
Recurrent Backpropagation and Hopfield Networks

Luis B. Almeida and Joao P. Neto
INESC

Apanado 10105
P-I017 Lisboa Codex

Portugal

This paper has two parts. In the fIrst one. an intuitively simple proof of the extension of

backpropagation to recurrent networks is given. In the second part. preliminary results on the

application of recurrent backpropagation to the training of Hopfield networks are presented.

1 - Introduction

Backpropagation is a well known learning technique for multilayer perceptrons. As originally

introduced. it was applicable only to feedforward networks. i.e. networks with no recurrent

connections [1]. The extension of this rule to recurrent networks was fIrst developed by this

author [2]. Pineda [3] independently derived the same result. In this paper. a new form of the

derivation is frrst presented. which is easier to grasp from an intuitive viewpoint. Then. some

preliminary results on the training of HopfIeld networks through recurrent backpropagation are

described. These results suggest that backpropagation is a viable alternative for the training of

such networks. possibly yielding some advantages. like the use of hidden units. and the

training of analog-valued stable patterns. The paper is organized as follows: Section 2 presents

the new derivation of recurrent backpropagation. and section 3 gives the results on training of

Hopfield networks. Section 4 concludes.

2 - Recurrent back;propagation

Backpropagation is a gradient optimization technique for minimizing the total quadratic error of

the outputs of multilayer perceptrons. As originally developed for feedforward networks [1]. it

involves a backward propagation of errors which can be viewed as a propagation through an

error propagation network. As shown in [2]. this network can be obtained from the multilayer

perceptron by the application of two successive operations: linearization and transposition [4].

In [2]. it was mathematically shown that this rule generalizes to recurrent perceptrons. i.e. that

gradient optimization can be performed in the same way in these networks. the error

propagation network being still obtained through linearization and tran~position of the

perceptron. Next. we shall give a more intuitive version of this proof.

NATO ASI Series, Vol. F 68
Neurocomputing
Edited by F. Fogelman Soulie and 1. Herault
© Springer-Verlag Berlin Heidelberg 1990

28

As a step towards the derivation of the gradient learning procedure, we shall fIrst fInd a way to

compute the partial derivative of an output relative to a weight. Consider a general nonlinear

network P with an output 0 and a linear branch of gain a, as depicted in fIgure I-a. The external

inputs of the network are to be kept fIxed during the partial differentiation, and therefore they

can be considered to be contained within the network itself, without loss of generality. This is

why they are not shown in the fIgure. The network is assumed to be at a fIxed point.

o o+do

b

o+do do

da
y y

c d

y

y

e f

Figure I - Computation of the partial derivative of the output of a nonlinear network, relative to
a branch weight. See text for explanation.

29

To compute the partial derivative, we shall give an infInitesimal increment to the branch gain.

This is equivalent to adding an extra branch with gain da (fIgure I-b). Since the network can

have feedback connections, there will be increments in all node variables, including the node at

the input to the branch under consideration. The net output of the new branch will be

(y+dy).da, or simply y.da, if we discard the higher order term. The same result can be

obtained by using and external input with value y, through a branch with gain da (fIgure I-c). If

we now linearize around the original fIxed point, considering only increments, we will obtain

the network of fIgure I-d, which we have designated by PL.

Network PL is linear, and therefore if we divide its net input by da, the output will be divided

by the same amount. Dividing the net input by da can be accomplished by changing the gain of

the input branch to unity, as shown in fIgure I-e. The output will now be dolo a, which we

shall designate by 0, for compactness.

The network of fIgure 1-e is linear, and has a single input and a single output. Therefore, the

transposition theorem [4] can be applied to it, yielding the transposed network (PLT) which,

when its input is y, still produces the output 0 (figure I-f). If we call t the gain of this network

from input to output, we can write

o =yt

We shall now use this expression of the partial derivative to obtain the gradient learning rule.

Consider a perceptron (figure 2-a) with a fIxed input pattern. We can write for each output op

(fIgure 2-b)

ao
o = ~ = y. t·

P iJaij I Pi
(1)

If the perceptron has several outputs, and 0 is the set of indexes of the units that produce

external outputs, the squared error for the given input pattern is

where

2
E= I. e , p

pEa

ep = dp-Op

is the error of output p, op and dp being the output and the desired value, respectively, for the

given input pattern. Now,

E - # =
- 0 aij

-2 I. e op
PEO p

But, using eq. (1)

or

E = - 2 Yj L e tpj
pEa P

a

c

30

Y;

b

ep

oI----ep·

Figure 2 - Computation of the partial derivative in the case of a recurrent perceptron. See text
for explanation.

Refering to figure 2-c, and taking into account that network PL T is linear, we can finally

conclude that:

.
E = - 2 Yj sj

where sj is the value obtained at the corresponding node when the output errors are all

simultaneously applied to the respective inputs of the transposed network, as shown in that

figure. This is a direct extension of the backpropagation rule of feedforward networks: the

31

derivatives are still obtained by applying the output errors to an error propagation network,

which is obtained by linearizing and transposing the original perceptron.

