )  
( - + + - - - )  
( + - + - - - )  
( - - + - - - )  
[ + +  . . . .  ] 
( - +  . . . .  ) 

(+ ) 

(16 Strays) 

C - + + + + + )  
( + - + + + + )  
( - - + + + + )  

C - + - + + + )  
( + - - + + + )  
( - - - + + + )  

( - - + - + + )  

( . . . .  + + )  

( - - + + - + )  

( - - - + - + )  

( - + + + + - )  
( + - + + + - )  
( - - + + + - )  

( - + - + + - )  
( + - - + + - )  
( - - - + + - )  

( - - + - + - )  

( . . . .  + - )  

( - - + + - - )  

( - - - + - - )  
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CtS~(i) so that if this component was 1.0 in a set 

of initial configurations, then those configurations 

should evolve to the first fixed point. In a pattern 

recognition problem this would be equivalent to 

considering the initial firing rates of the slave net 

as output of feature detectors, and demanding that 

if the second feature detector is active, then those 

configurations should evolve to a recognized pat- 

tern represented by fixed point number one. In 

other words, that feature is extremely important in 

recognizing a distorted pattern as fixed point num- 

ber one. 

Initially we chose all the C[ s) = 1.0, computed 

the T V from the master net equations, and then 

evolved the 2 6 distinct initial configurations of the 

slave net firing rates. (We again assumed definite 

initial information with all initial slave net rates at 

either 1.0 or 0.0). The results are tabulated in table 

VA, where both fixed points are listed along with 

those initial configurations that turned out to be in 

its basin of attraction. Here, " + "  denotes 1.0 and 

" - "  denotes 0.0 in the table of initial configura- 

tions. For  example, the first entry under fixed 

point # 1  indicates that if the initial firing rates 

Table VB 
Fixed-point #1 Fixed-point #2  
(++  . . . .  ) ( - - - + + - )  

( + + + + + + )  

( + + - - + + )  

( + + + - + + )  
( - + + - + + )  
( + - + - + + )  

( + + - - + + )  
( - + - - + + )  
( + - - - + + )  

( + + + + - + )  
( - + + + - + )  
( + - + + - + )  

( + + - + - + )  
( - + - + - + )  
( + - - + - + )  

( - + + + + + )  
. ( + - + + + + )  
( - - + + + + )  

( - + - + + + )  
( + - - + + + )  
( - - - + + + )  

( - - + - + +  

( . . . .  ++ )  

( - - + + - + )  

( - - - + - + )  
( + + + - - + )  
( - + + - - + )  
( + - + - - + )  
( - - + - - + )  
( + + - - - + )  
( - + - - - + )  
(~ . . . . .  +) 
( +) 
Continued next 2 columns. 

Fixed-point #1 Fixed-point #2  
. (÷+ . . . .  ) ( - - - + + - )  

~+++++-) 

( + + - + + - )  

( + + + - + - )  
( - + + - + - )  
( + - + - + - )  
( - - + - + - )  
( + + - - + - )  
( - + - - + - )  
( + - - - + - )  

( + + + + - - )  
( - + + + - - )  
( + - + + - - )  

(+-I--- + - - - )  
( - + - + - - )  
( + - - + - - )  

( + + + - - - )  
( - + + - - - )  
( + - + - - - )  
( - - + - - - )  
[++ . . . .  ] 
( - +  . . . .  ) 
(~ . . . . . .  ) 

( - ÷ + + + - )  
( + - + + + - )  
( - - + + + - )  

( - + - + + - )  
( + - - + + - )  

[ - - - + + - 1  

( . . . .  + - )  

( - - + + - - )  

( - - - + - - )  
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for the slave net were all chosen to be 1.0, then 

that initial configuration evolved to the first fixed 

point, i.e., it evolved to (1.0 1.0 0.0 0.0 0.0 0.0). At 

the end of the table we note how many configura- 

tions went astray, i.e., did not evolve to a fixed 

point. Note that no particular bias towards the 

second component of fixed-point # 1 is evident in 

table VA. 

Next, we weighted the second feature of fixed- 

point # 1  more heavily by repeating the above 

procedure with C2 tl) = 60, other C[ s) = 1.0. The 16 

strays were now pulled into fixed-point # 1, how- 

ever, some configurations with the second feature 

active were still pulled into fixed-point #2 .  (See 

table VB.) 

