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1 Introduction 

1.1 Learning in Recurrent Networks 

Connectionist networks having feedback connections are interesting for a number of reasons. Bio- 

logical neural networks are highly recurrently connected, and many authors have studied recurrent 

network models of various types of perceptual and memory processes. The general property making 

such networks interesting and potentially useful is that they manifest highly nonlinear dynami- 

cal behavior. One such type of dynamical behavior that has received much attention is that of 

settling to a fixed stable state, but probably of greater importance both biologically and from an 

engineering viewpoint are time-varying behaviors. 

Here we consider algorithms for training recurrent networks to perform temporal supervised 

learning tasks, in which the specification of desired behavior is in the form of specific examples 

of input and desired output trajectories. One example of such a task is sequence classification, 

where the input is the sequence to be classified and the desired output is the correct classification, 

which is to be produced at the end of the sequence, as in some of the work reported by Mozer 

(1989; [chapter ??, this volume]). Another example is sequence production, as studied by Jordan



(1986), in which the input is a constant pattern and the corresponding desired output is a time- 

varying sequence. More generally, both the input and desired output may be time-varying, as 

in the prediction problems investigated by Cleeremans, Servan-Screiber, and McClelland (1989; 

[chapter ??, this volume]) and the control problems studied by Nguyen and Widrow [chapter ??, 
this volume]. While limited forms of time-varying behaviors can be handled by using feedforward 

networks and tapped delay lines (e.g., Waibel et al., 1987), recurrent networks offer a much 

richer set of possibilities for representing the necessary internal state. Because their internal state 

representation is adaptive rather than fixed, they can form delay line structures when necessary 

while also being able to create flip-flops or other memory structures capable of preserving state 

over potentially unbounded periods of time. This point has been emphasized in (Williams, 1990) 

and similar arguments have been made by Mozer (1989; [chapter ??, this volume]). 

There are a number of possible reasons to pursue the development of learning algorithms for 

recurrent networks, and these may involve a variety of possible constraints on the algorithms 

one might be willing to consider. For example, one might be interested in understanding how 

biological neural networks learn to store and reproduce temporal sequences, which requires that 

the algorithm used be “biologically plausible,” implying that the specific implementation of the 

algorithm map onto known neural circuitry in a reasonable way. Or, one might seek an algorithm 

which does not necessarily conform to known biological constraints but is at least implementable in 

entirely local fashion, requiring essentially no additional connectivity beyond that already present 

in the network to be trained. A still weaker constraint on the algorithm is that it allow a reasonable 

implementation in parallel hardware, even if that requires certain additional mechanisms within 

the overall system beyond those present in the network to be trained. ‘These last two constraints are 

of some importance for attempts to create special-purpose hardware realizations of networks with 

on-line adaptation capabilities. Another possible constraint on the algorithm is that it be efficient 

when implemented in serial hardware. This constraint may be important for off-line development 

of networks which are useful for certain engineering applications, and it can also be important for 

cognitive modeling studies which are designed to examine the internal representations necessary 

to perform certain sequential tasks. 

1.2 Overview of This Chapter 

In this chapter we describe several gradient-based approaches to training a recurrent network to 

perform a desired sequential behavior in response to input. In characterizing these approaches 

as “eradient-based” we mean that at least part of the learning algorithm involves computing the 

gradient of some form of performance measure for the network in weight space, either exactly or 

approximately, with this result then used in some appropriate fashion to determine the weight 

changes. For the type of task investigated here, the performance measure is a simple measure of 

error between actual and desired output. 

Because we deal here only with gradient-based learning algorithms, our primary focus will 

be on techniques for computing this exact or approximate gradient information. It is to be 

understood that there may be various alternative ways to use this gradient information in a 

particular learning algorithm, including simple proportional descent along the error gradient or 

the use of “momentum” or other more sophisticated acceleration techniques. 

We discuss several approaches to performing the desired gradient computation, some based



on the familiar backpropagation algorithm and some involving other ideas. Part of the intent of 

this chapter is to discuss the relationship between these various alternative approaches to gra- 

dient computation in recurrent networks. We begin by developing exact gradient computation 

algorithms, but later we note how they give rise to useful approximation strategies having more 

desirable computational features. For all these approaches to exact or approximate gradient com- 

putation we also provide an analysis of their computational requirements. The reader interested 

in performing digital computer simulation experiments of these various algorithms may find these 

analyses particularly helpful. In addition, we note some special architectures which readily lend 

themselves to specific hybrid strategies giving rise to conceptually and/or computationally sim- 

pler algorithms for exact gradient computation. Additional topics discussed are teacher forcing, 

a useful adjunct to all of the techniques discussed, and some experimental comparisons of the 

performance of some of the algorithms. 

2 Continual vs. Epochwise Operation 

It is important to distinguish between two approaches to operating (and training) a recurrent 

network. In epochwise operation the network is run from some particular starting start until some 

stopping time is reached, after which the network is reset to its starting state for the next epoch. 

It is not essential that the state at the beginning of each epoch be the same; the important feature 

of this approach is that the state at the start of the new epoch is unrelated to the state at the end 

of the previous epoch. Because of this, an epoch boundary serves as a barrier across which “credit- 

assignment” should not pass; erection of these barriers rules out any possibility that activity from 

one epoch might be relevant to producing the desired behavior for any later epoch.! 

Note that an epoch in the sense used here is only loosely related to the corresponding notion 

sometimes used in the context of so-called batch training, as distinguished from incremental train- 

ang, of feedforward networks. The key issue in that case is when the weight updates are performed. 

In the batch approach to training a feedforward network, weight changes are performed only after 

a complete cycle of pattern presentations; in the incremental approach, weight changes are made 

after each pattern is presented. In the current terminology, a single epoch for the recurrent net- 

work corresponds to one training pattern for a feedforward network, so a network which operates 

epochwise may be trained using an incremental approach, in which weight changes are made at 

the end of each epoch, or a batch approach, in which weight changes are performed after several 

epochs. 

In contrast, a network is considered to operate continually if neither “manual” state resets 

nor other such artificial credit-assignment barriers are available to a trainer of the network. The 

concept of a continually operating network would appear to be more appropriate for situations 

when on-line learning is required, although this introduces some subtleties when attempting to 

formalize the overall objective of learning. These subtleties are not present in the epochwise 

case because one can imagine that each epoch involves a potentially repeatable event, like the 

presentation of a single pattern to a feedforward network, with these individual events considered 
  

‘Interestingly, these functions can be dissociated from one another. For example, one might imagine imposing 

no state reset at any time, while still allowing a learning algorithm to take advantage of occasional information 

provided by a teacher which effectively tells the learning system that no state reached prior to some particular time 

is relevant to producing correct performance at subsequent times. 

3



independent of one another. An additional subtlety in the continual operation case is due to the 

need to make weight changes while the network runs. Unlike the epochwise case, the continual 

operation case offers no convenient times at which to imagine beginning anew with different weight 

values. 

As an example of the use of this distinction, consider the task of training a network to match 

the input-output behavior of a given finite-state machine through observation of this behavior. A 

number of the training algorithms to be described in this chapter have been used for just such 

tasks. If one assumes that there is a distinguished start state and a set of distinguished final states 

in the machine to be emulated by the network, then it seems reasonable to train the network in an 

epochwise fashion. In this approach, whenever the machine being emulated is restarted in its start 

state after arriving in a final state, the network is reset to its start state as well. However, one 

might also consider trying to emulate finite-state machines having no such distinguished states, in 

which case letting the network operate continually is more appropriate. In general, resetting the 

network to match a particular state of the machine being emulated is an additional mechanism for 

giving training information to the network, less informative than the extreme of giving complete 

state information (which would make the task easy), but more informative than giving only input- 

output information. In this case the training information helps learning during the time period 

shortly after the reset. There is also another difference between the continual operation case and 

the epochwise case which may be important. If transitions are added from the final states to the 

start state in the finite-state machine emulation task, an epochwise task is turned into a continual- 

operation task. Note that a network trained to perform the epochwise version of the task is never 

required to make the transition to this distinguished state on its own, so one would not expect it 

to perform the same on the continual-operation version of the task as a network actually trained 

on that version. In particular, it may not be able to “reset itself”? when appropriate. 

While we include discussion of learning algorithms for networks which operate epochwise, much 

of our emphasis here is on algorithms especially appropriate for training continually operating 

networks. 

3 Formal Assumptions and Definitions 

3.1 Network Architecture and Dynamics 

All the algorithms presented in this chapter are based on the assumption that the network consists 

entirely of semilinear units. More general formulations of these algorithms are possible, and it is 

straightforward to use the same approach to deriving them. Another assumption we make here is 

the use of discrete time. There are continuous-time analogs of all the approaches we discuss, some 

of which are straightforward to obtain and others of which involve more work. 

Let the network have n units, with m external input lines.* Let y(t) denote the n-tuple of 
outputs of the units in the network at time ¢, and let x(t) denote the m-tuple of external 

input signals to the network at time t. We also define x(t) to be the (m+ n)-tuple obtained by 
concatenating x(t) and y(t) in some convenient fashion. To distinguish the components of x 
  

2What we call here input lines others have chosen to call input units. We avoid this terminology here because 

we believe that they should not be regarded as units since they perform no computation. Another reasonable 

alternative might be to call them input terminals.



representing unit outputs from those representing external input values where necessary, let U 

denote the set of indices & such that x;,, the k** component of x, is the output of a unit in the 

network, and let J denote the set of indices & for which x; is an external input. Furthermore, we 

assume that the indices on y and x" are chosen to correspond to those of x, so that 

oe (t) ifk el 
te(t) = | y(t) if k CU. () 

For example, in a computer implementation using zero-based array indexing, it is convenient to 

index units and input lines by integers in the range [0, m+n), with indices in [0, m) corresponding 

to input lines and indices in [m,m +n) corresponding to units in the network. Note that one 

consequence of this notational convention is that x;(t) and y,(t) are two different names for the 
same quantity when & € U. The general philosophy behind our use of this notation is that 

variables symbolized by x represent input and variables symbolized by y represent output. Since 

the output of a unit may also serve as input to itself and other units, we will consistently use x; 

when its role as input is being emphasized and y, when its role as output is being emphasized. 

Furthermore, this naming convention is intended to apply both at the level of individual units 

and at the level of the entire network. Thus, from the point of view of the network, its input is 

denoted x"* and, had it been necessary for this exposition, we would have denoted its output by 

y™* and chosen its indexing to be consistent with that of y and x. 

Let W denote the weight matrix for the network, with a unique weight between every pair 

of units and also from each input line to each unit. By adopting the indexing convention just 

described, we can incorporate all the weights into this single n x (m+n) matrix. The element 
wij Tepresents the weight on the connection to the i unit from either the j“ unit, if 7 € U, 

or the j*" input line, if 7 € J. Furthermore, note that to accommodate a bias for each unit we 

simply include among the m input lines one input whose value is always 1; the corresponding 

column of the weight matrix contains as its i“ element the bias for unit 7. In general, our naming 

convention dictates that we regard the weight w;; as having x; as its “presynaptic” signal and y; 

as its “postsynaptic” signal. Figure 1 shows a fully connected network having 3 units, 2 input 

lines, and a 3 x 5 weight matrix. 

  

Insert Figure 1 about here. 
  

For the semilinear units used here it is convenient to also introduce for each k the intermediate 

variable s,(t), which represents the net input to the k‘" unit at time t. Its value at time ¢+ 1 is 

computed in terms of both the state of and input to the network at time ¢ by 

s(t + 1) = S- weryi(t) + S- Wet, (t) = S- Wri (t). (2) 

leU lel lcUuUUur 

We have written this here in two equivalent forms; the longer one clarifies how the unit outputs 

and the external inputs are both used in the computation, while the more compact expression 

illustrates why we introduced x and the corresponding indexing convention above. Hereafter, we 

use only the latter form, thereby avoiding any explicit reference to x" or its individual coordinates.



The output of such a unit at time ¢+ 1 is then expressed in terms of the net input by 

ye(t + 1) = fr(se(t + 1)), (3) 

where f, is the unit’s squashing function. Throughout much of this chapter we make no particular 

assumption about the nature of the squashing functions used by the various units in the network, 

except that we require them to be differentiable. In those cases where a specific assumption about 

these squashing functions is required, it will be assumed that all units use the logistic function. 

Thus the system of equations (2) and (3), where & ranges over U, constitute the entire discrete- 
time dynamics of the network, where the x, values are defined by equation (1). Note that the 

external input at time ¢ does not influence the output of any unit until time t+ 1. We are thus 

treating every connection as having a one-time-step delay. It is not difficult to extend the analyses 

presented here situations where different connections have different delays. Later we make some 

observations concerning the specific case when some of the connections have no delay. 

