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A Local Learning Algorithm for Dynamic Feedforward 
and Recurrent Networks 

JURGEN SCHMIDHUBER 

Most known learning algorithms for dynamic neural networks in non-stationary envi- 
ronments need global computations to perform credit assignment. These algon'thms either 
are not local in time or nor local in space. Those algorithms which are local in both time 
and space usually cannot deal sensibly with 'hidden units'. In contrast, as far as we can 
judge, learning rules in biological systems with many 'hidden units' are local in both 
space and time. In this paper we propose a parallel on-line learning algorithms which 
performs local computations only, yet still is designed to deal with hidden units and with 
units whose past activations are 'hidden in time'. The approach is inspired by Holland's 
idea of the bucket brigade for classifier systems, which is transformed to run on a neural 
network with fixed topology. The result is a feedforward or recurrent 'neural' dissipative 
system which is consuming 'weight-substance' and permanently trying to dism'bute this 
substance onto its connections in an appropriate way. Simple experiments demonstrating 
the feasibility of the algorithm are reported. 

1. Introduction 

Various algorithms for supervised learning in recurrent non-equilibrium networks with 
non-stationary inputs and outputs have been proposed (Robinson & Fallside, 1987; 
Williams & Zipser, 1988; Pearlmutter, 1988; Gherrity, 1989; Rohwer, 1989). Apart 
from the fact that these algorithms require explicit teaching signals for the output 
units, there is a second reason which makes them biologically inplausible: they depend 
on global computations. 

What are the differences between local and global computations in the context of 
neural networks? We would like to make the distinction between two kinds of local 
computations in systems consisting of a large number of connected units: 

Local in space is meant to say that changes of a unit's weight vector should depend 
solely on activation information from the unit itself and from connected units. The 
update complexity for a unit's weight vector at a given time should be only propor- 
tional to the dimensionality of the weight vector. This implies that for a completely 
recurrent network the weight update complexity at a given time is O(n2) where n is 
the number of units. 
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404 Jiirgen Schmidhuber 

Local in time is meant to say that weight changes should take place continually, and 
that changes should depend only on information about units and weights from a fixed 
recent time interval. This contrasts to weight changes that take place only after 
externally defined episode boundaries, which require additional a priori knowledge and . 
in some cases high peaks of computation time. The expression 'local in time' 
corresponds to the notion of 'on-line' learning. 

As far as we can judge today, biological systems use completely local computations 
to accomplish complex spatio-temporal credit assignment tasks. However, the local 
learning rules proposed'so far (like Hebb's rule) make sense only if there are no 
'hidden units'. 

In this paper (which is based on Schmidhuber, 1989b) we want to demonstrate that 
local credit assignment with 'hidden units' is no contradiction by itself, by giving a 
constructive example: We propose a method local in both space and time which is 
designed to deal with 'hidden units' and with units whose past activations are 'hidden 
in time'. 

2. Classifier Systems and the Bucket Brigade 

Holland (1985) has proposed the meanwhile well-known bucket brigade algorithm for 
classifier systems. In this section we shortly review the main idea of this algorithm. 

Messages in form of bitstrings of size n can be placed on a global message list 
either by the environment or by entities called classifiers. Each classifier consists of a 
condition pan and an action pan defining a message it might send to the message list. 
Both parts are strings out of (0, 1,-p where the '-' serves as a 'don't care' if it appears 
in the condition part. (Less important for our purposes, the '-' serves as a 'pass- 
through' if it appears in the action part.) A non-negative real number is associated with 
each classifier indicating its 'strength'. 

During one cycle all messages on the message list are compared with the condition 
parts of all classifiers of the system. Each matching classifier computes a 'bid' by 
multiplying its specificity (the number of non-don't cares in its condition pan) with 
the product of its strength and a small factor. The highest bidding classifiers may place 
their message on the message list of the next cycle, but they have to pay with their bid 
which is distributed among the classifiers active during the last time step which set up 
the triggering conditions (this explains the name bucket brigade). 

