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ABSTRACT 

Time is at the heart of many pattern recognition tasks (e.g., speech recognition). 
However, connectionist learning algorithms to date are not well-suited for dealing 
with time-varying input patterns. This chapter introduces a specialized connection­
ist architecture and corresponding specialization of the back-propagation learning 
algorithm that operates efficiently, both in computational time and space require­
ments, on temporal sequences. The key feature of the architecture is a layer of self-
connected hidden units that integrate their current value with the new input at each 
time step to construct a static representation of the temporal input sequence. This 
architecture avoids two deficiencies found in the back-propagation unfolding-in-
time procedure (Rumelhart, Hinton, & Williams, 1986) for handing sequence 
recognition tasks: first, it reduces the difficulty of temporal credit assignment by 
focusing the back-propagated error signal; second, it eliminates the need for a 
buffer to hold the input sequence and/or intermediate activity levels. The latter 
property is due to the fact that during the forward (activation) phase, incremental 
activity traces can be locally computed that hold all information necessary for back 
propagation in time. It is argued that this architecture should scale better than 
conventional recurrent architectures with respect to sequence length. The architec­
ture has been used to implement a temporal version of Rumelhart and McClelland's 
(1986) verb past-tense model. The hidden units learn to behave something like 
Rumelhart and McClelland's "Wickelphones," a rich and flexible representation of 
temporal information. 

INTRODUCTION 

Connectionist models have proven successful in a variety of pattern recognition 
tasks (e.g., Hinton, 1987; Sejnowski & Rosenberg, 1987). In some respects, 
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these models are amazingly powerful, more so than the human brain. For in­
stance, take a real-world image composed of light intensities and randomly 
rearrange pixels in the image. Most connectionist architectures can learn to 
recognize the permuted image as readily as the original (Smolensky, 1983), 
whereas humans would no doubt have great difficulty with this task. In other 
respects, however, the pattern recognition abilities of connectionist models are 
quite primitive. While humans have little trouble processing temporal patterns— 
indeed, all input to the sensory systems is intrinsically temporal in nature—few 
connectionist models deal with time. Because time is at the essence of many 
pattern recognition tasks, it is important to develop better methods of incorporat­
ing time into connectionist networks. 

Figure 1 depicts an abstract characterization of the temporal pattern recogni­
tion task. Time is quantized into discrete steps. A sequence of inputs is presented 
to the recognition system, one per time step. Each element of the sequence is 
represented as a vector of feature values. At each point in time, the system may 
be required to produce a response, also represented as a vector of feature values, 
contingent on the input sequence of that point. In the simplest case, shown in 
Figure 1, a response is required only after the entire input sequence has been 
presented. 

Many important problems are of this class. For instance, recognizing speech 
involves sampling the acoustic signal at regular intervals and producing as output a 
representation of phonemes or words. Similarly, natural language processing 
consists of analyzing a sequence of words to yield a structural or semantic 
description. And event perception can be viewed as analyzing a sequence of 
snapshots of the visual world to produce a description of the ensuing event. Freyd 
(1987) has argued that even for some static objects, perception may be dynamic in 
the sense that a temporal dimension is incorporated into the perceptual analysis. 
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Figure 1. Abstract characterization of the temporal pattern recogni­
tion task. x(t) indicates the input pattern at time t, y(t) the output pat­
tern. 



PREVIOUS CONNECTIONIST APPROACHES TO 
TEMPORAL PATTERN RECOGNITION 

One popular approach to temporal pattern recognition has been to construct a 
buffer to hold the n most recent elements of the input sequence (Elman & 
McClelland, 1986; Elman & Zipser, 1988; Landauer, Kamm, & Singhal, 1987; 
Lapedes & Farber, 1987; McClelland & Elman, 1986; Plaut, Nowlan, & Hinton, 
1986; Tank & Hopfield, 1987; Waibel, Hanazawa, Hinton, Shikano, & Lang, 
1987). Such a buffer can be implemented using a shift register or delay lines. The 
buffer turns a temporal recognition problem into a spatial recognition problem in 
which all relevant information for making a response is simultaneously available. 
Because connectionist models are relatively good at spatial recognition prob­
lems, this approach seems assured of some success. 

However, the approach has four serious drawbacks. First, the buffer must be 
sufficient in size to accommodate the longest possible input sequence. With an 
n-element buffer, no sequence of duration greater than n can be recognized. 
Thus, the longest possible sequence—the longest interval over which context 
may play a role—must be known in advance. Even if a fairly large buffer can be 
built, say one sufficient to recognize a phoneme or demisyllable, what about 
higher levels of analysis—words, phrases, sentences, paragraphs? At some 
point, one needs to deal with the fact that not all input information can be 
available to the system simultaneously. A hierarchy of buffers may partially 
alleviate this problem, but will still require the advance specification of maxi­
mum sequence duration. 

A second drawback of using a buffer is that by making a great deal of 
information simultaneously available, much computation is required at each time 
step. Essentially, all information within the buffer must be reprocessed whenever 
the buffer state changes. This is not a problem if one has dedicated parallel 
hardware, but simulations of such a connectionist system on a serial machine can 
be computationally expensive. 

Third, when a buffer is used as input to a connectionist network, each element 
of the buffer must be connected to higher layers of the network. Consequently, as 
the buffer grows, so does the number of weights. This means that a large number 
of training examples must be used or else the network will not generalize well 
(Hinton, 1989). Another solution to this problem is to constrain the weights in 
some manner so as to reduce the number of free parameters (Lang, 1987; Le 
Cun, this volume; Waibel et al. 1987). 

Fourth, the use of a buffer makes it difficult to achieve in variance under 
translation in time. Because the buffer turns shifts in time into shifts in space 
(i.e., buffer position), the representation of an input sequence occurring at one 
time will have little resemblance to that of an input sequence occurring at another 
time. Consequently, if training and test sequences are misaligned, the sequences 
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will likely not be recognized as the same. One way of minimizing this problem is 
to shift inputs continuously across the buffer to ensure that each sequence is 
presented in each position, both during training and testing. However, this solu­
tion introduces noise into the training phase and additional computation into the 
testing phase. 

These deficiencies of the buffer model argue that the spatial metaphor for time 
is not viable; a richer, more flexible representation of time is needed. Similar 
arguments have been raised elsewhere (Elman, 1990; Stornetta, Hogg, & Huber-
man, 1987; Watrous & Shastri, 1987). Despite its drawbacks, the buffer model 
has two properties in common with any model of temporal pattern recognition. 
First, some memory of the input history is required. Second, a function must be 
specified to combine the current memory (or temporal context) and the current 
input to form a new temporal context: 

c(t+ 1) = f(c(t), x(t)), 

where c(t) is a vector representing the context at time t, x(t) is the input at time t, 
and f is the mapping function. The buffer model is a simple scheme, where the 
temporal context consists of the n most recent sequence elements, and f is 
implemented by the shift-register operation of the buffer. Given the inadequacy 
of the buffer model, one would like to discover ways of representing temporal 
context that avoid turning intrinsically temporal information into spatial informa­
tion. 