While the derivations we give throughout this chapter conform to the particular discrete- 

time dynamics given by equations (2) and (3), it is worthwhile here to call attention to the 
use of alternative formulations obtained specifically from application of Euler discretization to 

continuous-time networks. For example, if we begin with the dynamical equations® 

ThYR(L) = —Yn(t) + fe(Se(t)), (4) 

where s,(t) is defined by equation (2) as before, then discretizing with a sampling interval of At 
is easily shown to give rise to the discrete update equations 

At At (t+ At) = (1— =) pelt) + false(®). (5) 
Defining @, = At/7, and altering the time scale so that At = 1, we then obtain the equations 

ye(t + 1) = (1 — Bx) yn (t) + Cafe (se (4), (6) 

and it is then clear that equation (3) represents the special case when (; = 1. It is straightforward 

to derive algorithms like those given throughout this chapter for these more general alternative 

forms of discrete-time dynamics if desired. The potential advantage of using such dynamics where 

GB, < 1 is that certain classes of task may be more readily learned by such systems, as has 

been observed by Tsung (1990).* The particular advantage possessed by such systems is that the 

gradient computation used in the learning algorithms to be described here falls off more gradually 

over time, which means that “credit-assignment” is more readily spread over longer time spans 

than when ( = 1. 
  

3Note that these particular equations are of essentially the same form as those considered by Pineda [chapter 

??, this volume], except that we assume that external input to the unit must pass through the squashing function. 

“In fact, there is a strong similarity between equation (6) and the form of recurrence Mozer [chapter ??, this 
volume] has used; some of his observations concerning the potential advantages of his focused architecture could 

be considered to apply more generally to any use of recurrence more like that found in continous-time systems.



3.2 Network Performance Measure 

Assume that the task to be performed by the network is a sequential supervised learning task, 

meaning that certain of the units’ output values are to match specified target values (which we 

also call teacher signals) at specified times. Once again, this is not the most general problem 

formulation to which these approaches apply, but it is general enough for our purposes here. 

Let T(t) denote the set of indices k € U for which there exists a specified target value d;(t) 
that the output of the k* unit should match at time ¢t. Then define a time-varying n-tuple e by 

c= nO herwine @ 
Note that this formulation allows for the possibility that target values are specified for different 

units at different times. The set of units considered to be “visible” can thus be time-varying. Now 

let 

I(t) = 1/2 Sie)’ (8) 
kcU 

denote the negative of the overall network error at time t. A natural objective of learning might 

be to maximize® the negative of the total error 

Jirtal t! _t) -> J(r (9) 

7Tot'+1 

over some appropriate time period (t',¢]. The gradient of this quantity in weight space is, of 

course, 

Vw (t,t) -»> Vwi (r). (10) 
T=t'4+1 

In general, we let t) denote some starting time at which the network has its state initialized. 

For a continually running network there are no other times at which the state is ever re-initialized 

in this way, but with epochwise training there will be other such times 1, fa, t3,... marking epoch 

boundaries. Alternatively, one might consider time to begin anew at t) whenever the state is 

re-initialized in an epochwise approach. Throughout this chapter, whether considering the case of 

a network operating epochwise or continually, we let t) denote the last time at which a state reset 

occurred. In the epochwise case we also use ¢; to indicate the end of the current epoch. 

We now introduce some specific definitions designed to pin down the relationship between 

the various notions concerning continual and epochwise operation on the one hand and the use of 

gradient computation on the other. For purposes of this chapter, we make the following definitions. 

An exact gradient computation algorithm is one having the property that at every time step 7 

during which the network runs there is an interval (¢’,¢] containing 7 such that the algorithm 
computes Vw J'*!(¢', t) at time t, under the assumption that the network weights are fixed. Any 

such exact gradient algorithm is called epochwise if it is applied to a network operating in epochwise 

fashion and it computes VwJ'*!(to, t,) at t,, the end of the epoch. It is called real-time if it 

computes VwJ(t) at each time ¢t. If, instead, an algorithm computes what is considered only an 
  

©The problem of minimizing error is treated here as a maximization problem because it eliminates the need for 

annoying minus signs in many of the subsequent formulas. 
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approximation to VwJ*#!(t’,t) at time ¢ (under the assumption that the weights are fixed) it 

will be regarded as an approzrimate gradient computation algorithm. 

It must be emphasized that an “exact” gradient algorithm in this sense is only exact if the 

weights are truly fixed. Such an algorithm may not compute the exact gradient for the current 

setting of the weights if the weights are allowed to vary. When such an exact gradient algorithm is 

used to adjust the weights in a continually operating network, what it computes will thus generally 

be only an approximation to the desired true gradient. Later we discuss this issue further. 

A gradient-based learning algorithm is a learning algorithm which bases its weight changes on 

the result of an exact or approximate gradient computation algorithm. The complete specification 

of such a learning algorithm must include not only how it computes such gradient information, 

but also how it determines the weight changes from the gradient and when these weight changes 

are made. Since the main focus of this chapter is on the gradient computation itself, we will 

generally remain noncommittal about both of these details for the learning algorithms we discuss, 

occasionally even blurring the distinction between the learning algorithm itself and the gradient 

computation portion of the algorithm. 

One natural way to make the weight changes is along a constant positive multiple of the 

performance measure gradient, so that 

O Jiotal t+ 

Aw = a ) (11) 

for each 7 and 7, where 77 is a positive learning rate parameter. In those cases where we describe 

the empirical behavior of particular gradient-based learning algorithms this is the precise weight- 

change strategy used. 

With regard to the timing of the weight changes, it is natural with a continually operating 

network to adjust the weights at the point when the appropriate gradient has been computed, but, 

as already noted, for the epochwise case it may be appropriate to make weight adjustments only 

after multiple epochs. For purposes of this chapter, we consider an epochwise learning algorithm 

to be any learning algorithm appropriate for networks which operate epochwise and which has the 

property that weight updates are performed only at epoch boundaries, while a real-time learning 

algorithm is one in which weight updates can be performed at all time steps. 

It is trivial to observe that any algorithm capable of computing the instantaneous performance 

gradient VwJ(t) could be used in an epochwise manner by simply accumulating these values until 

time ¢, but we will discover below that this is not an efficient strategy. 

3.3. Notation and Assumptions Used for Complexity Analyses 

Here we summarize notation to be used in analyses of the computational complexity of the various 

algorithms to be discussed in this chapter. For completeness, we include some introduced earlier. 

These definitions are: 

nm = number of units; 

m = number of input lines; 

wy = number of nonzero weights between units; 

wa = number of adjustable weights; 

8



Ar = number of time steps between target presentations; 

Ny = average number of units given a target per time step; and 

L = total number of time steps. 

We also use the standard notation for describing the order of magnitude of the computational 

complexity of algorithms, where O(y(n)) is the set of positive-integer-valued functions of n which 
are less than or equal to some constant positive multiple of y(n), Q(y(n)) is the set of positive- 
integer-valued functions of n which are greater than or equal to some constant positive multiple 

of y(n), and O(y(n)) = O(y(n)) NQ(y(n)). Thus O is used to describe an upper bound on the 
order of magnitude of a quantity of interest, (2 is used to describe a lower bound on this order of 

magnitude, and 9 is used to describe the exact order of magnitude. 

In all cases, we analyze the space complexity in terms of the number of real numbers stored 

and the time complexity in terms of the number of arithmetic operations required. For all the 

algorithms to be analyzed, the dominant computation is a form of inner product. so the operations 

counted are additions and multiplications, in roughly equal numbers. For the analyses presented 

here we ignore the computational effort required to run the dynamics of the network (which, 

of course, must be borne regardless of the learning algorithm used), and we also ignore any 

additional computational effort required to actually update the weights according to the learning 

algorithm. Our measurement of the complexity is based solely on the computational requirements 

of the particular exact or approximate gradient computation method used by any such learning 

algorithm. 

For any fixed n, the worst case for all the algorithms discussed here occurs when the network 

is fully connected and all weights are adaptable. In this case, wg = n(n +m) and wy = n?. In 
all cases below where we perform an analysis of the worst case behavior we restrict attention to 

classes of networks for which m € O(n) just to make the resulting formulas a little simpler. This 
assumption applies, for example, to the situation where a variety of networks are to be taught to 

perform a particular fixed task, in which case m € O(1), and it also applies whenever we might 

imagine increasing the number of units in a network in proportion to the size of the input pattern 

representation chosen. For our worst-case analyses, then, we will use the fact that w4 and wy are 

both in Q(n?). 
Note that expressing the complexity in terms of the quantities w4 and wy assumes that the 

details of the particular algorithm are designed to take advantage of the limited connectivity 

through the use of such techniques as sparse matrix storage and manipulation. Alternatively, one 

could regard multiplication by zero and addition of zero as no-cost operations. A similar remark 

applies to the use of Ay and ny. All the complexity results derived throughout this chapter are 

summarized in Tables 1 and 2. 

4 Backpropagation Through Time 

Here we describe an approach to computing exact error gradient information in recurrent networks 

based on an extension of the standard backpropagation algorithm for feedforward nets. Various 

forms of this algorithm have been derived by Werbos (1974), Rumelhart, Hinton, and Williams



(1986), and Robinson and Fallside (1987), and continuous-time versions have been derived by 
Pearlmutter (1989) and by Sato (1990a; 1990b). This approach is called backpropagation through 

time (BPTT) for reasons that should become clear below. 

4.1 Unrolling a Network 

Let N denote the network which is to be trained to perform a desired sequential behavior. Recall 

that we assume that NV has n units and that it is to run from time ¢) up through some time t 

(where we take t = ¢, if we are considering an epochwise approach). As described by Rumelhart et 

al. (1986), we may “unroll” this network in time to obtain a feedforward network ’* which has a 
layer for each time step in the interval [t,t] and n units in each layer. Each unit in NV has a copy 

in each layer of V*, and each connection from unit j to unit 7 in V has a copy connecting unit 7 in 

layer 7 to unit 7 in layer 7 + 1, for each 7 € [to,¢). An example of this unrolling mapping is given 

in Figure 2. The key value of this conceptualization is that it allows one to regard the problem of 

training a recurrent network as a corresponding problem of training a feedforward network with 

certain constraints imposed on its weights. The central result driving the BPT'T approach is that 

to compute 0J'*! (¢’, t)/Ow,; in NV one simply computes the partial derivatives of J‘*!(t’, t) with 
respect to each of the ¢ — to weights in A/* corresponding to w;; and adds them up. Thus the 

problem of computing the necessary negative error gradient information in the recurrent net NV 

reduces to the problem of computing the corresponding negative error gradient in the feedforward 

network M*, for which one may use standard backpropagation. 

  

Insert Figure 2 about here. 
  

Straightforward application of this idea leads to two different algorithms, depending on whether 

an epochwise or continual operation approach is sought. Detailed mathematical arguments justi- 

fying all the results described may be found in the Appendix. 

4.2 Real-Time Backpropagation Through Time 

To compute the gradient of J(t) at time ¢, we proceed as follows. First, we consider t fixed for 

the moment. This allows us the notational convenience of suppressing any reference to ¢ in the 

following. We compute values ¢;(7) and 6;,(7) for k € U and 7 € (to, ¢] by means of the equations 

E,(t) = e,(t), (12) 

On(T) = fy (Se(7) )ex(7), (13) 
and 

Ex(T _ 1) = S- wT). (14) 

lcU 

These equations represent the familiar backpropagation computation. The process begins by 

using the equations (12) to determine the ¢,(¢) values. We call this step injecting error, or, if 
we wish to be more precise, injecting e(t), at time ¢. Then the 6 and ¢€ values are obtained for 
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successively earlier time steps (i.e., successively earlier layers in M’*) through the repeated use of 

the equations (13) and (14). Figure 3 gives a schematic representation of this process. 

  

Insert Figure 3 about here. 
  

In the particular case when each unit in the network uses the logistic squashing function, 

fe(Se(7)) = ye(r)  — ge (7)] (15) 

may be substituted in equation (13). A corresponding observation applies to all the algorithms to 

be discussed throughout this chapter. 

As described in the Appendix, €,(7T) is just a mathematical shorthand for 0J(t)/Oy,(7) and 
6. (7) is just a mathematical shorthand for 0J(t)/Os;,(7). Thus €,(7) represents the sensitivity 
of the instantaneous performance measure J(t) to small perturbations in the output of the k‘® 

unit at time 7, while 6,(7) represents the corresponding sensitivity to small perturbations to that 

unit’s net input at that time.® 
Once the backpropagation computation has been performed down to time tp + 1, the desired 

gradient of instantaneous performance is computed by 

Od(t 

See 
-_»> 6;(7) xj (7 — 1). (16) 

r=to+1 

To summarize, this algorithm, which we call real-time backpropagation through time performs 

the following steps at each time ¢: 1) the current state of the network and the current input pattern 

is added to a history buffer which stores the entire history of network input and activity since time 

to; 2) error for the current time is injected and backpropagation used to compute all the ¢,(7) and 

d«(7) values for to < 7 < t; 3) all the 0/(t)/Ow,; values are computed; and 4) weights are changed 
accordingly. Because this algorithm makes use of potentially unbounded history storage, we will 

also sometimes denote it BPTT(oo). This algorithm is of more theoretical than practical interest, 
but later we discuss more practical approximations to it. 