Certain messages result in an action within the environment (like moving a robot 
one step). Because some of these actions may be regarded as 'useful' by an external 
critic who can give payoff by increasing the strengths of the currently active classifiers, 
learning may take place. The central idea is that classifiers which are not active when 
the environment gives payoff but which had an important role for setting the stage for 
directly rewarded classifiers can earn credit by participatingin 'bucket brigade chains'. 
The success of some active classifier recursively depends on the success of classifiers 
that are active at the following time ticks. 

As an additional means for improving performance Holland introduces a genetic 
algorithm to construct new classifiers from old successful ones. This feature will not 
be important for our purposes. 

3. The Neural Bucket Brigade (NBB) 

I n  this section we propose a combination of principles of the bucket brigade algorithm 
with principles of neural networks. Competition can be introduced naturally into 
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A Local Learning Algorithm 405 

neural networks by a mechanism of lateral inhibition. What we still need is a 
mechanism analogous to the process of bidding and paying in classifier systems. This 
mechanism must establish recursive dependencies 'through time'. We introduce a local 
method for shifting 'weight substance' (initially provided by the environment) from 
weights that are allowed to transport activation information at a certain time to those 
weights that were 'setting the stage' one time tick earlier. 

The basic network structure is an arbitrary (possibly cyclic) directed graph, where 
the nodes are familiar processing units. Some units are used for input purposes, others 
serve as outputs and may be coupled with effectors that may change the environment, 
which in turn may change the current input. Thus we have external and internal 
feedback. 

The set of non-input units is partitioned into predefined 'competitive subsets'. All 
non-input units synchronously try to get activated by summing their weighted inputs 
at each time tick. All members of a medefined com~etitive subset laterallv inhibit each 
other (by some 'winner-take-all' mechanism) thus competing for being active. Unlike 
with most other approaches to goal directed learning the basic building blocks of the 
network are not simple units but winner-take-all subsets, each of which should have at 
least two members. 

All weights are randomly initialized with a positive real value, and are modifiable. 
Initially we will assume that there is instant decay: A unit active at time t manages to 
send its contributions to connected units that try to get activated at t +  1, then the 
sender is switched off instantly. 

All units active at time t take away a fraction of the positive weights of their 
outgoing connections (if there are any) that lead to winners active at time r+ 1, and 
distribute this 'weight-substance' proportionally to the respective contributions among 
the incoming connections (if there are any) coming from winners (or input units) 
active at time t- 1. Since the weights determine the context-dependent strength of a 
unit, winners 'get paid' for setting the stage for their successors. Input units do not 
have any incoming connections that they could strengthen, they get activated by the 
environment thus representing holes through which the weight-substance of the system 
is leaking. The environment's influence is completed by sometimes rewarding (or 
punishing) the connections to currently active units in the case of useful output 
behaviour. (An external critic decides what kind of behavior is useful.) The sum of all 
positive weights in the system remains constant, except for the weight-substance that is 
leaking through the input units and the new substance that is entering the system in 
the case of payoff. Thus we have a dissipative system which is consuming weight- 
substance provided by the environment. 

More formally, at time t we denote the activation of the jth unit by xi([), the weight 
on the directed connection between units i and j by w"(t), and the contribution of 
some connection by c&) =xi(?- l)wij(t- 1). 

The activation rule works as follows: Unit j gets activated at time t if it is an 
input unit and receives a perception, or if it wins the competition between the units 
in the competitive subset it belongs to by having the largest positive net input 
net,(?)=& cC(t). We assume the simplest case: xi([) equals 1 if unit j is active, and 0 
otherwise. (For instance, a conventional boolean unit with two possible activation 
states may be implemented by a competitive subset with two members.) 

