
Gradient-Based Learning Algorithms for Recurrent

Networks and Their Computational Complexity

Ronald J. Williams

College of Computer Science

Northeastern University

Boston, MA 02115

and

David Zipser

Department of Cognitive Science

University of California, San Diego

La Jolla, CA 92093

Appears in Y. Chauvin & D. E. Rumelhart (Eds.)
Back-propagation: Theory, Architectures and Applications.

Hillsdale, NJ: Erlbaum. 1995.

1 Introduction

1.1 Learning in Recurrent Networks

Connectionist networks having feedback connections are interesting for a number of reasons. Bio-

logical neural networks are highly recurrently connected, and many authors have studied recurrent

network models of various types of perceptual and memory processes. The general property making

such networks interesting and potentially useful is that they manifest highly nonlinear dynami-

cal behavior. One such type of dynamical behavior that has received much attention is that of

settling to a fixed stable state, but probably of greater importance both biologically and from an

engineering viewpoint are time-varying behaviors.

Here we consider algorithms for training recurrent networks to perform temporal supervised

learning tasks, in which the specification of desired behavior is in the form of specific examples

of input and desired output trajectories. One example of such a task is sequence classification,

where the input is the sequence to be classified and the desired output is the correct classification,

which is to be produced at the end of the sequence, as in some of the work reported by Mozer

(1989; [chapter ??, this volume]). Another example is sequence production, as studied by Jordan

(1986), in which the input is a constant pattern and the corresponding desired output is a time-

varying sequence. More generally, both the input and desired output may be time-varying, as

in the prediction problems investigated by Cleeremans, Servan-Screiber, and McClelland (1989;

[chapter ??, this volume]) and the control problems studied by Nguyen and Widrow [chapter ??,
this volume]. While limited forms of time-varying behaviors can be handled by using feedforward

networks and tapped delay lines (e.g., Waibel et al., 1987), recurrent networks offer a much

richer set of possibilities for representing the necessary internal state. Because their internal state

representation is adaptive rather than fixed, they can form delay line structures when necessary

while also being able to create flip-flops or other memory structures capable of preserving state

over potentially unbounded periods of time. This point has been emphasized in (Williams, 1990)

and similar arguments have been made by Mozer (1989; [chapter ??, this volume]).

There are a number of possible reasons to pursue the development of learning algorithms for

recurrent networks, and these may involve a variety of possible constraints on the algorithms

one might be willing to consider. For example, one might be interested in understanding how

biological neural networks learn to store and reproduce temporal sequences, which requires that

the algorithm used be “biologically plausible,” implying that the specific implementation of the

algorithm map onto known neural circuitry in a reasonable way. Or, one might seek an algorithm

which does not necessarily conform to known biological constraints but is at least implementable in

entirely local fashion, requiring essentially no additional connectivity beyond that already present

in the network to be trained. A still weaker constraint on the algorithm is that it allow a reasonable

implementation in parallel hardware, even if that requires certain additional mechanisms within

the overall system beyond those present in the network to be trained. ‘These last two constraints are

of some importance for attempts to create special-purpose hardware realizations of networks with

on-line adaptation capabilities. Another possible constraint on the algorithm is that it be efficient

when implemented in serial hardware. This constraint may be important for off-line development

of networks which are useful for certain engineering applications, and it can also be important for

cognitive modeling studies which are designed to examine the internal representations necessary

to perform certain sequential tasks.

1.2 Overview of This Chapter

In this chapter we describe several gradient-based approaches to training a recurrent network to

perform a desired sequential behavior in response to input. In characterizing these approaches

as “eradient-based” we mean that at least part of the learning algorithm involves computing the

gradient of some form of performance measure for the network in weight space, either exactly or

approximately, with this result then used in some appropriate fashion to determine the weight

changes. For the type of task investigated here, the performance measure is a simple measure of

error between actual and desired output.

Because we deal here only with gradient-based learning algorithms, our primary focus will

be on techniques for computing this exact or approximate gradient information. It is to be

understood that there may be various alternative ways to use this gradient information in a

particular learning algorithm, including simple proportional descent along the error gradient or

the use of “momentum” or other more sophisticated acceleration techniques.

We discuss several approaches to performing the desired gradient computation, some based

on the familiar backpropagation algorithm and some involving other ideas. Part of the intent of

this chapter is to discuss the relationship between these various alternative approaches to gra-

dient computation in recurrent networks. We begin by developing exact gradient computation

algorithms, but later we note how they give rise to useful approximation strategies having more

desirable computational features. For all these approaches to exact or approximate gradient com-

putation we also provide an analysis of their computational requirements. The reader interested

in performing digital computer simulation experiments of these various algorithms may find these

analyses particularly helpful. In addition, we note some special architectures which readily lend

themselves to specific hybrid strategies giving rise to conceptually and/or computationally sim-

pler algorithms for exact gradient computation. Additional topics discussed are teacher forcing,

a useful adjunct to all of the techniques discussed, and some experimental comparisons of the

performance of some of the algorithms.

2 Continual vs. Epochwise Operation

It is important to distinguish between two approaches to operating (and training) a recurrent

network. In epochwise operation the network is run from some particular starting start until some

stopping time is reached, after which the network is reset to its starting state for the next epoch.

It is not essential that the state at the beginning of each epoch be the same; the important feature

of this approach is that the state at the start of the new epoch is unrelated to the state at the end

of the previous epoch. Because of this, an epoch boundary serves as a barrier across which “credit-

assignment” should not pass; erection of these barriers rules out any possibility that activity from

one epoch might be relevant to producing the desired behavior for any later epoch.!

Note that an epoch in the sense used here is only loosely related to the corresponding notion

sometimes used in the context of so-called batch training, as distinguished from incremental train-

ang, of feedforward networks. The key issue in that case is when the weight updates are performed.

In the batch approach to training a feedforward network, weight changes are performed only after

a complete cycle of pattern presentations; in the incremental approach, weight changes are made

after each pattern is presented. In the current terminology, a single epoch for the recurrent net-

work corresponds to one training pattern for a feedforward network, so a network which operates

epochwise may be trained using an incremental approach, in which weight changes are made at

the end of each epoch, or a batch approach, in which weight changes are performed after several

epochs.

In contrast, a network is considered to operate continually if neither “manual” state resets

nor other such artificial credit-assignment barriers are available to a trainer of the network. The

concept of a continually operating network would appear to be more appropriate for situations

when on-line learning is required, although this introduces some subtleties when attempting to

formalize the overall objective of learning. These subtleties are not present in the epochwise

case because one can imagine that each epoch involves a potentially repeatable event, like the

presentation of a single pattern to a feedforward network, with these individual events considered

‘Interestingly, these functions can be dissociated from one another. For example, one might imagine imposing

no state reset at any time, while still allowing a learning algorithm to take advantage of occasional information

provided by a teacher which effectively tells the learning system that no state reached prior to some particular time

is relevant to producing correct performance at subsequent times.

3

independent of one another. An additional subtlety in the continual operation case is due to the

need to make weight changes while the network runs. Unlike the epochwise case, the continual

operation case offers no convenient times at which to imagine beginning anew with different weight

values.

As an example of the use of this distinction, consider the task of training a network to match

the input-output behavior of a given finite-state machine through observation of this behavior. A

number of the training algorithms to be described in this chapter have been used for just such

tasks. If one assumes that there is a distinguished start state and a set of distinguished final states

in the machine to be emulated by the network, then it seems reasonable to train the network in an

epochwise fashion. In this approach, whenever the machine being emulated is restarted in its start

state after arriving in a final state, the network is reset to its start state as well. However, one

might also consider trying to emulate finite-state machines having no such distinguished states, in

which case letting the network operate continually is more appropriate. In general, resetting the

network to match a particular state of the machine being emulated is an additional mechanism for

giving training information to the network, less informative than the extreme of giving complete

state information (which would make the task easy), but more informative than giving only input-

output information. In this case the training information helps learning during the time period

shortly after the reset. There is also another difference between the continual operation case and

the epochwise case which may be important. If transitions are added from the final states to the

start state in the finite-state machine emulation task, an epochwise task is turned into a continual-

operation task. Note that a network trained to perform the epochwise version of the task is never

required to make the transition to this distinguished state on its own, so one would not expect it

to perform the same on the continual-operation version of the task as a network actually trained

on that version. In particular, it may not be able to “reset itself”? when appropriate.