4.3  Epochwise Backpropagation Through Time 

An epochwise algorithm based on backpropagation through time can be organized as follows. The 

objective is compute the gradient of J‘!(tg,t,), which can be obtained after the network has 

been run through the interval |p, t,|. Essentially as before, we compute values €;(7) and 6,(7) for 
k €U and 7 € (to, t;|, this time by means of the equations 

Ex(ty) = ex(ty), (17) 

6Note that all explicit references to ¢ could be eliminated by re-expressing the 6 update equations entirely in 

terms of other 6 values, resulting in a description of backpropagation with which the reader may be more familiar. 

We have chosen to express the computation in this form for two reasons. One is that we will need to make explicit 

reference to these ¢ quantities later in this chapter; another is that it is useful to recognize that to backpropagate 

through a semilinear unit is to apply the chain rule through two stages of computation: application of the squashing 

function and weighted summation. 
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bn (T) = fia (se(7) ex(r), (18) 
and 

Ex(T — 1) = €4(T — 1) + S> windi(rT). (19) 

leU 

These equations represent the familiar backpropagation computation applied to a feedforward 

network in which target values are specified for units in other layers than the last. ‘The process 

begins at the last time step, using equations (17) to determine the ¢;,(¢) values, and proceeds to 

earlier time steps through the repeated use of the equations (18) and (19). For this algorithm we 
speak of injecting error at time 7 to mean the computational step of adding e;(7) to the appropriate 

sum when computing €;(7). The backpropagation computation for this case is essentially the same 

as that for computing the 6 values for the real-time version, except that as one gets to layer 7 one 

must inject error for that time step. Thus, not only are the 6 values determined by a backward 

pass through the unrolled network, but the errors committed by the network are also taken into 

account in reverse order. Figure 4 gives a schematic representation of this process. 

  

Insert Figure 4 about here. 
  

It is useful to regard the sum on the right-hand side of equation (19) as a virtual error for unit 

k at time 7—1. We might also say that this unit has been given a virtual target value for this time 

step. Thus, in epochwise BPTT, virtual error is added to external error, if any, for each unit at 

each time step in the backward pass. Note that in real-time BPTT the only contribution to each 

€ is either external error, at the most recent time step, or virtual error, at all earlier time steps. 

As with real-time BPTT, ¢,(7) is just a mathematical shorthand, this time for 0‘ (to, t1) /Oy,(7); 
similarly, 6,(7) is just a mathematical shorthand for 0.J*°*!(to, t,)/Os,(7). Thus e,(7) represents 
the sensitivity of the overall performance J‘*"'(to, t,) to small perturbations in the output of the 

k** unit at time 7, while 6,(7) represents the corresponding sensitivity to small perturbations to 

that unit’s net input at that time. 

Once the backpropagation computation has been performed down to time tp + 1, the desired 

gradient of overall performance is computed by 

OF" tosti) © §(r)a4(r — 1). (20) 
Owij rtp 

Epochwise BPTT thus must accumulate the history of activity in (and input to) the network 

over the entire epoch, along with the history of target values (or equivalently, the history of errors) 

over this epoch, after which the following steps are performed: 1) the above backpropagation 

computation is carried out to obtain all the €,(7) and 6,(7) values for tg < 7 < t1; 2) all the 
OJ‘! (to, t1)/Ow;; values are computed; and 3) weights are changed accordingly. Then the network 
is re-initialized and this process repeated. 
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4.4 Epochwise BPTT Applied to Settling Networks 

Although our main interest here is in the general problem of training networks to perform time- 

varying behaviors, it is worth noting that the BPTT formulation leads to a simple algorithm 

for training settling networks with constant input, whenever certain assumptions hold. This 

algorithm, which is a discrete-time version of the algorithm described by Almeida (1987) and 

Pineda (1987; [chapter ??, this volume]) is obtained as follows. 
First, suppose that a network is to be driven with constant input and that we have initialized 

it to a state which represents a fixed point for its dynamics. Suppose further that we intend to 

observe this state at the end of the epoch [to, ¢;] to compare it with some desired state. If we were 

to use epochwise BPTT for this situation, the appropriate equations would be 

Ex(ty) = ex(ty), (21) 

On(T) = fa (Se(tr) )ex(7), (22) 
and 

ex(7T — 1) = >° widi(7), (23) 

with weight changes determined by 

Ojiotal (to, ty) 

Ow 
-_»> di(7)xj;(7 — 1) = 3 i(7) xj (ti) = £5 (t1) > O;(7 (24) 

T=to+1 T=to+1 T=to+1 

Note that this last result takes into account the fact that all states and all input during the epoch 

are equal to their values at the end of the epoch. Thus there is no need to save the history of 

input and network activity in this case. 

Now define 
ty 

ex(t) = D7 ex(r) (25) 
7To=t+1 

and . 

t)= S° 6z(7). (26) 
7o=t+1 

Then equation (24) becomes 
OJ'*l (to ty) 

—_-—"_—" = 6¥ (to) a; (t1). 2 Foe = 8ita)ay(h) (27 
Furthermore, it is easy to check by induction that 

eg(ti) = x(t), (28) 

On (T) = Sa (Se (ta) eR (7), (29) 
and 

ER(T —_ 1) = ex (ty) + 2 Wied; (T). (30) 
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Thus the 6* and e* values may be interpreted as representing the 6 and € values obtained from 

performing epochwise BPTT from ¢, back to to while injecting the constant error e(¢,) at each 
time step, while equation (27) has the form of the usual feedforward backpropagation computation 

for determining the partial derivative of error with respect to any weight. 

Now consider what happens in the limit as the epoch is made very long. In this case, the 

computation of the 6;(to) values by means of the equations (28), (29), and (30) can be viewed 
as a settling computation, assuming it converges. As it turns out, it can be shown that the 

BPTT computation given by equations (21), (22), and (23) will “die away” (meaning that the 

backpropagated quantities 6,(7) and ¢,(7) will decrease to zero) exponentially fast as long as the 
network has reached a stable equilibrium state, which implies that the settling computation for 

the 6*(to) values does indeed converge in this case. 
The recurrent backpropagation (RBP) algorithm (Almeida, 1987; Pineda, 1987) for training 

settling networks having constant input consists of applying the following steps: 1) the network 

is allowed to settle (with the time at which settling has completed regarded as t,); 2) the BPTT 
computation given by equations (28), (29), and (30) is performed for as long as needed until the 
6 values converge; 3) all the 0J°°*'(to, t1)/Ow;; values are computed using equation (27); and 

4) weights are changed accordingly. The appealing features of this algorithm are that it does not 

require the storage of any past history to implement and is entirely local. The reason it requires 

no history storage is that it implicitly assumes that all relevant past states and input are equal to 

their current values. This algorithm is thus applicable only to situations where both the desired 

and actual behaviors of the network are limited to stable settling. 

The argument presented so far shows that RBP would compute the same thing as the BPTT 

computation given by equations (21), (22), and (23) over a very long epoch in which the network 
state is held constant at a stable equilibrium. Now, continue to assume that the input to the 

network is constant throughout the entire epoch, but assume instead that the network has settled 

to an equilibrium state from possibly some other starting state by the end of the epoch, at time 

t,. Assume further that it has reached this equilibrium state long before t,;. Because the BPTT 

computation resulting from injecting error only at time ¢; dies away, as described earlier, even 

in this case RBP and this BPTT computation yield essentially the same result. That is, if error 

is injected only long after the network has arrived at its steady-state behavior, the full BPTT 

computation will also give the same result as RBP, because the BPTT computation dies away 

before reaching the transient portion of the network’s behavior. This shows clearly that not only 

is RBP limited to training settling networks, but it is really only designed to directly influence 

their fixed points and cannot control their transient behaviors. In general, RBP is only capable of 

perturbing the equilibrium states already present in the network’s dynamics.’ On the other hand, 

as long as errors are injected within (or soon after) the transient behavior of a network, BPTT 

can directly influence such transient behavior. 

These observations concerning the inability of even full BPTT to reach back into the transient 

behavior if error is injected too long after steady-state behavior is reached have some other inter- 

esting consequences for the problem of training continually operating networks, which we describe 

below when we discuss the teacher forcing strategy. 
  

“However, as we discuss later, Pineda (1988; [chapter ??, this volume]) has shown that new equilibrium points 
can be created by combining RBP with the teacher forcing technique. 
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4.56 Computational Requirements of BPTT Algorithms 

It is clear that to store the history of m-dimensional input to and n-dimensional activity of a 

network over h time steps requires (m+ n)h numbers. In addition, the number of target values 

over these h time steps is no greater than nh. Thus the gradient computation performed for 

epochwise BPTT has space complexity in O((m + n)h), where h represents the epoch length. 
However, for BPTT(oo) this history must continue to grow indefinitely. With L representing the 
total time over which the network is actually run, the space complexity of BPTT(oo) is thus in 

O((m+ n)L). 
To determine the number of arithmetic operations required for these algorithms, note that 

equation (13) requires an evaluation of f;(s,(7)) plus one multiplication for each k in U. For 
the logistic squashing function this amounts to two multiplications per unit for determining the 

6 values from the corresponding € values. In general, the number of operations required for this 

part of the backpropagation computation is in O(n). Application of equation (14) for all k ¢ U 
at each fixed 7 clearly requires wy multiplications and wy — 1 additions, while application of 

equation (19) for all k € U at each fixed 7 requires the same number of multiplications and up 

to n more additions and subtractions, depending on how many units have target values for that 

time step. As long as we assume wy € Q(n), it follows that each stage of the backpropagation 

computation has time complexity in O(wy), regardless of whether error is injected at all time steps 

during the backward pass, as in epochwise BPT'T, or just at the last time step, as in real-time 

BPTT. 

Now let h = t—to, where t represents the time at which BPTT is performed for either real-time 

or epochwise BPTT. (In the latter case, t = ¢.) It is clear that equation (16), which must be 
evaluated once for each adaptable weight, requires multiplications and h — 1 additions, leading 

to a total of O(w,h) operations. Thus the total number of operations required to compute the 

gradient for one epoch in epochwise BPTT is in O(wyh+wah).8 Amortized across the h time steps 
of the epoch, the gradient computation for epochwise BPTT requires an average of O(wy + wa) 

operations per time step. For real-time BPTT, a backpropagation computation all the way back to 

t) must be performed any time a target is specified. Thus the total number of operations required 

over the entire training interval of length L is in O((wy + w,)T?/Ar), which is an average of 
O((wyT +wa)T/Ar) operations per time step. These complexity results are summarized in Table 

1. 

The worst case for either of these algorithms for any fixed n is when the network is fully 

connected, all weights are adaptable, and target values are supplied at every time step, so that 

Ar = 1. In this case, epochwise BPTT has space complexity in O(nh) and average time complexity 

per time step in @(n?), while real-time BPTT has space complexity in @(nL) and average time 

complexity per time step in O(n?L), as shown in Table 2. 

Note that when weights are changed throughout the course of operating the network, a variant 

of real-time BPTT is possible in which the history of weight values are saved as well and used for 

the backpropagation computation, by replacing w;, by w (7) in equation (14). For this algorithm, 

the storage requirements are in O((m+n-+ wa)T) in the general case and in O(n?T) in the worst 
  

8 This assumes that there is some error to inject at the last time step. In general, it is also assumed throughout this 

analysis that the number of units given targets and the connectivity of the network are such that backpropagation 

“reaches” every unit. If this is not true, then the time complexity could be lower for an algorithm designed to take 

advantage of this. 
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case. 

While real-time BPTT could be used to train a network which is operated in epochwise fashion, 

it is clearly inefficient to do so because it must duplicate some computation which need only be 

performed once in epochwise BPTT. Epochwise BPTT computes VwJ*#!(to, #1) without ever 

computing any of the gradients Vw/J(t) for individual time steps t. 

5 The Real-Time Recurrent Learning Algorithm 

While BPTT uses the backward propagation of error information to compute the error gradient, 

an alternative approach is to propagate activity gradient information forward. This leads to 

a learning algorithm which we have called real-time recurrent learning (RTRL). This algorithm 
has been independently derived in various forms by Robinson and Fallside (1987), Kuhn (1987), 

Bachrach (1988, [chapter ??, this volume]), Mozer (1989, [chapter ??, this volume]), and Williams 
and Zipser (1989a), and continuous-time versions have been proposed by Gherrity (1989), Doya 

and Yoshizawa (1989), and Sato (1990a; 1990b). 