One idea is based on the fact that, in a connectionist network, the connections 
from one set of units to another implement a mapping. Thus, by representing the 
input x(t) and context c(t) as patterns of activity on two sets of units, the weights 
connecting the input units to the context units and the context units to themselves 
specify a mapping function f. Jordan (1987) and Stornetta et al. (1987) have 
explored this approach using fixed weights that do not change with experience. 
In the Stornetta et al. work, there is one context unit per input unit, and each 
context unit is connected to itself and its corresponding input unit. In other 
words, the mapping function is 

f(c,x) = k1c + k2x, 

where k1 and k2 are fixed constants. 
This type of network has no spatial representation of time. Consequently, the 

architecture does not require replicated input units, in contrast to the buffer 
model which requires n copies of the input units for an n-element buffer. Further, 
this architecture does not place a rigid upper bound on the amount of temporal 
context that can be considered, whereas the buffer model can remember only the 
n most recent sequence elements. Nonetheless, this approach is rather inflexible 
in that the mapping function used to construct the temporal context is predeter­
mined and fixed. As a result, the representation of temporal context must be 
sufficiently rich that it can accommodate a wide variety of tasks; it cannot afford 
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to discard too much information. The alternative to this general, task-
independent representation is one suited to the task being performed, wherein 
only the input information relevant to the task need be retained. 

Connectionist learning algorithms provide a means of adaptively constructing 
internal representations. However, the most promising and popular algorithm, 
back propagation (Rumelhart et al. 1986), is designed for feedforward networks. 
In order to represent temporal context, recurrent networks are required because 
the current context must depend on the previous. Back propagation can be used 
to train recurrent networks if the network is "unfolded in time" (Rumelhart et al., 
1986; see also chapters in this volume by Bachrach and Mozer, Nguyen and 
Widrow, Servan-Schreiber et al., and Williams and Zipser). The basic trick can 
be seen by comparing the recurrent network in Figure 2a to the equivalent 
unfolded network in Figure 2b. The network in Figure 2a consists of four layers: 
input, context, hidden, and output. The input pattern is integrated with the 
current context to form a new context. The context is then mapped, by way of the 
hidden layer, to an output. In Figure 2b, the same functionality is achieved by 
replicating the input and context layers for each element of the input sequence 
and by constraining the weights such that the input-to-context connections and 
context-to-context connections are equal across time. Rather than having four 
pools of units, the unfolded network contains 2 + 2t pools, where t is the number 
of elements in the input sequence. Because the unfolded network is feedforward, 
the back-propagation algorithm can be applied to adjust the connection strengths 
so that a given input sequence will yield a target output.1 The weight constraints 
are enforced by maintaining only one set of input-to-context and context-to-
context weights. During the back-propagation phase, the changes prescribed for 
each weight at each level are summed to give a net weight change. 

Training a network using the unfolding procedure has two significant draw­
backs, however. First, part of the architecture must be replicated for each time 
step of the input sequence. In implementing the unfolding procedure, it is not 
actually necessary to replicate processing units; units need be instantiated only 
once if each unit remembers its activity level at each point in time—that is, 
maintains a stack of activity levels. During forward propagation, values are 
pushed on to this stack, and during back propagation values are popped in 
reverse temporal order.2 

Second, the unfolding procedure creates a deeply layered network through 
which error signals must be propagated. This is bad not only because the time to 
perform back propagation is proportional to the depth of the network, but also 

1Intermediate output values could readily be trained by replicating the hidden and output units at 
intermediate time steps, and injecting an additional error signal into the network via the output units. 

2Almeida (1987) and Pineda (1987) have proposed a variation of the back-propagation algorithm 
for recurrent networks that does not need an activity-level history. However, the algorithm assumes a 
fixed input, and hence is suitable for pattern completion and other relaxation problems, not for 
analyzing a time-varying input pattern. 
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Figure 2. (a) A four-layered recurrent network consisting of input, 
context, hidden, and output units. Each labeled box indicates a set of 
processing units. The arrows indicate complete connectivity from one 
layer to another; that is, each unit in one layer is connected to each 
unit in the other, (b) The same network unfolded in time. The input and 
context layers are replicated for each element of the sequence. The 
weights are constrained so that the input-context connections are 
equal across time, as are the context-context connections. 
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because the further back an error signal is propagated, the more dispersed it 
becomes. To explain what I mean by "dispersed," consider that the purpose of 
back propagation is to assign blame to each unit for its contribution to the error. 
However, the assignment of blame to a given unit is meaningful only in the 
context of the response properties of units higher in the network. If the present 
responses of these units do not resemble their eventual responses, then the lower-
layer unit cannot obtain an independently informative measure of its contribution 
to the error; back propagation through the upper layers will effectively redis­
tribute the error signal in some random fashion. Thus, in deep networks, espe­
cially where the relevant input signal is found in the lower layers, learning can be 
very slow. This argument is born out by empirical comparisons of learning speed 
using temporal versus spatial patterns made by myself and by Steven Nowlan 
(personal communication). 

CONSTRAINTS ON NETWORK ARCHITECTURE 

Given the inherent difficulties in using back propagation to train a recurrent 
network to recognize temporal sequences, one useful tack is to look for con­
straints on solutions the network might discover that could simplify the learning 
problem. This strategy of building a priori structural knowledge into the network 
directly can often speed learning and improve generalization (Hinton, 1989). 

Consider the sort of representation one might like to obtain in the context 
layer of the network in Figure 2a. This representation should satisfy four criteria. 
First, it must be a static encoding of the temporal input pattern, one that holds on 
to whichever features of the input are needed to produce the desired response. 
Second, it must be capable of encoding sequences of varying lengths with a fixed 
number of units. Third, it must be capable of encoding relationships between 
events. And fourth, it should provide a natural basis for generalization. 

Wickelgren (1969) has suggested a representational scheme that seems to 
satisfy these criteria and has been applied successfully in several connectionist 
models (Mozer, 1991; Rumelhart & McClelland, 1986; Seidenberg, 1990). The 
basic idea is to encode each element of a sequence with respect to its local 
context. For example, consider the phonetic encoding of a word. Wickelgren 
proposed context-sensitive phoneme units, each responding to a particular 
phoneme in the context of a particular predecessor and successor. I will call these 
units Wickelphones, after the terminology of Rumelhart and McClelland. If the 
word explain had the phonetic spelling /eksplAn/, it would be composed of the 
Wickelphones _ek, eks, ksp, SP1, plA , 1An, and An_ (where the dash indicates a 
word boundary). Assuming one Wickelphone unit for each possible phoneme 
triple, activation of a word would correspond to a distributed pattern of activity 
over the Wickelphone units. 

With a fixed number of Wickelphone units, it is possible to represent uniquely 
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arbitrary strings of varying length. This means that the unordered set of Wick-
elphones is sufficient to allow for the unambiguous reconstruction of the ordered 
string. There are difficulties if the string contains repeated substrings (e.g., 
Mississippi), but these difficulties can be overcome (Mozer, 1990). The Wick-
elphone representation can be generalized to arbitrary sequences by substituting 
sequence elements for phonemes. In the general case, I call the context-sensitive 
encoding a Wickelement representation. 

The trouble with Wickelements is that there are too many of them. Rumelhart 
and McClelland reduced the number of Wickelphones by devising a more com­
pact and distributed encoding that depended on features of phonemes rather than 
the phonemes themselves. The number of units can also be reduced on the 
grounds that not all Wickelements are needed for every task. For instance, a pkt 
Wickelphone is unnecessary for representing English words. Thus, it would be 
desirable to learn only the task-relevant Wickelements. 