If non-input unit j is active then its weights change according to 
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406 Jiirgen Schmidhuber 

where O<l<l  determines how much of its weight some particular connection has to 
pay to those connections that were responsible for setting the stage at the previous 
time step. Extii(t) is the 'external payoff that the environment gives to wg at time t, 
and may be computed like this: If the external critic does not know at time r whether 
useful behavior took place then Ext,,(t)=O. Else, if the critic notices a useful action, 
and if unit j was active at time t, then Ext"(t) = qcg(t) with q being a proportionality 
factor. As it will be demonstrated in the section describing the experiments, there is 
much room for more or less supervised strategies to determine Extii: Every unit might 
get instructed at every step, or just a few units at certain isolated time steps, etc. 

The weights of the system (as opposed to the activations in Hopfield-networks or 
feedback-BP) have reached a stable state when every connection at any time is giving 
back as much weight-substance as it is receiving during the next time step. This means 
that (parallel) chains of units and connections cooperating in time have evolved. 

It is important to see the local character of this method. No book-keeping of past 
activations is required, not even the accumulative computation of, say, a weighted sum 
of past activations. Each weight and each unit in principle performs the same operation 
at each time tick. No such things as 'epoch boundaries' are required during training. 

3.1. The NEB and Temporal Difference Methods 

It seems to be unlikely that the NBB performs gradient descent in some sensible global 
error measure. However, Sutton's temporal difference (TD) methods (Sutton, 1988) 
(a generalization of both gradient descent methods and an old principle proposed by 
Samuel, 1959) might offer a framework for analyzing the NBB's convergence proper- 
ties. 

Following Sutton's discussion of relations between the bucket brigade for classifier 
systems and TD-methods, at a given time the strength of a connection w" leading to an 
active unit j (or the fraction of its contribution, kg) may be interpreted as a prediction 
of the weight substance it will receive. This prediction recursively depends on the 
predictions of weights that will be active at later time ticks. Thus wii also predicts the 
ultimate environmental payoff, which terminates the recursion. A dynamic equilibrium 
of weight flow means that predictions meet reality. 

Unfortunately, the competitive element introduced by the winner-take-all-net- 
works makes an analysis of the NBB anything but straight-forward. The same holds in 
the case of classifier systems: Nobody so far has proven a theorem that demonstrates 
that the bucket brigade mechanism must work as desired. 

3.2. A Possible Extension to Continuous Time 

The method introduced above still has elements of global control: There is the clock 
for synchronous updates, for instance. However, the bucket brigade credit assignment 
concept is also potentially relevant for continuous time models of neural processing. 
T o  come closer to asynchronous models from biology we now give up the assumption 
of predefined competitive subsets and of instant decay. T o  save the concept of winning 
units we explicitly introduce fixed inhibitory connections (e.g. a variant of the on- 
center-off-surround structure (see Kohonen, 1988; Grossberg, 1976)). 

We assume that the output x je  [0,1] of unit j and the transmission properties of the 
excitatory connections are governed by differential equations that say that xj does not 
change significantly during the time needed to transport activation information from 
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A Local Learning Algorithm 407 

one unit to its successors. Then we write down a continuous time version of the weight 
changes caused by the neural bucket brigade in case of net, being greater than zero: 

Only positive weights appear in this formula, the inhibitory connections have to remain 
fixed. Tentatively denoting A, wigk by back, we find (by letting h,/at=O) that the 
weight-flow through a positive weight we that does not receive external payoff has 
reached a dynamic equilibrium if net, equals back, all the time. 

It should be noted that there is an important difference between a continuous time 
version based on local on-center-off-surround wiring, and the discrete time version 
above. While the discrete time version assumes instant activation decay when the input 
to a competitive subset disappears, there will be no activation decay in case of on- 
center-off-surround structures. It remains to be seen whether the bucket brigade 
mechanism can sensibly work in case of such hysteresis effects. The only experiments 
conducted so far were based on the discrete time version (see below). 

