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Abstract

Error propagation networksare able to learn a variety of tasks in which a static

input pattern is mapped onto a static output pattern. This paper presents a

generalisation of these nets to deal with time varying, or dynamic patterns.

Three possible architectures are explored which deal with learning sequences

of knownfinite length and sequences of unknown andpossibly infinite length.

Several examples are given and an application to speech coding is discussed.

A further development of dynamic nets ismade which allows themto be trained

by a signal which expresses the correctness of the outputof the net, the utility

signal. One possible architecture for such a utility driven dynamic net is given

and a simple exampleis presented. Utility driven dynamic nets are potentially

able to calculate and maximise any function of the input and output data

streams, within the considered context. This is a very powerful property, and

an appendix presents a comparison of the information processing in utility

driven dynamic nets and that in the human brain.
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1 Introduction

This report develops a powerful new formof connectionist net, the utility driven dynamic

net. Connectionist nets were popular in the 1960’s, initiated by the perceptron (Rosen-

blatt, 1958, 1962) which showed great promise as a result of anefficient learning algorithm

known as the ‘perceptron convergence procedure’. In 1969 it was shown that the percep-

tron was unable to learn certain tasks such as parity and connectedness (Minsky and

Papert, 1969) and this resulted in a decline in their popularity. Recently there has been

a resurgence ofinterest through the discovery of new learning algorithms and the contin-

ued increase in available processing power. In particular the error propagation algorithm

(Rumelhart, Hinton and Williams, 1986) has extended the perceptron to more than one

layer, so overcoming the previous learning difficulties. A review of current connectionist

interest is given in ‘Parallel Distributed Processing’ (Rumelhart and McClelland, 1986).

The error propagation algorithm is taken as a starting point. This algorithm can be used

to train static nets which can make arbitrary mappings from input to output, but have

no memory for past inputs. An extension to the static net is developed, the dynamic

net, which feeds back part of the output to the input, so creating some internal storage

and allowing a far greater class of problems to be learned. To illustrate the powerof this
extension several problemsare considered, starting with basic logic and culminating in an

application to speech coding.

These dynamic nets are then developed further. Instead of learning by presentation of the

input and the desired output, the net computes a likely output andis given a training

signal, the utility signal, which indicates if the output is correct. Thus the machine must

first learn the relationship between the observed sequences of inputs and outputs and the

utility signal, and then learn to maximise the training signal. A simple example is given.

2 Static Error Propagation Nets.

A static net is defined by a set of units and links between the units. Denoting 0; as the

value of the i*® unit, and w;,; as the weight of the link between 0; and 0;, we may divide

up the units into input units, hidden units and output units. If we assign o9 to a constant

to form a bias, the input units run from0 up to op,,,, followed by the hidden units to

On,;q and then the output units to o,,,,. The values of the input units are defined by the

problem andthe values of the remaining units are defined by:

net; = i,j5 (1)

j=0

0; =. flmety) (2)

where f(z) is any continuous monotonic non-linear function and is known as the activation

function. The function usedin all the examplesis:

(3)

 

These equations define a net which has the maximum numberofinterconnections. This ar-

rangement is commonlyrestricted to a layered structure in which units are only connected

 



 

to the immediately preceding layer. The examples in this report do not use this popular

form, but use a maximally interconnected net without connections between output units.

This decision was based on a minimal constraint design philosophy,if a layered structureis

applicable to a problem then the net can disregard the interlayer links (Robinson, 1986).

The architecture of these nets is specified by the number of input, output and hidden

units. In this report a static net is pictured as a transformation of an input u, to output

y; as in figure 1.

 

a static |

u y

   
figure 1

Thenetis trained by using a gradient descent algorithm which minismises an energy term,

E, defined as the summed squared error between the actual outputs, 0;, and the target

outputs, ¢;.

it Nout 4

a ns YS (ti) (4)
i=nuatl F

A gradient descent algorithm is used to minimize E. This defines an errorsignal, 6;, for

each unit:

6; = f'(net;)(t = 0;) Mnid <1 < Nout (5)

(nets) 6:05: bemttinpei S hia (8)
j=itl

Ml

where f’(x) is the derivative of f(x) and t; is the target output for the i+ unit. The

error signal is combined with the activations of the units to get the change in each weight,

Aw;,;.

Aw,; = 76:0; (

where 7 is a constant of proportionality which determines the learning rate. If a small

finite example set is used, it is possible to update the weights after the complete set has

been presented. In all the examples in this report the training set is either large, or

non-recurring, so the weights are updated after every example.

The above equations define the error signal. 6;. for the input units as well as for the hidden

units. Thus any number ofstatic nets can be connected together, the values of6; being
passed from input units of one net to output units of the preceding net. It is this ability

of error propagation nets to be ‘glued’ together in this way that enables the construction

of dynamic nets.

b
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3 Dynamic Error Propagation Nets

The essential quality of the dynamic net is is that its behaviour is determined both by

the external input to the net, and also by its own internal state. This state is represented

by the activation of a group of units. These units formpart of the output of a static net

and also part of the input to another copy of the same static net in the next time period.

Thus the state units link multiple copies of static nets over time to form a dynamic net.

3.1 Development from Linear Control Theory

The analogy of a dynamic net in linear systems (for example Jacobs, 1974) may be stated

as:

Zi+1 = Ave + Buy (8),

YporH—Gx;y

where u; is the input vector, z, the state vector, and y the output vector at the integer

time ¢t. A, B and Care matrices.

The structure of the linear systems solution may be implemented as a non-linear dynamic

net by substituting the matrices A, B and C bystatic nets, represented by the non-linear

functions Aj.], B[.] and C[.]. The summation operation of Az; and Bu; could be achieved
using a net with one node for each element in z and wu and with unity weights from the

two inputs to the identity activation function f(z) = z. Alternatively this net can be

incorporated into the A/.] net giving the-architectureoffigure 2.