How might the network in Figure 2a be modified to learn an internal represen­
tation in the context layer that resembled Wickelements? First, to obtain local 
context-sensitive codes, the sequence might be presented in local "chunks." This 
can be achieved by turning the input layer into a small buffer, so that at time t the 
input pattern consists of the sequence elements at, say, times t – 2, t – 1, and t. 
Then the context units can detect conjunctions of sequence elements, or conjunc­
tions of features of sequence elements. Once activated by a pattern in the input, 
the context units should remain on. Thus, it seems sensible to have self-
connected context units, but not to connect each context unit to each other, say an 
activation function like 

ci(t + 1) = dici(t) + s[neti(t)], (1) 

where ci(t) is the activity level of context unit i at time t, di is a decay weight 
associated with the unit, s is a sigmoid squashing function, and neti(t) is the net 
input to the unit: 
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neti(t) ≡ 
j 

WjiXj(t), 

Xj(t) being the activity of input unit j at time t, Wji the connection strength from 
input unit j to context unit i. Thus, a context unit adds its current activity, 
weighted by the decay factor, to the new input at each time. The decay factor 
allows old information to fade over time if di< 1. Such decay connections have 
proven useful in other work (Jordan, 1987; Miyata, 1988; Stornetta et al., 1987; 
Watrous & Shastri, 1987). 

To summarize, a recurrent network with this architecture, which I call the 
focused architecture for reasons that will become clear shortly, differs from a full 
recurrent architecture in three respects: (1) the input layer consists of a small 
temporal buffer holding several elements of the input sequence; (2) connectivity 
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in the context layer is restricted to one-to-one recurrent connections; and (3) 
integration over time in the context layer is linear.3 

THE FOCUSED BACK-PROPAGATION ALGORITHM 

It turns out that the focused architecture has properties that overcome the two 
major limitations discussed earlier of a full recurrent architecture' and the 
unfolding-in-time training procedure. First, back propagation is "focused": the 
error signal does not disperse as it propagates back in time. Second, to adjust 
the weights, back propagation in time—and saving an activity history stack—is 
unnecessary. 

To get an intuition as to why these two statements are true, consider the 
weight update procedure when a t-element sequence is presented to a focused 
recurrent network. Following the sequence, at time t, the network is shown a 
target output vector. Comparing this vector to the actual output vector yields an 
error signal, E. To adjust weights according to the back propagation gradient 
descent procedure, it is necessary to compute 

for Τ = 1, . . . , t. This can be achieved by back propagating in time, from the 
context layer at time t to t – 1 to t – 2 and so forth. However, from Equation 1 it 
is clear that 

The error signal, Δ i(Τ), changes just by a constant multiplicative factor, di, as it is 
propagated back in time. Thus, there is a simple relationship between the Δi's at 
various points in time. 

3The simple recurrent network (SRN) architecture described by Elman (1990) and Servan-
Schreiber et al. (this volume) has some superficial similarity with the focused architecture. In 
particular, there is a set of feedback connections in the SRN which are both one-to-one and linear. 
However, these connections do not correspond to the recurrent connections in the focused architec­
ture. The SRN is simply a generic three-layer architecture with complete recurrent connectivity in the 
hidden layer. This is not always clear because the SRN is usually drawn with two copies of the hidden 
layer, one representing the activities at the current time step and the other (often called the context) 
representing the activities at the previous time step. The one-to-one linear connections serve only to 
preserve the previous hidden activity for one time step. 
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= d i δ i ( Τ ) . (2) 
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Because of Equation 2, whatever error is propagated back to the context unit 
at time t stays within that unit as the error is passed further back in time, in 
contrast to a full recurrent network where the error is redistributed among the 
context units with each backwards pass due to cross connections between units. 
Error propagation with this focused architecture is therefore focused and should 
not disperse in time—an apparent limitation of the full recurrent architecture. 

Error propagation with the focused architecture is also superior in a second 
respect. Because of the simple relationship described by Equation 2, it is not 
necessary to explicitly back-propagate in time to compute Δi(Τ) from Δi(t). In­
stead, if each connection has associated with it an activity history trace that is 
incrementally updated during the forward (activation) pass, these traces can be 
used to exactly achieve the effects of back propagation in time. 

The appendix derives formulas for δE/δdi and δE/δci(t) in terms of the activ­
ity traces, which yield the following weight update rules. For the recurrent 
connections, di, the rule is 

di = -εδi(t)αi(t), 

where αi(0) = 0 and 

Αi(Τ) = ci(Τ – 1) + diαi(τ – 1). 

Similarly, the weight update rule for the input-context connections, wji, is 

wji = -εδ i(t)β j i(t), 

where βji(0) = 0 and 

βji(Τ) = s'[neti(Τ)]xj(Τ) + diβji(Τ – 1). 

These weight update rules are not just heuristics or approximations; they are 
computationally equivalent to performing the back propagation in time. 

Choosing a Squashing Function for 
the Context Units 

An interesting issue arises in the choice of a squashing function, s[u], for the 
context units. If we indeed hope that the context units learn to behave as Wick-
element detectors, we would like the squashing function to have range 0 -1 , in 
order that the response is 0.0 if the input pattern does not match the Wickelement 
or 1.0 if it does. But to the extent that the unit is not a perfect Wickelement 
detector (as will be the case initially), it will produce small positive responses on 
each time step. Consequently, the activity level of the context unit will grow in 
proportion to the number of sequence elements, an undesirable property that 
could result in unstable learning behavior and poor generalization. One remedy is 
to use a zero-mean squashing function, say with the range –0.5 to +0.5. 
Because positive and negative values will cancel when summed over time, the 
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activity of a context unit should be independent of sequence length (at least 
initially, when the weights are uncorrelated with the inputs). However, the con­
text unit will be unable to respond to Wickelements in the manner described: it is 
impossible to set the weights so that the zero-mean squashing function yields a 
positive value if the input pattern matches the Wickelement or 0.0 otherwise. To 
summarize, a squashing function with the range –0.5 to +0.5 seems appropriate 
initially, when weights are untrained and the output of a unit is more-or-less 
random, but the range 0.0 to 1.0 seems necessary to perform binary discrimina­
tions in which one of the desired output levels is 0.0. 

Although one solution might be to manually adjust the range of this function 
as the network learns, I have opted for a different approach: to allow the network 
to learn the zero point of the function. For each context unit, I have introduced an 
additional parameter, zi, the zero point, and defined the squashing function for 
unit i to be 
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Si[u] ≡ 1 

1 + e-u + zi. 

If zi is 0.0, the range of the function is 0.0 to 1.0; if zi is –.5, the range is –0.5 
to +0.5. 

As with the other parameters in the network, zi can be adjusted by gradient 
descent. The update rule, derived as those for di and wji, is 

zi = -εδi(t)γi(t), 

where γi(0) = 0 and 

Γi(Τ) = 1.0 + diγi(τ - 1). 

Related Work 

Several researchers have independently discovered the idea of computing an 
activity trace during the forward pass as an alternative to back propagation in 
time. Williams and Zipser (1989, this volume) report on a generalization to 
arbitrary recurrent network architectures; this generalization is of questionable 
practical use, however, because the number of traces grows with the cube of the 
number of units. Bachrach (1988), Gori, Bengio, and De Mori (1989), and 
Yoshiro Miyata (personal communication) have studied a version of the current 
architecture with a more complex context-unit activation function in which the 
recurrent input is contained inside the squashing function: 

ci(t + 1) = s[neti(t)], 

where 

neti(t) ≡ dici(t) + 
j 

wjiXj(t). 