While we include discussion of learning algorithms for networks which operate epochwise, much

of our emphasis here is on algorithms especially appropriate for training continually operating

networks.

3 Formal Assumptions and Definitions

3.1 Network Architecture and Dynamics

All the algorithms presented in this chapter are based on the assumption that the network consists

entirely of semilinear units. More general formulations of these algorithms are possible, and it is

straightforward to use the same approach to deriving them. Another assumption we make here is

the use of discrete time. There are continuous-time analogs of all the approaches we discuss, some

of which are straightforward to obtain and others of which involve more work.

Let the network have n units, with m external input lines.* Let y(t) denote the n-tuple of
outputs of the units in the network at time ¢, and let x(t) denote the m-tuple of external

input signals to the network at time t. We also define x(t) to be the (m+ n)-tuple obtained by
concatenating x(t) and y(t) in some convenient fashion. To distinguish the components of x

2What we call here input lines others have chosen to call input units. We avoid this terminology here because

we believe that they should not be regarded as units since they perform no computation. Another reasonable

alternative might be to call them input terminals.

representing unit outputs from those representing external input values where necessary, let U

denote the set of indices & such that x;,, the k** component of x, is the output of a unit in the

network, and let J denote the set of indices & for which x; is an external input. Furthermore, we

assume that the indices on y and x" are chosen to correspond to those of x, so that

oe (t) ifk el
te(t) = | y(t) if k CU. ()

For example, in a computer implementation using zero-based array indexing, it is convenient to

index units and input lines by integers in the range [0, m+n), with indices in [0, m) corresponding

to input lines and indices in [m,m +n) corresponding to units in the network. Note that one

consequence of this notational convention is that x;(t) and y,(t) are two different names for the
same quantity when & € U. The general philosophy behind our use of this notation is that

variables symbolized by x represent input and variables symbolized by y represent output. Since

the output of a unit may also serve as input to itself and other units, we will consistently use x;

when its role as input is being emphasized and y, when its role as output is being emphasized.

Furthermore, this naming convention is intended to apply both at the level of individual units

and at the level of the entire network. Thus, from the point of view of the network, its input is

denoted x"* and, had it been necessary for this exposition, we would have denoted its output by

y™* and chosen its indexing to be consistent with that of y and x.

Let W denote the weight matrix for the network, with a unique weight between every pair

of units and also from each input line to each unit. By adopting the indexing convention just

described, we can incorporate all the weights into this single n x (m+n) matrix. The element
wij Tepresents the weight on the connection to the i unit from either the j“ unit, if 7 € U,

or the j*" input line, if 7 € J. Furthermore, note that to accommodate a bias for each unit we

simply include among the m input lines one input whose value is always 1; the corresponding

column of the weight matrix contains as its i“ element the bias for unit 7. In general, our naming

convention dictates that we regard the weight w;; as having x; as its “presynaptic” signal and y;

as its “postsynaptic” signal. Figure 1 shows a fully connected network having 3 units, 2 input

lines, and a 3 x 5 weight matrix.

Insert Figure 1 about here.

For the semilinear units used here it is convenient to also introduce for each k the intermediate

variable s,(t), which represents the net input to the k‘" unit at time t. Its value at time ¢+ 1 is

computed in terms of both the state of and input to the network at time ¢ by

s(t + 1) = S- weryi(t) + S- Wet, (t) = S- Wri (t). (2)

leU lel lcUuUUur

We have written this here in two equivalent forms; the longer one clarifies how the unit outputs

and the external inputs are both used in the computation, while the more compact expression

illustrates why we introduced x and the corresponding indexing convention above. Hereafter, we

use only the latter form, thereby avoiding any explicit reference to x" or its individual coordinates.

The output of such a unit at time ¢+ 1 is then expressed in terms of the net input by

ye(t + 1) = fr(se(t + 1)), (3)

where f, is the unit’s squashing function. Throughout much of this chapter we make no particular

assumption about the nature of the squashing functions used by the various units in the network,

except that we require them to be differentiable. In those cases where a specific assumption about

these squashing functions is required, it will be assumed that all units use the logistic function.

Thus the system of equations (2) and (3), where & ranges over U, constitute the entire discrete-
time dynamics of the network, where the x, values are defined by equation (1). Note that the

external input at time ¢ does not influence the output of any unit until time t+ 1. We are thus

treating every connection as having a one-time-step delay. It is not difficult to extend the analyses

presented here situations where different connections have different delays. Later we make some

observations concerning the specific case when some of the connections have no delay.

While the derivations we give throughout this chapter conform to the particular discrete-

time dynamics given by equations (2) and (3), it is worthwhile here to call attention to the
use of alternative formulations obtained specifically from application of Euler discretization to

continuous-time networks. For example, if we begin with the dynamical equations®

ThYR(L) = —Yn(t) + fe(Se(t)), (4)

where s,(t) is defined by equation (2) as before, then discretizing with a sampling interval of At
is easily shown to give rise to the discrete update equations

At At (t+ At) = (1— =) pelt) + false(®). (5)
Defining @, = At/7, and altering the time scale so that At = 1, we then obtain the equations

ye(t + 1) = (1 — Bx) yn (t) + Cafe (se (4), (6)

and it is then clear that equation (3) represents the special case when (; = 1. It is straightforward

to derive algorithms like those given throughout this chapter for these more general alternative

forms of discrete-time dynamics if desired. The potential advantage of using such dynamics where

GB, < 1 is that certain classes of task may be more readily learned by such systems, as has

been observed by Tsung (1990).* The particular advantage possessed by such systems is that the

gradient computation used in the learning algorithms to be described here falls off more gradually

over time, which means that “credit-assignment” is more readily spread over longer time spans

than when (= 1.

3Note that these particular equations are of essentially the same form as those considered by Pineda [chapter

??, this volume], except that we assume that external input to the unit must pass through the squashing function.

“In fact, there is a strong similarity between equation (6) and the form of recurrence Mozer [chapter ??, this
volume] has used; some of his observations concerning the potential advantages of his focused architecture could

be considered to apply more generally to any use of recurrence more like that found in continous-time systems.

3.2 Network Performance Measure

Assume that the task to be performed by the network is a sequential supervised learning task,

meaning that certain of the units’ output values are to match specified target values (which we

also call teacher signals) at specified times. Once again, this is not the most general problem

formulation to which these approaches apply, but it is general enough for our purposes here.

Let T(t) denote the set of indices k € U for which there exists a specified target value d;(t)
that the output of the k* unit should match at time ¢t. Then define a time-varying n-tuple e by

c= nO herwine @
Note that this formulation allows for the possibility that target values are specified for different

units at different times. The set of units considered to be “visible” can thus be time-varying. Now

let

I(t) = 1/2 Sie)’ (8)
kcU

denote the negative of the overall network error at time t. A natural objective of learning might

be to maximize® the negative of the total error

Jirtal t! _t) -> J(r (9)

7Tot'+1

over some appropriate time period (t',¢]. The gradient of this quantity in weight space is, of

course,

Vw (t,t) -»> Vwi (r). (10)
T=t'4+1

In general, we let t) denote some starting time at which the network has its state initialized.

