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ABSTRACT 

Backpropagation has shown to be an efficient learning rule for graded 

perceptrons. However, as initially introduced, it was limited to 

feedforward structures. Extension of backpropagation to systems with 

feedback was done by this author, in [4]. In this paper, this extension is 

presented, and the error propagation circuit is interpreted as the 

transpose of the linearized perceptron network. The error propagation 

network is shown to always be stable during training, and a sufficient 

condition for the stability of the perceptron network is derived. Finally, 

potentially useful relationships with Hopfield networks and Boltzmann 

machines are discussed. 

1. INTRODUCTION 

Backpropagation has been independently introduced by several authors 

(including at least Parker, Le Cun, and Rummelhart, Hinton and 

Williams), as a learning rule for feedforward multilayer graded 

perceptron networks [1]. Its power is by now well demonstrated (see [2] 

for an example). It is based on the minimization of the squared error of 

the actual output, relative to a desired output, this minimization being 

performed through a gradient descent technique. Its extension to a 

special class of perceptrons with feedback was made in [1], followiong 

a suggestion by Minsky and Papert [3]. This class of perceptrons is 

characterized by the (implicit) assumption of the existence of a 

sample-and-hold operation at the output of each unit, all sample-and­

holds being triggered synchronously. Under this assumption, the 

perceptron with feedback can be "unfolded" in time, into an equivalent 

feedforward one, and can therefore be trained using backpropagation. An 

important limitation of backpropagation in this context, however, is 
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that it demands the existence of an essentially unlimited amount of 

memory in each unit. 

In this paper, we will be concerned with a different class of feedback 

perceptrons: they will be assumed not to have any sample-and-hold; 

instead, for each input pattern, the outputs of the units will change 

continuously in time until a stable state is reached. The outputs of the 

perceptron are observed only in the stable state, and are then compared 

to the desired outputs. Training, i.e., weight update, is performed with 

the system in the stable state. The input-output mapping to be learned 

by the perceptron is assumed to be combinatorial, i.e., the desired 

outputs depend only on present inputs, not on past ones. 

The extension of backpropagation to this class of perceptrons was 

first made by this author, in [4]. Here, we will review its derivation, and 

we will briefly discuss the problem of stability. We will then proceed to 

discuss the relationships between feedback perceptrons and Hopfield 

networks and Boltzmann machines. 

2. BACKPROPAGATION IN FEEDBACK PERCEPTRONS 

Consider a graded perceptron network, and designate by Xk the 

external inputs (k = 1, ... ,K), by Yi the outputs of the units (i = 1, ... ,N), by 

Si the result of the sum performed at the input of unit i, and by op the 

external outputs (pE 0, where 0 is the set of units producing external 

outputs). The static equations of the perceptron network are 

N K 

Si = L ani Yn + L bki Xk + Ci i = 1, ... ,N (1 ) 

n=1 k=1 

Yi = Si(Si) i = 1, ... ,N (2) 

op = YP P EO (3) 

where ani and bki are weights, Ci is a bias term, and Si is the nonlinear 

function in unit i (usually a sigmoid). In a feedforward perceptron, the 

units can be numbered in such a way that the array [ani] is lower 

triangular, with zeros in the main diagonal. Note that in the 

nomenclature used in this paper, we do not consider external inputs as 

units. 
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Equations (1-3) are the equations of the equilibrium states of the 

network, for a given input pattern (or vector) x = [Xk]. If we linearize 

the network around an equilibrium state, we obtain the network 

N K 

S'j = L anj y'n + L bkj X'k i = 1, ... ,N (4) 
n=1 k=1 

y'j = Dj(sj) S'j i = 1, ... ,N (5) 

o'p = YP pi 0 (6) 

where the primes denote the variables of the linearized system, and Dj 

is the derivative of Sj. Note that, in terms of the linearized network, 

D j( Sj) is just a constant coefficient. Transposing [5] this network, we 

obtain (using double-primed variables for the transposed network) 

N 

L ajn s"n + O"j 

y"j = 

s"j = Dj(Sj) y"j 

N 

X"k = L bkn sOn 
n=j 

if i, 0 

( 7 ) 

if i;. 0 

i = 1, ... ,N (8) 

k = 1, ... ,K (9) 

It is easy to see that, in the case of a feedforward perceptron, this is 

also a feedforward network, though it propagates in the reverse 

direction. In fact, it is exactly the backward error propagation network, 

as one can check by comparing these equations with those given in [1]. 