Finally, we increased C2 tl) to 100 with C,t~) 2 = 

1.0, and C[ 2) = 0.01. The results are presented in 

table VC. The second column shows that, as 

desired, no set of features with the second feature 

"on"  ever evolves to fixed-point #2 .  

Summary. Adjustment of the C[ s) parameters al- 

lows one to impose new metrics of pattern simi- 

Table VC 

Fixed-point #1  Fixed-point #2 
( + +  . . . .  ) ( - - - + + - )  

( + + + + + + )  

( - + + + + + )  
( + - + + + + )  

( + + - - + + )  

t - + - + + + )  
( + - - + + + )  

( - - + + + + )  

( - - - + + + )  

Fixed-point #1 Fixed-point #2  
( + +  . . . .  

( - - + +  

( + - +  

('-I- + - 

( - - + - -  

( + - - - -  

( + + +  

( - + +  

C - - - + + - )  

-'1- + - 

+ + -  

( - - + + + - )  
+ + -  

+ + -  

-'t- -.t- - 

( - - - + + - )  
- + - )  
- - + - - )  

( + + + - + + )  
( - + + - + + )  
( + - + - + + )  

( + + - - + + )  
( - ÷ - - + + )  
( + - - - + + )  

C + + + + - + )  
C - + + + - + )  
C + - + + - + )  

( + + - + - + )  
( - + - + - + )  
( + - - + - + )  

( + + + - - + )  
( - + + - - + )  
( + - + - - + )  
( -  - + - - + )  
( + + - - - + )  
( - + - - - + )  
(+ . . . .  + )  
( . . . . .  + )  

C + + + + + - )  

( - - + - + + )  

( . . . .  + + )  

( - - + + - + )  

C - - - + - + )  

( + - + - + - )  
( - - + - + - )  

( + + - - + - )  
( - + - - + - )  
( + - - - + - )  

( . . . .  + - )  
( + + + + - - )  

C - + + + - - )  
( + - + + - - )  

( - - + + - - )  
( + + - + - - )  
C - + - + - - )  
( + - - + - - )  

( - - - + +  - )  
( + + - + - - )  
( - + - + - - )  
( + - - + - - )  
( - - - +  - - )  
( + + + - - - )  
( - + + - - - )  
( + - + - - - )  
( - - + - - - )  
( + +  . . . .  ) 
( - +  . . . .  ) 

C+ ) 
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larly, in distinction to previous algorithms using 

symmetric T~j's which involve Hamming metrics 

[1]. In the example above, the feature detected by 

neuron # 2  is a quite important feature, and was 

successfully weighted more heavily in the recogni- 

tion process than other features by increasing the 

numerical value of Cz m relative to the others C's. 

Thus, as desired, no set of features with the second 

feature "on"  ever evolves to fixed point #2 .  Al- 

gorithms involving the usual symmetric T,j 

matrices use Hamming distance as a measure of 

pattern similarly. This implies equal weights on all 

features because Hamming distance is merely the 

total number of bits that differ in two patterns. 

The Cm(i) parameters allow non-Hamming met- 

rics to be created in a natural way. The ability to 

perform such weighting is an important feature of 

the present algorithm. Detailed investigation of 

these non-Hamming metrics in the context of a 

particular pattern recognition problem will be pre- 

sented elsewhere [8]. 

hibitory or excitatory neurons, starting with an 

inhibitory neuron on the left (see fig. 3). 

l e l e l e l e l e l e l e l e l e l e  

(inhibitory/excitatory slave net) 

Fig. 3. One-dimensional inhibitory/excitatory slave net. " i"  

denotes inhibitory neurons, "e" denotes excitatory neurons. 