For a continually running network there are no other times at which the state is ever re-initialized

in this way, but with epochwise training there will be other such times 1, fa, t3,... marking epoch

boundaries. Alternatively, one might consider time to begin anew at t) whenever the state is

re-initialized in an epochwise approach. Throughout this chapter, whether considering the case of

a network operating epochwise or continually, we let t) denote the last time at which a state reset

occurred. In the epochwise case we also use ¢; to indicate the end of the current epoch.

We now introduce some specific definitions designed to pin down the relationship between

the various notions concerning continual and epochwise operation on the one hand and the use of

gradient computation on the other. For purposes of this chapter, we make the following definitions.

An exact gradient computation algorithm is one having the property that at every time step 7

during which the network runs there is an interval (¢’,¢] containing 7 such that the algorithm
computes Vw J'*!(¢', t) at time t, under the assumption that the network weights are fixed. Any

such exact gradient algorithm is called epochwise if it is applied to a network operating in epochwise

fashion and it computes VwJ'*!(to, t,) at t,, the end of the epoch. It is called real-time if it

computes VwJ(t) at each time ¢t. If, instead, an algorithm computes what is considered only an

©The problem of minimizing error is treated here as a maximization problem because it eliminates the need for

annoying minus signs in many of the subsequent formulas.

7

approximation to VwJ*#!(t’,t) at time ¢ (under the assumption that the weights are fixed) it

will be regarded as an approzrimate gradient computation algorithm.

It must be emphasized that an “exact” gradient algorithm in this sense is only exact if the

weights are truly fixed. Such an algorithm may not compute the exact gradient for the current

setting of the weights if the weights are allowed to vary. When such an exact gradient algorithm is

used to adjust the weights in a continually operating network, what it computes will thus generally

be only an approximation to the desired true gradient. Later we discuss this issue further.

A gradient-based learning algorithm is a learning algorithm which bases its weight changes on

the result of an exact or approximate gradient computation algorithm. The complete specification

of such a learning algorithm must include not only how it computes such gradient information,

but also how it determines the weight changes from the gradient and when these weight changes

are made. Since the main focus of this chapter is on the gradient computation itself, we will

generally remain noncommittal about both of these details for the learning algorithms we discuss,

occasionally even blurring the distinction between the learning algorithm itself and the gradient

computation portion of the algorithm.

One natural way to make the weight changes is along a constant positive multiple of the

performance measure gradient, so that

O Jiotal t+

Aw = a) (11)

for each 7 and 7, where 77 is a positive learning rate parameter. In those cases where we describe

the empirical behavior of particular gradient-based learning algorithms this is the precise weight-

change strategy used.

With regard to the timing of the weight changes, it is natural with a continually operating

network to adjust the weights at the point when the appropriate gradient has been computed, but,

as already noted, for the epochwise case it may be appropriate to make weight adjustments only

after multiple epochs. For purposes of this chapter, we consider an epochwise learning algorithm

to be any learning algorithm appropriate for networks which operate epochwise and which has the

property that weight updates are performed only at epoch boundaries, while a real-time learning

algorithm is one in which weight updates can be performed at all time steps.

It is trivial to observe that any algorithm capable of computing the instantaneous performance

gradient VwJ(t) could be used in an epochwise manner by simply accumulating these values until

time ¢, but we will discover below that this is not an efficient strategy.

3.3. Notation and Assumptions Used for Complexity Analyses

Here we summarize notation to be used in analyses of the computational complexity of the various

algorithms to be discussed in this chapter. For completeness, we include some introduced earlier.

These definitions are:

nm = number of units;

m = number of input lines;

wy = number of nonzero weights between units;

wa = number of adjustable weights;

8

Ar = number of time steps between target presentations;

Ny = average number of units given a target per time step; and

L = total number of time steps.

We also use the standard notation for describing the order of magnitude of the computational

complexity of algorithms, where O(y(n)) is the set of positive-integer-valued functions of n which
are less than or equal to some constant positive multiple of y(n), Q(y(n)) is the set of positive-
integer-valued functions of n which are greater than or equal to some constant positive multiple

of y(n), and O(y(n)) = O(y(n)) NQ(y(n)). Thus O is used to describe an upper bound on the
order of magnitude of a quantity of interest, (2 is used to describe a lower bound on this order of

magnitude, and 9 is used to describe the exact order of magnitude.

In all cases, we analyze the space complexity in terms of the number of real numbers stored

and the time complexity in terms of the number of arithmetic operations required. For all the

algorithms to be analyzed, the dominant computation is a form of inner product. so the operations

counted are additions and multiplications, in roughly equal numbers. For the analyses presented

here we ignore the computational effort required to run the dynamics of the network (which,

of course, must be borne regardless of the learning algorithm used), and we also ignore any

additional computational effort required to actually update the weights according to the learning

algorithm. Our measurement of the complexity is based solely on the computational requirements

of the particular exact or approximate gradient computation method used by any such learning

algorithm.

For any fixed n, the worst case for all the algorithms discussed here occurs when the network

is fully connected and all weights are adaptable. In this case, wg = n(n +m) and wy = n?. In
all cases below where we perform an analysis of the worst case behavior we restrict attention to

classes of networks for which m € O(n) just to make the resulting formulas a little simpler. This
assumption applies, for example, to the situation where a variety of networks are to be taught to

perform a particular fixed task, in which case m € O(1), and it also applies whenever we might

imagine increasing the number of units in a network in proportion to the size of the input pattern

representation chosen. For our worst-case analyses, then, we will use the fact that w4 and wy are

both in Q(n?).
Note that expressing the complexity in terms of the quantities w4 and wy assumes that the

details of the particular algorithm are designed to take advantage of the limited connectivity

through the use of such techniques as sparse matrix storage and manipulation. Alternatively, one

could regard multiplication by zero and addition of zero as no-cost operations. A similar remark

applies to the use of Ay and ny. All the complexity results derived throughout this chapter are

summarized in Tables 1 and 2.

4 Backpropagation Through Time

Here we describe an approach to computing exact error gradient information in recurrent networks

based on an extension of the standard backpropagation algorithm for feedforward nets. Various

forms of this algorithm have been derived by Werbos (1974), Rumelhart, Hinton, and Williams

(1986), and Robinson and Fallside (1987), and continuous-time versions have been derived by
Pearlmutter (1989) and by Sato (1990a; 1990b). This approach is called backpropagation through

time (BPTT) for reasons that should become clear below.

4.1 Unrolling a Network

Let N denote the network which is to be trained to perform a desired sequential behavior. Recall

that we assume that NV has n units and that it is to run from time ¢) up through some time t

(where we take t = ¢, if we are considering an epochwise approach). As described by Rumelhart et

al. (1986), we may “unroll” this network in time to obtain a feedforward network ’* which has a
layer for each time step in the interval [t,t] and n units in each layer. Each unit in NV has a copy

in each layer of V*, and each connection from unit j to unit 7 in V has a copy connecting unit 7 in

layer 7 to unit 7 in layer 7 + 1, for each 7 € [to,¢). An example of this unrolling mapping is given

in Figure 2. The key value of this conceptualization is that it allows one to regard the problem of

training a recurrent network as a corresponding problem of training a feedforward network with

certain constraints imposed on its weights. The central result driving the BPT'T approach is that

to compute 0J'*! (¢’, t)/Ow,; in NV one simply computes the partial derivatives of J‘*!(t’, t) with
respect to each of the ¢ — to weights in A/* corresponding to w;; and adds them up. Thus the

problem of computing the necessary negative error gradient information in the recurrent net NV

reduces to the problem of computing the corresponding negative error gradient in the feedforward

network M*, for which one may use standard backpropagation.

Insert Figure 2 about here.

Straightforward application of this idea leads to two different algorithms, depending on whether

an epochwise or continual operation approach is sought. Detailed mathematical arguments justi-

fying all the results described may be found in the Appendix.