(3) 
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SIMULATION RESULTS 

Implementation Details 

The simulations reported in the following sections used an architecture like that 
shown in Figure 2, except that the hidden layer was not needed; the context layer 
mapped directly to the output layer. 

The initial input-context and context-output connection strengths were ran­
domly picked from a zero-mean Gaussian distribution and were normalized so 
that the L1 norm of the fan-in (incoming) weight vector was 2.0. The zi were 
initially set to - 0 . 5 , and the initial di were picked at random from a uniform 
distribution over the interval 0.99–1.01. 

A "batch" updating procedure was used during training; that is, the weights 
were updated only after a complete presentation of the training set (an epoch). 
Momentum was not used. Learning rates were determined individually for each 
set of connections: input-context, decay, zero points, and context-output. The 
learning rates were set dynamically after each epoch according to the following 
heuristic: 
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In this case, the weight update rules are as before with 

αi(τ) = (Ci(τ - 1) + diαi(τ - 1)) s'[neti(t)] 

and 

Βji(Τ) = (Xj(Τ) + diΒji(τ - 1)) s'[neti(t)]. 

In practice, Miyata and I have found Equation 1 to work better than Equation 
3 because squashing the recurrent input tends to cause the context units to forget 
their values over time. Bachrach (1988) has analyzed the nature of this forgetting 
more formally. 

εk = mseμp min ( ω, 
Wk 

k, ) , 

where εk is the learning rate for connections of type k, mse is the mean-square 
error across output units and patterns for the previous epoch, Wk is the mean L1 
norm of the fan-in weight vector for connections of type k, k is the mean L1 
norm of the fan-in gradient vector for input-context and context-output connec­
tions and the maximum magnitude for the decay and zero-point connections, and 
Μ, ρ, and ω are constants. The mse term serves to decrease the learning rate as 
the error becomes smaller; μ is a discounting factor for this term (set to values in 
the neighborhood of 0.75-1.0). The second term defines a "nominal" learning 
rate which is set so that, on average, weight updates change each unit's fan-in 
weight vector by a fixed proportion (ρ, generally 0.02) of its current magnitude. 
The parameter ω specifies an upper limit on the step size when k becomes 
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extremely small. This rule produces learning rates for the decay and zero-point 
terms that are about one-tenth of the other learning rates; this relatively small step 
size seems necessary to ensure stability of the network. 

Although I had hoped to devise a rule for automatically adjusting the learning 
rates that was architecture and problem independent, the foregoing rule does not 
satisfy this requirement. The parameters μ, ρ, and ω had to be fine tuned for 
most applications to give optimal performance. However, the rule did work 
much better than fixed learning rates and other variants that I experimented with. 

Learning Wickelements 

Starting with a simple example, the network was trained to identify four se­
quences: _DEAR_, _DEAN_, _BEAR_, and _BEAN_. Each symbol corresponds 
to a single sequence element and was represented by a binary activity pattern 
over three units (Table 1). The input layer was a two-element buffer through 
which the sequence was passed. For _DEAR_, the input on successive time steps 
consisted of _D, DE, EA, AR, R_. The input layer had six units, the context 
layer two, and the output layer four. The network's task was to associate each 
sequence with a corresponding output unit. To perform this task, the network 
must learn to discriminate D from B in the first letter position and N from R in 
the fourth letter position. This can be achieved if the context units learn to behave 
as Wickelement detectors. For example, a context unit that responds to the 
Wickelements _D or DE serves as a B-D discriminator; a unit that responds to R_ 
or AR serves as an N-R discriminator. Thus, a solution can be obtained with two 
context units. 

Fifty replications of the simulation were run with different initial weight 
configurations. The task was learned in a median of 488 training epochs, the 
criterion for a correct response being that the output unit with the largest value 
was the appropriate one. Figure 3 shows the result of one run. The weights 
appear in the upper half of the figure, and activity levels for each input sequence 
in the lower half. The weights are grouped by connection type, with the input-
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TABLE 1 
Symbol Encoding 

Symbol Activity Pattern 

A 0 0 0 
B 0 0 1 
E 0 1 0 
D 0 1 1 
N 1 0 0 
R 1 0 1 
— 1 1 0 
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context connections in the upper-left array, followed by the decay connections 
(di), zero points (zi), and context-output connections. Each connection is depicted 
as a square whose area indicates the relative weight magnitude, and shading the 
weight sign—black is positive, white is negative. The sizes of the squares are 
normalized within each array such that the largest square has sides whose length 
is equal to that of the vertical bars on the right edge of the array. The absolute 
magnitude of the largest weight is indicated by the number in the upper-right 
corner. Among the input-context connections, the largest weight magnitude is 
6.47, among the decay values 1.00, the zero points 0.02, and the context-output 
connections 6.84. Because normalization is performed within each array, weight 
magnitudes of different connection types must be compared with references to 
the normalization factors. 

The units within each layer are numbered. The weights feeding into and out of 
context unit 1 have been arranged along a single row, and the weights of context 
unit 2 in the row above. Bias terms (i.e., weight lines with a fixed input of 1.0) 
are also shown for the context and output units. 

For the activity levels in the lower half of the figure, there are four columns of 
values, one for each sequence. The input pattern itself is shown in the lowest 
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Figure 3. The DEAR/DEAN/BEAR/BEAN problem. The upper half of 
the figure shows learned weights in the network; the lower half activity 
levels in response to each of the four input sequences. 



5. AN ALGORITHM FOR TEMPORAL PATTERN RECOGNITION 151 

array. Time is represented along the vertical dimension, with the first time step at 
the bottom and each succeeding one above the previous. The input at each time 
reflects the buffer contents. Because the buffer holds two sequence elements, 
note that the second element in the buffer at one time step (the activity pattern in 
input units 4-6) is the same as the first element of the buffer at the next (input 
units 1-3). 

Above the input pattern are, respectively, the context unit activity levels after 
presentation of the final sequence element, the output unit activity levels at this 
time, and the target output values. The activity level of a unit is proportional to 
the area of its corresponding square. If a unit has an activity level of 0.0, its 
square has no area—an empty space. The squares are normalized such that a 
"unit square"—a square whose edge is the length of one of the vertical bars— 
corresponds to an activity level of 1.0. While the input, output, and target 
activity levels range from 0.0 to 1.0, the context activity levels can lie outside 
these bounds and are, in fact, occasionally greater than 1.0. 

With these preliminaries out of the way, consider what the network has 
learned. At the completion of each sequence, the context unit activity pattern is 
essentially binary. Context unit 1 is off for _BEAN_ and _BEAR_, and on for 
_DEAN_ and _DEAR_; thus, it discriminates B and D. Context unit 2 is off for 
_BEAN_ and _DEAN_, and on for _BEAR_ and _DEAR_; thus it discriminates N 
and R. However, the context units do not behave in a straightforward way as 
Wickelements. If context unit 1 ware sharply tuned to, say, _D, the input-context 
weights should serve as a matched filter to the input pattern _D. This is not the 
case: the weights have signs – +– – + – but the _D input pattern is 110011. Nor 
is context unit 1 tuned to the DE, whose input pattern is 011010. Instead, the unit 
appears to be tuned equally to both patterns. By examining the activity of the unit 
over time, it can be determined that the unit is activated partly by _D and partly 
by DE but by no other input pattern. This makes sense: _D and DE are equally 
valid cues to the sequence identity, and as such, evidence from each should 
contribute to the response. To get a feel for why the detector responds as it does, 
note that _D (110011) is distinguished from _B (110001) by activity in unit 5; DE 
(011010) from BE (001010) by activity in unit 2. The weights from inputs 2 and 
5 to context unit 1 are positive, allowing the unit to detect D in either context. 
The other weights are set so as to prevent the unit from responding to other 
possible inputs. Thus, the unit selects out key features of the Wickelements _D 
and DE that are not found in other Wickelements. As such, it behaves as a _DE 
Wickelement detector, and context unit 2 similarly as a AR_ detector. 