5.1 The Algorithm 

For each k €U,1 EU, 7 CU UT, and tp) < t < t1, we define 

Oye (t) k k 
’(¢) = ——. 31 pl) = Fe (31) 

This quantity measures the sensitivity of the value of the output of the k" unit at time ¢ to a 

small increase in the value of w;;, taking into account the effect of such a change in the weight 

over the entire trajectory from tg to ¢ but assuming that the initial state of the network, the input 

over [to,#), and the remaining weights are not altered. 
From equations (7) and (8) and use of the chain rule, we find that 

aJ(t) 
Ow 

  = Vi ex(t)p7; (4) (32) 
kcU 

for each i € U and j € UUT. Also, differentiating the equations (2) and (3) for the network 
dynamics yields 

pi, (t+ 1) = f,(se(t+ 1 ) So wad), () + dina; (t) | , (33) 
IeU 

where 6;, denotes the Kronecker delta. Furthermore, 

Oyx (to) k Pi; (to) = =-— =0 (34) 
J 0 Ow 

since we assume that the initial state of the network has no functional dependence on the weights. 

These equations hold for all k €U,1E€U,7 CU UT, and t > to. 

Thus we may use equations (33) and (34) to compute the quantities {pk (t)} at each time step 
in terms of their prior values and other information depending on activity in the network at that 
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time. Combining these values with the error vector e(t) for that time step via the equations (32) 

then yields the negative error gradient Vw/J(t). Because the Di, (t) values are available at time 
t, the computation of this gradient occurs in real time. Figure 5 depicts the data structures that 

must be updated on each time step to run the RT'RL algorithm with the network of Figure 1. 

  

Insert Figure 5 about here. 
  

5.2 Computational Requirements 

The computational requirements of the RT'RL algorithm arise from the need to store and update 

all the pi, values. To analyze these requirements, it is useful to view the triply indexed set of 

quantities pi, as forming a matrix, each of whose rows corresponds to a weight in the network and 

each of whose columns corresponds to a unit in the network. Looking at the update equations it is 

not hard to see that, in general, we must keep track of the values pi, even for those k corresponding 

to units that never receive a teacher signal. Thus we must always have n columns in this matrix. 

However, if the weight w,,; is not to be trained (as would happen, for example, if we constrain the 

network topology so that there is no connection from unit j to unit 7), then it is not necessary to 

compute the value Di, for any k € U. This means that this matrix need only have a row for each 

adaptable weight in the network, while having a column for each unit. Thus the minimal number 

of Di, values needed to store and update for a general network having n units and w, adjustable 

weights is nw,4. Furthermore, from equation (33) it is clear that the number of multiplications 

and the number of additions required to update all the Di, values are each essentially equal to 

wywa. Note that this computation is performed on every time step, regardless of whether target 

values are specified for that time step. 

In addition, equation (32) requires one multiplication (and approximately one addition) at 
each time step for each unit given a target on that time step and each adjustable weight. This 

amounts to an average of O(n;wa) operations per time step. Thus the space complexity of the 

gradient computation for RTRL is in O(nw,), and its average time complexity per time step is 

in O(wywa), as indicated in Table 1. When the network is fully connected and all weights are 

adaptable, this algorithm has space complexity in Q(n?) and average time complexity per time 

step in O(n*), as shown in Table 2. 
While this time complexity is quite severe for serial implementation, part of the appeal of 

this algorithm is that it can run in O(n) time per time step using O(n*) processors. However, 

this raises the question of its communication requirements, especially in relation to the network 

being trained. Interestingly, update of the Di, values can be carried out using a completely local 

communication scheme in the network being trained if one allows n-tuples to be communicated 

along network connections rather than single real numbers. The idea is to let each unit k store 

within it the set of numbers Di, with (i,7) ranging over all weights in the network. If we regard 

this set of numbers as a vector p*, then the set of equations (33) corresponding to each fixed value 

of k can be organized into a single vector update equation. In this way, one can imagine a network 

of units which pass not only their activations around, but also these p* vectors. However, the 

actual computation of VwJ(t) by means of the equations (32) ultimately requires global access 
to the p* vectors. 
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Without giving details, we note that the entire RTRL algorithm could be carried out in a more 

conventional scalar-value-passing network having, in addition to the n units of the network to be 

trained, an additional unit for each Di, value and an additional unit for each connection in the 

network to be trained. Each unit in this last set would simultaneously gate numerous connections 

among the remaining units. 

6 A Hybrid Algorithm 

It is possible to formulate a hybrid algorithm incorporating aspects of both BPTT and the forward 

gradient propagation computation used in RTRL. This algorithm, first proposed in (Williams, 

1989), and later described by Schmidhuber (1992), is interesting both because it helps shed light 
on the relationship between BPT'T and RTRL and because it can yield exact error gradient 

information for a continually running network more efficiently than any other method we know. 

The mathematical derivation of this algorithm is provided in the Appendix. Here we describe the 

steps of the algorithm and analyze its computational complexity. 

6.1 The Algorithm 

This algorithm involves a segmentation of time into disjoint intervals each of length h = ¢—?’, with 

weight changes performed only at the end of each such interval. By our definition, then, this is 

not a real-time algorithm when h > 1. Nor is it an epochwise algorithm, since it does not depend 

on the artificial imposition of credit-assignment boundaries and/or state resets. The segmentation 

into intervals is purely arbitrary and need have no relation to the task being performed. Over each 

such interval [t’, ¢] the history of activity of (and input to) the network is saved; at the end of this 
time period, a computation to be described below is performed. Then the process is begun anew, 

beginning with collecting the history of the network activity starting at time ¢ (which becomes 

the new value of ?’). 
This algorithm depends on having all the values pi, (t! ), as used in RTRL, for the start of each 

time period. For the moment, we assume that these are available; later we describe how they are 

updated by this algorithm. Then the equations 

_ e,(t) ifr =t 

ex(T) 7 | ex (T) + ICU wi (T + 1) if T<t (35) 

and 

bk (T) = fa(Se(7))ex(7) (36) 
are used to compute all the values ¢;,(7) for t’ <7 <t and 6,(7) for t’ < 7 < ¢. This computation 
is essentially identical to an epochwise BPTT computation over the interval [¢’,¢]. In particular, 

note that each error vector e(7), for t’ < 7 < t, is injected along the backward pass. Once all 

these € and 6 values are obtained, the gradient of J‘!(t’,t), the cumulative negative error over 

the time interval (t’,t], is computed by means of the equations 

osiotal(z! ) , el 
ont) = So ex(t )pi;(t') + S- di(7 + 1)2;(7), (37) 

Wij leu rat! 
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for each 7 and 7. 

Note that the second sum on the right-hand side is what would be computed for this partial 

derivative if one were to truncate the BPTT computation at time t’, while the first sum represents 

a correction in terms of the p values used in RTRL. There are two special cases of this algorithm 

worth noting. When ?¢’ = t, the second sum in equation (37) vanishes and we recover the RTRL 

equation (32) expressing the desired partial derivatives in terms of the current p values. When 

t' = to, the first sum in equation (37) vanishes and we recover equation (16) for the BPTT(oo) 
algorithm. 

Thus far we have described how the desired error gradient is obtained, assuming that the p 

values are available at time ¢’. In order to repeat the same process over the next time interval, 

beginning at time ¢, the algorithm must also compute all the values pi, (t). For the moment, 

consider a fixed r in U. Suppose that we were to inject error e”(t¢) at time t, where e7(t) = dg, (the 
Kronecker delta), and use BPTT to compute 0J(t)/Ow;;. It is clear from equation (32) that the 
result would be equal to pj,(¢). Thus this gives an alternative view of what these quantities are: 

For each r, the set of numbers pi, (t) represents the negative error gradient that would be computed 

by BPTT if unit r were given a target 1 greater than its actual value. Furthermore, we may use 

the same approach just used to compute the partial derivatives of an arbitrary error function to 

compute the partial derivatives of this particular imagined error function. Thus, to compute pj, (¢) 
for all ¢ and j, the algorithm first performs a BPTT computation using the equations? 

1 ifr =t 

Dicu WOT +1) ifr <t (38) Ex(T) = 

together with equations (36), to obtain a set of values’® e,(7) for ’ <7 <tand 6,(r) fort’ <7 <t. 
These values are then used to compute pj,(t) for each 7 and j by means of the equations 

pi, (t) = = ei(t’)pl,(t!) + > 5,(r + 1)2;(7). (39) 

In other words, to compute pi; (t), a l is injected at unit r at time t and BPTT performed back 

to time ¢’, and the results substituted into equation (39). 
This process is repeated for each r in U in order to obtain all the p values for time ¢. Thus 

this algorithm involves a total of n + 1 different BPTT computations, one to compute the error 

gradient and n to update the p values. Because this algorithm involves both a forward propagation 

of gradient information (from time ¢’ to time t) and backward propagation through time, we will 

denote this algorithm FP/BPTT(h), where h = t—? is the number of past states which are saved 
in the history buffer. Figure 6 gives a schematic representation of the storage and processing 

required for this algorithm. 
  

°The reader is warned to avoid confusing the singly subscripted (and time-dependent) quantities denoted 6;, 

which are obtained via backpropagation, with the doubly subscripted Kronecker delta, such as 6,,. Both uses of 

the symbol 6 appear throughout the equations presented in this and the next section. 

10The reader should understand that, although we are denoting the result of several different BPTT computations 

in the same way, the various sets of 6 and € values obtained from each BPTT computation are unrelated to each 

other. We have resisted introducing additional notation here which might make this clearer, on the grounds that 

it might clutter the presentation. A more precise formulation may be found in the Appendix. 
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Insert Figure 6 about here. 
  

6.2 Computational Requirements 

This hybrid algorithm requires O(nw,) storage for the p;; values, like RTRL, and O((m + n)h) 
storage for the history of network input, activity, and teacher signals over the interval |t’,t], like 

epochwise BPTT. In addition, each BPTT computation requires O(nh) storage for all the 6 and € 

values, but this space may be re-used for each of the n+ 1 applications of BPTT. Thus its overall 

storage requirements are in O(nw4 + (m+ n)h). 
To determine the number of arithmetic operations performed, note that each BPT'T com- 

putation requires O((wy + wa)h) operations, and, for each such BPTT computation, equa- 

tion (37), requiring O(n + h) operations, must be used for each adjustable weight, or wa, times. 

Thus the number of operations required for each of the n+ 1 applications of BPTT requires 

O(wyh + 2wah+ nwa) = O(woh + wah+ nwa), giving rise to a total number of operations in 
O(nwyh + nwah + n?wa). Since this computation is performed every h time steps, the average 

number of operations per time step is in O(nwy + nwa + n?wa/h). When the network is fully 

connected and all weights are adaptable, FP/BPTT(h) has space complexity in O(n? + nh) and 
average time complexity per time step in @(n? + n*/h). Thus, by making h proportional to n, the 

resulting algorithm has worst case space complexity in O(n?) and time complexity per time step 

in O(n’). These complexity results are summarized in Tables 1 and 2. 
This means that of all exact gradient computation algorithms for continually operating net- 

works, FP/BPTT (cn), where c is any constant, has superior asymptotic complexity properties. Its 

asymptotic space complexity is no worse than that of RT'RL, and its asymptotic time complexity 

is significantly better. The reduction in time complexity in comparison to RTRL is achieved by 

only performing the update of the Di, values after every cn time steps. The improvement in both 

time and space complexity over real-time BPTT over long training times is achieved because there 

is no need to apply BPTT further back than to the point where these Di, values are available. 

7 Some Architecture-Specific Approaches 

Up to now, we have restricted attention to the case where every connection in the network is 

assumed to have a delay of one time step. It is sometimes useful to relax this assumption. In par- 

ticular, a number of researchers have proposed specific mixed feedforward/feedback architectures 

for processing temporal data. In almost all of these architectures the feedforward connections are 

assumed to have no delay while the feedback connections are assumed to incorporate a delay of 

one time step. After briefly considering the case of arbitrary (but fixed) delays, we then focus 

in this section on exact gradient algorithms for certain classes of network architectures where all 

delays are 0 or 1. 
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7.1 Connection-Dependent Delays 

To handle the general case in which various connections in the network have different delays, 

equation (2) for the network dynamics must be replaced by 

s,(t) = S- Wry (t —_ Ant); (40) 

lcUuUUur 

where A;; represents the delay on the connection from unit (or input line) / to unit k. In general, 

we may allow each delay to be any nonnegative integer, as long as the subgraph consisting of all 

links having delay 0 is acyclic. This condition is necessary and sufficient to guarantee that there 

is a fixed ordering of the indices in U such that, for any ¢ and k, s;,(t) depends only on quantities 

x(t’) having the property that ¢’ < t or | comes before & in this ordering. 
As an alternative to allowing multiple delays, one could instead transform any such setup into 

a form where all delays are 1 by adding “delay units” along paths having a delay larger than 1 and 

repeating computations along paths having delay 0, but this is generally undesirable in simulations. 

Because holding a value fixed in memory is a no-cost operation on a digital computer, it is always 

more efficient to simulate such a system by only updating variables when necessary. For example, 

in a strictly layered network having fA layers of weights, although they both lead to the same 

result, it is clearly more efficient to update activity one layer at a time than to run one grand 

network update a total of h times. A similar observation applies to the backward pass needed for 

backpropagation. Figure 7 illustrates a case where all links have delay 0 or 1 and shows a useful 

way to conceptualize the unrolling of this network. 