  J

 ace) BE a7) [   AC.] x(t+1) c[.] y(t+1)

   x(t)

 

 

Time

  Delay   
figure 2

The input is coded by net B[.] and then the outputis fed into Aj.| along with the previous

output of A[.] and the resulting output is passed through C{.] to yield the overall output of
the system. The three networks of the previous dynamicnet architecture may be combined

into one, as in figure 3. Simplicity of architecture is not just an aesthetic consideration. If  
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three nets are used then each one must have enough computational powerforits part of

the task, combining the nets means that only the combined power must be sufficient and

it allows common computations can be shared.

y(t+1)

 

xCtt1)
 

 

 

  Time    Delay    
figure 3

The error signal for the output ys41, can be calculated by comparison with the desired

output. However, the error signal for the state units, z;, is only given by the net at time

t + 1, which is not known at time ¢. Thus it is impossible to use a single backward pass

to train this net. It is this difficulty which introduces the variation in the architectures of

dynamic nets.

3.2 Architectures

This section presents three alternative architectures for dynamic nets, starting with the

FIR dynamic net which is similar to the recurrent net (Rumelhart, Hinton and Williams,

1986). The amount of computation needed to train this net increases in proportion to the

time span from which context information is derived. For large problemsit is desirable to

have an architecture whose computational requirements are independent of the amount of

context. The remaining two architectures satisfy this constraint.

3.2.1 The Finite Impulse Response (FIR) Dynamic Net

If the output of a dynamic net, y:, is dependent on a finite number of previous inputs,

u,;_, to uw, or if this assumption is a good approximation. then it is possible to formulate

the learning algorithmby expansion of the dynamic net for a finite time, as in figure 4.

Consider only the componentofthe error signalin past instantiations of the nets whichis

the result of the error signal at time t. Theerror signal for y; is calculated fromthe target

output and the error signal for x; is zero. This combinederror signal is propagated back  



 
figure 4
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though the dynamic net at ¢ to yield the error signals for u; and z;. Similarly these error

signals can then be propagated back through the net at ¢t — 1, and so on forall relevant

inputs. The summederrorsignal is then used to change the weights as for a static net.

Formalising the FIR dynamic net:

OF

tei
be
Wij

Awij

Aw;;

The values of o;,;, 6:,; and Aw;,; are calculated in the same wayas in a static net.

s

is

is

is

is

is

the output value of unit 7 at time t

the target value of unit 7 at time t

the error value of unit 7 at time t

the weight between 0; and 0;

the weight change for this iteration at time t

the total weight change for this iteration

i-1

mete; = >. wij0e,j
j=0

oi = f(nets:)

f ein ae
by: = fi’ (mete:) (te, — 94,1) Mid <0 < Tout

ne

= #i(netis) Su Oty Ting <2 < Tia
jaitl

Awiij = 76¢,i98,j

(13)

(14)

The total weight change is given by the summation of the partial weight changes for all

previous times.

o
n

(15)  



t

= YO be,i08,5 (16)
tst—r

Thus, it is possible to train a dynamic net to incorporate the information from any time

period offinite length, and so learn any function which has finite impulse response. Note

that this is a restriction on the class of functions which can be learned, the output will

always be affected in some waybyall previous inputs giving an infinite impulse response

performance.

In some situations the approximation to a finite length may not he valid, or the storage

and computational requirements of such a net may not be feasible. In such situations

another approachis possible, the infinite impulse response dynamic net.

3.2.2 The Infinite Impulse Response (IIR) Dynamic Net

Although the forward pass of the FIR net of the previous section is a non-linear process,

the backward pass computes the effect of small variations on the forward pass, andis a

linear process. Thus the recursive learning procedure described in the previous section

may be compressed into a single operation.

Given the target values for the output of the net at time t, equation 12 defines values of

6:; at the outputs. If we denote this set of 6; by Dy then equation 13 states that any 6;

in the net at time ¢ is simply a linear transformation of D;. Writing the transformation

matrix as 5: ‘

6; = SeiDe (17)

In particular the set of &,; which is to be fed back into the network at time t — 1 is also a

linear transformation of D;

Dyes) SH Tee (18)

or for an arbitrary time ¢’:

t

Dy = TT r») D: (19)
eVat!+1

so substituting this into equation 16:

t

Awi; = 7 Ss Si Deoe (20)

tases

t t

= Foye | I] 1| Dyoe.j (21)
tl=—co tat4

which can be rewritten as:

Awi; = 7MeijDe
(22)

6  



where:

rE: t

Mig = SS Ser, I Ten ov; (23)
t!=—co att.

and note that M,;,; can be written in terms of My_1:,; :

t t=1 Ce

Mig = Sti II Tyr ong + Sy Sei II Ty 08,3 (24)
tel t!=—c0 tate

tal (0

= Syiongt MoosSert- YL To te (25)
tl=—00 eats

= Seong MiaeoTt (26)

Hence we can calculate the weight changes for an infinite recursion using only the finite

matrix M.

If this approach is to be of practical use, we must consider the overall storage and com-

putation requirements as compared with the FIR net. The net has no, units of which

Nar = Nout — Nia are output units, the ITR net requires noutNtar locations for storage of

the M matrix. If a context of t time slots is required to solve the problem then the FIR

net requires trout locations. Thus the FIR net requires less storage for t < Mtar-

The computational requirements for the FIR net are given in equations 15 and 16. Des-

ignating thack as the number ofinstructions needed to compute a single backward pass

of the net, as in equation 15, then tipack instructions must be executed to compute the

weight changes periteration.

The weight changes for the IIR net are given by equations 22 and 26. Ad, ;,; and D; are

matrices of order ntar and so equation 22 requires order mar multiplications per weight, a

total of Mtarthack Computations. Equation 26 first requires order of ntariback Computations

to calculate 5,, and then order of Mice computations to compute M,_1;,;T; and order mtar

computations for o;,;5;;, each of which must be computed 7,-, times. Taking the highest

order, the IIR net requires order Tir,Tback computations.

In comparison, the ITR net is computationally moreefficient if t > n3,,. As the examples

in this report use values oft in the range 1 to 4, and nia, in the range | to 17, the IIR net

is not computationally efficient and has not been used in any of the examples.