Generalization testing supports the notion that the context units have become 
sensitive to these Wickelements. If the input elements are permuted to produce 
sequences like AR_BE, which preserves the Wickelements AR_ and _BE, con­
text unit responses are similar to those of the original sequences. However, with 
permutations like _RB_, _DAER_, and DEAR (without the end delimiters), 
which destroy the Wickelements AR_ and _BE, context unit responses are not 
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contingent upon the D, B, N, and R. Thus, the context units are responding to 
these key letters, but in a context-dependent manner. 

I must admit that the example in Figure 3 is fairly easy to interpret in part 
because the di and zi were initially set to values near 1.0 and 0.0, respectively, 
and the learning rate for these parameters was turned down, forcing final solu­
tions with values close to these initial ones. This encouraged the context units to 
produce a more sharply tuned "all-or-none" response to each sequence element.4 

Without biasing the di and zi in this manner, the network was still able to discover 
solutions; in fact, the solutions were arrived at even more rapidly. These alterna­
tive solutions were qualitatively similar to the one described but were somewhat 
more difficult to interpret. 

Learning the Regularities of Verb Past Tense 

In English, the past tense of many verbs is formed according to a simple rule. 
Examples of these regular verbs are shown in Table 2. Each string denotes the 
phonetic encoding of the verb in italics, and each symbol a single phoneme. The 
notation of phonemes is the same as that used by Rumelhart and McClelland 
(1986), from whom the examples were borrowed. Regular verbs can be divided 
into three classes, depending on whether the past tense is formed by adding /^d/ 
(an "ud" sound, examples of which are shown in the first column in Table 2), /t/ 
(the second column), or /d/ (the third column). The rule for determining the class 
of a regular verb is as follows. 

If the final phoneme is dental (/d/ or /t/), add /^d/; 
else if the final phoneme is an unvoiced consonant, add /t/; 
else (the final phoneme is voiced), add /d/. 

A network was trained to classify the 60 examples in Table 2. Each phoneme 
was encoded by a set of four trinary acoustic features (see Rumelhart & McClel­
land, 1986, Table 5). The input layer of the network was a two-element buffer, so 
a verb like /kamp/ appeared in the buffer over time as _k, ka, am, mp, p_. The 
underscore is a delimiter symbol placed at the beginning and end of each string. 

The network had eight input units (two time slices each consisting of four 
features), two context units, and three output units, one for each verb class. For 
comparison, both focused and full network architectures were studied. The full 
architecture was the same as the focused except it had complete connectivity in 
the context layer and an activation function like Equation 3 instead of Equation 

4With di closer to 0.0, a context unit's activity depends primarily on recent sequence elements, 
allowing it to be sloppy with its response to earlier elements; likewise, with di much larger than 1.0, 
activity depends primarily on the early sequence elements, and the unit may be sloppy with respect to 
recent elements. With zi closer to - 0 . 5 , all-or-none responses are not necessary because the effect of 
spurious activity can be canceled over time. 
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TABLE 2 
Examples of Regular Verbs 

+ /^d/ + /t/ + /d/ 

/dEpend/ (depend) 
/gld/ (guide) 
/inklUd/ (include) 
/k^mand/ (command) 
/mOld/ (mold) 
/plEd/ (plead) 
/prOvId/ (provide) 
/rEgord/ (regard) 
/s^rWnd/ (surround) 
/trAd/ (trade) 
/SWt/ (shout) 
/^tempt/ (attempt) 
/dEvOt/ (devote) 
/ekspekt/ (expect) 
/k^nsist/ (consist) 
/nOt/ (note) 
/prEzent/ (present) 
/reprEzent/ (represent) 
/trEt/ (treat) 
/want/ (want) 

/^prOC/ (approach) 
/bles/ (bless) 
/disk^s/ (discuss) 
/embar^s/ (embarrass) 
/fAs/ (face) 
/help/ (help) 
/kamp/ (camp) 
/kuk/ (cook) 
/mark/ (mark) 
/n^rs/ (nurse) 
/p^rC^s/ (purchase) 
/pas/ (pass) 
/pik/ (pick) 
/prOdUs/ (produce) 
/puS/ (push) 
/rEC/ (reach) 
/rok/ (rock) 
/skraC/ (scratch) 
/trAs/ (trace) 
/woS/ (wash) 

/Tret^n/ (threaten) 
/Ser/ (share) 
/ans^r/ (answer) 
/dEskrlb/ (describe) 
/drl/ (cry) 
/fAr/ (fare) 
/frlt^n/ (frighten) 
/kUl/ (cool) 
/k^ntAn/ (contain) 
/krl/ (cry) 
/l^v/ (love) 
/mln/ (mine) 
/prOgram/ (program) 
/rEfuz/ (refuse) 
/rEvU/ (review) 
/s^pll/ (supply) 
/st^dE/ (study) 
/tremb^l/ (tremble) 
/yUz/ (use) 
/prEvAl/ (prevail) 

1. The number of connections in each architecture was the same: the focused 
network requires six connections within the context layer, two for the di, two for 
the zi, and two for the biases; the full network also requires six, four to connect 
each unit to each other and two for the biases. Learning rate parameters were 
adjusted to yield the best possible performance for each architecture. 

Figure 4 shows performance on the training set for the two architectures, 
averaged over 15 runs with different initial random weights. A verb is considered 
to have been categorized correctly if the most active output unit specifies the 
verb's class. Both focused and full networks are able to learn the task, although 
the full network learns somewhat more quickly. Both networks have learned the 
underlying rule, as indicated by their excellent generalization performance on 
novel sequences (data points on far right of Figure 4). 

Typical weights learned by the focused network are presented in Figure 5, 
along with the output levels of the two context units in response to 20 verbs. 
These verbs, though not part of the training set, were all classified correctly. 

The response of the context units is straightforward. Context unit 1 has a 
positive activity level if the final phoneme is a dental (/d/ or /t/), negative 
otherwise. Context unit 2 has positive activity if the final phoneme is unvoiced, 
near zero otherwise. These are precisely the features required to discriminate 
among the three regular verb classes. In fact, the classification rule for regular 
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Figure 4. Mean performance on the regular verb task as a function of 
learning epoch for the focused and full recurrent architectures. The 
bars indicate one standard error of the mean in each direction. Data 
points for generalization performance are shown on the far right. 

verbs can be observed in the context-output weights (the rightmost weight matrix 
in Figure 5). Connections are such that output unit 1, which represents the "add 
/^d/" class, is activated by a final dental phoneme; output unit 2, which repre­
sents the "add /t/" class, is activated by a final nondental unvoiced phoneme; and 
output unit 3, which represents "add /d/" class, is activated by a final nondental 
voiced phoneme. 

