LEARNING TO CONTROL FAST-WEIGHT
MEMORIES: AN ALTERNATIVE TO
DYNAMIC RECURRENT NETWORKS

(Neural Computation, 4(1):131-139, 1992)

Jiirgen Schmidhuber*

Institut fir Informatik
Technische Universitat Miinchen
Arcisstr. 21, 8000 Miinchen 2, Germany
schmidhu@tumult.informatik.tu-muenchen.de

Abstract

Previous algorithms for supervised sequence learning are based on
dynamic recurrent networks. This paper describes an alternative class
of gradient-based systems consisting of two feedforward nets that learn
to deal with temporal sequences using fast weights: The first net learns
to produce context dependent weight changes for the second net whose
weights may vary very quickly. The method offers the potential for STM
storage efficiency: A single weight (instead of a full-fledged unit) may be
sufficient for storing temporal information. Various learning methods are
derived. Two experiments with unknown time delays illustrate the ap-
proach. One experiment shows how the system can be used for adaptive
temporary variable binding.

1 The Task

A training sequence p with n, discrete time steps (called an episode) consists
of n, ordered pairs (z?(t),d?(t)) € R"* x R™ , 0 < t < n,. At time t of episode
p a learning system receives zP(¢) as an input and produces the output y?(t).

*Current address: Dept. of Computer Science, University of Colorado, Campus Box 430,
Boulder, CO 80309, USA



The goal of the learning system is to minimize
A1
— P P(4))2
b= ST T @0 -0
K]

where d¥ (t) is the ith of the m components of dP(t), and y?(t) is the ith of the
m components of yP(t).

In general, this task requires storage of input events in a short-term memory.
Previous solutions to this problem have employed gradient-based dynamic re-
current nets (e.g., (Robinson and Fallside, 1987), (Pearlmutter, 1989), (Williams
and Zipser, 1989)). In the next section an alternative gradient-based approach
is described. For convenience, we drop the indices p which stand for the various
episodes.

The gradient of the error over all episodes is equal to the sum of the gradients
for each episode. Thus we only require a method for minimizing the error
observed during one particular episode:

E=)E®),
t

where E(t) = 13.(di(t) — yi(t))?. (In the practical on-line version of the
algorithm below there will be no episode boundaries; one episode will 'blend’

into the next (Williams and Zipser, 1989).)

2 The Architecture and the Algorithm

The basic idea is to use a slowly learning feed-forward network S (with a set
of randomly initialized weights Ws) whose input at time ¢ is the vector z(t)
and whose output is transformed into immediate weight changes for a second
‘fast-weight’ network F'. The input to F at time ¢ is also z(t), its m-dimensional
output is y(t), and its set of weight variables is Wg. F serves as a short term
memory: At different time steps, the same input event may be processed in
different ways depending on the time-varying state of Wg.

The standard method for processing temporal sequences is to employ a re-
current net with feedback connections. The feedback connections allow for a
short-term memory of information earlier in a sequence. The present work
suggests a novel approach to building a short-term memory by employing fast
weights that can be set and reset by the 'memory controller’ S. Fast weights
can hold on to information over time because they remain essentially invariant
unless they are explicitly modified.

One potential advantage of the method over the more conventional recurrent
net algorithms is that it does not necessarily require full-fledged units — experi-
encing some sort of feedback — for storing temporal information. A single weight



may be sufficient. Because there are many more weights than units in most net-
works, this property represents a potential for storage efficiency. For related
reasons, the novel representation of past inputs is well-suited for solving certain
problems involving temporary variable binding in a natural manner: F’s current
input may be viewed as a representation of the addresses of a set of variables;
F’s current output may be viewed as the representation of the current contents
of this set of variables. In contrast with recurrent nets, temporary bindings
can be established very naturally by temporary connectivity patterns instead of
temporary activation patterns (see section 3.2 for an illustrative experiment).

For initialization reasons we introduce an additional time step 0 at the begin-
ning of an episode. At time step 0 each weight variable wg,, € Wr of a directed
connection from unit a to unit b is set to Ow,p(0) (a function of S’s outputs as
described below). At time step t > 0, the wy,(t—1) are used to compute the out-
put of F according to the usual activation spreading rules for back-propagation
networks (e.g. (Werbos, 1974)). After this, each weight variable w,, € Wr is
altered according to

wab(t) = U(wab(t - 1)7 Dwab(t))7 (1)

where o (e.g. a sum-and-squash function) is differentiable with respect to all its
parameters and where the activations of S’s output units (again computed ac-
cording to the usual activation spreading rules for back-propagation networks)
serve to compute Owg(t) by a mechanism specified below. Dwgy(t) is S’s con-
tribution to the modification of wg at time step t¢.