4. Simple Experiments 
For all experiments reported in this section, the same learning rates and the same 
initialization conditions were used. Specifically, in the beginning of a training phase all 
weights were randomly initialized between 0.999 and 1.001. Both q and A were always 
set equal to 0.005. No systematic attempts have been made to optimize these 
parameters for given tasks. 

Figure 1. Weight substance given by the environment in case of successful behavior is 
flowing through an agent living in a changing environment. The direction of weight 
flow is opposite to the direction of activation flow originating from perceptions. Credit 
assignment (appropriate weight changes) is done by local computations only (see text 

for full explanation). 
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408 Jiirgen Schmidhuber 

In all cases, the discrete time version of the algorithm described above was 
employed. 32-bit floating point arithmetic was used for the simulations. 

XOR-problems. Any algorithm for learning sequential tasks should also allow the 
learning of static pattern association, since static learning tasks can be viewed as 
sequential tasks where inputs and desired outputs do not change over time. 

In a preliminary experiment we tested whether the NBB is capable of adjusting a 
network such that it solves a static non-linearly separable task. The classical example 
for such a task is the XOR-problem. 

The network was of the feed-forward type: A layer of three input units was 
connected to a predefined competitive subset of three hidden units and a predefined 
competitive subset of two output units. The subset of hidden units also was connected 
to the subset of output-units. 

At the beginning of each cycle all unit activations were reset to 0, and one of the 
four binary XOR input patterns was randomly chosen. During the cycle this pattern 
was presented to the first two input units for a period of 6 time ticks. The activation of 
the remaining input unit was always set to 1, in order to provide a modifiable bias for 
every non-input unit in the network. 

The task for the network was to switch on the first output unit if the XOR of the 
input pattern was 1, and to switch on the second output unit otherwise. The task was 
formulated as a reinforcement learning task: At each time tick the environment gave a 
payoff (playing a role similar to the role of a reinforcement signal) ExtJr) = qcb{t) to 
we if unit j was an output unit and if it was switched on correctly at time t .  In all other 
cases Extil(t) was set to equal to 0. (Recall that payoff can be considered as a bit of 
weight substance which has to be distributed in an appropriate way by the NBB 
algorithm.) 

The network was said to correctly classify a single pattern if it switched on the 
corresponding output unit during the last three time ticks of a cycle, without the 
weight changing mechanism being employed. The network was said to have solved the 
problem if it correctly classified the four input patterns. T o  test whether the network 
had already solved the problem, after each training cycle the weight changing 
mechanism became disengaged, and the network's classification capabilities were tested 
on each of the four input patterns. 

During 20 test runs the network needed an average of 619 pattern presentations to 
find a solution. So each of the four patterns had to be presented for about 155 times, 
which corresponds to the notion of 155 'epochs'. 

Most of the 20 solutions were brittle in the sense that further training did not 
necessarily stabilize them. For instance, after a solution had been found, another 5 
training cycles could lead to worse performance again. So we measured the number of 
cycles needed to achieve a stable solution. 

A solution was considered to be stable if 100 additional pattern presentations did 
not disturb the performance of the network. The precise testing procedure was as 
follows: After each random pattern presentation the weight changing mechanism 
became disengaged. In a second phase a new pattern was randomly selected, and it was 
tested whether the network could classify it correctly. Then the bucket brigade 
mechanism was switched on again. This procedure was reiterated until the network 
produced 100 correct classifications (in the second phase) in a row. During 10 test 
runs it was found that each pattern had to be presented for about 674 times in order to 
reach this criterion. 

Using two instead of three hidden units, an average of 160 presentations per 
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A Local Learning Algorithm 409 

pattern was required to find a solution for the problem. However, it was not possible 
to obtain stable solutions, according to the criterion above. 