3.2.3 The State Compression Dynamic Net

The previous architectures for dynamic nets rely on the propagation ofthe error signal

back in time to define the format of the information in the state units. An alternative

approachis to use anothererror propagation net to define the format of the state units.

The overall architecture is given in figure 5.

The encoder net is trained to code the current input and current state onto the next state,

while the decoder net is trained to do the reverse operation. The translator net codes

the next state onto the desired output. This encoding/decoding attempts to represent the

current input and the current state in the next state, and by the recursion,it will try to

—
J
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figure 5

represent all previous inputs. Feeding errors back frommthe translator directs this coding

of past inputs to those which are useful in forming the output.

A feature of this architecture is that recent information tends to be stored in the state

units whether it is required to compute the output or not. As with the IIR architecture,

the amount of computation per learning cycle is not dependent on the time span of the

input data.

3.3 Some Examples of Dynamic Nets

This section presents some simple applications of dynamic nets to illustrate their compu-

tational power. Two forms of dynamic nets are used, a finite impulse response dynamic

net looking back over two time slots and a state compression dynamic net. The activa-

tion function, equation 3 has a maximumvalue of +1.0 and a minimumvalue of —1.0.

However, these values can not be achieved with finite input, so the target values of +0.8

for high and —0.8 for low were used instead. Except when stated otherwise, the learning

rate 7 was set to 0.1, and the nets were considered to have learned when the short term

residual energy fell below 0.01.

3.3.1 Time Delay

Oneof the simplest problems for a dynamic net is to reproduce a randomone bit input

after a unit time delay.

The FIR net requires one state unit and no hidden units to learn this task. Figure 6 shows

the nodes of this net as circles and the significant weights as solid lines.

The net learns in about 200 iterations by forming connections of approximately unity

 



input(t) —> output (t+1)

state(t) —> i— state(t+1)

figure 6

strength between the input and the state unit at t+ 1 and between the state unit at t and

the output, the connections between the input and output and between the state unit at

t and the state unit at t + 1 being of negligible strength. Thus, in each time slot the the

input is copied to the new state unit and the oldstate unit is copied to the output.

The state compression net requires two state units, one to store the current input and one

to store the previous input. Again about 200 iterations are required for solution.

3.3.2 Bistable

Another basic problem for dynamic nets is to oscillate between states with no external

input. An FIR net may learn to do this using no input units, one state unit and one

output unit, as in figure 7.

> output (t+1) 8

state(t) — state(t+1)

figure 7

With the signed activation function, a negative weight between the state input and output

reverses the sign of the state and the sign of the weight to the output unit ensures the

desired phase. This net learns in about 250 iterations.

The state compression dynamic net is not able to learn this problem as it stands. With

no information in the input units, the energy of the encoder/decoder part of the net is

minimized by setting the state units to zero. Zeroedstate units also contain no information

and so the desired output can not be derived from these units. This may be overcome

by presenting an input which is uncorrelated with the output. If a one bit binary input

is fed to a net with eight state units, the bistable problem may be learned in about 500

iterations.

3.3.3 Movement Detection without Wraparound

The movement detection problem was inspired by neurobiological research that showed

that the human brain containssingle cells which can detect movement (Poggio and Koch,



1987). If dynamic error propagation nets are sufficiently powerful to model the human

brain, then a net must also be able to solve this problem.

This is the first of two problems which are analogous to movement detection on a ‘retina’

with and without ‘wraparound’. Although the problems may appear to be of similar

computational complexity, the differences illustrate a limitation of dynamic nets.

The input to the nets is a single dimension array of eight units. One of these units

is activated whilst the remainder are off, and the activated unit is restricted to be a

neighbour of the previously activated unit. There is a single output which is on if the

movementis to the left and off if the movementis to the right. The direction of movement

is random, except when the last active unit is at one edge of the retina in which case the

movement is towards the centre.

The FIR net architecture involved eight input units and one state unit. This net learns in

about 5300 iterations by developing weights from the input units to the state unit which

monotonically increase with distance along the retina. Thus the activation of the state

unit represents the current position, and thresholding the difference between this value

and the last value of the state unit gives the direction of movement.

Twoarchitectures of state compression nets were considered, one with two and one with

nine state units. Two state units represents the minimum required to solve the problem,

one to store the present position and oneto store the previous position. The first version

failed to learn in 2!° iterations, presumably because the input contains noise from the

random directions and there is no spare information capacity in the state units to record

this andstill be able to solve the problem. The second architecture was designed to have

one state unit for every input, so that there was no problemin replicating the input, and

one moreto store the previous position. This architecture learned in about'1000iterations.

3.3.4. Movement Detection with Wraparound

The problem of movement detection with wraparound is the same as the case without

wraparound, except that an attempt to moveoff on end of the retina results in the active

unit appearing at the other end. This generates some problems as the comparison of two

scalars can no longer be used to judge the direction of motion.

The FIR net with eight inputs, sixteen hidden units, sixteen state units and one output

unit learns all but two transitions in about 6000 iterations. However the final transition

Tequires a considerable movement in weight space for a small decrease in energy. In

learning the remainder of the problem some activations became very large, reducing the

slope of these units to near zero and so blocking the error signal from propagating back

through them. Thefinal transition was not learned.

The state compression net had the same number of input, state and hidden units as the

FIR net. This net did not suffer from the sameinstabilities and learned in 1500 iterations.

Thus this state compression net gives a means of solving a problem which can not be

solved by the FIR net.

10  



3.3.5 Letter to Word Conversion

As an example of sequence recognition, the constituent letters of words were presented

sequentially to a dynamic net and an output unit corresponding to the word wasactivated

upon its completion. A connectionist solution to this problemhas already been formulated

with predefined weights (Tank and Hopfield, 1987) and this example shows thatit is also

possible to learn the weights of a connectionist network which solves this problem.