  

Insert Figure 7 about here. 
  

Watrous and Shastri (1986) have derived a generalization of BPTT to this more general case, 
and it is straightforward to extend the RT'RL approach as well. With a little more effort, the 

hybrid algorithm described above can also be generalized to this case. Rather than give details 

of these generalizations, we confine attention in the remainder of this section to some particular 

cases where all delays are 0 or 1 and describe some exact gradient computation algorithms for 

these involving both backward error propagation and forward gradient propagation. These cases 

represent modest generalizations of some specific mixed feedforward/feedback architectures which 

have been considered by various researchers. 

7.2 Some Special Two-Stage Architectures 

The architectures to be investigated here involve limited recurrent connections added to what 

would otherwise be a feedforward net. We regard these architectures as consisting of two stages, 

which we call a hidden stage and an output stage. ‘The output stage must contain all units given 

targets, but it need not be confined to these. The hidden stage contains all units not in the output 

stage. As a minimum, each architecture has feedforward connections from the hidden stage to 

the output stage, and there may be additional feedforward connections within each stage as well. 
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Thus, in particular, each stage may be a multilayer network. Let Uo denote the set of indices of 

units in the output stage and let Uy denote the set of indices of units in the hidden stage. 

Here we restrict attention to three classes of recurrent net which consist of this minimum 

feedforward connectivity plus some additional recurrent connections. In all cases, we assume that 

the feedforward connections have delay 0 and the added feedback connections have delay 1. For any 

given network which falls into one of these categories there may be many ways to decompose it into 

the two stages, and particular recurrent networks may be viewed as belonging to more than one 

category, depending on which units are assigned to which stage. We consider feedback connections 

confined to one of three possibilities: internal feedback within the hidden stage, feedback from the 

output stage to the hidden stage, and internal feedback within the output stage. Figure 8 depicts 

these 3 architectures. In this section we omit discussion of the computational complexity of the 

algorithms described. 

  

Insert Figure 8 about here. 
  

7.2.1 Hidden-to-Hidden Feedback Only 

Figure 8A illustrates a general architecture in which all feedback connections are confined to the 

hidden stage. One example of this architecture is provided by the work of Elman (1988), who has 

considered a version in which the hidden stage and the output stage are each one-layer networks, 

with feedback connections provided between all units in the hidden stage. Cleeremans, Servan- 

Screiber, and McClelland (1989; [chapter ??, this volume]) have also studied this architecture 

extensively. One approach to creating an real-time, exact gradient algorithm for this architecture 

is to use a hybrid strategy involving both RT'RL and backpropagation. In this approach, the 

pi, values need only be stored and updated for the hidden units, with backpropagation used to 

determine other necessary quantities. Mathematical justification for the validity of this approach 

is based on essentially the same arguments used to derive the hybrid algorithm FP/BPTT(hA). 
The error gradient is computed by means of 

=~ = we: A] 
Owi; | LalcUy er(t)pi,(t), ift € Un, (41) 

where 6;(¢) is obtained by backpropagation entirely within the hidden stage. 

The Di, values, for k € Uy, are updated by means of the equations 

pi, (t) = fi,(se(t)) | S- Whig (t —1)+d%2;(¢-1)], (42) 
leUg 

which are just the RTRL equations (33) specialized to take into account the fact that we; is 0 if 

LEUo. 

One noteworthy special case of this type of architecture has been investigated by Mozer (1989, 

[chapter ??, this volume]). For this architecture, the only connections allowed between units in 

the hidden stage are self-recurrent connections. In this case, Diy is 0 except when k = 7. This 
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algorithm can then be implemented in an entirely local fashion by regarding each Pi, value as 

being stored with w,;, because the only information needed to update pj, is locally available at 

unit 7. The algorithm described here essentially coincides with Mozer’s algorithm except that his 

net uses a slightly different form of computation within the self-recurrent units. 

7.2.2 Output-to-Hidden Feedback Only 

Figure 8B illustrates a general architecture in which all feedback connections go from the output 

stage to the hidden stage. One example of this architecture is provided by the work of Jordan 

(1986), who has considered a version in which the hidden stage and the output stage are each 

one-layer networks, with feedback connections going from all units in the output stage to all units 

in the hidden stage. As in the preceding case, we consider a hybrid approach for this architecture 

involving both RT'RL and backpropagation. In this case, the Di, values are only stored and 

updated for the output units. Mathematical justification for the validity of this approach is based 

on essentially the same arguments used to derive the hybrid algorithm FP/BPTT(hA). 
The error gradient is computed by means of the equation 

aJ(t) 
Ow 

  = ¥ ex(t)pi(d), (43) 
kcUo 

which is just the RTRL equation (32) specialized to take into account the fact that e;, is always 0 

for k € Ug. 

The updating of the p values for units in the output stage is based on performing a separate 

backpropagation computation for each k € Uo, in a manner very much like that used in the hybrid 

algorithm FP/BPTT(h). To compute pj,(t), for k € Uo, inject a 1 as “error” at the k*" unit and 
backpropagate all the way from the output stage, through the hidden stage, and through the 

feedback connections, right back to the output stage at the previous time step. Then compute 

pi(t) = >) ex(t — 1)p;,(¢ — 1) + 4i(t)aj(¢ — Ais), (44) 
leUo 

where Aj; is 1 if 7 € Uo and 0 otherwise. The relevant 6;(¢) and ¢;(¢— 1) values are obtained from 
the backpropagation computation, with a new set obtained for each k. 

7.2.3 Output-to-Output Feedback Only 

Figure 8C illustrates a general architecture in which all feedback connections are confined to the 

output stage. Just as in the previous cases, we consider a hybrid approach in which the Di, values 

need only be stored and updated for the output units, with backpropagation used to determine 

other necessary quantities. As before, the error gradient is computed by means of equation (43). 

Updating of the Di, values is performed using a slightly different mix of backpropagation and 

forward gradient propagation than in the previous case. To derive this, we write the equation 

computing net input for a unit in the output stage as 

s;,(t) = S- Wer (t) + S- Wty (t — Ani); (45) 

leUqUI IcUo 
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where A,, is 0 if the connection from unit / to unit k is a feedforward connection within the output 

stage and 1 if it is a feedback connection. Singling out the first sum on the right-hand side of this 

equation, we define 

S- Wri (t). (46) 

leUy_Ul 

It then follows that 

  
Di, (¢) — fi (Ss, (t)) Gat nl) | I>. Whig (t )+ Oinxs(t — =) . (47) 

leUo 

If 2 € Uo the first term on the right-hand side of this equation is zero and the updating of Di, thus 

proceeds using a pure RI'RL approach. That is, for k and z in Uo, pi, is updated by means of the 

equation 

leU 
pi, (t )= Fil Sa(t fs wWriDi, (t )+ Oind;(t — as) . (48) 

If 2 € Uy, however, the first term on the right-hand side of equation (47) is not necessarily zero, 

but it can be computed by injecting a 1 as “error” at the output of the k‘* unit and backprop- 

agating directly into the hidden stage to the point where 6; is computed. This backpropagation 

computation begins at the output of the k* unit and proceeds directly into the hidden stage, 

ignoring all connections to the k“ unit from units in the output stage. Specifically, then, for each 

fixed k € Ug, one such backpropagation pass is performed to obtain a set of 6;(¢) values for all 

a € Uz. Then the Di, values for this particular k are updated using 

Dij(t) = di(t)x;(t) + fa(se(t)) | D2 waupig (t) + ding (t — Aig)] - (49) 
lcUo 

One special case of this architecture is a network having a single self-recurrent unit as its only 

output unit, with a feedforward network serving as a preprocessing stage. In this case, there is a 

single value of Di, to associate with each weight w,;;, and we may imagine that it is stored with its 

corresponding weight. Then only local communication is required to update these p values, and 

a single global broadcast of the error e,(t) (where k is the index of the output unit) is sufficient 
to allow error gradient computation. This may be viewed as a generalization of the single self- 

recurrent unit architecture studied by Bachrach (1988). One of the algorithms he investigated 

coincides with that described here. 

8 Approximation Strategies 

Up to this point we have confined our attention to exact gradient computation algorithms. How- 

ever, it is often useful to consider algorithms which omit part of the computation required to fully 

compute the exact gradient. ‘There are actually several reasons why this can be advantageous, 

some of which we discuss later. The primary reason is to simplify the computational requirements. 
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8.1 Truncated Backpropagation Through Time 

A natural approximation to the full real-time BPTT computation is obtained by truncating the 

backward propagation of information to a fixed number of prior time steps. This is, in general, 

only a heuristic technique because it ignores dependencies in the network spanning durations 

longer than this fixed number of time steps. Nevertheless, in those situations where the actual 

backpropagation computation leads to exponential decay in strength through (backward) time, 

which occurs in networks whose dynamics consist of settling to fixed points, this can give a rea- 

sonable approximation to the true error gradient. Even when this is not the case, its use may 

still be justified when weights are adjusted as the network runs simply because the computation 

of the “exact” gradient over a long period of time may be misleading since it is based on the as- 

sumption that the weights are constant. We call this algorithm truncated backpropagation through 

time. With h representing the number of prior time steps saved, this algorithm will be denoted 

BPTT(h). Note that the discrepancy between the BPTT(h) result and the BPTT(oo) result is 
equal to the first sum on the right-hand side of equation (37) for the FP/BPTT(h) algorithm. 
The processing performed by the BPTT(h) algorithm is depicted in Figure 9. 

  

Insert Figure 9 about here. 
  

The computational complexity of this algorithm is quite reasonable as long as h is small. Its 

space complexity is in O((m-+n)h) and the average number of arithmetic operations required per 

time step is in O((wy + wa)h/Ar). The worst case for this algorithm for any fixed n is when the 
network is fully connected, all weights are adaptable, and target values are supplied at every time 

step, so that Ay = 1. In this case the algorithm requires O(nh) space and O(n*h) time. These 

complexity results are summarized in Tables 1 and 2. 

A number of researchers (Watrous & Shastri, 1986; Elman, 1988; Cleeremans, Servan-Schreiber, 

& McClelland, 1989, [chapter ??, this volume]) have performed experimental studies of learning 

algorithms based on this approximate gradient computation algorithm. The architecture studied 

by Elman and by Cleeremans et al. is an example of the two-stage type described earlier with 

hidden-to-hidden feedback only, but the learning algorithm used in the recurrent hidden stage is 

BPTT(1). 

8.2 A More Efficient Version of Truncated Backpropagation Through 

Time 

Interestingly, it is possible to devise a more efficient approximate gradient computation algorithm 

for continually operating networks by combining aspects of epochwise BPTT with the truncated 

BPTT approach, as has been noted in (Williams, 1989). Note that in the truncated BPTT 

algorithm described above, BPTT through the most recent h time steps is performed anew each 

time the network is run through an additional time step. More generally, one may consider letting 

the network run through h’ additional time steps before performing the next BPTT computation. 

In this case, if ¢ represents a time at which BPTT is to be performed, the algorithm computes 

an approximation to VwJ*"!(¢ — h’,t) by taking into account only that part of the history over 
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the interval [t — h,t]. Let us denote this algorithm BPTT(h;h’). Thus BPTT(h) is the same as 
BPTT(h;1), and BPTT(h; hk) is the epochwise BPTT algorithm, which, of course, is not an exact 
gradient algorithm unless there are state resets at the appropriate times. Figure 10 depicts the 

processing performed by the BPTT(h; h’) algorithm. 

  

Insert Figure 10 about here. 
  

In general, whenever it can be assumed that backpropagating through the most recent h—h’+1 

time steps gives a reasonably close approximation to the result that would be obtained from 

backpropagating all the way back to zt, then this algorithm should be sufficient. The storage 

requirements of this algorithm are essentially the same as those of BPTT(h), but, because it 

computes the cumulative error gradient by means of BPTT only once every h’ time steps, its 

average time complexity per time step is reduced by a factor of h’. Thus its average time complexity 

per time step is in O((wy + wa)h/h’) in general and in O(n*h/h’) in the worst case, as indicated in 
Tables 1 and 2. In particular, when h’ is some fixed fraction of h, the worst-case time complexity 

per time step for this algorithm is in O(n”). Furthermore, it is clear that making h/h’ small makes 
the algorithm more efficient. Thus a practical approximate gradient computation algorithm for 

continually operating networks may be obtained by choosing h and h’ so that h—h’ is large enough 

that a reasonable approximation to the true gradient is obtained and so that h/h’ is reasonably 

close to 1. 

8.3. Subgrouping in Real-Time Recurrent Learning 

The RT'RL approach suggests another approximation strategy which is designed to reduce the 

complexity of the computation and which also has some intuitive justification. While truncated 

BPTT achieves a simplification by ignoring long-term temporal dependencies in the network’s 

operation, this modification to RTRL, proposed in (Zipser, 1989), achieves its simplification by 

ignoring certain structural dependencies in the network’s operation. 