4.2 Real-Time Backpropagation Through Time

To compute the gradient of J(t) at time ¢, we proceed as follows. First, we consider t fixed for

the moment. This allows us the notational convenience of suppressing any reference to ¢ in the

following. We compute values ¢;(7) and 6;,(7) for k € U and 7 € (to, ¢] by means of the equations

E,(t) = e,(t), (12)

On(T) = fy (Se(7))ex(7), (13)
and

Ex(T _ 1) = S- wT). (14)

lcU

These equations represent the familiar backpropagation computation. The process begins by

using the equations (12) to determine the ¢,(¢) values. We call this step injecting error, or, if
we wish to be more precise, injecting e(t), at time ¢. Then the 6 and ¢€ values are obtained for

10

successively earlier time steps (i.e., successively earlier layers in M’*) through the repeated use of

the equations (13) and (14). Figure 3 gives a schematic representation of this process.

Insert Figure 3 about here.

In the particular case when each unit in the network uses the logistic squashing function,

fe(Se(7)) = ye(r) — ge (7)] (15)

may be substituted in equation (13). A corresponding observation applies to all the algorithms to

be discussed throughout this chapter.

As described in the Appendix, €,(7T) is just a mathematical shorthand for 0J(t)/Oy,(7) and
6. (7) is just a mathematical shorthand for 0J(t)/Os;,(7). Thus €,(7) represents the sensitivity
of the instantaneous performance measure J(t) to small perturbations in the output of the k‘®

unit at time 7, while 6,(7) represents the corresponding sensitivity to small perturbations to that

unit’s net input at that time.®
Once the backpropagation computation has been performed down to time tp + 1, the desired

gradient of instantaneous performance is computed by

Od(t

See
-_»> 6;(7) xj (7 — 1). (16)

r=to+1

To summarize, this algorithm, which we call real-time backpropagation through time performs

the following steps at each time ¢: 1) the current state of the network and the current input pattern

is added to a history buffer which stores the entire history of network input and activity since time

to; 2) error for the current time is injected and backpropagation used to compute all the ¢,(7) and

d«(7) values for to < 7 < t; 3) all the 0/(t)/Ow,; values are computed; and 4) weights are changed
accordingly. Because this algorithm makes use of potentially unbounded history storage, we will

also sometimes denote it BPTT(oo). This algorithm is of more theoretical than practical interest,
but later we discuss more practical approximations to it.

4.3 Epochwise Backpropagation Through Time

An epochwise algorithm based on backpropagation through time can be organized as follows. The

objective is compute the gradient of J‘!(tg,t,), which can be obtained after the network has

been run through the interval |p, t,|. Essentially as before, we compute values €;(7) and 6,(7) for
k €U and 7 € (to, t;|, this time by means of the equations

Ex(ty) = ex(ty), (17)

6Note that all explicit references to ¢ could be eliminated by re-expressing the 6 update equations entirely in

terms of other 6 values, resulting in a description of backpropagation with which the reader may be more familiar.

We have chosen to express the computation in this form for two reasons. One is that we will need to make explicit

reference to these ¢ quantities later in this chapter; another is that it is useful to recognize that to backpropagate

through a semilinear unit is to apply the chain rule through two stages of computation: application of the squashing

function and weighted summation.

11

bn (T) = fia (se(7) ex(r), (18)
and

Ex(T — 1) = €4(T — 1) + S> windi(rT). (19)

leU

These equations represent the familiar backpropagation computation applied to a feedforward

network in which target values are specified for units in other layers than the last. ‘The process

begins at the last time step, using equations (17) to determine the ¢;,(¢) values, and proceeds to

earlier time steps through the repeated use of the equations (18) and (19). For this algorithm we
speak of injecting error at time 7 to mean the computational step of adding e;(7) to the appropriate

sum when computing €;(7). The backpropagation computation for this case is essentially the same

as that for computing the 6 values for the real-time version, except that as one gets to layer 7 one

must inject error for that time step. Thus, not only are the 6 values determined by a backward

pass through the unrolled network, but the errors committed by the network are also taken into

account in reverse order. Figure 4 gives a schematic representation of this process.

Insert Figure 4 about here.

It is useful to regard the sum on the right-hand side of equation (19) as a virtual error for unit

k at time 7—1. We might also say that this unit has been given a virtual target value for this time

step. Thus, in epochwise BPTT, virtual error is added to external error, if any, for each unit at

each time step in the backward pass. Note that in real-time BPTT the only contribution to each

€ is either external error, at the most recent time step, or virtual error, at all earlier time steps.

As with real-time BPTT, ¢,(7) is just a mathematical shorthand, this time for 0‘ (to, t1) /Oy,(7);
similarly, 6,(7) is just a mathematical shorthand for 0.J*°*!(to, t,)/Os,(7). Thus e,(7) represents
the sensitivity of the overall performance J‘*"'(to, t,) to small perturbations in the output of the

k** unit at time 7, while 6,(7) represents the corresponding sensitivity to small perturbations to

that unit’s net input at that time.

Once the backpropagation computation has been performed down to time tp + 1, the desired

gradient of overall performance is computed by

OF" tosti) © §(r)a4(r — 1). (20)
Owij rtp

Epochwise BPTT thus must accumulate the history of activity in (and input to) the network

over the entire epoch, along with the history of target values (or equivalently, the history of errors)

over this epoch, after which the following steps are performed: 1) the above backpropagation

computation is carried out to obtain all the €,(7) and 6,(7) values for tg < 7 < t1; 2) all the
OJ‘! (to, t1)/Ow;; values are computed; and 3) weights are changed accordingly. Then the network
is re-initialized and this process repeated.

12

4.4 Epochwise BPTT Applied to Settling Networks

Although our main interest here is in the general problem of training networks to perform time-

varying behaviors, it is worth noting that the BPTT formulation leads to a simple algorithm

for training settling networks with constant input, whenever certain assumptions hold. This

algorithm, which is a discrete-time version of the algorithm described by Almeida (1987) and

Pineda (1987; [chapter ??, this volume]) is obtained as follows.
First, suppose that a network is to be driven with constant input and that we have initialized

it to a state which represents a fixed point for its dynamics. Suppose further that we intend to

observe this state at the end of the epoch [to, ¢;] to compare it with some desired state. If we were

to use epochwise BPTT for this situation, the appropriate equations would be

Ex(ty) = ex(ty), (21)

On(T) = fa (Se(tr))ex(7), (22)
and

ex(7T — 1) = >° widi(7), (23)

with weight changes determined by

Ojiotal (to, ty)

Ow
-_»> di(7)xj;(7 — 1) = 3 i(7) xj (ti) = £5 (t1) > O;(7 (24)

T=to+1 T=to+1 T=to+1

Note that this last result takes into account the fact that all states and all input during the epoch

are equal to their values at the end of the epoch. Thus there is no need to save the history of

input and network activity in this case.

Now define
ty

ex(t) = D7 ex(r) (25)
7To=t+1

and .

t)= S° 6z(7). (26)
7o=t+1

Then equation (24) becomes
OJ'*l (to ty)

—_-—"_—" = 6¥ (to) a; (t1). 2 Foe = 8ita)ay(h) (27
Furthermore, it is easy to check by induction that

eg(ti) = x(t), (28)

On (T) = Sa (Se (ta) eR (7), (29)
and

ER(T —_ 1) = ex (ty) + 2 Wied; (T). (30)

13

Thus the 6* and e* values may be interpreted as representing the 6 and € values obtained from

performing epochwise BPTT from ¢, back to to while injecting the constant error e(¢,) at each
time step, while equation (27) has the form of the usual feedforward backpropagation computation

for determining the partial derivative of error with respect to any weight.