The master/slave algorithm then proceeds ex- 

actly as before except that the Tq is now parame- 

terized as: 

r,j= (-1)Jg(v,)) 08) 

instead of the previous parameterization 

T~j = 2g(U~j) - 1. (19) 

Simulation V1 The final simulation is an example 

of how one can find with the present algorithm, 

T,.j's that are not only nonsymmetric, but in ad- 

dition describe a slave network consisting of inter- 

acting excitatory and inhibitory subpopulations of 

neurons. The slave net again evolves to a desired 

fixed point. This division of neurons into purely 

inhibitory or purely excitatory types, is an elemen- 

tal feature of the cortex and is a reasonable 

requirement of any neural model of Content Ad- 

dressable Memory that purports to have some 

relation to real cortex. Symmetric T~i's 'and the 

nonsymmetric ones computed so far, do not have 

this property. This division is recognized in a T/j, 

if in each individual column of the synaptic matrix 

all elements have the same sign. Positive columns 

are due to excitatory neurons, negative columns 

are due to inhibitory neurons, while a zero-element 

denotes no neural connection at all. To incorpo- 

rate this division into subpopulations, we selected 

a one-dimensional slave net of 20 neurons, and 

arbitrarily specified that they were alternating in- 

We chose to insert just one fixed point into the 

slave net, which was selected to be a one-dimen- 

sional version of a stripe. This fixed point  was 

chosen to have firing rates at either 0 or 1, as 

depicted in fig. 4. 

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0  

(desired fixed point) 

Fig. 4. Desired fixed point of inhibitory/excitatory slave net. 

The firing rates at the fixed point are set to either 0.0 or 1.0. 

Stable stripe patterns of activity in the cortex 

are of considerable interest and may be the result 

of destabilization of the cortex by increased disin- 

hibition [9]. The master net was evolved in the 

usual manner (with all C/m = 1) and it was verified 

that the computed T~g resulted in the desired stripe 

activity in the slave net. The computed T~j, which 

is highly structured, is presented in fig. 5. 
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- . 5  .5  - . 5  .5 - 1 . 0  