The nets had 26 inputs (one for each letter of the alphabet), 34 hidden units, 34 state

units and 8 output units, one for each of the unique words in “the quick brown fox jumped

over the lazy dog”. One word was chosen at random andtheletters presented sequentially

to the net by activating one input unit and switching the rest off. The desired output was

for all units to be off until the input after the completion of the word, when oneoutputis

activated. The letters of succeeding words were run together without punctuation, so the

net had to learn to segment the letters into words and then label the segments. Example

input is given in table 1.

 

 

     

time input letter output word

activated activated

t-3

t-2

t-1

£ Zz none

t+1 y none

t+2 q lazy

t+3 u none °

t+4 i none

t+5 c none

t+6 k none

t+7 d quick

t+8 ° none

t+9

t+10

t+11

table 1

The time between repetitions of input-output pairs is considerably longer in this example

than any of the previous examples, and the learning rate was correspondingly reduced to

7 = 0.05 to compensate.

Several versions of the FIR architecture were used, differing in the number of previous

letters of context that were considered. When the context was limited to the last letter,

or to the last two letters, this net could not resolve the ambignities. and the net did not

learn. With three letter context the FIR net learned in 17.000 iterations and with four

letter context only 7,500 iterations were required to solution.

The state compression net required the presentation of 15,000 iterations before reducing

its energy to below the threshold of 0.01.

ala  



 

3.4 Application to Speech Coding

The problem of speech coding is one offinding a suitable model to remove redundancy

and hence reduce the data rate of the speech. The Boltzmann machine learning algorithm

has already been extended to deal to the dynamic case and applied to speech recognition

(Prager, Harrison and Fallside, 1986). However, previous use oferror propagation nets for

speech processing has mainly beenrestricted to explicit presentation of the context (Elman

and Zipser, 1987; Robinson, 1986) with some work using units with feedback links to

themselves (Watrous, Shastri and Waibel, 1987). In a similar area, static error propagation

nets have been used to perform image coding as well as conventional techniques (Cottrell,

Munro andZipser, 1986).

3.4.1. The Architecture of a General Coder

The coding principle used in this section is not restricted to coding speech data. The

general problem is one of encoding the present input using past input context to form

the transmitted signal, and decoding this signal using the context of the coded signals to

regenerate the original input. Previous sections have shown that dynamic nets are able to

Tepresent context, so two dynamic nets in series formthe architecture of the coder, as in

figure 8.

 
 

input r coded signal output

TX RX
  

  

 
 

Time Time

Delay Nis.ta} Delay           
 

figure 8

This architecture may be specified by the numberofinput, state, hidden and transmission

units. There are as many output units as input units and. in this application, both the

transmitter and receiver have the same numberofstate and hidden units.

The input is combined with the internal state of the transmitter to form the codedsignal.

and then decoded by the receiver using its internal state. Training of the net involves the

comparison of the input and output to form the error signal, which is then propagated

back through past instantiations of the receiver and transmitter in the same way as a for

a FIR dynamic net.

12



It is useful to introduce noise into the coded signal during the training to reduce the
information capacity of the transmission line. This forces the dynamic nets to incorporate

time information, without this constraint both nets can learn a simple transformation

without any time dependence. The noise can be used to simulate quantisation of the coded

signal so quantifying the transmission rate. Unfortunately, a straight implementation of

quantisation violates the requirement of the activation function to be continuous, which

is necessary to train the net. Instead quantisation to n levels may be simulated by adding

a randomvalue distributed uniformly in the range +1/n to —1/n to each of the channels

in the coded signal.

3.4.2 Training of the Speech Coder

The chosen problem was to present a single sample of digitised speech to the input, code

to a single value quantised to fifteen levels, and then to reconstruct the original speech

at the output. Fifteen levels was chosen as the point where there is a marked loss in the

intelligibility of the speech, so implementation of these coding schemes gives an audible

improvement. Both nets had eight hidden units, with no state units for the static time

incependent case and four state units for the dynamic time dependent case. A context of

the last four samples was used to train the dynamic net.

The data for this problem was 40 seconds of speech froma single male speaker, digitised

to 12 bits at 10kHz and recorded in a laboratory environment. The speech was divided

into two halves, the first was used for training and the secondfortesting.

The static and the dynamic versions of the architecture were trained on 21 passes through

the training data. At this point:tht weights were frozen and the inclusion of random noise

was replaced by true quantisation of the coded representation. A further pass was then

made through bothsets of data to yield the performance measurements.

3.4.3 Quantitative Comparison of Performance

The performance of these coding schemes can be measured using the definition of energy

of equation 4, which can also be viewed as the amount of noise added to the speech by

the coding process. This energy is normalised such that zero output of the net results in

unity energy when averaged over the data set. The resulting values are given in table 2.

 

 

    

coding method training data testing data

residual energy residual energy

linear quantiser 0.078 0.071

static net 0.070 0.075

dynamic net 0.057 0.056

table 2

Both the training and the testing data sets are large (about 200,000 samples), in compari-

son with the numberof weights in the nets (54 in each static net and 146 in each dynamic

net). Thus neither net could be expected to explicitly store individual values of input and

output, but must make a generalisation to deal with the whole training set. Nevertheless,
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there is some variability between the two sets and this is reflectedin the different residual

energies from the linear quantiser.

The static net is an improvementon the linear quantiser for the training data, but this

does not generalise to the testing data. Inspection of the net shows that the quantisation

levels are grouped moreclosely around the mean signal level and are sparsely spaced at

the extremes. This reflects the distribution of values in the input stream.

The dynamic net performssignificantly better than either the linear quantiser or the static

net. Although an exact analysis of the net is not feasible, it is likely that the net forms

a filter in the transmitter, and the inverse filter in the receiver. A larger net may forma

source-filter model of speech, akin to Linear Predictive Coding.

3.4.4 Visual Comparison of Performance

A small section of the testing data is shown in figure 9. Figure 9a shows the original

speech, a plosive burst and a vowel segment taken fromthe start of the word ‘did’.

Figure 9b shows theoriginal after processing by the linear quantiser. There is a narked

loss of information, especially during the lower energy portion of the speech where most

of the samples fall into the same quantisation band.