We shall now show that this fact extends to feedback perceptrons: the 

transpose of the linearized perceptron network is always the adequate 

network for error propagation. For this proof, let us first define the 

error at output p 

ep = op - dp P EO (10) 

and the total quadratic error 

(11 ) 
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Taking the partial derivative relative to weight aqr 

E = 
~ aE . 
~ aop op 

pEO 

(12) 

where the dots denote derivatives relative to aqr. If we differentiate 

equations (1-3) relative to aqr, we obtain 

N 

L ani 
. 

if Yi + Yq = r 
n=1 

Si = ( 1 3 ) 
N 

L ani 
. 

if Yi '* r 

n=1 

Yi = Di(Si} Si (14 ) 

Yp (15) 
. 
op = 

These equations are those of the linearized perceptron network (eqs. 

4-6) with a single input Yq applied to node s'r with a unit weight. Since 

that network is linear, we can write 

op = Yq t'rp p «0, q,r = 1, ... ,N ( 16) 

where t'rp is the transfer ratio from node s'r to the output op. But, from 

the transposition theorem [5], that transfer ratio is equal to the 

transfer ratio from o"p to s"n in the transposed network. Therefore, 

Op = Yq t"pr P E 0, q,r = 1, ... ,N 

which we can replace in equation (12), obtaining 

E = 2 Yq L ep t"p r 
peO 

q,r = 1, ... ,N 

( 17) 

( 18) 

and the sum in the right hand side is the value that will be obtained at 

node s"r, in the transposed network, if we apply the errors ep at the 

outputs o"p: 

aE 
aaqr 

2 Yq s"r q,r = 1, ... ,N (19 ) 
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which is just the result we wanted to obtain: the update of weight aqr is 

proportional to the output of unit q multiplied by the result of 

propagating the error(s) through the transposed linearized network. 

Similar derivations can also be made for the weights bki and the bias 

terms Ci. The only assumption is that the functions Si must be 

differentiable. Figure 1 shows an example of a feedback perceptron and 

of the corresponding error propagation network. For example, we have 

for this figure aE/ac = 2 Y2 V1 and aE/ah = 2 Y1 V2. 

\12 
-71'-- t-----<F-+ 0 

Figure 1 a - A simple perceptron with feedback. Bold characters indicate weights, 
light characters indicate network variables. 
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Figure 1 b - The error propagation network corresponding to figure 1 a. In this 

figure, 9i=Dj(sj). Dotted parts belong to the transposed linearized network, but 

are not needed for error propagation. 

3. STABILITY 

In feedback perceptrons, the error propagation network also has 

feedback, and thus we have to study its stability, since an unstable 

error propagation network would be useless. However, it is a well known 

result from the theory of dynamical systems that the stability of a 

nonlinear system at an equilibrium state is equivalent to the stability 

of the system obtained through linearization around that state (except 

in very infrequent marginal situations [6]). Furthermore, the stability of 
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a linear system is equivalent to the stability of its transpose. 

Therefore, since we have assumed that training is performed with the 

perceptron network at a stable state, the backward error propagation 

network will also be stable. Note, however, that the error propagation 

network must be the transpose of the linearized perceptron not only in 

static, but also in dynamical terms: the dynamical properties of the two 

networks must be matched. 

Another issue is the problem of whether the perceptron network 

itself is stable, so that it can be used, and trained, as described above. 

The stability of the perceptron does not depend only on its static 

equations (1-3), but also on the dynamical behavior of its units. Figure 2 

depicts dynamical behaviors that are commonly assumed for neural 

network units. The uppermost circuit comes from considerations on the 

dynamical behavior of actual neurons [7], while the lower one 

corresponds to a plausible dynamical behavior of electronic 

implementations. 

I 
";" 

~
1 

function S Lm. 
~ .. Z~ Iyyyy-I----+~ y 

'vi 2 I 

Figure 2 - Two circuits corresponding to dynamical behaviors often assumed for 
perceptron units. Resistor and capacitor values may differ from unit to unit. or 
from branch to branch. 

Networks with both kinds of units have been shown to be stable if the 

weights are symmetrical, i.e., if ain = ani, for all i,n, and the functions Si 

are monotonically increasing and bounded. The proof was given in [7] for 
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networks of the upper kind, and in [4] for those of the lower kind. 

Actually, the sufficient condition for stability obtained in [4] is 

somewhat broader than weight symmetry: it is that there exist positive 

coefficients J.li such that 

J.l i ani = J.ln ai n i,n = 1, ... ,N (20) 

and the proof of this condition would be easy to extend to the networks 

of the upper kind. 

These proofs are based on the use of a so-called "energy function" 

W = 

1 N N K N 
-2 L LJ.li ani Yn Yi - L LJ.li bki Xk Yi -

n=1 i=1 k=1 i=1 

N 

- L J.li Ci Yi + 
i = 1 

N 

L J.li Ui(Yi) 
i= 1 

(21) 

where Ui is a primitive of Sr1 (the inverse of Si). What is actually done, 

in both cases, is to show that this energy function always decreases in 

time, with the dynamical behavior of the perceptron network, and 

therefore that it cannot oscillate, and must stop at some stable point, 

corresponding to a local minimum of W. 