Equation (1) is essentially identical to Moller and Thrun’s equation (1) in
(Moller and Thrun, 1990). Unlike (M6ller and Thrun, 1990), however, the cur-
rent paper derives an exact gradient descent algorithm for time-varying inputs
and outputs for this kind of architecture.

For all weights w;; € Wy (from unit ¢ to unit j) we are interested in the
increment

E(t) Owep(t— 1)
Awij = SO -y D ;
= aw” o w e awab t—1) Ow;;
(2)
Here 7 is a constant learning rate. At each time step ¢t > 0, the factor
OE(t)

Oap(t) = ————
ab( ) 6’wab(t—1)

can be computed by conventional back-propagation (e.g. (Werbos, 1974)). For

t > 0 we obtain the recursion

Owap(t) 00 (wap(t — 1), Owgp(t)) Owas(t — 1) 0o (wap(t — 1), Owap(t)) 00w (1)
6111,']' o Owgy (t — 1) 6‘w,~j 6Dwab(t) 6wij )

We can employ a method similar to the one described in (Robinson and Fallside,
1987) and (Williams and Zipser, 1989): For each wq; € Wg and each w;; € Wy



we introduce a variable p;?f (initialized to zero at the beginning of an episode)
which can be updated at each time step ¢ > 0:

p?}’(t) _ Ba(wag(t -1), Dwab(t))p%’(t “1)+ Ao (wap(t — 1), Owgp(t)) O0wgp(t)
Wab (t - 1) ODwab (t) Owij

®3)

%‘2‘;(0 depends on the interface between S and F. With a given interface

(two possibilities are given below) an appropriate back-propagation procedure

for each wq, € Wr gives us %“;(t) for all w;; € Ws. After having updated

the p;?jb variables, (2) can be computed using the formula

OE(t) _ Y Sat)pift—1).

Ow:
K wapr EWFR

A simple interface between S and F would provide one output unit s, € S
for each weight variable wq, € W, where

Owas(t) 1= Sqb(t), (4)

Sab(t) being the output unit’s activation at time ¢ > 0.

A disadvantage of (4) is that the number of output units in S grows in
proportion to the number of weights in F'. An alternative is the following:
Provide an output unit in S for each unit in F' from which at least one fast
weight originates. Call the set of these output units FROM. Provide an output
unit in S for each unit in F' to which at least one fast weight leads. Call the set
of these output units T0. For each weight variable w,, € W we now have a unit
Sq € FROM and a unit s, € TO. At time ¢, define Dwyp(t) := g(s4(t), sp(t)),
where g is differentiable with respect to all its parameters. As a representative
example we will focus on the special case of g being the multiplication operator:

Owas (t) := 5q(t)s5(t). (5)

Here the fast weights in F' are manipulated by the outputs of S in a Hebb-like
manner, assuming that o is just a sum-and-squash function as employed in the
experiments described below.

One way to interpret the FROM/TO architecture is to view S as a device
for creating temorary associations by giving two parameters to the short term
memory: The first parameter is an activation pattern over FROM representing
a key to a temporary association pair, the second parameter is an activation
pattern over TO representing the corresponding entry. Note that both key and
entry may involve hidden units.

(4) and (5) differ in the way that error signals are obtained at S’s output
units: If (4) is employed, then we use conventional back-propagation to compute

‘rﬂ(‘;"T"fj) in (3). If (5) is employed, note that
054(1)

= Sb(t)m + 84(1)

00w (1)
8w,~j

(981,(75)
8w,~j )

(6)



Conventional back-propagation can be used to compute %ﬁj) for each out-

put unit a and for all w;;. The results can be kept in | Wg | * | FROM UTO |
variables. This makes it easy to solve (6) in a second pass.

The algorithm is local in time, its update-complexity per time step is O(|
Wr || Ws |). However, it is not local in space (see (Schmidhuber, 1990b) for a
definition of locality in space and time).

2.1 On-Line Versus Off-Line Learning

The off-line version of the algorithm would wait for the end of an episode to
compute the final change of Wgs as the sum of all changes computed at each
time step. The on-line version changes Wy at every time step, assuming that
7 is small enough to avoid instabilities (Williams and Zipser, 1989). An inter-
esting property of the on-line version is that we do not have to specify episode
boundaries (‘all episodes blend into each other’ (Williams and Zipser, 1989)).