Processing with static nets gives an immediate improvement on the linear quantiser, as

shownin figure 9c. The quantisation levels near the meansignallevel are half as large as the

equally spaced case, so more information about the low powersignal is transmitted. This

improvementin performanceis achieved at the loss of resolution of the larger amplitudes,

which in this example are also reduced in magnitude.

The use of a dynamic net frees the outputs from the restriction to a discrete set of levels.

This is clearly shownin figure 9d, which visually appears to be a close copy oftheoriginal

speech.

3.4.5 Audible Comparison of Performance

Listening tests on the three coding schemes gave different performance results to the

quantitative’and visual measures. The linear quantised speech is of a low intelligibility

and quality, and both the static and dynamic coding schemes are reported as being of

higher quality and moreintelligible. However, there is little difference in intelligibility

between the static and dynamic coders, which may be due to the ability of the ear to

compensate for noisy environments. Dynamic nets do give higher speech quality than

static nets, with less high frequency noise and a lower tone, which is morelike the original

speech. This improvementis consistent with the other performanceresults.
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3.5 Limitations of Dynamic Nets

Notall of the examples given in the previous section succeededin learning their designated

task. This section explores the problems encountered and gives some considerations for

the design of dynamicnets.

The most obvious consideration is that of the complexity of processing which can be

learned by the error propagation algorithm. FIR and IIR dynamicnets necessarily include

a layer of units through which the error signals must pass in each time slot. Learning

to map an input signal though many suchlayers is a difficult task, for if one layer is

insufficiently trained, as it must be initially, then some of the informationis lost and can

not be used to train subsequent layers. The same problem manifests itself as a degradation

of the error signal, as it propagates back through layers of units its magnitude decreases,

thus the units close to the input receive a small degradedsignal and take correspondingly

longer to learn than those ofa smaller network. The practicallimitation that this imposes

is of the order of four to eight layers in a layeredstatic net, or a maximumlookback of the

same number in a FIR or IIR dynamic net. A major driving force in the development of

the state compression net was to avoidthis limit, since the error signals in this net only

pass though single layer of units.

Another consideration relates to the type of problem to be solved. The dynamic net is a

finite state machine and thus can not fully emulate any more powerful machine such as a

stack machine or a universal Turing machine. However, the dynamic net is able to make

an approximate simulation of any machine within the restrictions of internal state space

and processing capabilities: The speed of learning is directly related to the probability

of the training inputs and outputs occurring in the context of the relevant state vector.

For example, a net asked to emulate a stack might succeed in ernulating the first few
elements which occur frequently, but have great difficulty with greater depths which occur

infrequently, and can not hope to learn the stack to greater depths than the training

examples.

In one example, that of learning movement detection with wraparound, the FIRnet be-

came unstable andeffectively locked in a partial solution. This is not a problem of the net

settling in to a local minimum, but one of the net moving to a position in weight space

at which the error signals for the training examples become so small as to make further

movement impractically slow. This may be a feature of updating the weights after every

example and may avoidable in the case of small training sets when the weights can be

updated after all examples.

State compression dynamic nets have their own limitations which arise from their ar-

chitecture. The bistable problem demonstrated that a state compression net must have

information in its input in order form the output, but this is not normally a restriction.

The net is also less efficient in the use ofstate units for storage capacity, state units are

used to record the information in the input whetherit is required for computation of the

output or not. This form of information storage has anothereffect, the requirements of

efficient storage may lead to a.change in the format nsed to store the input information

at any time during the learning and such changes of format must then be learned by the

translator net in order to maintain the desired output.

Neither form of dynamicnet is without problems, and although someoftheseare applicable

to larger dynamic nets, the increase in scale will undoubtably bring more.
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4 Utility Driven Dynamic Nets

Both the static net and the dynamic net presentedso far have been trained on input/output

pairs. In contrast, a utility driven net is trained by repreated presented of an input and

a judgement on the calculated output, the utility signal. Utility driven dynamic nets

learn to calculate the output which maximises the utility signal for a given input stream.

This is a very powerful property, since all that is required is that the utility signal is a

function of the input and output data streams within the considered context. Such nets

have the potential to create complex internal models of the external world based on their

owninterrelationship with it. Applications may include the control of plant where only

the performance of the system as a whole is known,or the buildingof intelligent machines

as discussed in the appendix.

4.1 Architectures

A utility driven dynamic net can be formed from two dynamic nets and a possible archi-

tectureis given figure 10. The first dynamic net (net Y) computes the overall output from

the input and the second net (net Z) takes both the output and input and learns their

relationship to the utility signal.
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figure 10

Both nets train at the same time, although withont net Z it is impossible to train net Y

at all. Net Z learns the relationship between the behaviour of net Y and theutility signal

using the learning procedure for dynamic nets without any modification. Net Y can not

be trained directly as the desired output is only specified as that which maximises the

utility signal. However, the error signal for the output can be calculated by setting the
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output of net Z to its desired value, that is with the utility signal high, and propagating

this error signal through net Z and subsequently though net Y. This is a new use for the

error signal in back propagation networks, for it is simultaneously used to train a net and

to generate the error signal for training another net.

In practice net Y and net Z may be combined to achieve a more compact net, as in

figure 11.
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figure 11

This net may be trained in a similar way to a FIR or IIR net. Knowing the observedutility

and output, an error signal can be generated and propagated though successive sets of

state units to learn the mapping function. Now bysetting the target utility high a second

error signal is generated which is propagated back through the current net to form the

errorsignal for the previous outputs. This error signal is then propagated through previous

sets of state units to maximise the utility. As observed earlier, the propagations of errors

is a linear process, so the error signals may be combined byaddition and propagated back

as a single signal, so reducing the computation. This utility driven net can be specified

by the number of input, output, hidden and state units.

4.2 An Example Utility Driven Dynamic Net

A basic problem for a utility driven dynamic net is to copy a single input unit to an

output unit with a time delay, the utility signal representing whether the copy operation

was correct. Two hidden units and four state units were used. The utility signal was

high if the sign of the previous output matchedthe sign of the preceding input and low

otherwise.
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Thereis no in built mechanismin the utility driven net to ensure that the net receives the

full range of sensory inputs. In this example a learning rate, 7 = 0.05 or above tended to

result in the output assuming a constantsign, the net then learneda utility function that

was independentof the output, and so no maximisation ofthe utility signal was possible.