This simplification is obtained by viewing a recurrent network for the purpose of learning as 

consisting of a set of smaller recurrent networks all connected together. Connections within each 

subnet are regarded as the recurrent connections for learning, while activity flowing between sub- 

nets is treated as external input by the subnet which receives it. The overall physical connectivity 

of the network remains the same, but now forward gradient propagation is only performed within 

the subnets. Note that this means that each subnet must have at least one unit which is given 

target values. 

More precisely, in this approach the original network is regarded as divided into g equal-sized 

subnetworks, each containing n/g units (assuming that n is a multiple of g, as we will throughout 

this discussion). Each of these subnetworks needs to have at least one target, but the way the 

targets are distributed among the subnetworks is not germane at this point. Then equations (33) 

and (32) of the RTRL algorithm are used to update the Di, values and determine the appropriate 

error gradient, except that the value of Di, is regarded as being fixed at zero whenever units 7 and 

k belong to different subnetworks. If we regard each weight w,; as belonging to the subnetwork 

to which unit i belongs, this amounts to ignoring Oy,/Ow,;; whenever the k“ unit and weight w;, 
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belong to different subnets. The computational effect is that RIT'RL is applied to g decoupled 

subnetworks, each containing n/g units. We denote this algorithm RTRL(g). Clearly, RTRL(1) 
is the same as RTRL. Figure 11 illustrates how RTRL is simplified by using the subgrouping 

strategy. 

  

Insert Figure 11 about here. 
  

The number of nonzero Di, values to be stored and updated for this algorithm is nwa/g. 
To analyze its time requirements, we assume for simplicity that every subnetwork has the same 

number of adjustable weights and that every unit receives input from the same number of units, 

which implies that each subnetwork then contains w,/g adjustable weights and wy/g? within- 

group weights. But then equation (33) for updating the pj, values requires O((wy/g?)(wa/g)) 
operations within each subnetwork on each time step, or a total of O(wyw,/g?) operations on 
each time step. In addition, the average number of operations required for equation (32) per 

time step is nrwa/g. Altogether, then, the time complexity of this algorithm per time step is in 

O(wywa/g? + nrwa/g). 
To examine the worst case complexity, assume that the network is fully connected, all weights 

are adaptable, and nr is in O(n). In this case RTRL(g) has space complexity in @(n?/g) and 
average time complexity per time step in O(n*/g?+n?/g) = O(n*/g?) (since g < n). In particular, 
note that if g is increased in proportion to n, which keeps the size of the subnets constant, the 

resulting algorithm has, in the worst case, space and time complexity per time step both in O(n’). 

These complexity results are summarized in ‘Tables 1 and 2. 

One strategy which avoids the need for assigning specific target values to units from each 

subgroup is to add a separate layer of output units with O-delay connections from the entire 

recurrent network to these output units, which are the only units given targets. This is then an 

example of a two-stage architecture having only hidden-to-hidden recurrence, and the training 

method described earlier for such networks, involving both backpropagation and RTRL, can be 

modified so that the full RTRL is replaced by subgrouped RTRL. This approach amounts to giving 

the recurrent network virtual targets by means of backpropagation from the output units. 

Note also that this subgrouping strategy could be used to advantage in the hybrid algorithm 

FP/BPTT(h). Such an approximation algorithm would provide an interesting blend of aspects of 
both truncated BPTT and subgrouped RTRL. 

9 Teacher Forcing 

An interesting strategy that has appeared implicitly or explicitly in the work of a number of 

investigators studying supervised learning tasks for recurrent nets (Doya & Yoshizawa, 1989; 

Jordan, 1986; Narendra & Parthasarathy, 1990; Pineda, 1988; Rohwer & Renals, 1989; Williams 

& Zipser, 1989a; 1989b) is to replace, during training, the actual output y;,(¢) of a unit by the 

teacher signal d;,(t) in subsequent computation of the behavior of the network, whenever such a 

target value exists. We call this intuitively sensible technique teacher forcing. 
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Formally, the dynamics of a teacher-forced network during training are given by equations (2) 

and (3), as before, but where x(t) is now defined by 

oe'(t) ifkel 
r,(t)=< d,(t) if k € T(t) (50) 

y(t) ifkeU\ T(t). 

rather than by equation (1). Because Od;,(t)/Ow,; = 0 for all k € T(¢) and for all ¢, this leads 
to very slight differences in the resulting gradient computations, giving rise to slightly altered 

algorithms. It is an easy exercise to rework the computations given earlier for BPT'T and RTRL 

using these modified dynamics. We omit the details and content ourselves here with a description 

of the results. 

The one simple change necessary to incorporate teacher forcing into any version of BPTT is 

that the backpropagation computation from later times must be “blocked” at any unit in the 

unrolled network whose output has been set to a target value. Equivalently, any unit given an 

external target value at a particular time step should be given no virtual error for that time step. 

More precisely, for real-time BPTT or any of its variants, equation (14) must be replaced by 

e,(T — 1) =0 (51) 

whenever k € T(7 — 1) for any 7 < t. Similarly, for epochwise BPTT, equation (19) must be 
replaced by 

Ex(7 — 1) = eg(7 — 1) (52) 

whenever & € T(7 — 1) for any 7 < #). 
In the case of RI'RL, the one simple change required to accommodate teacher forcing is to 

treat the value of pj,(t) as zero for any | € T(t) when computing pj,(t + 1) via equation (33). 
Equivalently, equation (33) is replaced by 

pi (t+1) = fi(se(t)) | D2 waepiy(t) + dinas(t)| - (53) 
ICU\T(t) 

There seem to be several ways that teacher forcing can be useful. For one thing, one might 

expect that teacher forcing could lead to faster learning because it enables learning to proceed 

on what amounts to the assumption that the network is performing all earlier parts of its task 

correctly. In this way, all learning effort is focused on the problem of performing correctly at a 

particular time step given that the performance is correct on all earlier time steps. When teacher 

forcing provides this benefit, one would expect that its absence would simply slow down learning 

but not prevent it altogether. It may also play a useful, or even critical, role in situations where 

there is some approximation involved. For example, when using subgrouping in RTRL, it has 

sometimes been found to make the difference between success and failure. 

Beyond these potential benefits of teacher forcing is what we now recognize as its sometimes 

essential role in the training of continually operating networks. One such situation we have studied 

involves training networks to oscillate autonomously using RTRL. If the network starts with small 

enough weights, its dynamical behavior will consist of settling to a single point attractor from 

any starting state. Furthermore, assuming that the learning rate is reasonably small, it will 
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eventually converge to its point attractor regardless of where it was started. Once it has stayed at 

this attractor sufficiently long the task can never be learned by moving along the negative error 

gradient in weight space because this error gradient information only indicates what direction to 

move to alter the fixed point, not what direction would change the overall dynamical properties. 

This is the same phenomenon described earlier in our discussion of the relationship between BPTT 

and the recurrent backpropagation algorithm for training settling networks. The gradient of error 

occurring long after the transient portion has passed contains no information about the overall 

dynamics of the network. Applying BPTT or RTRL to such a network is then equivalent to 

applying RBP; the only effect is that the point attractor is moved around. A network being 

trained to oscillate will thus simply adjust its weights to find the minimum error between its 

constant output and the desired oscillatory trajectory without ever becoming an oscillator itself. 

We believe that this is a particular case of a much more general problem in which the weights 

need to be adjusted across a bifurcation boundary but the gradient itself cannot yield the necessary 

information because it is zero (or moving arbitrarily close to zero over time). The information lost 
when the network has fallen into its attractor includes information which might tell the weights 

where to move to perform the desired task. As long as the network is moving along a transient, 

there is some gradient information which can indicate the desired direction in which to change the 

weights; once the network reaches its steady-state behavior, this information disappears. 

Another example of this justification for the use of teacher forcing is provided by the work of 

Pineda (1988; [chapter ??, this volume]), who has combined it with RBP as a means of attempting 
to add new stable points to an associative memory network. Without teacher forcing, RBP would 

just move existing stable point around without ever creating new ones. 

Still another class of examples where teacher forcing is obviously important is where the weights 

are correct to perform the desired task but the network is currently operating in the wrong region 

of its state space. For example, consider a network having several point attractors which happens 

to be currently sitting on the wrong attractor. Attempting to get it onto the right attractor by 

adjusting the weights alone is clearly the wrong strategy. A similar case is a oscillator network 

faced with a teacher signal essentially identical to its output except for being 180 degrees out of 

phase. Simulation of such problems using RTRL without teacher forcing leads to the result that 

the network stops oscillating and produces constant output equal to the mean value of the teacher 

signal. In contrast, teacher forcing provides a momentary phase reset which avoids this problem. 

The usefulness of teacher forcing in these situations is obviously related to the idea that both 

the network weights and initial conditions determine the behavior of the network at any given 

time. Error gradient information in these learning algorithms allows control over the network 

weights, but one must also gain control over the initial conditions, in some sense. By using desired 

values to partially reset the state of the net at the current time one is helping to control the initial 

conditions for the subsequent dynamics. 

It should also be noted that there are situations for which teacher forcing is clearly not applica- 

ble or may be otherwise inappropriate. It is certainly not applicable when the units to be trained 

do not feed their output back to the network, as in one of the special two-stage architectures 

discussed earlier. Furthermore, a gradient algorithm using teacher forcing is actually optimizing a 

different error measure than its unforced counterpart, although any setting of weights giving zero 

error for one also gives zero error for the other. This means that, unless zero error is obtained, 

the two versions of a gradient algorithm need not give rise to the same solutions. In fact, it is 
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easy to devise examples where the network is incapable of matching the desired trajectory and 

the result obtained using teacher forcing is far different from a minimum-error solution for the 

unforced network. 

A simple example is the problem of attempting to train a single unit to perform a sequence 

consisting of n Os alternating with n 1s. It is not hard to see that when n > 2 the best least-squares 

fit to this training data is achieved when the unit produces the constant output 0.5 at all times. 

This is the behavior to which a gradient algorithm will essentially converge for this problem if 

teacher forcing is not used. Such a solution is achieved by setting the unit’s bias and recurrent 

weight to zero. Note that this actually makes 0.5 a global attractor for this dynamical system; if 

the output were somehow perturbed to some other value momentarily, it would converge back to 

0.5 (in one time step, in this case). 

However, when teacher forcing is used, the behavior tends toward creating point attractors for 

the output of the unit at 1/n and 1—1/n. When n = 2 this is identical to the solution obtained 

without teacher forcing, but for n > 3 it is quite different. When n > 3, the weights obtained 

using teacher forcing lead to bistable behavior, with an output of 0.5 representing an unstable 

critical point separating the two basins of attraction for the system. 

Teacher forcing leads to such a result because it emphasizes transitions in the training data. 

According to the training data, a correct output of either 0 or 1 is followed by that same value 1 — 

1/n of the time and by the opposite value 1/n of the time; the result obtained using teacher forcing 

simply represents the minimum mean-square error for such transition data. In this particular 

problem only the transitions between successive output values are relevant because there are no 

other state variables potentially available to record the effect of earlier output values. More 

generally, teacher forcing attempts to fit transitions from the collection of all prior correct output 

values to the next correct output value, subject to the ability of the net to capture the relevant 

distinctions in its state of activity. 

Pineda (1989, [chapter ??, this volume]) has pointed out some other potential problems with 
teacher forcing. One of these is that it may create trajectories which are not attractors but 

repellers. One potential way around this and other difficulties with teacher forcing is to consider 

a slight generalization in which x;,(t) is set equal to y,(t) + Ge,(t) for k € U, where @ € [0,1] is 
a constant. Teacher forcing uses G = 1 while G = 0 represents its absence. But other values of @ 

represent a mix of the two strategies. For this generalization, the correct gradient computation 

involves attenuating the virtual error backpropagated from later times by the factor 1 — 6 in 

BPTT or multiplying Pi, (t) by 1 — @ before propagating the activity gradient forward in RTRL. 
A related strategy is to use teacher forcing intermittently rather than on every time step when 

target values are available. This has been tested by Tsung (1990) and found useful for dealing with 

the somewhat different but related problem of training network trajectories that vary extremely 

slowly. 

Finally, we note that Rohwer (1990) has expanded on this idea of teacher forcing to develop an 

interesting new epochwise learning algorithm based on computation of the gradient of performance 

with respect to unit activities rather than network weights. 

30



10 Experimental Studies 

The important question to be addressed in studies of recurrent network learning algorithms, what- 

ever the constraints to which they must conform, is how much total computational effort must 

be expended to achieve the desired performance. For many of the algorithms described here an 

analysis of the amount of computation required per time step has been presented, but this must 

be combined with knowledge of the number of time steps required and success rate obtained 

when training particular networks to perform particular tasks. Any speed gain from performing 

a simplified computation on each time step is of little interest unless it allows successful training 

without inordinately prolonging the training time. 

