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Many tasks require knowledge of past events in order to successfully choose actions. For example, current percepts 

are inadequate in speech recognition and language Understanding. Since only a finite amount of state may be stored, it 

is important for a system to remember only significant past events. Furthermore. it is crucial that learning algorithms 

develop these state representations given only delayed and possibly noisy teaching information the system cannot know 

what state will be useful in the future. Connectionist modeling is just beginning to address these issues and researchers 

have produced various solutions One approach is to use tapped delay lines, or variations thereof, in which weights are 

assigned to inputs at successive delays, making their representation s necessarily dependent on fixed delays. This approach 

is subject to the following limitations: learning scale-invariant representations is quite difficult, and the depth of the memory 

is bounded. Another approach involves setting memory variables that remain set until altered by other processes. This state 

representation approach has the potential to yield temporal scale and translation invariances important in speech recognition 

and permits memory of events that ocurred arbitrarily long in the past. 

We employ a version of this latter scheme on the following class of learning problems: learning to recognize temporal 

sequences of events based on training information that arrives at the end of each admissible sequence, where admissible 

sequences are not defined in terms of specific temporal durations between events, tn the general case this is equivalent 

to recognizing regular languages given only positive and negative examples of strings in the language and given n or fewer 

states, a problem known to be intractable [GO178]. Therefore. we restrict our attention to very simple regular languages. 

The main component of our approach is a teachable flip-flop, called a sticky-bit, that records the occurrence of significant 

events. In their most connectionistic form sticky-bit's can be created out of semi-linear units with a self-recurrent connection 

and symmetric logistic squashing function that ranges from - 1  to 1. With the proper setting for the feedback weight (namely 

> 2), these elements have two attractors of the same magnitude but different sign. permitting the storage of one bit of state 

information. By adjusting the input weights, the sticky-bit can divide the input patterns into those events that cause it to 

converge to the first attractor, converge to the second attractor, or stay at the same attractor. We derived a gradient-descent 

learning rule that generalizes back-propagation to work with sticky-bit's. Instead of back-propagating in an unfolded network 

(as described by [RHW85]). this learning rule keeps a modulated trace on each input line and updates the weights based on 

this trace (Mozer independently discovered the same algorithm). This trace captures all the information derived from the 

unfolding process but without the excess space and time penalties. Conceptually, the trace remembers what event caused 

the state change, since the sticky-bit must decide on a state before the state is used and thus before the sticky-bit can 

receive a teaching signal. Even though the modulated trace itself will eventually forget events, it can be used to learn state 

representations that can remember indefinitely. 

Although this real-time bnck-propagation learning algorithm represents an advance in learning algorithms for recurrently 

connected networks, we discovered several limitations of this algorithm, This feedback unit is unable to learn to latch 

events coded as spatial conjunctions of inputs because of false triggering on temporal conjunctions. This remains true 

despite attempts to increase the "stickiness" of the attractors (in order to make it converge quicker) or to increase the 

space between inputs (in order to give it more time to converge). Finally. although this algorithm will scale to two layers of 

sticky-bit's as in [WSB6]. the extension to layered sticky-bit's poses major obstacles. 

Watrous and Shastri 's Temporal Flow Model [WS86] is a two layered network of self-recurrently connected back- 

propagation units, like our original design but with adaptive feedback weights. This network can be configured (with 

proper feedback weights) to exhibit both temporal scale and translation invariance, and. by unfolding the network in time 

(as described in [RHW85 D. they are able to perform gradient descent. Unfortunately, this approach appears to be prone 

to the same problems that the feedback sticky-bit exhibits. Additionally. their finite network unfoldings only approximates 

the true gradient and involves more space and time overhead than our algorithm. Furthermore, learning the feedback weight 

takes an excessive amount of time. since only a very small range of values are useful. 

We abandoned the feedback sticky-bit approach for a simpler algorithm that involves a predictor and a latch. The 

predictor attempts to forecast what state will be required next and the latch holds onto strong predictions. Learnimg only 

occurs in the predictor, and it utilizes a simplified version of the tracing approach of the previous design. This approach 

solves the false triggering problem with (1) an instantaneous latch and (2) the separation of latch from predictor. It also 

scales quite nicely. Unfortunately. this state representation has trouble capturing certain temporal properties of events 

In summary, our event-based approach overcomes some of the limitations of the tapped delay line and "temporal flow' 

approaches, but would benefit from additional representational power. 
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