Now consider what happens in the limit as the epoch is made very long. In this case, the

computation of the 6;(to) values by means of the equations (28), (29), and (30) can be viewed
as a settling computation, assuming it converges. As it turns out, it can be shown that the

BPTT computation given by equations (21), (22), and (23) will “die away” (meaning that the

backpropagated quantities 6,(7) and ¢,(7) will decrease to zero) exponentially fast as long as the
network has reached a stable equilibrium state, which implies that the settling computation for

the 6*(to) values does indeed converge in this case.
The recurrent backpropagation (RBP) algorithm (Almeida, 1987; Pineda, 1987) for training

settling networks having constant input consists of applying the following steps: 1) the network

is allowed to settle (with the time at which settling has completed regarded as t,); 2) the BPTT
computation given by equations (28), (29), and (30) is performed for as long as needed until the
6 values converge; 3) all the 0J°°*'(to, t1)/Ow;; values are computed using equation (27); and

4) weights are changed accordingly. The appealing features of this algorithm are that it does not

require the storage of any past history to implement and is entirely local. The reason it requires

no history storage is that it implicitly assumes that all relevant past states and input are equal to

their current values. This algorithm is thus applicable only to situations where both the desired

and actual behaviors of the network are limited to stable settling.

The argument presented so far shows that RBP would compute the same thing as the BPTT

computation given by equations (21), (22), and (23) over a very long epoch in which the network
state is held constant at a stable equilibrium. Now, continue to assume that the input to the

network is constant throughout the entire epoch, but assume instead that the network has settled

to an equilibrium state from possibly some other starting state by the end of the epoch, at time

t,. Assume further that it has reached this equilibrium state long before t,;. Because the BPTT

computation resulting from injecting error only at time ¢; dies away, as described earlier, even

in this case RBP and this BPTT computation yield essentially the same result. That is, if error

is injected only long after the network has arrived at its steady-state behavior, the full BPTT

computation will also give the same result as RBP, because the BPTT computation dies away

before reaching the transient portion of the network’s behavior. This shows clearly that not only

is RBP limited to training settling networks, but it is really only designed to directly influence

their fixed points and cannot control their transient behaviors. In general, RBP is only capable of

perturbing the equilibrium states already present in the network’s dynamics.’ On the other hand,

as long as errors are injected within (or soon after) the transient behavior of a network, BPTT

can directly influence such transient behavior.

These observations concerning the inability of even full BPTT to reach back into the transient

behavior if error is injected too long after steady-state behavior is reached have some other inter-

esting consequences for the problem of training continually operating networks, which we describe

below when we discuss the teacher forcing strategy.

“However, as we discuss later, Pineda (1988; [chapter ??, this volume]) has shown that new equilibrium points
can be created by combining RBP with the teacher forcing technique.

14

4.56 Computational Requirements of BPTT Algorithms

It is clear that to store the history of m-dimensional input to and n-dimensional activity of a

network over h time steps requires (m+ n)h numbers. In addition, the number of target values

over these h time steps is no greater than nh. Thus the gradient computation performed for

epochwise BPTT has space complexity in O((m + n)h), where h represents the epoch length.
However, for BPTT(oo) this history must continue to grow indefinitely. With L representing the
total time over which the network is actually run, the space complexity of BPTT(oo) is thus in

O((m+ n)L).
To determine the number of arithmetic operations required for these algorithms, note that

equation (13) requires an evaluation of f;(s,(7)) plus one multiplication for each k in U. For
the logistic squashing function this amounts to two multiplications per unit for determining the

6 values from the corresponding € values. In general, the number of operations required for this

part of the backpropagation computation is in O(n). Application of equation (14) for all k ¢ U
at each fixed 7 clearly requires wy multiplications and wy — 1 additions, while application of

equation (19) for all k € U at each fixed 7 requires the same number of multiplications and up

to n more additions and subtractions, depending on how many units have target values for that

time step. As long as we assume wy € Q(n), it follows that each stage of the backpropagation

computation has time complexity in O(wy), regardless of whether error is injected at all time steps

during the backward pass, as in epochwise BPT'T, or just at the last time step, as in real-time

BPTT.

Now let h = t—to, where t represents the time at which BPTT is performed for either real-time

or epochwise BPTT. (In the latter case, t = ¢.) It is clear that equation (16), which must be
evaluated once for each adaptable weight, requires multiplications and h — 1 additions, leading

to a total of O(w,h) operations. Thus the total number of operations required to compute the

gradient for one epoch in epochwise BPTT is in O(wyh+wah).8 Amortized across the h time steps
of the epoch, the gradient computation for epochwise BPTT requires an average of O(wy + wa)

operations per time step. For real-time BPTT, a backpropagation computation all the way back to

t) must be performed any time a target is specified. Thus the total number of operations required

over the entire training interval of length L is in O((wy + w,)T?/Ar), which is an average of
O((wyT +wa)T/Ar) operations per time step. These complexity results are summarized in Table

1.

The worst case for either of these algorithms for any fixed n is when the network is fully

connected, all weights are adaptable, and target values are supplied at every time step, so that

Ar = 1. In this case, epochwise BPTT has space complexity in O(nh) and average time complexity

per time step in @(n?), while real-time BPTT has space complexity in @(nL) and average time

complexity per time step in O(n?L), as shown in Table 2.

Note that when weights are changed throughout the course of operating the network, a variant

of real-time BPTT is possible in which the history of weight values are saved as well and used for

the backpropagation computation, by replacing w;, by w (7) in equation (14). For this algorithm,

the storage requirements are in O((m+n-+ wa)T) in the general case and in O(n?T) in the worst

8 This assumes that there is some error to inject at the last time step. In general, it is also assumed throughout this

analysis that the number of units given targets and the connectivity of the network are such that backpropagation

“reaches” every unit. If this is not true, then the time complexity could be lower for an algorithm designed to take

advantage of this.

15

case.

While real-time BPTT could be used to train a network which is operated in epochwise fashion,

it is clearly inefficient to do so because it must duplicate some computation which need only be

performed once in epochwise BPTT. Epochwise BPTT computes VwJ*#!(to, #1) without ever

computing any of the gradients Vw/J(t) for individual time steps t.

5 The Real-Time Recurrent Learning Algorithm

While BPTT uses the backward propagation of error information to compute the error gradient,

an alternative approach is to propagate activity gradient information forward. This leads to

a learning algorithm which we have called real-time recurrent learning (RTRL). This algorithm
has been independently derived in various forms by Robinson and Fallside (1987), Kuhn (1987),

Bachrach (1988, [chapter ??, this volume]), Mozer (1989, [chapter ??, this volume]), and Williams
and Zipser (1989a), and continuous-time versions have been proposed by Gherrity (1989), Doya

and Yoshizawa (1989), and Sato (1990a; 1990b).

5.1 The Algorithm

For each k €U,1 EU, 7 CU UT, and tp) < t < t1, we define

Oye (t) k k
’(¢) = ——. 31 pl) = Fe (31)

This quantity measures the sensitivity of the value of the output of the k" unit at time ¢ to a

small increase in the value of w;;, taking into account the effect of such a change in the weight

over the entire trajectory from tg to ¢ but assuming that the initial state of the network, the input

over [to,#), and the remaining weights are not altered.
From equations (7) and (8) and use of the chain rule, we find that

aJ(t)
Ow

 = Vi ex(t)p7; (4) (32)
kcU

for each i € U and j € UUT. Also, differentiating the equations (2) and (3) for the network
dynamics yields

pi, (t+ 1) = f,(se(t+ 1) So wad), () + dina; (t) | , (33)
IeU

where 6;, denotes the Kronecker delta. Furthermore,

Oyx (to) k Pi; (to) = =-— =0 (34)
J 0 Ow

since we assume that the initial state of the network has no functional dependence on the weights.

These equations hold for all k €U,1E€U,7 CU UT, and t > to.

Thus we may use equations (33) and (34) to compute the quantities {pk (t)} at each time step
in terms of their prior values and other information depending on activity in the network at that

16

time. Combining these values with the error vector e(t) for that time step via the equations (32)

then yields the negative error gradient Vw/J(t). Because the Di, (t) values are available at time
t, the computation of this gradient occurs in real time. Figure 5 depicts the data structures that

must be updated on each time step to run the RT'RL algorithm with the network of Figure 1.