To examine the relative performance of some of the more computationally attractive approxi- 

mation algorithms for continually operating networks described here, both subgrouped RT'RL and 

truncated BPTT were tested for their ability to train fully recurrent networks to emulate the finite 

state machine part of a Turing machine for balancing parentheses, a task that had previously been 

shown to be learnable by RTRL (Williams & Zipser, 1989b). For this task the network receives 
as input the same tape mark that the Turing machine “sees,” and is trained to produce the same 

outputs as the Turing machine for each cell of the tape that it visits. There are 4 output lines in 

the version of the problem used here. They code for the direction of movement, the character to 

be written on the tape and whether a balanced or unbalanced final state has been reached. It had 

previously been found that a fully recurrent network with 12 units was the smallest that learned 

the Turing machine task. Although this could be formulated as an epochwise task by resetting 

the network every time the Turing machine halts and begins anew, the network was allowed to 

run continually, with transitions from a halt state to the start state being considered part of the 

state transition structure which the network had to infer. 

To test the subgrouping strategy on this task, a 12-unit fully connected network was divided 

for learning into 4 subnets of 3 units each, with one unit in each subnet designated as an output 

unit. The full RTRL algorithm allowed the network to learn the task with or without teacher 

forcing about 50% of the time after seeing fewer than 100,000 cells of the Turing machine tape. 

The RTRL(4) algorithm also allowed the network to learn the task about 50% of the time in 
fewer than 100,000 Turing machine cycles, but only in the teacher forcing mode. The subdivided 

network never learned the task without teacher forcing. 

To test the truncation strategy on this task, BPTT(h) was tried, with various values of h.'! No 

teacher forcing was used. It was found that with h < 4, BPTT(h) was successful in training the 
network only about 9% of the time, while BPTT(9) succeeded more than 80% of the time. The 
fact that BPTT(9) succeeded more often than the various RTRL algorithms, including the version 

with no subgrouping, may indicate that the error committed in computing an exact gradient 

as if the weights had been constant throughout the past may outweigh the error committed by 

discarding all effects of activity and input in the distant past. On the other hand, it might also 

represent a beneficial effect of failing to follow the exact gradient and thereby avoiding becoming 

trapped at a local optimum. 

The relative actual running times of the these algorithms on a single-processor machine were 

also compared. It was found that BPTT(9) ran 28 times faster on this task than RTRL, while 

RTRL(4) ran 9.8 times faster than RTRL. 
  

‘1 For these studies the variant in which past weight values are stored in the history buffer was used. 
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In another set of studies (Williams & Peng, 1990), BPTT(16;8) was found to succeed as often 
as BPTT(9) on this task, while running twice as fast.'? Note that BPTT(16;8) is thus well over 
50 times faster than RTRL on this task. 

  

Insert Table 1 about here. 
  

  

Insert Table 2 about here. 
  

11 Discussion 

In this chapter we have described a number of gradient-based learning algorithms for recurrent 

networks, all based on two different approaches to computing the gradient of network error in 

weight space. The existence of these various techniques, some of them quite reasonable in terms 

of their computational requirements, should make possible much more widespread investigation 

of the capabilities of recurrent networks. 

In the introduction we noted that investigators studying learning algorithms for such networks 

might have various objectives, each of which might imply different constraints on which algorithms 

might be considered to meet these objectives. Among the possible constraints one might wish to 

impose on a learning algorithm are biological plausibility and locality of communication. Feed- 

forward backpropagation is generally regarded as biologically implausible, but its requirement for 

reverse communication along only the connections already in place allows it to be considered a 

locally implementable algorithm, in the sense that it does not require a great deal of additional 

machinery beyond the network itself to allow implementation of the algorithm. Except in very 

restricted cases involving severely limited architectures or extreme approximations, the algorithms 

described here cannot be considered biologically plausible as learning algorithms for real neural 

networks, nor do they enjoy the locality of feeforward backpropagation. 

However, many of the algorithms discussed here can be implemented quite reasonably and effi- 

ciently in either vector parallel hardware or special-purpose parallel hardware designed around the 

storage and communication requirements of the particular algorithm. Several of these algorithms 

are quite well suited for efficient serial implementation as well. Thus one might expect to see these 

algorithms used especially for off-line development of networks having desired temporal behaviors 

in order to study the properties of these networks. Some of these techniques have already been 

used successfully to fit models of biological neural subsystems to data on the temporal patterns 

they generate (Arnold & Robinson, 1989; Lockery, Fang, & Sejnowski, 1990; Tsung, Cottrell, & 

Selverston, 1990; Anastasio, 1991) and a number of studies have been undertaken to apply these 
  

12Careful analysis of the computational requirements of BPTT(9) and of BPTT(16;8), taking into account the 
fixed overhead of running the network in the forward direction that must be borne by any algorithm, would suggest 

that one should expect about a factor of 4 speedup when using BPTT(16;8). Because this particular task has targets 

only on every other time step, the use of BPTT(9) here really amounts to using BPTT(9;2), which therefore reduces 

the speed gain by essentially one factor of 2. 
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methods to develop networks which carry out various language processing or motor control tasks 

as a means of understanding the information processing strategies involved (Elman, 1988; Jordan, 

1986; Mozer, 1989, [chapter ??, this volume]; Cleeremans, Servan-Screiber, and McClelland, 1989, 

[chapter ??, this volume]; Smith & Zipser, 1990). One might also expect to see specific engineering 

applications of recurrent networks developed by these methods as well. 

Thus there is much that can be done with the currently available algorithms for training 

recurrent networks, but there remains a great deal of room for further development of such al- 

gorithms. It is already clear that more locally implementable or biologically plausible algorithms 

remain to be found, and algorithms with improved overall learning times are always desirable. It 

seems reasonable to conjecture that such algorithms will have to be more architecture-specific or 

task-specific than the general-purpose algorithms studied here. 

Of particular importance are learning algorithms for continually operating networks. Here 

we have described both “exact” and approximate gradient algorithms for training such networks. 

However, by our definition, the exact algorithms compute the true gradient at the current value of 

the weights only under the assumption that the weights are held fixed, which cannot be true in a 

continually operating learning network. This problem need not occur in a network which operates 

epochwise; when weight changes are only performed between epochs, an exact gradient algorithm 

can compute the true gradient of some appropriate quantity. 

Thus all the algorithms described here for continually operating networks are only capable 

of computing approximate gradient information to help guide the weight updates. The degree 

of approximation involved with the so-called “exact” algorithms depends on the degree to which 

past history of network operation influences the gradient computation and the degree to which 

the weights have changed in the recent past. Truncated BPTT alleviates this particular problem 

because it ignores all past contributions to the gradient beyond a certain distance into the past. 

Such information is also present in RTRL, albeit implicitly, and Gherrity (1989) has specifically 

addressed this issue by incorporating into his continuous-time version of RT'RL an exponential 

decay on the contributions from past times. For the discrete-time RTRL algorithm described 

here, this is easily implemented by multiplying all the Di, values by an attenuation factor less than 

1 before computing their updated values. Unlike truncated BPTT, however, this does not reduce 

the computational complexity of the algorithm. 

Another way to attempt to alleviate this problem is to use a very low learning rate. The effect 

of this is make the constant-weight approximation more accurate, although it may slow learning. 

One way to view this issue is in terms of time scales, as noted by Pineda [chapter ??, this volume]. 

The accuracy of the gradient computation provided by an exact algorithm in our sense depends 

on the extent to which the time scale of the learning process is decoupled from the time scale of 

the network’s operation by being much slower. In general, with the learning rate set to provide 

sufficiently fast learning, these time scales may overlap. This can result in overall dynamical 

behavior which is determined by a combination of the dynamics of the network activation and 

the dynamics of the weight changes brought about by the learning algorithm. At this point one 

leaves the realm of gradient-based learning algorithms and enters a realm in which a more general 

control-theoretic formulation is more appropriate. A particular issue here of some importance is 

the overall stability of such a system, as emphasized in the theory of adaptive control (Narendra & 

Annaswamy, 1989). It is to be expected that satisfactory application of the techniques described 

here to situations requiring on-line adaptation of continually operating recurrent networks will 
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depend on gaining further understanding of these questions. 

It is useful to recognize the close relationship between some of the techniques discussed here 

and certain approaches which are well known in the engineering literature. In particular, the 

specific backward error propagation and forward gradient propagation techniques which we have 

used here as the basis for all the algorithms investigated turn out to have their roots in standard 

optimal-control-theoretic formulations dating back to the 1960’s. For example, leCun (1988) has 

pointed to the work of Bryson and Ho (1969) in optimal control theory as containing a description 

of what can now be recognized as error backpropagation when applied to multilayer networks. 

Furthermore, it is also clear that work in that tradition also contains the essential elements of the 

backpropagation-through-time approach. The idea of backpropagating through time, at least for 

a linear system, amounts to running forward in time what is called in that literature the adjoint 

system. The two-point boundary-value problems discussed in the optimal control literature arise 

from such considerations. Furthermore, the idea of propagating gradient information forward 

in time, used as the basis for RTRL, was proposed by McBride and Narendra (1965), who also 

noted that use of the adjoint system may be preferable when on-line computation is not required 

because of its lower computational requirements. The teacher forcing technique has its counterpart 

in engineering circles as well. For example, it appears in the adaptive signal processing literature 

as an “equation error” technique for synthesizing linear filters having an infinite impulse response 

(Widrow & Stearns, 1985). 
In work very similar in spirit to that we have presented here, Piche (1994) has shown how 

various forms of backpropagation through time and forward gradient computation may be de- 

rived in a unified manner from a standard Euler-Lagrange optimal-control-theoretic formulation. 

Furthermore, he also discusses the computational complexity of the various algorithms described. 

Included among the algorithms covered by his analysis are some of those we have described in 

Section 7 for special architectures. 

Finally, we remark that the techniques we have discussed here are far from being the only 

ones available for creating networks having certain desired properties. We have focused here 

specifically on those techniques which are based on computation of the error gradient in weight 

space, with particular emphasis on methods appropriate for continually operating networks. As 

described earlier in the discussion of the teacher forcing technique, Rohwer (1990) has proposed 

an epochwise approach based on computation of the error gradient with respect to unit activities 

rather than network weights. Also, another body of techniques has been developed by Baird 

(1989) for synthesizing networks having prescribed dynamical properties. Unlike the algorithms 

discussed here, which are designed to gradually perturb the behavior of the network toward the 

target behavior as it runs, these algorithms are intended to be used to “program in” the desired 

dynamics at the outset. Another difference is that these techniques are currently limited to creating 

networks for which external input must be in the form of momentary state perturbations rather 

than more general time-varying forcing functions. 
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A Appendix 

A.1 Preliminaries 

For completeness, we first summarize some of the definitions and assumptions from the main text. 

Given a network with n units and m input lines, we define an (m+ n)-tuple x(t) and index sets 
U and I such that 2x;(t), the k** component of x(t), represents either the output of a unit in the 
network at time t, if k € U, or an external input to the network at time t, ifk € J. When k € U, 

we also use the notation y;,(t) for x(t). For each i € U and j © U UT we have a unique weight 
wij on the connection from unit or input line 7 to unit @. 

Letting T(t) denote the set of indices & € U for which there exists a specified target value d;(t) 
that the output of the k“" unit should match at time t, we also define a time-varying n-tuple e(t) 

whose k*® component is 

a ={ O-me) ke TE 
0 otherwise. 

We then define the two functions 

(54) 

F(t) = —1/2 Slew)’ (55) 
kcU 

and . 

Toe t= YS I(r), (56) 
t= +1 

where tg < t’ < ¢, with tp denoting some fixed starting time. 

For purposes of analyzing the backpropagation-through-time approach, we replace the dynam- 

ical equations (2) and (3) in the main text by the equations 

y(t + 1) = S- wee (t) x1 (Et), (57) 

leUUl 

ye(t + 1) = fr(se(t + 1)), (58) 

and 

Wij (t) = Wij; (59) 

for all k € U, i € ;U, j € U UT, which give rise to equivalent dynamics for the s, and yy 

values. These equations can be viewed as representing the multilayer computation performed in 

the unrolled version \V* of the original arbitrary net MN’, where ¢ represents a layer index in \* 

rather than a time index in NV. 
Now suppose we are given a differentiable function F' expressed in terms of {y,(7) | k € U,t’ < 

T <t}, the outputs of the network over the time interval (¢’,¢]. Note that while / may have an 
explicit dependence on some y;(T), it may also have an implicit dependence on this same value 

through later output values. To avoid the resulting ambiguity in interpreting partial derivatives 

like OF /Oy;,(7), we introduce variables y;(7) such that yz(7) = yx(7) for all k € U and 7 € (t,#| 
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and treat F as if it were expressed in terms of the variables {y{(7)} rather than the variables 

{ya(r)}."° 
Then, for all k € U, define 

OF 
  

  

é4(7; F) = yg (T) (60) 

for all 7 € [to, #] and define 

Bult F) = 5 (61) 
for all rT € (to, #]. Also, define 

a(n) = 5o (62) 
for all 7 € (t,t]. Note that e,(7;F) = 0 whenever 7 < t' because we assume that F' has no 
explicit dependence on the output of the network for times outside the interval (t’, t]. Finally, for 

t€U,j7E€UUI,k EU, and € [t,t], define 

  Hit) = FE, (63) 
with 

Di (to) =0 (64) 

for all such 2, 7, and k since we assume that the initial state of the network has no functional 

dependence on the weights. 