Note that the decay weights in this simulation are small in magnitude; the 
largest is 0.02. Consequently, context units retain no history of past events, 
which is quite sensible because only the final phoneme determines the verb class. 
This fact makes verb classification a simple task: it is not necessary for the 
context units to hold on to information over time. 

Consider now the opposite problem. Suppose the network is given the same 
verb classification task, but the order of phonemes is reversed; instead of 
/eksplAn/, /nAlpske/ is presented. In this problem, the relevant information 
comes at the start of the sequence and must be retained until the sequence is 
completed. Figure 6 shows performance on reversed regular verbs, averaged 
over 15 runs. The focused network is able to learn this task, with two context 
units, although the number of training epochs required is higher than for unre­
versed verbs. Generalization is as good for reversed as unreversed verbs. The full 
network, however, does not succeed with reversed verbs. In exploring a wide 
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Figure 5. The regular verb problem. The upper half shows learned 
weights in the network, the lower half shows the final activity levels of 
the context units in response to a variety of verbs. Verbs in the first 
column all end with /t/, in the second column with /d/, in the third 
column with an unvoiced consonant, and the fourth column with a 
voiced consonant or vowel. 

range of learning rate parameters, the highest single-run performance I was able 
to obtain was 75%. The difference between reversed and unreversed verbs is that 
the critical information for classification comes at the beginning of the sequence 
for reversed verbs but at the end of unreversed. In terms of the unfolded architec­
ture of Figure 2b, this corresponds to a low layer of reversed but a high layer for 
unreversed. These results thus suggest that error signals are lost as they propa­
gate back through the deeply layered full network. I return to this issue after 
describing several other simulations. 

Learning to Reproduce a Sequence 

In this task, the network is presented with a three-element input sequence, and 
then, following a fixed delay, must play back the sequence in time. The training 
sequences consisted of all permutations of three elements, A, B, and C, resulting 
in a total of six sequences; ABC, ACB, BAC, BCA, CAB, and CBA. An 
element was encoded by a binary activity pattern; A was 100, B 010, and C 001. 
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Figure 6. Mean performance on the reversed regular verb task as a 
function of learning epoch for the focused and full recurrent architec­
tures. The bars indicate one standard error of the mean in each direc­
tion. Data points for generalization performance are shown on the far 
right. 

The input layer contained three units on which the sequence was presented, one 
element per time step. At subsequent times, all inputs were zero. The order of 
events for ABC is presented in Table 3. In this example, there is a one time-step 
delay between the final element of the input sequence and the start of playback 
on the output units. Note that the target output levels are zero until playback 
commences. 

The recurrent connections in the context layer allow the network to keep track 
of the input sequence. To help the network keep track of its position in the output 
sequence during playback, a set of one-to-one recurrent connections was added 
from the output units to three additional input units. These three units represented 
the output at the previous time step (an architecture suggested by Jordan, 1987). 
During training, these units were set to the target output values; for the example 
in Table 3, these inputs would be zero from times 1-5, 100 at time 6 and 010 at 
time 7. During testing, the true output values from the previous time step were 
"quantized" and copied back to the input. Quantization entailed setting all output 
levels greater than 0.5 to 1.0 and others to 0.0. 

The network was made up of six input units, three for the current sequence 
element and three for the previous output state, three context units, and three 
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Time Step Input Target Output 

1 100 (A) 000 
2 010 (B) 000 
3 001 (C) 000 
4 000 000 
5 000 100 (A) 
6 000 010(B) 
7 000 001 (C) 

output units. The task of the context units was to learn a static representation of 
the sequence that could be used in regenerating the sequence. 

Fifteen replications of the simulation were run with random initial weights for 
both focused and full network architectures. The focused network had two-thirds 
as many adjustable parameters within the context layer as the full, six instead of 
nine. 

Performance was judged using the quantized outputs. The task was suc­
cessfully learned on all runs. The mean number of training epochs required for 
perfect performance was 767 for the focused network and 620 for the full net­
work. Although the focused network took a bit longer to learn, this difference 
was not statistically reliable (t(28) = 0.958, p > 0.3). Figure 7 shows a typical 
weight configuration obtained by the focused network and its response to ABC. 
The weights are quite interesting. It appears that each context unit handles a 
particular symbol. For example, context unit 3 (the top row of the weight arrays) 
is excited by both A in the input and A as the previous output, and it has the 
effect of inhibiting A on the output. Similarly, context unit 2 is tuned to C and 
unit 1 to B. 

The sequence reproduction task becomes more difficult to learn as the delay 
between input and playback is increased. In the above example, the delay was 
one time step. Simulations were also run at a four-time-step delay. Training 
continued until performance was perfect, up to a maximum of 15,000 epochs. 
The focused network was able to learn the task perfectly on 12 of 15 runs, the full 
network on only 2 of 15. Mean performance over all runs following training was 
98.5% for the focused network, but only 72.9% for the full. This difference was 
significant (t(28) = 8.42, p < 0.001). 

Increasing the playback delay increases the time lag between the critical input 
information and the start of the response. The full network appears able to learn 
only when the critical input shortly precedes the response, whereas the focused 
network is able to learn with extended time lags. This conclusion was also 
suggested by the regular verb results. 
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TABLE 3 
Sequence of Input and Target 

Output Patterns for ABC 



158 MOZER 

Figure 7. The sequence reproduction problem. The upper half of the 
figure shows learned weights in the focused network, the lower half 
shows input, context, output, and target activity over time for the se­
quence ABC. The sequence-to-be-reproduced is encoded on input 
units 1-3; the quantized output from the previous time step is encoded 
on input units 4-6. 

Large Verb Simulation 

To study a more difficult task, the regular-verb categorization problem was 
extended to a larger corpus of verbs. As before, the task was to classify each verb 
according to the manner in which its past tense is formed. The complexity of the 
task was increased by including both regular and irregular verbs, 136 training 
instances altogether, and a total of 13 response categories, 3 for regular forms 
and 10 for irregular. The response categories and number of training instances in 
each category are listed in Table 4. The categories are based loosely on a set 
suggested by Bybee and Slobin (1982). 

The corpus of verbs was borrowed from a psychological model of Rumelhart 
and McClelland (1986) designed to account for children's acquisition of verb 
past tenses. This model would produce the past tense of a verb given its infinitive 
form as input. The representation used as both input and output from the model is 
a Wickelement encoding of the verb, each Wickelement encoding a particular 
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Category 
Number 

Instances 
in Category Examples 

Category 
(How Past Tense is Formed) 

regular verb, add /d/ 

regular verb, add /t/ 

regular verb, add /^d/ 

no change 

change a final /d/ to /t/ 

internal vowel change and 
add a final ItI 

internal vowel change and 
add a final /d/ 

internal vowel change, delete 
final consonant, and add a 
final ItI 

internal vowel change, delete 
final consonant, and add a 
final /d/ 

internal vowel change of Iil 
to /a/ 

internal vowel change and 
stem ends in a dental 

other internal vowel change 

go in a category by itself 

phonetic feature in the context of two neighboring phonetic features. Because 
this static representation is built into the model, the model did not require 
temporal dynamics. My interest in studying this problem was to see whether the 
focused recurrent network could, given time-varying inputs, learn the task. Be­
cause the focused architecture is tailored to learning Wickelement representa­
tions, if it is able to learn the task then it must have learned a static representation 
somewhat like the Wickelement representation presupposed by Rumelhart and 
McClelland's model. 