If, however, 7 was set to 0.02 or below then several signs of output were observed whilst

the utility function was learned, andso the utility function included the past output as

a relevant input and the valueofthe utility could be maximised. With 7 = 0.02 this net

can learn the target utility of 0.8 to an accuracy of £0.001 in 10,000 iterations.

The main problem with learning in the utility driven net is that of getting the utility

function to learn that it is dependent on the past output of the net. It is hoped that

in solving larger problems first order correlations of the inputs andutility signal will give

sufficient variability of output that higher order correlations maybe learned,althoughthis

remains to be shown.

5 Conclusion

This report has developed three architectures for dynamic nets and presented a new form

of learning machine, the utility driven dynamic net.

The IIR and the state compression dynamic nets have computational requirements which

are not dependent on the amountof time context required by the problem. This is believed

to be a very desirable property for dynamic nets designed to solve larger problems. The

FIR andstate compression dynamic nets have been applied to several small problems with

considerable success, including a segmentation andlabelling problem. Two FIR dynamic

nets have been coupled together to form a coder, and this has been applied to speech

coding, demonstrating that dynamic nets can be used to achieve an improved performance

in a real world task.

The utility driven dynamic net is demonstably capable of mapping a simple input stream

onto an output stream by theuseofa utility signal which describes the correctness ofthe

current mapping. This net has considerable potential.

Several difficulties have been encountered, context information has been limited to a small

numberof previous time slots, instabilities have been observed, and learning froma utility

signal is not guaranteed. Suggestions have been made to overcomethese problems.

It is believed that dynamic nets, coders, and utility driven dynamic nets are capable of

being scaled up to solve larger problems, and some effort will be put into demonstrating

this in the near future.

One of the authors, A J Robinson, is supported by a maintenance grant from the U.K.PP

Science and Engineering Research Council, and gratefully acknowledges this support.

19  



 
References

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for
Boltzmann machines. Journal of Cognitive Science, 9, 147-169.

Cottrell, G. W., Munro, P., and Zipser, D. (Febuary 1986). Image Compression by Back
Propagation: An Example of Existential Programming. ICS Report 8702, Institute for
Cognitive Science, University of California, San Diego. .

Dennett, D. C. (1984). Elbow Room: The varieties of free will worth wanting. The Clarendon
Press, Oxford.

Elman, J. L. and Zipser, D. (1987). Learning the Hidden Structure of Speech. ICS Re-
port 8701, University of California, San Diego.

Hofstader, D. R. (1979). Godel, Escher, Bach: An eternal golden braid. The Harvester Press,
Hassocks, Sussex.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computationalabilities. Proceedings of the National Academy of Science U.S.A., 79, 2554—
2558.

Jacobs, O. L. R. (1974). Introduction to Control Theory. Clarendon Press, Oxford.
Jordan, M. I. (May 1986). Serial Order: A Parallel Distributed Processing Approach. ICS

Report 8604, Institute for Cognitive Science, University of California, San Diego.
Kuffler, S. W., Nicholls, J. G., and Martin, A. R. (1984). From Neuron to Brain: A Cellular

Approach to the Function of the Nervous System. Sinauer Associates Inc., Sunderland,
MA,secondedition.

Lindsay, P. H. and Norman, D. A. (1977). Human Information Processing: An Introduction
to Psychology. Academic Press, Inc., Orlando, Florida, second edition.

Minsky, M. and Papert, S. (1969). Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA.

Pearlmutter, B. A. and Hinton, G. E. (1986). G-maximization: An unsupervised learn-
ing procedure for discovering regularities. In Proceedings of the Conference on ‘Neural
Networks for Computing’, American Institute of Physics.

Poggio, T. and Koch, C. (1987). Synapses that compute motion. Scientific American, May,
42-48.

Prager, R. W., Harrison, T. D., and Fallside, F. (1986). Boltzmann machinesfor speech
recognition. Computer Speech and Language, 1, 3-27.

Robinson, A. J. (1986). Speech Recognition with Associative Networks. M.Phil Computer
Speech and Language Processing thesis , Cambridge University Engineering Depart-
ment.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organisation in the brain. Psychological Review, 65, 386-408.

Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan, New York.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal repre-

sentations by error propagation. In Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Vol. 1: Foundations. (eds. D. E. Rumelhart and J. L. McClel-
land), Bradford Books/MIT Press, Cambridge, MA.

Rumelhart, D. E. and McClelland, J. L. (1986). Parallel Distributed Processing: Explorations
im the Microstructure of Cognition. Vol. 1: Foundations. MIT Press, Cambridge, MA.

Tank, D. W. and Hopfield, J. J. (1987). Neural computation by concentrating information
in time. Proceedings of the National Academy of Science U.S.A.. 84, 1896-1900.

Watrous, R. L., Shastri, L., and Waibel. A. H. (1987). Learned phonetic discrimina-
tion using connectionist networks. In Proceedings of the European Conference on Speech
Technology (eds. J. Laver and M. A. Jack), CEP Consultants Ltd, Edinburgh.

 



 

A Appendix: Real and Artificial Intelligence

The aim of this appendix is to explore the relationship between a connectionist approach

to artificially intelligent machines, and real intelligence as implemented by the human

brain.

The specific example of a potentially intelligent machine, the utility driven dynamic

net, has been investigated in the main body ofthe report. It is assumed that similar

architectures are implementable for other connectionist learning algorithms such as G-

Maximisation (Pearlmutter and Hinton, 1986), Boltzmann machines (Ackley, Hinton and

Sejnowski, 1985) and Hopfield nets (Hopfield, 1982). Established theories in neurophysiol-

ogy (Kuffler, Nicholls and Martin, 1984) and psychology (Lindsay and Norman, 1977) are

examinedin the light of an analogyofinformation processing in the utility driven dynamic

net and in the human brain. This starts with an exploration of the analogy, and proceeds

to discuss learning, memory, recognition, thought, consciousness and the implications of

holistic processing. Thus it is hoped that the hypotheses presentedin this section have a

wide applicability, but it is to be stressed that, unlike the rest of this report, this appendix

is subjective opinion without experimental verification.