3 - Training of Hopfield networks

Hopfield networks [5,6] have been the centre of much interest from researchers. Training

methods include Hopfield's original storage prescription [5], pseudo-inverse methods [7] and

extensions of the perceptron learning procedure [8]. In this section, we present preliminary

results on an investigation of the possibility of training Hopfield networks through recurrent

backpropagation.

A fully connected perceptron with no inputs, and with symmetrical weights, i.e., in which

aij=aji for all iJ is equivalent to a graded Hopfield network [6] if the same dynamical behavior

is assumed for the units as was done by Hopfield. The dynamical evolution of such a network

can be characterized by an energy function. The network evolves in such a way that the energy

function always decreases. The points where the network stabilizes are points of stationarity

(usually local minima) of this function. In Hopfield networks, the locations of these fixed

points are of special interest, since they are used to store patterns. As we have seen,

backpropagation can be used to train a network with feedback, moving its fixed points towards

desired positions. Therefore, we can conjecture that backpropagation can be used to store a

desired set of patterns in a Hopfield network. In the next sections, results obtained with this

kind of training, are described. Before presenting these results, however, a point about network

initialization should be discussed. The backpropagation procedure can only train fixed points, it

cannot train the dynamical behavior of the network. Consider two patterns to be stored, and

assume that with its initial weights, the network would evolve from both patterns to the same

fixed point. Backpropagation training cannot be expected to split this fixed point into the two

that we would desire the network to have. Therefore, steps should be taken to ensure that,

initially, each input pattern evolves to a different fixed point

2.1- Trainin g of fixed points

A 10-unit network was used for this test. The network was fully connected, including

connections from each unit to itself (this is slightly different from Hopfield's original topology,

but is similar to what has been used by other authors [7]). The patterns to be trained were

randomly generated vectors of 10 components each. Each vector component could take the

values - 0.8 and + 0.8, with equal probability. The sigmoids used in the network's units had an

output ranging from -1 to + 1.

32

Training was performed as follows. As an initialization procedure, the network was first trained

with recurrent connections opened, i.e., in a feedforward configuration (see figure 3 for an

example). In this mode, it was trained to perform an identity mapping on the training patterns.

This training was performed for a number of iterations sufficient to ensure that each training

pattern would evolve to a different fixed point, when recurrent connections were closed.

Figure 3 - lllustration of the weight initialization procedure in a 2-unit network.

Mter this initialization, recurrent connections were closed. Each pattern p to be trained was

clamped on the network, which was then released, evolving to some fixed point C. This fixed

point was trained towards the originally clamped pattern, i.e. the output error vector was

computed as e = p - C, and this error vector was input to the error propagation network in the

usual way, for gradient computation. Weight updates were performed after each sweep through

the whole set of training patterns.

Table I shows the results obtained for various training set sizes. The statistics were collected

after training, by systematically testing the 1024 possible input patterns. Each one was clamped

onto the net, which was then released, evolving to some fixed point. The pattern was

considered to be stable (and therefore stored) if the signs of the unit outputs at the fixed point

were the same as those of the corresponding components of the initially clamped pattern.

Spurious stored patterns were those stable ones that did not belong to the training set. The table

shows a performance close to what could be expected [9]: the number of spurious patterns is

very low initially, and increases steeply when the training set size is of the order of the network

size (note, however, that we exert no direct control over spurious states, and that some form of

unlearning [10] might reduce their number, improving the network's performance).

33

trained spurious trained spurious

6 0 15 53

8 1 20 145

9 9 30 324

10 14 40 745

12 18 50 917

Table I - Results of training of random patterns; trained - training set size; spurious - number
of spurious stable patterns.

3.2 - Training of regions of attraction

For a better control of the network's performance, one may want to train not only the fixed

points, but also each fixed point's region of attraction (in [8], another procedure for training

basins of attraction is given). For this purpose, we used the following procedure: We randomly

selected a pattern p. Assume that this pattern was desired to belong to the region of attraction of

some stable pattern q. After clamping p and releasing the network, the resulting fixed point f

was trained to move towards the state q. Then, a new pattern p was randomly selected, and the

procedure repeated. Weight update was performed after each pattern presentation. As network

initialization we used a very simple deterministic method: we initialized each "self' weight au to

a relatively large value (typically 3), and each aij (with i ¢ j) to zero. In this way, each unit

would initially be bistable, and independent of other units, i.e., all possible binary patterns

would be stable (note that this initialization could not be used in the case of section 3.1, since

there we were training starting only from the desired fixed points, and therefore training would

never modify the network's behavior if these patterns were already stable).

Small 2- and 3-unit networks were used in these tests. Figures 4 and 5 depict some of the

behaviors that we were able to train, showing that a good control over the regions of attraction

can be obtained by this procedure, at least for these small networks.

i f

Figure 4 - Basins of attraction trained on a 2-unit network.