Insert Figure 5 about here.

5.2 Computational Requirements

The computational requirements of the RT'RL algorithm arise from the need to store and update

all the pi, values. To analyze these requirements, it is useful to view the triply indexed set of

quantities pi, as forming a matrix, each of whose rows corresponds to a weight in the network and

each of whose columns corresponds to a unit in the network. Looking at the update equations it is

not hard to see that, in general, we must keep track of the values pi, even for those k corresponding

to units that never receive a teacher signal. Thus we must always have n columns in this matrix.

However, if the weight w,,; is not to be trained (as would happen, for example, if we constrain the

network topology so that there is no connection from unit j to unit 7), then it is not necessary to

compute the value Di, for any k € U. This means that this matrix need only have a row for each

adaptable weight in the network, while having a column for each unit. Thus the minimal number

of Di, values needed to store and update for a general network having n units and w, adjustable

weights is nw,4. Furthermore, from equation (33) it is clear that the number of multiplications

and the number of additions required to update all the Di, values are each essentially equal to

wywa. Note that this computation is performed on every time step, regardless of whether target

values are specified for that time step.

In addition, equation (32) requires one multiplication (and approximately one addition) at
each time step for each unit given a target on that time step and each adjustable weight. This

amounts to an average of O(n;wa) operations per time step. Thus the space complexity of the

gradient computation for RTRL is in O(nw,), and its average time complexity per time step is

in O(wywa), as indicated in Table 1. When the network is fully connected and all weights are

adaptable, this algorithm has space complexity in Q(n?) and average time complexity per time

step in O(n*), as shown in Table 2.
While this time complexity is quite severe for serial implementation, part of the appeal of

this algorithm is that it can run in O(n) time per time step using O(n*) processors. However,

this raises the question of its communication requirements, especially in relation to the network

being trained. Interestingly, update of the Di, values can be carried out using a completely local

communication scheme in the network being trained if one allows n-tuples to be communicated

along network connections rather than single real numbers. The idea is to let each unit k store

within it the set of numbers Di, with (i,7) ranging over all weights in the network. If we regard

this set of numbers as a vector p*, then the set of equations (33) corresponding to each fixed value

of k can be organized into a single vector update equation. In this way, one can imagine a network

of units which pass not only their activations around, but also these p* vectors. However, the

actual computation of VwJ(t) by means of the equations (32) ultimately requires global access
to the p* vectors.

17

Without giving details, we note that the entire RTRL algorithm could be carried out in a more

conventional scalar-value-passing network having, in addition to the n units of the network to be

trained, an additional unit for each Di, value and an additional unit for each connection in the

network to be trained. Each unit in this last set would simultaneously gate numerous connections

among the remaining units.

6 A Hybrid Algorithm

It is possible to formulate a hybrid algorithm incorporating aspects of both BPTT and the forward

gradient propagation computation used in RTRL. This algorithm, first proposed in (Williams,

1989), and later described by Schmidhuber (1992), is interesting both because it helps shed light
on the relationship between BPT'T and RTRL and because it can yield exact error gradient

information for a continually running network more efficiently than any other method we know.

The mathematical derivation of this algorithm is provided in the Appendix. Here we describe the

steps of the algorithm and analyze its computational complexity.

6.1 The Algorithm

This algorithm involves a segmentation of time into disjoint intervals each of length h = ¢—?’, with

weight changes performed only at the end of each such interval. By our definition, then, this is

not a real-time algorithm when h > 1. Nor is it an epochwise algorithm, since it does not depend

on the artificial imposition of credit-assignment boundaries and/or state resets. The segmentation

into intervals is purely arbitrary and need have no relation to the task being performed. Over each

such interval [t’, ¢] the history of activity of (and input to) the network is saved; at the end of this
time period, a computation to be described below is performed. Then the process is begun anew,

beginning with collecting the history of the network activity starting at time ¢ (which becomes

the new value of ?’).
This algorithm depends on having all the values pi, (t!), as used in RTRL, for the start of each

time period. For the moment, we assume that these are available; later we describe how they are

updated by this algorithm. Then the equations

_ e,(t) ifr =t

ex(T) 7 | ex (T) + ICU wi (T + 1) if T<t (35)

and

bk (T) = fa(Se(7))ex(7) (36)
are used to compute all the values ¢;,(7) for t’ <7 <t and 6,(7) for t’ < 7 < ¢. This computation
is essentially identical to an epochwise BPTT computation over the interval [¢’,¢]. In particular,

note that each error vector e(7), for t’ < 7 < t, is injected along the backward pass. Once all

these € and 6 values are obtained, the gradient of J‘!(t’,t), the cumulative negative error over

the time interval (t’,t], is computed by means of the equations

osiotal(z!) , el
ont) = So ex(t)pi;(t') + S- di(7 + 1)2;(7), (37)

Wij leu rat!

18

for each 7 and 7.

Note that the second sum on the right-hand side is what would be computed for this partial

derivative if one were to truncate the BPTT computation at time t’, while the first sum represents

a correction in terms of the p values used in RTRL. There are two special cases of this algorithm

worth noting. When ?¢’ = t, the second sum in equation (37) vanishes and we recover the RTRL

equation (32) expressing the desired partial derivatives in terms of the current p values. When

t' = to, the first sum in equation (37) vanishes and we recover equation (16) for the BPTT(oo)
algorithm.

Thus far we have described how the desired error gradient is obtained, assuming that the p

values are available at time ¢’. In order to repeat the same process over the next time interval,

beginning at time ¢, the algorithm must also compute all the values pi, (t). For the moment,

consider a fixed r in U. Suppose that we were to inject error e”(t¢) at time t, where e7(t) = dg, (the
Kronecker delta), and use BPTT to compute 0J(t)/Ow;;. It is clear from equation (32) that the
result would be equal to pj,(¢). Thus this gives an alternative view of what these quantities are:

For each r, the set of numbers pi, (t) represents the negative error gradient that would be computed

by BPTT if unit r were given a target 1 greater than its actual value. Furthermore, we may use

the same approach just used to compute the partial derivatives of an arbitrary error function to

compute the partial derivatives of this particular imagined error function. Thus, to compute pj, (¢)
for all ¢ and j, the algorithm first performs a BPTT computation using the equations?

1 ifr =t

Dicu WOT +1) ifr <t (38) Ex(T) =

together with equations (36), to obtain a set of values’® e,(7) for ’ <7 <tand 6,(r) fort’ <7 <t.
These values are then used to compute pj,(t) for each 7 and j by means of the equations

pi, (t) = = ei(t’)pl,(t!) + > 5,(r + 1)2;(7). (39)

In other words, to compute pi; (t), a l is injected at unit r at time t and BPTT performed back

to time ¢’, and the results substituted into equation (39).
This process is repeated for each r in U in order to obtain all the p values for time ¢. Thus

this algorithm involves a total of n + 1 different BPTT computations, one to compute the error

gradient and n to update the p values. Because this algorithm involves both a forward propagation

of gradient information (from time ¢’ to time t) and backward propagation through time, we will

denote this algorithm FP/BPTT(h), where h = t—? is the number of past states which are saved
in the history buffer. Figure 6 gives a schematic representation of the storage and processing

required for this algorithm.

°The reader is warned to avoid confusing the singly subscripted (and time-dependent) quantities denoted 6;,

which are obtained via backpropagation, with the doubly subscripted Kronecker delta, such as 6,,. Both uses of

the symbol 6 appear throughout the equations presented in this and the next section.

10The reader should understand that, although we are denoting the result of several different BPTT computations

in the same way, the various sets of 6 and € values obtained from each BPTT computation are unrelated to each

other. We have resisted introducing additional notation here which might make this clearer, on the grounds that

it might clutter the presentation. A more precise formulation may be found in the Appendix.