A.1 Levels of Isomorphism

To compare two information processing systems it is useful to establish a level of iso-

morphism, (Hofstader, 1979) above which the two systems have the same behaviour, and

below which the behaviouraldifferences are unimportant. Firstly it must be established

that it is possible for, a level of isomorphismto exist. For this to be true we have to assume

that both the brain and connectionist models have a finite processing and storage capacity,

implemented by their hardware and with no concealed connections to the external world.

This restricts both information processing systems to the class offinite state automata.

Traditional A.I. employs an isomorphismon the symbolic level and it is assumed that these

symbols can be manipulated by formalrules. In contrast the connectionist approach em-

ploys a level of isomorphismon the signal processing level using many simple computation

units which are massively interconnected.

Connectionist models do not aim to accurately models single neurons, but the units in a

model are regarded as a neurallike element. The intensity ofsignals in the brain are often

measured asa firing rate, and the links between neurons are ascribed a synaptic strength,

thus it is possible to draw an analogy between these quantities and the activations and

weights in a connectionist network. However, the mathematically simple and uniform units

used by connectionist models are in contrast to the complexity and diversity of types of

neuron found in the brain. Thus a higher level of isomorphism must be used, andit is

assumed that one or a few neurons can be modelled by a group of connectionist units.

Having establisheda level of isomorphismhetween the two information processing systems

a comparison of computational complexity may he made. There are about 30.000 nerve

fibres that connect the hair cells in the ear to the brain. abont 800.000 that connect the

eye to the brain and about 100,000,000,000 (10/') neurons in the brain. Assuming that

one or a few connectionist units are to be used to model each neuron, this yields a far

larger machine than can currently be simulated. However, synthetic neural networks do

stand a chance of showing interesting behaviour, the Aplysia (sea hare) contains just a
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few thousand neurons while the leech contains only about four hundred. This is of the

same order of complexity as current connectionist simulations, so we may expect to see

similar behaviour.

A.2 Hardware Organisation

Some localisation of function occurs within the brain. Traditionally researchers have

expected a greater degree ofspecificity than has been found. In contrast, the connectionist

view is able to encompass a distributed representation of knowledge and computational

power with nolocalisation of function. Localisation of function may be computationally

efficient for a connectionist model, but is not necessarily an emergent property of the

system.

The connectionist models of this report use highly interconnected units with nearly every

possible connection made, but the brain uses sparsely interconnected neurons with only a

few of the possible interconnections made. This difference in connectedness may account

for the localisation of function, for example the restriction of neurons to a locally connected

layered architecture close to the retina is a computationally sensible way performing a

sequence ofspatially local transformations on a visual input. These differences represent

architectural constraints that must be correctly evaluated and built into the system as

opposed to parameters which can be learned, and as such may represent an architectural

barrier to the implementation of an intelligent connectionist machine.

As well as architectural constraints there may be an initialisation constraint. Some basic

sensory and motor skills are built into mammals, but none are built into connectionist

models. If a significant amountof the information required to produce intelligent behaviour

is hereditary, then it is possible that evolutionary time periods as opposed to human

lifetimes are necessary to train intelligent machines.

A.3 Learning

In 1898 Thorndyke proposedthe law ofeffect: ‘An action that leads to desirable outcome

is likely to be repeated in similar circumstances’. This is good starting point for the

quantification ofutility driven connectionist nets, the desirability of the outcome corre-

sponding to theutility signal. It is this maximisation of desirable outcomes which drives

the learning, and it is assumed that a suitable definition for ‘desirable’ can be found.

Possible candidates include scale of pleasure/pain received by the sensors, or the degree

of mismatch between the predicted sensory inputs andreceived sensory inputs, leading to

pleasure seeking or knowledge seeking machines.

There are two possible extremes in the mechanisms of human learning. At one end the

mechanismfor learning may be built in frombirth in the formof a large complicated pro-

gram implemented on neural hardware. At the other extreme the mechanismfor learning

may itself be learned, so that the only function of the weight adaptation learning is to

generate the neural program which allows for the observered learning. Thus there are

possibly two levels of learning, the generation of a neural program and the implementa-

tion of that program. If these twolevels do exist, then only the lower learning level may

be discussed in the context of connectionist models, the higher level being more relevant

to traditional A.J. It is an assumption of this report, and in the spirit of connectionism,  



 

that the distinct levels do not exist and so the observed learning behaviour of humans and

intelligent machines may be meaningfully discussed as a result of weight adaptation.

A.4 Memory

‘There is reasonably good agreement that permanent storage of information takes place

either through chemical or structural changes in the brain. Thereislittle or no disagree-

ment that the intermediate, ongoing activities of thought, conscious processes, and the

immediate memories - sensory information store and short term memory - are mediated

through electrical activity’ (Lindsay and Norman, 1977, p421).

Similarly a dynamic connectionist network has two modes ofinformation storage, as the

transitory current activations of the units and the semi-permanent values of the weights.

Input is combined with the current state to yield an output according the processing

specified by the weights.

The first hypotheses is that the information stored in the neuralactivations is that of short

term memory. There are far fewer nerve fibres entering the brain than there are neurons

in the brain, by a factor of about 50,000, so there are easily enough neurons to account for

short term memoryif sensory input were to be stored as activations of neurons. Assuming

a maximumfiring rate of 1000Hz this represents about 50 seconds of raw data storage,

and that is without using any form of data compression.