The task is difficult. The verb classes contain some internal regularities, but 
these regularities are too weak to be used to uniquely classify a verb. For 
instance, all verbs in category 3 end in a /d/ or /t/, but so do verbs in categories 
4, 5, and 11. Whether a verb ending in /d/ or /t/ belongs in category 3 or one of 
the other categories depends on whether it is regular, but there are no simple 

1 20 

2 20 

3 20 

4 7 

5 3 

6 8 

7 

8 

9 

10 

11 

12 

13 

6 

5 

5 

4 

17 

20 

1 

explain (explained) 
cry (cried) 
dance (danced) 
pack (packed) 
reflect (reflected) 
guide (guided) 
beat (beat) 
put (put) 
send (sent) 
build (built) 
deal (dealt) 
mean (meant) 
do (did) 
sell (sold) 

bring (brought) 
teach (taught) 

have (had) 
make (made) 

swim (swam) 
ring (rang) 
feed (fed) 
get (got) 
begin (begun) 
break (broke) 
go (went) 

Copyrighted Material 

TABLE 4 
Verb Classification 



160 MOZER 

features signaling this fact. Further, fine discriminations are necessary because 
two outwardly similar verbs can be classified into different categories. Swim and 
sing belong to category 10, but swing to category 12; ring belongs to category 
10, but bring to category 8; set belongs to category 4, but get to category 11. 
Finally, the task is difficult because some verbs belong in multiple response 
categories; for example, sit could go in either category 10 or 11. The lowest 
category number was chosen in these cases. 

Because the category to which a verb belongs is somewhat arbitrary, the 
network must memorize a large number of special cases. (Indeed, an earlier 
version of these simulations were run in which the target responses were incor­
rect for about 15% of the items. The network learned the task just as well, if not a 
bit faster than in the simulations reported here.) 

The network architecture was similar to that used in the regular verb example. 
The input layer was a two-phoneme buffer, and the encoding of phonemes was 
the same as before. The output layer consisted of 13 units, one for each verb 
class. Both focused and full network architectures were simulated. To match the 
two networks on number of connections, 25 context units were used in the 
focused network, 16 in the full; this resulted in 613 weights for the focused 
network and 621 for the full network. 

Figure 8 shows performance on the training set for the two architectures, 

Figure 8. Mean performance on the large verb problem as a function 
of learning epoch for the focused and full recurrent architectures. The 
bars indicate one standard error of the mean in each direction. Data 
points for generalization performance are shown on the far right. 
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Figure 9. The large verb task. The upper portion of the figure shows 
input, context, output, and target activity over time for the sequence 
_riN_ (ring), the lower portion for the sequence _briN_ (bring). 

averaged over 10 runs with different initial random weights. A verb is considered 
to have been categorized correctly if the most active output unit specifies the 
verb's class. Both focused and full networks are able to learn the task, although 
the full network learns somewhat more quickly. Errors observed during training 
seemed quite reasonable. Verbs are sometimes "overregularized," as when eat 
becomes eated. Overgeneralization occurs in other respects, as when sit was 
misclassified in category 4—verbs whose past tense is the same as the root— 
presumably by analogy to hit and fit and set. Surprisingly, neither the full nor 
focused net had difficulty learning category 13, although it contained only a 
single verb—go. 

Generalization performance on novel sequences is poor for both networks 
(data points on far right of Figure 8), but this is readily explained. The corpus 
provided by Rumelhart and McClelland had 420 verbs altogether. To normalize 
across categories, at most 20 verbs from each category were used in the training 
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set. Consequently, the regular verb classes were approximately the same size as 
the irregular classes, eliminating any a priori bias toward classifying an unfamil­
iar verb as regular. The verbs from the corpus not used in training were used for 
generalization testing; these verbs were almost exclusively from the three regular 
verb categories. Thus, the network attempted to classify the unfamiliar regular 
verbs without any expectation that the verbs would be regular. Most all errors 
involved mistaking the verbs to be irregular. 

Typical responses of the network are presented in Figure 9. The two se­
quences shown, _riN_ (ring) and _briN_ (bring), have quite similar input patterns 
yet produce different outputs: _riN_ belongs in category 10 and _briN_ in catego­
ry 8. Due to the size of the network, interpreting the behavior of individual 
context units and how they serve to distinguish two inputs like _riN_ and _briN_ 
is extremely difficult. 

EVALUATION OF THE FOCUSED ARCHITECTURE 

The simulations reported above are typical of results I have obtained with the full 
and focused architectures. For both architectures, learning becomes more diffi­
cult as the delay between the critical input and the response is increased. This 
was observed in two simulations: the regular verbs and the sequence reproduc­
tion task. While this difficulty is manifested in slowed learning for the focused 
architecture, its effect on the full architecture is far more devastating. The full 
architecture is simply unable to learn tasks that involve long intervals between 
critical input and response. Not all tasks are of this nature, however. For tasks in 
which the information contained in the input is more evenly distributed across 
time (e.g., the large verb simulation), the full network appears to learn in fewer 
training cycles when full and focused networks are matched on total number of 
connections. 

Nonetheless, the focused architecture shows advantages over two competing 
approaches: the back propagation unfolding-in-time procedure and the real-time 
recurrent learning (RTRL) algorithm of Williams and Zipser (1989, this volume). 
Learning in the focused architecture is less computation intensive than the 
unfolding-in-time procedure because back propagation of the error signal in time 
is avoided. The focused architecture requires about two-thirds as many floating­
point operations per training cycle as the unfolding-in-time procedure. This 
savings is achieved whether the network is implemented in serial or parallel 
hardware. Although the focused architecture turns out to be a special case of the 
RTRL algorithm, the space requirements of the more general RTRL algorithm 
are far worse. In RTRL, the number of internal state variables grows with the 
cube of the number of units, whereas in the focused architecture the number of 
internal state variables grows with only the product of the numbers of input and 
context units. 
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Scaling Properties 

A critical question to be asked of any network architecture is how well its 
performance will scale as the problem size increases. The focused architecture 
promises to scale better than the full architecture with respect to the sequence 
length. The reasoning is as follows. As I discussed previously, any recurrent 
architecture (e.g., Figure 2a) can be unfolded in time to obtain a computationally 
equivalent feedforward network (Figure 2b). The depth of this unfolded network 
increases with sequence length. However, an unfolded version of the focused 
architecture can be constructed with a fixed depth and a breadth that increases 
with sequence length (Figure 10). The input units and context units are replicated 
for each time step of the sequence. Each set of context units is activated solely by 
the input at the corresponding time step. In the third layer of the network, the net 
activity of context unit i is computed by taking a weighted sum of unit i's activity 
at each time Τ from Τ - 1 , . . . , t. This simple summation is possible because the 
integration of context unit activity over time is linear. That is, the context unit 
activation equation 

ci(t) = dici(t - 1) + s[neti(t)] (1) 

Figure 10. An unfolded version of the focused architecture having 
four layers. Input and context units are replicated for each time step of 
the input sequence. The activity of each context unit is summed over 
time in the third layer, weighted by a time-dependent decay factor. 
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Each set of units in the second layer of Figure 10 computes s[neti(τ)]. The third 
layer then sums the s[neti(τ)] across τ, weighted by the decay factor di

t-τ, to 
obtain ci(t). 