- . 5  .5 - . 5  .5 - 1 . 0  

- . 5  .5 - . 5  .5  - 1 . 0  

-.5 .5 -.5 .5 -I.0 

-.5 .5 -.5 .5 -0.0 

- , 5  .5 - . 5  .5 - 0 . 0  

-.5 .5 -.5 .5 -0.0 

-.5 .5 -.5 .5 -0.0 

- . 5  .5  - . 5  .5  - 1 . 0  

-.5 .5 -.5 .5 -I.0 

- . 5  .5 - , 5  .5 - 1 . 0  

- . 5  .5  - . 5  .5 - 1 . 0  

- . 5  .5  - . 5  .5 - 0 , 0  

-.5 .5 -.5 .5 -0.0 

-.5 .5 -.5 .5 -0.0 

-.5 .5 -.5 .5 -0.0 

- . 5  .5 - . 5  .5 - 1 . 0  

-.5 .5 -.5 .5 -I.0 

- . 5  .5 - . 5  .5 - 1 . 0  

- . 5  .5 - . 5  .5 - 1 . 0  

0 . 0  - 1 . 0  

0 . 0  - 1 . 0  

0 0 - 1 . 0  

0 0 - 1 . 0  

1 0 0 . 0  

1 0 0 . 0  

1 0 0 . 0  

1 0 0 . 0  

0 . 0  - 1 . 0  

0.0 - I . 0  

0.0 - 1 . 0  

0 . 0  - I  .0 

1.0  0 .0  

1 .0  0 . 0  

1 . 0  0 . 0  

1 . 0  0 . 0  

0 . 0  - 1 . 0  

0 , 0  - 1 . 0  

0 , 0  - 1 . 0  

0 ,0  - I . 0  

0 . 0  - . 5  .5 - . 5  .5 - 1 . 0  0 . 0  - 1 . 0  0 . 0  - . 5  .5 - . 5  .5 

0 , 0  - . 5  .5 - . 5  .5 - 1 . 0  0 , 0  - 1 . 0  0 . 0  - . 5  .5 - . 5  .5 

0 . 0  - . 5  .5  - , 5  .5 - 1 . 0  0 . 0  - 1 . 0  0 . 0  - . 5  .5 - . 5  ,5 

0 . 0  - . 5  .5 - . 5  .5 - 1 . 0  0 . 0  - 1 . 0  0 . 0  - . 5  .5 - . 5  .5 

1 . 0  - . 5  .5 - . 5  .5 0 . 0  1 . 0  0 . 0  1 . 0  - . 5  .5 - . 5  .5 

1 . 0  - . 5  .5 - . 5  .5 0 . 0  1 . 0  0 . 0  1 . 0  - . 5  .5 - . 5  .5 

1 .0  - . 5  .5  - . 5  .5 0 . 0  1 . 0  0 . 0  1 , 0  - . 5  .5 - . 5  .5 

1 . 0  - . 5  .5 - . 5  .5 0 . 0  1 . 0  0 . 0  1 , 0  - . 5  .5 - . 5  .5 

0 . 0  - . 5  .5 - . 5  .5 - 1 . 0  0 , 0  - 1 . 0  0 . 0  - . 5  .5 - . 5  .5 

0.0 -.5 .5 -.5 .5 -I.0 0.0 -I.0 0.0 -.5 .5 -.5 .5 

0.0 -.5 .5 -.5 .5 -I.0 0.0 -I.0 0.0 -.5 .5 -.5 .5 

0 . 0  - , 5  .5 - . 5  .5 - 1 . 0  0 . 0  - 1 . 0  0 . 0  - . 5  .5 - , 5  .5 

1.0 -.5 .5 -.5 .5 0.0 1.0 0.0 1.0 -.5 .5 -.5 .5 

1 . 0  - . 5  ,5 - , 5  .5 0 . 0  1 . 0  0 . 0  1 . 0  - . 5  .5 - . 5  .5 

1.0 .5 .5 -.5 .5 0.0 1.0 0.0 1.0 -.5 .5 -.5 .5 

1 . 0  - , S  .5  - . 5  .5  0 . 0  1 . 0  0 . 0  1 . 0  - . 5  .5 - . 5  .5 

0 . 0  - . 5  .5 - . 5  .5 - 1 . 0  0 . 0  - 1 . 0  0 . 0  - . 5  .5 - . 5  .5 

0 . 0  - . 5  .5 - . 5  ,5 - 1 . 0  0 , 0  - 1 . 0  0 . 0  - . 5  .5 - , 5  .5, 

0 . 0  - . 5  .5 - . 5  .5 - 1 . 0  0 . 0  - 1 , 0  0 , 0  - . 5  .5 - . 5  .5 

0.0 -.5 .5 -.5 .5 -I.0 0.0 -I.0 0.0 -.5 .5 -.5 .5 

Fig. 5, Synaptic connection matrix, Tq, for inhibitory/excitatory slave net. Note that each column is consistently of one sign apart 

from the values 0.0, denoting no neural connections at all. The neural connectivity is a superposition of both local and long-range 

interactions. 

5. Conclusions 

The algorithm presented above describes a self- 

organizing neural net consisting of interacting 

master/slave subnets. Fixed-point behavior suit- 

able for pattern recognition and content address- 

able memory is obtained from bounded synaptic 

connection matrices that are structured and non- 

symmetric. (The degree of asymmetry was char- 

acterized by evaluating the eigenvalues of the Tu's 

for simulations I-VI. In most cases the imaginary 

part of the complex eigenvalues were of similar 

magnitude to the real parts, and the magnitudes of 

real and complex eigenvalues were also similar. 

Also, a few runs were selected at random and 

redone using only the symmetric part of T U, re- 

suiting in radically reduced performance. It is 

therefore clear that the asymmetry is used in an 

essential way by this algorithm, and that it is not 

merely decorating symmetric Tu's with small 

asymmetries.) Parameters that naturally occur in 

the formalism allow the net to use differing mea- 

sures of pattern similarity for pattern recognition 

problems. The master/slave network structure is 

relatively simple and presents no additional prob- 

lems for hardware implementation when compared 

to single net approaches. The synaptic asymmetry, 

and division of neurons into purely excitatory or 

inhibitatory subpopulations, remove two major 

obstacles in relating such formal neural modeling 

to real neurophysiology. The ability to use varying 

metrics of pattern similarity also removes a major 

obstacle in using artificial implementation of neu- 

ral nets in practical pattern recognition problems. 
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Fur the r  invest igat ion of these two aspects of  the 

present  formula t ion ,  in the context  of  specific 

problems,  will be  presented elsewhere. 
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