Using the connectionist model it is also possible to hypothesise about long term informa-

tion storage. It is useful to split long term memory into two classes, semantic memory,

that is memory about definitions which arises from repeated events, and episodic memory

which pertains to single events. The hypotheses for semantic memory is the more funda-

mental of the two, as a characteristic feature of connectionist models is that they learn by

repeated presentation of input-output pairs. Repeated presentation of input and utility

signals train the net by modification of the format by which information is stored in the

state space. For example, a net with little training may store a direct representation of

the past few inputs in order to calculate the desired output. However, after more training

the net will discover redundancies in the input which are not required for calculation of

the output, so the format of the state space may be changed to represent the relevant

information with more accuracy, or to represent more ofthe relevant information. This

may be also be expressed by saying that the maximum information is stored in the state

space if each state is visited with equal probability, and the machine changes the format

of the state space to satisfy this condition. Thus repeated experiences result in a subset

of the state space occurring with a higher probability, which is then compensated for by

changing the weights to return the probability to its previous value. In this manner the

information content of repeated short term memories are transferred to long term memory.

It is possible to extend the hypotheses to account for episodic memory.It is safe to assume

that the facility to store single events is advantageous to the maximisation of the utility,

andas a result this feature is likely to appear as an emergent property. The mechanism

of this propertyis less easy to formulate. It is probable that the weights develop in such

a way that important external events are maintained as patterns ofactivations for longer

than less significant events, and the mechanism described for semantic memory can then

act on these repeated states to form a long term memory. This links in with the well

known memoryaid of rehearsal to store short term memories in long term memory.
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While activations can be changed at the same rate as the input stream, the format in

which these activation are stored can only change at the same rate as the weights, or as

the formations of long term memories. Thusit is possible to overload any one format for

the activations by an unusual form ofinput, i.e. short term memory hasa finite storage

capacity limited by the formof long term memories. Of course both means ofstorage are

finite, but this limited adaptability of short term memory may account for the observed

‘hard limit’, whilst the long term memories degrade at roughly their rate of formation

which is much slower and gives the appearanceofa ‘soft limit’.

A.5 Recognition

Recognition is the task of matching partial information about an event with a stored

internal representation. Recognition of sensory input may be considered as ‘homing in’

on a specific region in state space, with different regions corresponding to different events

to be recognised. The direction of movementin state space is dependent on the sensory

input and previous state vector, more information confirming or denying the recognition

of an event by moving towards or away from the particular region that represents the

recognition of that object.

This description of recognition makes it clear that the interpretation of sensory input

depends on current internal state, perhaps this is most obvious in the multiple interpreta-

tions opticalillusions, eg the ‘Necker Cube’ a two dimensional wire frame representation of

a cube which can have two possible orientations when interpreted as a three dimensional

cube. However, there is a wider applicability, what humans experience, ‘see’ or ‘hear’,

is not what is presented as sensory input but is inevitably the result of the processing

of this raw sensory data with an interpretation machine which has been trained on past

experience.

This information processing strategy can be applied to deciding whether a task is a data

driven or conceptually driven process. If the amount ofinformation which is derived from

immediate input is significantly larger that the information derived fromtheinternalstate,

then the task is data driven, and if the reverse is true then the task is concept driven.

However, it may well be impossible to quantify these amounts of information.

Differing recognition times for different events suggest that it may be necessary to proceed

though many internal states before recognition is achieved. This is especially true when

recall from long term memoryis involved or when the recognised object does not fit a

stereotype. Thus the differences in decision time between confirming ‘a cat is a mammal’

and ‘a whale is a mammal’ are those between initialising the internal state with the

semantic form of the question, and arriving at the internal state which verbalises the

answer. The different number ofinternal states that must be passed thoughreflects the

fact that more information on ‘whale’ than ‘cat’ mustberecalled before it can be confirmed

that they match the stereotype.

A.6 Thought

The most startling conclusion from the connectionist assumptions is that man does not

‘think’. This statement obviously needs some quantification, given a slowly varying inter-

nal structure then all decisions are based on a straight mapping of one internal state to
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the next without any of the computationally expensive searches of traditional A.l. Thus

the response to an input is pre-programmed, clepending only on the internal state and the

interconnection strengths. This assumption does not demean the processing capabilities of

the brain, but presents an alternative modelofprocessing using a finite state machine with
a large number ofstates which is in contrast to conventional computers whose processor

contains a finite state machine with far fewer internal states linked to external memory.

There are nolevels of processing in the connectionists net, although the state vector could

be considered as a ‘blackboard’ onto which sensoryinformation is placed and used by other

‘demons’ which write their results onto the backboard. The information on the blackboard
mayberepresented in a distributed form over the state vector andall the processing power

of the demons distributed over the interconnections.

The ‘amount of thought’ required to complete a task can be related to the interaction

of the input with the internal state. Reflex signals correspond to inputs which produce

a determined output regardless of internal state, whereas a task which must be ‘thought
about’ reallocates a large portion of the state space to the processing of the problem.

A.7 Consciousness

So far the discussion has only dealt with human information processing as observed from

outside the system. [lowever, each humanis in a unique position of being able to comment

on their own thoughts. Using introspection, humans can state that they are conscious and

that they possess self-awareness. If this was merely a property observed in other humans,

then it could be attributed to a learnedability to communicate someoftheir internal state

variables to other humans, but because it is a property of yourself then this explanation

seems inadequate.

For the !-rain or connectionist net to learn efficiently it must form an internal model of

the external world. This model of the world must be centered on the machineitself, and

must iaevitably contain information about how the world will change as a result of the

machines actions. This information about change includes the machines own actions, so

the knowledge of ones own behaviouris explicitly stored and used in normal processing.

Thus, self awareness may be seen as an emergent property of any machine complex enough

to predict its own actions.

Dennett proposes an interesting way that this self awareness could develop into linear

conscious thought (Dennett, 1984). A self-aware machine learns that it can solve problems

by communicating with similar machines, then develops this into communication with

itself, and finally dispenses with the external communication, ‘talkingto itself in an internal

voice’.

A.8 Holistic Processing

Both information storage and information processing in a connectionist net are massively

parallel distributed operations. Not onlyis it impossible to ask where a memoryis located

or where as task is computed. but it is impossible to know if they even exist unless the

machine is examined externally. It is the conclusion of this section that a connection-

ist machine powerful enough to learn from real world experiences will develop a unique

information storage and processing structure. interpretable only by exact simulation.
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