The XOR problem was also tested with a different network architecture: Instead of 
using straight-through connections from the three input units to the output units, the 
input units were connected only to two hidden competitive subsets, each containing 
two units. Both hidden subsets also received input from a unit which was always on. In 
10 test runs the network failed twice to find a solution within 4000 random pattern 
presentations. During the remaining 8 test runs an average of 263 presentations per 
pattern was required to solve the problem. Similarly, for 8 out of 10 test runs an 
average of 911 presentations per pattern was required to find a stable solution, 
according to the criterion above. 

Encoding-problems. Another task that had to be solved was an 'encoding problem'. 
Eight 8-dimensional binary patterns, each having unit length, had to be associated with 
themselves. A bottleneck of hidden units made the task non-trivial: 8 input units were 
connected to three hidden competitive subsets containing two units each. These were 
connected to a competitive subset of 8 output units. (An additional unit that was 
always on was connected to all non-input units.) Note that since each of the hidden 
subsets could have only two different states, an extreme solution was required: I t  was 
necessary to fully exhaust the representation capacity of the bottleneck. 

The learning mechanism employed for this problem illustrates how the bucket 
brigade mechanism can be employed in a more supervised manner: Unlike with the 
XOR-problems above, the connections leading to the output unit which should have 
been activated in response to a given input pattern received external payoff, even if the 
output unit erroneously had not been activated. Besides this modification, the learning 
and testing procedures were the same as with the XOR-problems. 

During 10 test runs, an average of 1364 presentations per pattern was necessary to 
obtain a solution. However, it was not possible to obtain stable complete solutions. 

Widening the bottleneck to 4 hidden subsets allowed the algorithm to find stable 
solutions. About 2460 presentations per pattern sufficed to satisfy the criterion for 
stability (10 test runs were conducted). 

We also conducted experiments where the input patterns for successive cycles were 
not chosen randomly but in periodical sequential order. Here we found that the 
average time to find a solution increased, and that the solutions tended to be more 
brittle in the sense that it took much longer to achieve stable solutions. This suggests 
that the random element in the process of pattern selection introduces a stabilizing 
effect. One might suppose that similar stabilizing effects could be achieved by using 
stochastic activation rules. However, this has not been tested. 

Where can instabilities arise from? The brittleness of the first solutions was 
attributed to the empirically observed fact that competing units within a competitive 
subset often had very similar net inputs. This in turn was attributed to a property of 
the NBB algorithm: Weights of connections leading to units that loose a competition 
remain the same. Consider a unit j that does not participate in a bucket brigade chain 
causing a correct classification of pattern A. This means that j's weights do not change. 
If the weights of j are slightly increased during the presentation of another correctly 
classified pattern, this modification may also lead to a winning situation for j during 
the next presentation of A. This may be the case if the net input of the competitor o f j  
who usually won during A's presentation was only slightly larger than j's net input. 
This may cause an incorrect classification of A. The interplay of these effects may lead 
to instabilities. 
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410 Jiirgen Schmidhuber 

Sequence generation. Important raisons d'he for the NBB are given by time-varying 
inputs or outputs. The task described next required oscillatory behavior of certain 
ouputs in response to a stationary input. 

Two input units were connected to a competitive subset of three output units, 
which were fully interconnected. The task was to switch on the first and the second 
output unit in an alternating manner as long as the first input unit was switched on. 
The second input unit served to provide stop-signals: Its activation had to be answered 
by a stationary output of the third output unit. 

The learning procedure for this problem demonstrates how 'teacher forcing' 
(applied by Williams & Zipser, 1988, to a similar problem) can be incorporated into 
the NBB in a straight-forward manner: Instead of using the actual activations of the 
output units at time t for computing the outputs at time t+ 1, the desired activations at 
time t were used. 

While the network was continually running, the input units were activated 
randomly: the probability that the first input was switched on at a given time tick was 
7596, the probability that the second input unit was switched on was 25%. Payoff was 
given whenever the correct output unit was switched on at a given time tick. Within 
less than 30 time ticks the system found stable solutions for this task. However, similar 
to the quite different algorithm emplyed by Williams & Zipser, without teacher forcing 
the task could not be reliably learned. 