It should be noted, however, that experimental tests performed by the 

author have led him to suggest that unstable situations are encountered 

only very infrequently, even when the condition (20) is not enforced. On 

the other hand, it is easy to see that that condition is still too 

restrictive: feedforward perceptrons are always stable, but they do not 

obey this condition, in general. 

A third problem concerning stability is the possibility of there being 

multiple stable states for the same input pattern. An intuitive reasoning 

was given in [4], suggesting that this probably is not a serious problem, 

and this seems to be confirmed by the tests performed so far. 

4. EXPERIMENTAL RESULTS 

A number of experimental tests were performed on feedback 

perceptrons, some of which are described in [4] They will not be given 
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here for lack of space). These experiments included pattern completion, 

a kind of problem for which feedforward perceptrons seem to be quite 

unsuited. Though still few in number, those tests apparently point to 

some conclusions: 

- Feedback perceptrons seem to have advantages over feedforward 

ones in some situations (including pattern completion), but in other 

cases their advantage may be only marginal. 

- Unstable situations are encountered only very infrequently, when no 

measures are taken to ensure stability. 

- Weight symmetry, as a sufficient condition for stability, does not 

seem to strongly impair the performance of feedback perceptrons. 

5. FEEDBACK PERCEPTRONS AND HOPFIELD NETWORKS 

As was emphasized above, training of feedback perceptrons by 

backpropagation is done in the stable states, and therefore back­

propagation can be viewed as a means to "move" the stable states 

toward desired positions (if the network contains hidden units, i.e. units 

that do not directly produce outputs, backpropagation will move the 

stable states toward desired subspaces of the state space). 

If we impose weight symmetry, force the "self-feedback" weights ajj 

to be zero and do not allow any hidden units, feedback perceptrons 

become formally equivalent to Hopfield networks with graded neurons 

[7]. Therefore, backpropagation can be viewed as a learning rule for 

graded Hopfield networks (Hopfield's learning rule is for networks of 

binary units [8]). Graded networks are the natural choice for 

representing patterns with analog valued features. 

On the other hand, backpropagation can be used in networks with 

hidden units, thus eliminating one of the basic limitations of Hopfield 

networks, allowing them to express more complex dependencies among 

pattern features. Backpropagation also does not require the weights to 

be symmetrical, though stability cannot be guaranteed if condition (20) 

is not satisfied. 
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Finally, backpropagation does not impose any limitation on the 

patterns to be stored, and therefore eliminates the restriction that they 

should be approximately orthogonal to each other [8]. 

6. FEEDBACK PERCEPTRONS ANP BOLTZMANN MACHINES 

Let us again consider a feedback perceptron with symmetrical 

weights and null "self-feedback" weights. If we let the sigmoids Sj 

approach step functions, the energy W given in equation (21) approaches, 

in the limit, the energy function of Boltzmann machines [1,4]. Therefore, 

a feedback perceptron with steep sigmoids has approximately the same 

energy minima as a Boltzmann machine with the same weights. 

Backpropagation can thus, very probably, be used to train Boltzmann 

machines, i.e., to adapt their weights in such a way that they have a 

minimum of the energy function at the desired location, for each input 

pattern. In this context, the following comments may be appropriate: 

- Backpropagation, if used for the initial training of a Boltzmann 

machine, may be faster than the standard Boltzmann machine training, 

due to its deterministic character. 

- Initial training by backpropagation may need to be refined by 

standard Boltzmann machine training, mainly because the energy 

function of the graded perceptron network is not exactly equal to the 

one of the Boltzmann machine (though it may be as close as desired). 

- Backpropagation does not guarantee the existence of a global 

minimum at the desired location, since it treats all minima equally. 

However, it tends to move all local minima toward that location, and 

thus it probably will end up yielding an energy function with a global 

minimum at the desired site, and with fewer local minima. If so, the 

resulting Boltzmann machine can use a faster cooling schedule, and will 

therefore run faster. 

7. CONCLUSIONS 

The backpropagation learning rule extends to nonfeedforward 

perceptrons in a very natural way, as was first shown in [4]. The error 
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propagation network can be viewed as the transpose of the linearized 

perceptron network, and is always stable when training is performed. 

The stability of the feedback perceptron network can be guaranteed by 

means of a condition on the weights, which does not seem to 

significantly restrict its capabilities. On the other hand, if this 

condition is not imposed, unstable situations seem to arise only very 

infrequently. 

Close relationships exist between feedback perceptrons, Hopfield 

networks and Boltzmann machines. Backpropagation can presumably be 

used for the training of graded Hopfield networks (with hidden units if 

desired), and may also exhibit some advantages if used for the training 

of Boltzmann machines. 
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