2.2 Unfolding in time

An alternative of the method above would be to employ a method similar to
the ‘unfolding in time’-algorithm for recurrent nets (e.g. (Rumelhart et al.,
1986)). It is convenient to keep an activation stack for each unit in S. At each
time step of an episode, some unit’s new activation should be pushed onto its
stack. S’s output units should have an additional stack for storing sums of
error signals received over time. With both (4) and (5), at each time step we
essentially propagate the error signals obtained at S’s output units down to the
input units. The final weight change of Wg is proportional to the sum of all
contributions of all errors observed during one episode. The complete gradient
for S is computed at the end of each episode by successively popping off the
stacks of error signals and activations analogously to the ‘unfolding in time’-
algorithm for recurrent networks. A disadvantage of the method is that it is not
local in space.

2.3 Limitations and Extensions

When both F' and S are feedforward networks, the technique proposed above
is limited to only certain types of time-varying behavior. With ¢ being a sum-
and-squash function, the only kind of interesting time-varying output that can
be produced is in response to variations in the input; in particular, autonomous
dynamical behavior like oscillations (e.g. (Williams and Zipser, 1989)) cannot
be performed while the input is held fixed.

It is straight-forward to extend the system above to the case where both
S and F are recurrent. In the experiment below S and F' are non-recurrent,
mainly to demonstrate that even a feed-forward system employing the principles
above can solve certain tasks that only recurrent nets were supposed to solve.



The method can be accelerated by a procedure analogous to the one pre-
sented in (Schmidhuber, 1991b).

3 Experiments

The following experiments were conducted in collaboration with Klaus Bergner,
a student at Technische Universitdt Miinchen.

3.1 An Experiment With Unknown Time Delays

In this experiment, the system was presented with a continuous stream of input
events and F’s task was to switch on the single output unit the first time an
event ‘B’ occurred following an event ’A’. At all other times, the output unit
was to be switched off. This is the flip-flop task described in (Williams and
Zipser, 1989).

One difficulty with this task is that there can be arbitrary time lags be-
tween relevant events. An additional difficulty is that no information about
‘episode boundaries’ is given. The on-line method was employed: The activa-
tions of the networks were never reset. Thus, activations caused by events from
past ‘episodes’ could have a harmful effect on activations and weights in later
episodes.

Both F' and S had the topology of standard feedforward perceptrons. F' had
3 input units for 3 possible events ‘A’, ‘B’, and ‘C’. Events were represented in a
local manner: At a given time, a randomly chosen input unit was activated with
a value of 1.0, the others were de-activated. F’s output was one-dimensional.
S also had 3 input units for the possible events ‘A’, ‘B’, and ‘C’, as well as 3
output units, one for each fast weight of F. Neither of the networks needed
hidden units for this task. The activation function of all output units was the
identity function. The weight-modification function (1) for the fast weights was
given by

olwap(t = 1), Dy (1)) = (1 -+ e~ T E=DPus®=05) 1 (7)

Here T' determines the maximal steepness of the logistic function used to bound
the fast weights between 0 and 1.

The weights of S were randomly initialized between -0.1 and 0.1. The task
was considered to be solved if for 100 time steps in a row F"’s error did not exceed
0.05. With fast-weight changes based on (4), T = 10 and 5 = 1.0 the system
learned to solve the task within 300 time steps. With fast-weight changes based
on the FROM/TO-architecture and (5), T' = 10 and 1 = 0.5 the system learned
to solve the task within 800 time steps.

The typical solution to this problem has the following properties: When an
A-signal occurs, S responds by producing a large weight on the B input line
of F' (which is otherwise small), thus enabling the F' network as a B detector.



When a B signal occurs, S ‘resets’ F' by causing the weight on the B line in
F' to become small again, thereby making F' unresponsive to further B signals
until the next A is received.

3.2 Learning Temporary Variable Binding

Some researchers have claimed that neural nets are incapable of performing
variable binding. Others, however, have argued for the potential usefulness of
‘dynamic links’ (e.g. (v.d. Malsburg, 1981)), which may be useful for variable
binding. With the fast-weight method, it is possible to train a system to use
fast weights as dynamic links in order to temporarily bind variable contents
to variable names (or ‘fillers’ to ‘slots’) as long as it is necessary for solving a
particular task.

In the simple experiment described next, the system learns to remember
where in a parking lot a car has been left. This involves binding a value in a
variable that represents the car’s location.