A.2 Derivation of the Backpropagation-Through-Time Formulation 

Since F depends on y;(7) only through y;(7) and the variables s;(7 + 1), as 1 ranges over U, we 
have 

OF  dOy(7r) OF Os (7 +1) OF 
    = , 65 
Oyn(T)  Oyn(T) Oy;(T) 2 Oyx(T) Osy(7 +1) (65) 

from which it follows that 

om _ | ex(t; F) iff =t 
ex(T; F) 7 | en (7; F) + Micy windi(T + 1; F) if 7 < t. (66) 

Also, for all 7 < ¢, 

  

Os,(T) 7 ds,(T) Oy, (T)’ 

  

13To see why this is necessary, consider, for example, the two possible interpretations of OF'/Ox given that 

F(z,y) =2x+y and y = x. The confusion occurs because the variable named “x” represents two different function 

arguments according to a strict use of the mathematical chain rule, a problem easily remedied by introducing 

additional variable names to eliminate such duplication. Werbos (1974; 1988), in addressing this same problem, 

uses the standard partial derivative notation to refer to explicit dependencies only, introducing the term ordered 

derivative, denoted in a different fashion, for a partial derivative which takes into account all influences. Our use 

of partial derivatives here corresponds to this latter notion. 
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so that 

On(7; F) = fl 8e(7))en(7; F). (68) 
In addition, for any appropriate 2 and j, 

        

  

  

Owiy fay, Owij(T) Owig Sf, Owij(7)’ 

and, for any 7, 
OF OF  0s,(7 +1) 

= = 6; 1; F)x,;(7). 
Owi(T)  Os(7T +1) Ow,;(7) ir +1; Fay (7) (70) 

Combining these last two results yields 

F t-1 

d = \> 6,(7 +1; F)a;(r). (71) 
OWig Fahy 

Equations (66), (68), and (71) represent the backpropagation-through-time computation of 

OF /Ow;,; for any differentiable function F expressed in terms of the outputs of individual units in a 

network of semilinear units. With F = J(t), these specialize to the real-time BPTT equations (12), 
(13), (14), and (16) given in the main text because e,(t; J(t)) = e,(t) and e,(7; J(t)) = 0 for 7 < t. 
Similarly, the equations (17), (18), (19), and (20) for epochwise BPTT are obtained by setting 
t=t, and F = J‘*#!(¢o,¢,) and observing that e,(7; J*" (to, t1)) = eg(7) for all rT < ty. 

A.3 Derivation of the Hybrid Formulation 

Continuing on from equation (69), we may write 

OF v-l OF t-l1 oF 
ae . 5 

Owij xX Owy(T) r au Owi;(T) (72) 

But the first sum on the right-hand side of this equation may be rewritten as 

      

    

    

‘| OF al OF dy (t') 

Xu Ow; (7) 7 z a Oyr( wow ig (T) 

_ — Omit ‘ 
d a t’) Ln Ow; (T 

_ OF Oy (t’) 

d Oy (t’) Ow 

= ait; F)pi,;(#). 
lcU 

Incorporating this result and equation (70) into equation (72) yields 

  

OF t-1 

= Dall; F)pi,(t) + > 6i(r + 1; F)2;(r). (73) 
Ow lcU rat! 
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This last result, together with equations (66) and (68), represents the basis for the hybrid 
FP/BPTT algorithm described in the text. For that algorithm we apply equation (73) a total of 

n+] times, first to F = J*#!(¢’, t), and then to F = y(t) for each k € U. That is, backpropagation 

through time, terminating at time step 7’, is performed n+1 different times. When F = J‘*#!(¢’, 2), 
this computation yields the desired gradient of J‘°"'(t’, t), assuming that the values pi, (t’), for all 
appropriate i, j, and k, are available. Performing the backpropagation with F' = y;,(t) yields the 

values Di, for all appropriate 2 and 7, so this must be performed anew for each & to yield the entire 

set of Di, values for use in the next time interval. 
Not surprisingly, this hybrid formulation can be shown to subsume both the BPTT and RTRL 

formulations. In particular, the pure BPTT equation (71) is the special case where ¢/ = to. 
Likewise, if we let F = J(t) and t’ = t, we see that the second sum vanishes and the result is 

  -= Va(t)pi; (0), (74) 

while letting F = y,(t) and t/ = ¢ — 1 yields 

pi, (t) = S- writ p(Sa(t)) pi, (t —1)+ dir fi; (si(t)) 2, (t — 1) 
lcU 

= filse(t)) | >) was (t — 1) + dinng(t — 1)] (75) 

Al



  

  

  

  

  

  

  

  

  

  

  

        

Average Time 

Algorithm Space Per Time Step 

Epochwise BPTT O((m+n)h) O(wy + wa) 
BPTT (oo) O((m+n)L) O((wy + wa)L/Ar) 

RTRL O(nwa) O(wywa) 
FP/BPTT(h) O(nwat(mt+nyjh) | O(nwy +nw,+n?wa/h) 
FP/BPTT(cn) O(nwaten(m+n)) | O(nwy + nwa + nwa/c) 
BPTT(h) O((m + n)jh) O((wy + wa)h/Ar) 
BPTT(hA; h’) O((m + n)jh) O((wy + wa)h/h’) 
BPTT(h; ch) O((m + n)jh) O(wy + wa) 

RTRL(g) O(nwa/g) O(wywa/g* + nrwa/9) 
RTRL(en) O(wa) O(wywa/(en?) + nrwa/n)   
  

Table 1: Order of magnitude of space and time requirements for the various general-purpose 

algorithms discussed here. Here c denotes a constant and the meaning of all the other symbols 

used is summarized in Section 3.3. Note: For the variant of BPTT(A) in which past weight values 
are saved, the space requirements are in O(wah). 

  

  

  

  

  

  

  

  

  

  

  

      

Average Time 

Algorithm Space Per Time Step 

Epochwise BPTT O(nh) O(n") 
BPTT (oo) O(nL) Q(n?L) 
RTRL Q(n?) Q(n*) 
FP/BPTT(h) O(n? + nh) | O(n? +n*/h) 
FP/BPTT (cn) Q(n?) Q(n?) 
BPTT(h) Q(nh) Q(n7h) 
BPTT(h; h’) Q(nh) Q(n*h/h’) 
BPTT(h; ch) O(nh) O(n") 

RTRL(g) Q(n°/g) O(n*/9*) 
RTRL(cen) Q(n?) Q(n?)     
  

Table 2: Worst-case complexity for the various general-purpose algorithms discussed here ex- 

pressed in terms of the number of units n. These results are based on the assumption that m, the 

number of input lines, is in O(n). Here c denotes a constant. Note: For the variant of BPTT(h) 
in which past weight values are saved, the worst-case space requirements are in O(n7h). 
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Figure 1: Two representations of a completely connected recurrent network having 3 units and 2 

input lines. One input line might serve as a bias and carry the constant value 1. Any subset of 

these 3 units may serve as output units for the net, with the remaining units treated as hidden 

units. The 3 x 5 weight matrix for this network corresponds to the array of heavy dots in the 

version on the right. 

Figure 2: The unrolled version of the network shown in Figure 1 as it operates from time to 

through time ¢. Each connection in the network is assumed to have a delay of 1 time step. 

Figure 3: A schematic representation of the storage and processing required for real-time BPTT 

at each time step t. The history buffer, which grows by one layer at each time step, contains at 

time ¢ all input and unit output values for every time step from ¢) through ¢. The solid arrows 

indicate how each set of unit output values is determined from the input and unit outputs on the 

previous time step. A backward pass, indicated by the dashed arrows, is performed to determine 

separate 6 values for each unit and for each time step back to tg) +1. The first step is the injection 

of external error based on the target values for time step ¢, and all remaining steps determine 

virtual error for earlier time steps. Once the backward pass is complete the partial derivative of 

the negative error with respect to each weight can then be computed. 

Figure 4: A schematic representation of the storage and processing required for epochwise BPTT. 

All input, unit output, and target values for every time step from to through ¢, are stored in 

the history buffer. The solid arrows indicate how each set of unit output values is determined 

from the input and unit outputs on the previous time step. After the entire epoch is complete, 

the backward pass is performed as indicated by the dashed arrows. Each even-numbered step 

determines the virtual error from later time steps, while each odd-numbered step corresponds to 

the injection of external error. Once the backward pass has been performed to determine separate 

6 values for each unit and for each time step back to tj) +1, the partial derivative of the negative 

error with respect to each weight can then be computed. 

Figure 5: The data structures that must be updated on each time step to run the RTRL algorithm 

with the network of Figure 1. In addition to updating the 3 unit activities within the network 

itself on each time step (along with the 15 weights, if appropriate), the 3 x 5 x 3 array of Di, values 

must also be updated. It is assumed here that all 15 weights in the network are adjustable. In 

general, a Di, value for each combination of adjustable weight and unit in the network must be 

stored and updated on each time step for RTRL. 
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Figure 6: A schematic representation of the storage and processing required for the FP/BPTT(h) 
algorithm for two consecutive executions of the error gradient computation, one at time step ¢t and 

the next at time step {+ h. From time step t — h through time step t the network input, activity, 

and target values are accumulated in the history buffer. At time t the cumulative error gradient 

is computed on the basis of one BPTT pass through this buffer, also using the p values stored 

for time step t — h. In addition, n separate BPTT passes, one for each unit in the network, are 

performed to compute the p values for time ¢. Each such BPTT pass begins with the injection of 

1 as “error” at a single unit at the top level. Once the weights have been adjusted on the basis 

of the cumulative error gradient over the interval (¢ — h,t] and the p values have been updated at 

time ¢, accumulation of the history begins anew over the interval [¢,t + hl. 

Figure 7: A network having connections with delays of 0 and 1 and its unrolling from time tg to 

t. The feedforward connections, indicated by the thinner arrows in the network itself, all have a 

delay of 0. These correspond to the within-level connections in the unrolled version. The feedback 

connections, indicated by the thicker arrows in the network, all have a delay of 1. These correspond 

to the connections from each level to the next level above it in the unrolled version. Other delays 

beside 0 and 1 are possible and would be represented by connections that skip levels. In the 

unrolled network, updating of activity is assumed to occur from left to right within each level and 

then upward to the next level. Thus a sequence of operations is performed within each single time 

step when computing the activity in the network. When errors are backpropagated, processing 

goes in the reverse direction, from higher levels to lower levels and from right to left within each 

level. 

Figure 8: Three special architectures where all connections have delays of 0 or 1 time step. In each 

case the hidden stage and the output stage have only 0-delay feedforward connections within them. 

They may each consist of multilayer networks, for example. It is also assumed that there is no delay 

on the input connections or the feedforward connections from units in the hidden stage to units in 

the output stage. The output stage must contain all units which receive target values. Input may 

optionally feed directly to the output stage, as indicated. The feedback connections, indicated by 

the heavier arrows, all have a delay of 1 time step. The 3 possible feedback configurations are 

where: (A) all feedback is confined to the hidden stage; (B) all feedback goes from the output 
stage to the hidden stage; and (C) all feedback is confined to the output stage. A specialized 

mixture of backpropagation and RTRL is applicable to each of these architectures. 

Figure 9: A schematic representation of the storage and processing required for the BPTT(h) 

algorithm for two consecutive executions of the error gradient computation, one at time step ¢ 

and the next at time step {+ 1. The history buffer always contains the current network input, 

activity, and target values, along with the values of network input and activity for the h prior 

time steps. The BPTT computation requires injection of error only for the current time step and 

is performed anew at each subsequent time step. 
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Figure 10: A schematic representation of the storage and processing required for the BPTT(h; h’) 

algorithm for two consecutive executions of the error gradient computation, one at time step ¢t and 

the next at time step t+h’. The history buffer always contains the values of the network input and 

activity for the current time step as well as for the h prior time steps. It also contains target values 

for the most recent h’ time steps, including the current time step. The BPTT computation thus 

requires the injection of error only at the h’ uppermost levels in the buffer. This figure illustrates 

a case where h’ < h/2, but it is also possible to have h' > h/2. 

Figure 11: A network divided into 2 subnetworks for subgrouped RTRL. The full RTRL algorithm 

requires keeping track of the sensitivity of each unit in the network with respect to each weight in 

the network. When subgrouping is used, each unit only pays attention to its sensitivity to weights 

on connections terminating in the group to which it belongs. Thus, among the 4 connections 

shown, only those 2 indicated with the heavy lines are considered when computing the sensitivity 

of the unit indicated by the shading to variations in the weights. 
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