Consider the situation when all di are near 1.0, as they are set at the start of a 
simulation. Information from all times will be integrated with equal weight; no 
matter when in time an input appears, it will be treated uniformly. If the desired 
response of the network depends on a critical input at a particular time, it will not 
matter when in time this input occurs. Further, increasing the length of a se­
quence serves only to add background noise against which the critical input must 
be detected.5 

To recap, longer sequences translate to a greater effective depth of the full 
architecture, but a greater effective breadth of the focused architecture. As I 
argued earlier, one has reason to suspect that deep and narrow networks are more 
troublesome for back propagation than shallow and wide ones. If so, the focused 
network should scale better with respect to sequence length. 

Indeed, comparisons of the full and focused architectures reported here can be 
interpreted as support for this claim. Consider the regular verb example. When 
the verbs are presented unreversed, only the final sequence element is critical for 
classification. Thus, although the unfolded full network may have as many layers 
as sequence elements, the effective depth to which the network must attend is 
quite shallow. Reversing the verbs increases the effective depth. The comparison 
of unreversed and reversed verbs in the full network is therefore a test of scaling 
as the effective depth increases; the same comparison in the focused network is a 
test of scaling as the effective breadth increases. In this case, greater depth is 
clearly more detrimental than greater breadth. 

The focused and full networks differ along two dimensions. The focused 
network has 1 -1 connections in the context layer and the context unit activation 
function is linear; the full network has complete connectivity in the context layer 
and a nonlinear context unit integration function (one in which the recurrent 
connections are contained within the squashing function). The depth-versus-
breadth result is contingent on linear integration, not on 1-1 connections within 
the context layer. As discussed earlier, several researchers have examined a third 
architecture with 1-1 connections and nonlinear integration. This architecture 
does not seem to perform well, as one might predict on the basis of the nonlinear 

5Note that if the decay terms become much less or greater than 1.0, there becomes a bias toward 
recent or distant information, respectively. It is thus important to start the system with initial decay 
terms near 1.0 and to change them slowly. 
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can be rewritten in closed form as 

ci(t) = 
t 
Σ 

τ = 1 

di
t-τ s[neti(τ)]. 
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integration function. Note that we have not yet explored a fourth and potentially 
promising architecture, one with complete connectivity in the context layer and a 
linear integration function. 

Problems with the Approach 

Despite reasonable success with the focused architecture, some difficulties 
should be pointed out. First, instability problems arise if the decay values be­
come larger than 1.0 because such values allow a unit's activity to grow expo­
nentially over time. In practice, this is not a serious problem as long as learning 
rates for the decay connections are kept small. Nonetheless, the final activity 
levels of the context units can become ridiculously large, particularly on general­
ization testing if the novel patterns are longer than the training patterns. For 
example, in the reversed regular verb problem, generalization testing occasion­
ally produced context unit activity levels above 25. One possible solution is to 
constrain the allowed values of the decay connections. I have tried restricting the 
allowed values to the interval 0 -1 . Generally, this restriction increases the num­
ber of learning trials required, but does improve stability and generalization 
performance. 

A second criticism of the focused architecture is that it uses an input buffer. 
This buffer was motivated by the desire to train context units to respond to 
Wickelements, but is not strictly necessary. Without a buffer, though, the context 
units are unable to obtain nonlinear interactions across time. For instance, a 
single unit cannot be tuned to respond sharply to input A followed by input B but 
not to either A or B in isolation. No matter, the buffer used in the focused 
architecture is altogether different from that required by the naive buffer model 
presented in the introduction. The buffer in the buffer model specifies a temporal 
window over which information integration can occur, whereas the focused 
architecture's buffer specifies a temporal window over which nonlinear interac­
tions can occur. The focused architecture will generally not need as large a buffer 
as the buffer model. For example, the past-tense network had only a two-slot 
buffer, whereas a buffer model would likely require as many slots as there are 
phonemes in the longest verb. 

A final difficulty with the focused architecture is that, while it may be appro­
priate for relatively short sequences, it is unclear how well the approach will 
work on long sequences in which very little information is contained in a single 
sequence element, such as a speech recognition task with the time-domain wave­
form as input. Of course, this sort of problem is difficult for the full architecture 
as well. One solution is to extend the buffer size to capture significant segments 
of the input. It would seem a more promising solution, however, to preprocess 
the input in some manner, perhaps using unsupervised learning mechanisms, to 
obtain higher-order features which could then be fed into the recognition system. 
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APPENDIX: DERIVATION OF THE FOCUSED BACK-
PROPAGATION ALGORITHM 

Assume the following situation: a t-time-step sequence has been presented and at 
time t a desired output is specified that allows for the computation of an error 
signal. The problem is to determine two quantities: the error gradient with 
respect to the recurrent connections ( E/ di) and with respect to the input-
context connections ( E/ wji). 

Beginning with the recurrent connections, the chain rule can be used to 
expand E/ di. 

αi(t) = 
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E 
di 

= 
E 

ci(t) 
ci(t) 

di 
, 

and E/ ci(t) can be computed directly by back-propagating from the output 
layer to the context layer at time t. Thus, the problem is to determine ci(t)/ di. 
Given that 

ci(t) = dici(t - 1) + s[neti(t)] (A.1) 

and 

(A.2) neti(τ) ≡ Σ WkiXk(τ) 
k 

(Equation 1 from the main text), and assuming the initial condition ci(0) = 0, the 
difference equation (A.1) can be rewritten in closed form as 

ci(t) = Σ 
τ= I 

di
t-τ s[neti(τ)]. (A.3) 

Defining 

αi(t) ≡ ci(t) 
di . 

by substituting ci(t) from Equation A.3 and computing the partial derivative, we 
obtain 

di 

[ t 

Σ 
τ=l 

di
t-τ s[neti(τ)] 

] 

= 
t-1 

Σ 
τ=l 

(t- τ)di
t-τ-1 s[neti(τ)]. (A.4) 

t 
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Regrouping the terms gives 

αi(t) = 
t-1 

Σ 
k=1 

k 

Σ 
τ=l 

di
t-τ-1 s(neti(τ)] 

= 
t-1 

Σ 
k=1 

di
t-k-1 

k 

Σ 
τ = l 

di
k-τs[neti(τ)]. (A.5) 

Combining Equations A.3 and A.5, we have 

αi(t) = 
t - 1 

Σ 
k=1 

di
t-k-1 c i(k). 

Removing the k = t – 1 term from the summation and factoring out di, we obtain 

αi(t) = ci(t - 1) + di 

t-2 

Σ 
k=1 

di
t-k-2 ci(k). (A.6) 

From Equation A.4, the summation in Equation A.6 can be replaced by αi(t – 1) 
to yield the incremental expression: 

αi(t) = ci(t - 1) + diαi(t - 1). 

Following a similar derivation for the input-context connections, we can expand 
E/ wji: 

E 
Wji 

= 
E 

ci(t) 
ci(t) 
wji . 

As stated, E/ ci(t) can be computed directly by back-propagating from the 
output layer to the context layer at time t. Thus, the problem is to determine  
ci(t)/ Wji. Defining 

βji(t) ≡ ci(t) 
wji . 

by substituting ci(t) from Equation A.3 and computing the partial derivative, we 
obtain 

βji(t) = Wji 

[ 
t 

Σ 
τ=l 

di
t-τ s[neti(τ)] 

] 
. 

Using Equation A.2 to compute the derivative of s[neti(τ)] gives 

βji(t) = 
t 

Σ 
τ= 1 

di
t-τ s'[neti(τ)]xj(τ). (A.7) 
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Removing the τ = t term from the summation and factoring out di, we obtain 
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