19

Insert Figure 6 about here.

6.2 Computational Requirements

This hybrid algorithm requires O(nw,) storage for the p;; values, like RTRL, and O((m + n)h)
storage for the history of network input, activity, and teacher signals over the interval |t’,t], like

epochwise BPTT. In addition, each BPTT computation requires O(nh) storage for all the 6 and €

values, but this space may be re-used for each of the n+ 1 applications of BPTT. Thus its overall

storage requirements are in O(nw4 + (m+ n)h).
To determine the number of arithmetic operations performed, note that each BPT'T com-

putation requires O((wy + wa)h) operations, and, for each such BPTT computation, equa-

tion (37), requiring O(n + h) operations, must be used for each adjustable weight, or wa, times.

Thus the number of operations required for each of the n+ 1 applications of BPTT requires

O(wyh + 2wah+ nwa) = O(woh + wah+ nwa), giving rise to a total number of operations in
O(nwyh + nwah + n?wa). Since this computation is performed every h time steps, the average

number of operations per time step is in O(nwy + nwa + n?wa/h). When the network is fully

connected and all weights are adaptable, FP/BPTT(h) has space complexity in O(n? + nh) and
average time complexity per time step in @(n? + n*/h). Thus, by making h proportional to n, the

resulting algorithm has worst case space complexity in O(n?) and time complexity per time step

in O(n’). These complexity results are summarized in Tables 1 and 2.
This means that of all exact gradient computation algorithms for continually operating net-

works, FP/BPTT (cn), where c is any constant, has superior asymptotic complexity properties. Its

asymptotic space complexity is no worse than that of RT'RL, and its asymptotic time complexity

is significantly better. The reduction in time complexity in comparison to RTRL is achieved by

only performing the update of the Di, values after every cn time steps. The improvement in both

time and space complexity over real-time BPTT over long training times is achieved because there

is no need to apply BPTT further back than to the point where these Di, values are available.

7 Some Architecture-Specific Approaches

Up to now, we have restricted attention to the case where every connection in the network is

assumed to have a delay of one time step. It is sometimes useful to relax this assumption. In par-

ticular, a number of researchers have proposed specific mixed feedforward/feedback architectures

for processing temporal data. In almost all of these architectures the feedforward connections are

assumed to have no delay while the feedback connections are assumed to incorporate a delay of

one time step. After briefly considering the case of arbitrary (but fixed) delays, we then focus

in this section on exact gradient algorithms for certain classes of network architectures where all

delays are 0 or 1.

20

7.1 Connection-Dependent Delays

To handle the general case in which various connections in the network have different delays,

equation (2) for the network dynamics must be replaced by

s,(t) = S- Wry (t —_ Ant); (40)

lcUuUUur

where A;; represents the delay on the connection from unit (or input line) / to unit k. In general,

we may allow each delay to be any nonnegative integer, as long as the subgraph consisting of all

links having delay 0 is acyclic. This condition is necessary and sufficient to guarantee that there

is a fixed ordering of the indices in U such that, for any ¢ and k, s;,(t) depends only on quantities

x(t’) having the property that ¢’ < t or | comes before & in this ordering.
As an alternative to allowing multiple delays, one could instead transform any such setup into

a form where all delays are 1 by adding “delay units” along paths having a delay larger than 1 and

repeating computations along paths having delay 0, but this is generally undesirable in simulations.

Because holding a value fixed in memory is a no-cost operation on a digital computer, it is always

more efficient to simulate such a system by only updating variables when necessary. For example,

in a strictly layered network having fA layers of weights, although they both lead to the same

result, it is clearly more efficient to update activity one layer at a time than to run one grand

network update a total of h times. A similar observation applies to the backward pass needed for

backpropagation. Figure 7 illustrates a case where all links have delay 0 or 1 and shows a useful

way to conceptualize the unrolling of this network.

Insert Figure 7 about here.

Watrous and Shastri (1986) have derived a generalization of BPTT to this more general case,
and it is straightforward to extend the RT'RL approach as well. With a little more effort, the

hybrid algorithm described above can also be generalized to this case. Rather than give details

of these generalizations, we confine attention in the remainder of this section to some particular

cases where all delays are 0 or 1 and describe some exact gradient computation algorithms for

these involving both backward error propagation and forward gradient propagation. These cases

represent modest generalizations of some specific mixed feedforward/feedback architectures which

have been considered by various researchers.

7.2 Some Special Two-Stage Architectures

The architectures to be investigated here involve limited recurrent connections added to what

would otherwise be a feedforward net. We regard these architectures as consisting of two stages,

which we call a hidden stage and an output stage. ‘The output stage must contain all units given

targets, but it need not be confined to these. The hidden stage contains all units not in the output

stage. As a minimum, each architecture has feedforward connections from the hidden stage to

the output stage, and there may be additional feedforward connections within each stage as well.

21

Thus, in particular, each stage may be a multilayer network. Let Uo denote the set of indices of

units in the output stage and let Uy denote the set of indices of units in the hidden stage.

Here we restrict attention to three classes of recurrent net which consist of this minimum

feedforward connectivity plus some additional recurrent connections. In all cases, we assume that

the feedforward connections have delay 0 and the added feedback connections have delay 1. For any

given network which falls into one of these categories there may be many ways to decompose it into

the two stages, and particular recurrent networks may be viewed as belonging to more than one

category, depending on which units are assigned to which stage. We consider feedback connections

confined to one of three possibilities: internal feedback within the hidden stage, feedback from the

output stage to the hidden stage, and internal feedback within the output stage. Figure 8 depicts

these 3 architectures. In this section we omit discussion of the computational complexity of the

algorithms described.

Insert Figure 8 about here.

7.2.1 Hidden-to-Hidden Feedback Only

Figure 8A illustrates a general architecture in which all feedback connections are confined to the

hidden stage. One example of this architecture is provided by the work of Elman (1988), who has

considered a version in which the hidden stage and the output stage are each one-layer networks,

with feedback connections provided between all units in the hidden stage. Cleeremans, Servan-

Screiber, and McClelland (1989; [chapter ??, this volume]) have also studied this architecture

extensively. One approach to creating an real-time, exact gradient algorithm for this architecture

is to use a hybrid strategy involving both RT'RL and backpropagation. In this approach, the

pi, values need only be stored and updated for the hidden units, with backpropagation used to

determine other necessary quantities. Mathematical justification for the validity of this approach

is based on essentially the same arguments used to derive the hybrid algorithm FP/BPTT(hA).
The error gradient is computed by means of

=~ = we: A]
Owi; | LalcUy er(t)pi,(t), ift € Un, (41)

where 6;(¢) is obtained by backpropagation entirely within the hidden stage.

The Di, values, for k € Uy, are updated by means of the equations

pi, (t) = fi,(se(t)) | S- Whig (t —1)+d%2;(¢-1)], (42)
leUg

which are just the RTRL equations (33) specialized to take into account the fact that we; is 0 if

LEUo.

One noteworthy special case of this type of architecture has been investigated by Mozer (1989,

[chapter ??, this volume]). For this architecture, the only connections allowed between units in

the hidden stage are self-recurrent connections. In this case, Diy is 0 except when k = 7. This

22

algorithm can then be implemented in an entirely local fashion by regarding each Pi, value as

being stored with w,;, because the only information needed to update pj, is locally available at

unit 7. The algorithm described here essentially coincides with Mozer’s algorithm except that his

net uses a slightly different form of computation within the self-recurrent units.