Neither F' nor S needed hidden units for this task. The activation function
of all output units was the identity function. All inputs to the system were
binary, as were F’s desired outputs. F' had one input unit which stood for the
name of the variable WHERE-IS-MY-CAR?. In addition, F' had three output
units for the names of three possible parking slots P, P», and P; (the possible
answers to WHERE-IS-MY-CAR?). S had three output units, one for each fast
weight, and six input units. (Note that S need not always have the same input
as F.) Three of the 6 input units were called the parking-slot detectors — Iy, I,
I3. These detectors were activated for one time step when the car was parked
in a given slot (while the other slot-detectors remained switched off). The three
additional input units were randomly activated with binary values at each time
step. These random activations served as distracting time varying inputs from
the environment of a car owner whose life looks like this: He drives his car
around for zero or more time steps (at each time step the probability that he
stops driving is 0.25). Then he parks his car in one of three possible slots. Then
he conducts business outside the car for zero or more time steps during which all
parking-slot-detectors are switched off again (at each time step the probability
that he finishes business is 0.25). Then he remembers where he has parked his
car, goes to the corresponding slot, enters his car and starts driving again etc.

Our system focussed on the problem of remembering the position of the car.
It was trained by activating the WHERE-IS-MY-CAR? unit at randomly chosen
time steps and by providing the desired output for F', which was the activation
of the unit corresponding to the current slot P;, as long as the car was parked
in one of the three slots.

The weights of S were randomly initialized between -0.1 and 0.1. The task
was considered to be solved if for 100 time steps in a row F”’s error did not exceed
0.05. The on-line version (without episode boundaries) was employed. With the
weight-modification function (7), fast-weight changes based on (4), T' = 10 and



1 = 0.02 the system learned to solve the task within 6000 time steps. As it
was expected, S learned to ‘bind’ parking slot units to the WHERE-IS-MY-
CAR7?-unit by means of strong temporary fast-weight connections. Due to the
local output representation, the binding patterns were easy to understand: At
a given time there was a large fast weight on the connection leading from the
WHERE-IS-MY-CAR?-unit to the appropriate parking slot unit (given the car
was currently parked). The other fast-weights remained temporarily suppressed.

4 Concluding Remarks

The system described above is a special case of a more general class of adaptive
systems (which also includes conventional recurrent nets) which employ some
parameterized memory function for changing a vector-valued memory structure
and which employ some parameterized retrieval function for processing the con-
tents of the memory structure and the current input. The only requirement is
that the memory and retrieval functions be differentiable with respect to their
internal parameters.

Such systems work because of the existence of the chain rule. Results as
above (as well as other novel applications of the chain rule (Schmidhuber,
1991a)(Schmidhuber, 1990a)) indicate that there may be additional interesting
(yet undiscovered) ways of applying the chain rule for temporal credit assign-
ment in adaptive systems.

5 Acknowledgements

I wish to thank Klaus Bergner for conducting the experiments. Furthermore I
wish to thank Mike Mozer, Bernhard Schitz, and Jost Bernasch for providing
comments on a draft of this paper.

References

Moller, K. and Thrun, S. (1990). Task modularization by network modulation.
In Rault, J., editor, Proceedings of Neuro-Nimes 90, pages 419-432.

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural
networks. Neural Computation, 1:263-269.

Robinson, A. J. and Fallside, F. (1987). The utility driven dynamic error prop-
agation network. Technical Report CUED/F-INFENG/TR.1, Cambridge
University Engineering Department.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal
representations by error propagation. In Rumelhart, D. E. and McClelland,



J. L., editors, Parallel Distributed Processing, volume 1, pages 318-362.
MIT Press.

Schmidhuber, J. H. (1990a). Dynamische neuronale Netze und das fundamentale
raumzeitliche Lernproblem. Dissertation, Institut fiir Informatik, Technis-
che Universitat Miinchen.

Schmidhuber, J. H. (1990b). Learning algorithms for networks with internal
and external feedback. In Touretzky, D. S., Elman, J. L., Sejnowski, T. J.,
and Hinton, G. E., editors, Proc. of the 1990 Connectionist Models Summer
School, pages 52-61. San Mateo, CA: Morgan Kaufmann.

Schmidhuber, J. H. (1991a). Learning to generate sub-goals for action sequences.
In Simula, O., editor, Proceedings of the International Conference on Ar-
tificial Neural Networks ICANN 91, to appear. Elsevier Science Publishers
B.V.

Schmidhuber, J. H. (1991b). An O(n®) learning algorithm for fully recurrent
networks. Technical Report FKI-151-91, Institut fiir Informatik, Technische
Universitdt Miinchen.

v.d. Malsburg, C. (1981). Internal Report 81-2, Abteilung fiir Neurobiologie,
Max-Planck Institut fiir Biophysik und Chemie, G&ttingen.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University.

Williams, R. J. and Zipser, D. (1989). Experimental analysis of the real-time
recurrent learning algorithm. Connection Science, 1(1):87-111.