34

Figure 6 shows an interesting case. This behavior, which was trained on a network of four

units (three visible and one hidden), corresponds to the exclusive-or case. It cannot be obtained

without hidden units, and therefore it cannot be obtained with any of the other available training

methods. The network was operated in the following way. Each pattern was kept clamped onto

the visible units long enough for the hidden unit to stabilize. After that, the visible units were

unclamped, and the network was allowed to relax to some fIxed point. Weight initialization was

performed as outlined above, for the visible units. Weights between visible units and the hidden

unit were randomly initialized, and that unit's feedback weight was initially set to zero. The

remainder of the training procedure was as described above in this section.

, I ,. , I ,.

0.-)1 .. - I .. ' • I.

I I I I I

I I I I I I

I I I I I

I ,
••

,M ----.,-.. , ,

Figure 5 - Basins of attraction trained on a 3-unit network

Figure 6 - Exclusive-or behavior trained on a net with 4 units (3 visible and 1 hidden)

3.3 - DiscussiOn

These preliminary results suggest that recurrent backpropagation is a viable technique for

training graded Hopfield networks. We have shown that it is possible to train both stable

patterns and regions of attraction, and we have given an example of the training of a network

with one hidden unit. However, these results also suggest that a better control over the

intialization and learning is needed. As an example, a behavior which was hard to train,

requiring very precise adjustment of the training of parameteres, and whose success depended

on the random ordering of patterns during training, is shown in fIgure 7 -a. Most often, after

some training time, the fIxed points corresponding to both right-hand patterns would merge,

35

and then the single resulting ftxed point would be trained to the left 50% of the time, and to the

riglit another 50%, fmally stopping midway, as shown in ftgure 7-b.

v I I

I

I

I

l.--e

a b

Figure 7 - Example of a problem in the training of basins of attraction; a - desired behavior;
b - behavior that was most frequently obtained.

An interesting application of backpropagation would be to train a graded Hopfteld network to

have given analog-valued stable patterns. An example of two patterns that were successfully

stored in a to-unit network, using the procedures described in section 3.2, is given in ftgure 8.

However, there is still very little experience on this kind of application.

unit
1 0

unit

Figure 8 - Two analog patterns that were trained on a lO-unit network. Horizontal axis - unit
number. Vertical axis - unit output. The unit outputs have been joined by straight lines for better

visibility. Thin black lines - trained pattern. Thick gray lines - recalled pattern.

36

4 - Conclusions

We have given an intuitively simple proof of the extension of the backpropagation learning rule

to recurrent networks. We have also presented results on the application of this rule to graded

Hopfield networks, both for the training of stable patterns and of regions of attraction. These

results lead us to think that recurrent backpropagation is an alternative method for the training of

these networks. Two of the potentially interesting applications of this form of learning, would

be the training of Hopfield networks with hidden units, and the storage of analog-valued

patterns. Though one example has been presented of each of these cases, further work is

needed to assess their general feasibility.

References

1. D. Rumelhart, J. McClelland and the PDP Research Group, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Cambridge, MA: MIT Press,
1986.

2. L. Almeida, "A Learning Rule for Asynchronous Perceptrons with Feedback in a
Combinatorial Environment", Proceedings of the 1987 IEEE First Annual International
Conference on Neural Networks, S. Diego, CA, June 1987.

3. F. Pineda, "Generalization of Backpropagation to Recurrent and Higher Order Networks",
Neural Information Processing Systems, D. Anderson (ed.), American Institute of Physics,
1988.

4. A. Oppenheim and R. Schafer, Digital Signal Processing, Englewood Cliffs, NJ: Prentice
Hall,1975.

5. J. Hopfield, "Neurons with graded response have collective computational properties like
those of two-state neurons", Proceedings of the National Academy of Sciences of the USA,
Vol. 81, pp. 3088-3092, May 1984.

6. J. Hopfield and D, Tank, "Neural Computation of Decisions in Optimization Problems",
Biological Cybernetics, Vol. 52, pp. 141-)52, 1985.

7. L. Personnaz, I. Guyon and G. Dreyfus, Information Storage and Retrieval in Spin-Glass
Like Neural Networks", J. Physique Lett., 46, pp. L-359 - L-365, 1985.

8. E. Gardner, N. Stroud and D. Wallace, "Training with Noise, and the Storage of Correlated
Patterns in a Neural Network Model", Edinburgh Preprint 87/394, University of
Edinburgh, 1987.

9. E. Gardner and B. Derrida, "Optimal Storage Properties of Neural Network Models", J.
Phys. A: Math. Gen., 21, pp. 271-284, 1988.

10. J. Hopfield, D. Feinstein and R. Palmer, "Unlearning has a Stabilizing Effect in Collective
Memories", Nature, vol. 304, pp. 158-159, 1983.