Sequence recognition. One of the simplest tasks involving non-stationary environ- 
ments may be to recognize different kinds of motion. We conducted a simple 
experiment with time-varying perceptions. A one dimensional 'retina' consisting of 5 
input units (plus one additional unit which was always turned on) was fully connected 
to a competitive subset of two output units. This subset of output units was 
completely connected to itself, in order to allow recurrency. The task for the network 
was to switch on the first output unit after an illumination point has wandered across 
the retina from the left to the right (within 5 time ticks) and to switch on the first 
output unit after the illumination point has wandered from right to the left. 

During one cycle one of the two sequences (which had been chosen randomly) was 
presented to the network twice. Payoff was given as described for the stationary XOR 
experiments. In 1 out of 10 test runs the network did not find a stable solution within 
3000 cycles (according to a criterion analogue to the one used for the stationary 
experiment). In the remaining 9 test runs an average of 223 cycles per sequence was 
needed to achieve a stable solution. 

The experiments described above share a rather simple nature. It remains to be 
seen how well the NBB can deal with more difficult problems, like the learning of 
motor control for autonomous agents in a changing environment. 

5. Conclusion 

There is an analogy between the NBB and competitive learning (Grossberg, 1976; 
Kohonen, 1988; Rumelhart & Zipser, 1986). Competitive learning also can be inter- 
preted as a shifting of weight substance. However, here it is the weakly contributing 
incoming connections to a unit that have to pay to the strongly contributing incoming 
connections. In contrast, the NBB causes weight shifts from outgoing to incoming 
connections. This is the key feature used for relating present system states to past 
states. (Recently we have proposed another local learning scheme for recurrent 
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A Local Learning Algorithm 4 1 1 

networks where a relation between past and present states is established by a second 
adaptive network; Schmidhuber, 1989a, 1990.) 

Due to the local nature of all computations, the discrete time version of the NBB 
can easily be implemented such that the time complexity of one update cycle 
(activation changes and weight changes) is O(n) where n is the number of weights in 
the system. For some particular connection all information needed at a given time is its 
current weight, its contribution during the current time step and its contribution 
during the last time step. For some particular unit all information needed at a given 
time is its current activation, the summed contributions it receives during the current 
time step, and the summed contributions it received during the last time step. 

Short term memory can be identified in activations wandering around feedback 
loops. Such loops may even become stable: A competitive subset of units that is 
permanently referencing itself can lead to a local dynamic equilibrium of weight flow 
(and of activation flow running in the opposite direction). Such equilibria may get 
perturbed by new inputs from the environment or from other competitive subsets that 
do not participate in the loop. 

One difference to Holland's bucket brigade algorithm is that there is no analogue to 
the creation of new classifiers at run time: The number of connections in an NBB 
system remains fixed. The justification for this is given by the fact that weights are 
modifiable, while the 'specificity' of a classifier is not. (Compiani et al., 1989, consider 
more relationships between classifier systems and neural networks.) 

We certainly do not want to suggest that the brain uses a weight shifting 
mechanism for, e.g., physically transporting transmitter substance from synapses of 
outgoing connections to synapses of incoming connections. However, we do not want 
to exclude the possibility that some kind of local feedback mechanism exists whose 
effects on the synapses are similar to the effects caused by the NBB. 

A major property of the brain seems to be that the motoric actions which it causes 
depend on local computations only. The major contribution of this paper is to propose 
at least one possibility for how completely local computations within a neural network- 
like system may lead to goal directed parallel/sequential behavior. 

The NBB represents a general credit assignment scheme for neural network-like 
structures. 'General' often seems to imply 'weak'. How 'weak' is the NBB? It  remains 
to be seen whether the NBB can be successfully applied to difficult control tasks. 
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