7.2.2 Output-to-Hidden Feedback Only

Figure 8B illustrates a general architecture in which all feedback connections go from the output

stage to the hidden stage. One example of this architecture is provided by the work of Jordan

(1986), who has considered a version in which the hidden stage and the output stage are each

one-layer networks, with feedback connections going from all units in the output stage to all units

in the hidden stage. As in the preceding case, we consider a hybrid approach for this architecture

involving both RT'RL and backpropagation. In this case, the Di, values are only stored and

updated for the output units. Mathematical justification for the validity of this approach is based

on essentially the same arguments used to derive the hybrid algorithm FP/BPTT(hA).
The error gradient is computed by means of the equation

aJ(t)
Ow

 = ¥ ex(t)pi(d), (43)
kcUo

which is just the RTRL equation (32) specialized to take into account the fact that e;, is always 0

for k € Ug.

The updating of the p values for units in the output stage is based on performing a separate

backpropagation computation for each k € Uo, in a manner very much like that used in the hybrid

algorithm FP/BPTT(h). To compute pj,(t), for k € Uo, inject a 1 as “error” at the k*" unit and
backpropagate all the way from the output stage, through the hidden stage, and through the

feedback connections, right back to the output stage at the previous time step. Then compute

pi(t) = >) ex(t — 1)p;,(¢ — 1) + 4i(t)aj(¢ — Ais), (44)
leUo

where Aj; is 1 if 7 € Uo and 0 otherwise. The relevant 6;(¢) and ¢;(¢— 1) values are obtained from
the backpropagation computation, with a new set obtained for each k.

7.2.3 Output-to-Output Feedback Only

Figure 8C illustrates a general architecture in which all feedback connections are confined to the

output stage. Just as in the previous cases, we consider a hybrid approach in which the Di, values

need only be stored and updated for the output units, with backpropagation used to determine

other necessary quantities. As before, the error gradient is computed by means of equation (43).

Updating of the Di, values is performed using a slightly different mix of backpropagation and

forward gradient propagation than in the previous case. To derive this, we write the equation

computing net input for a unit in the output stage as

s;,(t) = S- Wer (t) + S- Wty (t — Ani); (45)

leUqUI IcUo

23

where A,, is 0 if the connection from unit / to unit k is a feedforward connection within the output

stage and 1 if it is a feedback connection. Singling out the first sum on the right-hand side of this

equation, we define

S- Wri (t). (46)

leUy_Ul

It then follows that

Di, (¢) — fi (Ss, (t)) Gat nl) | I>. Whig (t)+ Oinxs(t — =) . (47)

leUo

If 2 € Uo the first term on the right-hand side of this equation is zero and the updating of Di, thus

proceeds using a pure RI'RL approach. That is, for k and z in Uo, pi, is updated by means of the

equation

leU
pi, (t)= Fil Sa(t fs wWriDi, (t)+ Oind;(t — as) . (48)

If 2 € Uy, however, the first term on the right-hand side of equation (47) is not necessarily zero,

but it can be computed by injecting a 1 as “error” at the output of the k‘* unit and backprop-

agating directly into the hidden stage to the point where 6; is computed. This backpropagation

computation begins at the output of the k* unit and proceeds directly into the hidden stage,

ignoring all connections to the k“ unit from units in the output stage. Specifically, then, for each

fixed k € Ug, one such backpropagation pass is performed to obtain a set of 6;(¢) values for all

a € Uz. Then the Di, values for this particular k are updated using

Dij(t) = di(t)x;(t) + fa(se(t)) | D2 waupig (t) + ding (t — Aig)] - (49)
lcUo

One special case of this architecture is a network having a single self-recurrent unit as its only

output unit, with a feedforward network serving as a preprocessing stage. In this case, there is a

single value of Di, to associate with each weight w,;;, and we may imagine that it is stored with its

corresponding weight. Then only local communication is required to update these p values, and

a single global broadcast of the error e,(t) (where k is the index of the output unit) is sufficient
to allow error gradient computation. This may be viewed as a generalization of the single self-

recurrent unit architecture studied by Bachrach (1988). One of the algorithms he investigated

coincides with that described here.

8 Approximation Strategies

Up to this point we have confined our attention to exact gradient computation algorithms. How-

ever, it is often useful to consider algorithms which omit part of the computation required to fully

compute the exact gradient. ‘There are actually several reasons why this can be advantageous,

some of which we discuss later. The primary reason is to simplify the computational requirements.

24

8.1 Truncated Backpropagation Through Time

A natural approximation to the full real-time BPTT computation is obtained by truncating the

backward propagation of information to a fixed number of prior time steps. This is, in general,

only a heuristic technique because it ignores dependencies in the network spanning durations

longer than this fixed number of time steps. Nevertheless, in those situations where the actual

backpropagation computation leads to exponential decay in strength through (backward) time,

which occurs in networks whose dynamics consist of settling to fixed points, this can give a rea-

sonable approximation to the true error gradient. Even when this is not the case, its use may

still be justified when weights are adjusted as the network runs simply because the computation

of the “exact” gradient over a long period of time may be misleading since it is based on the as-

sumption that the weights are constant. We call this algorithm truncated backpropagation through

time. With h representing the number of prior time steps saved, this algorithm will be denoted

BPTT(h). Note that the discrepancy between the BPTT(h) result and the BPTT(oo) result is
equal to the first sum on the right-hand side of equation (37) for the FP/BPTT(h) algorithm.
The processing performed by the BPTT(h) algorithm is depicted in Figure 9.

Insert Figure 9 about here.

The computational complexity of this algorithm is quite reasonable as long as h is small. Its

space complexity is in O((m-+n)h) and the average number of arithmetic operations required per

time step is in O((wy + wa)h/Ar). The worst case for this algorithm for any fixed n is when the
network is fully connected, all weights are adaptable, and target values are supplied at every time

step, so that Ay = 1. In this case the algorithm requires O(nh) space and O(n*h) time. These

complexity results are summarized in Tables 1 and 2.

A number of researchers (Watrous & Shastri, 1986; Elman, 1988; Cleeremans, Servan-Schreiber,

& McClelland, 1989, [chapter ??, this volume]) have performed experimental studies of learning

algorithms based on this approximate gradient computation algorithm. The architecture studied

by Elman and by Cleeremans et al. is an example of the two-stage type described earlier with

hidden-to-hidden feedback only, but the learning algorithm used in the recurrent hidden stage is

BPTT(1).

8.2 A More Efficient Version of Truncated Backpropagation Through

Time

Interestingly, it is possible to devise a more efficient approximate gradient computation algorithm

for continually operating networks by combining aspects of epochwise BPTT with the truncated

BPTT approach, as has been noted in (Williams, 1989). Note that in the truncated BPTT

algorithm described above, BPTT through the most recent h time steps is performed anew each

time the network is run through an additional time step. More generally, one may consider letting

the network run through h’ additional time steps before performing the next BPTT computation.

In this case, if ¢ represents a time at which BPTT is to be performed, the algorithm computes

an approximation to VwJ*"!(¢ — h’,t) by taking into account only that part of the history over

20

the interval [t — h,t]. Let us denote this algorithm BPTT(h;h’). Thus BPTT(h) is the same as
BPTT(h;1), and BPTT(h; hk) is the epochwise BPTT algorithm, which, of course, is not an exact
gradient algorithm unless there are state resets at the appropriate times. Figure 10 depicts the

processing performed by the BPTT(h; h’) algorithm.

Insert Figure 10 about here.

In general, whenever it can be assumed that backpropagating through the most recent h—h’+1

time steps gives a reasonably close approximation to the result that would be obtained from

backpropagating all the way back to zt, then this algorithm should be sufficient. The storage

requirements of this algorithm are essentially the same as those of BPTT(h), but, because it

computes the cumulative error gradient by means of BPTT only once every h’ time steps, its

average time complexity per time step is reduced by a factor of h’. Thus its average time complexity

per time step is in O((wy + wa)h/h’) in general and in O(n*h/h’) in the worst case, as indicated in
Tables 1 and 2. In particular, when h’ is some fixed fraction of h, the worst-case time complexity

per time step for this algorithm is in O(n”). Furthermore, it is clear that making h/h’ small makes
the algorithm more efficient. Thus a practical approximate gradient computation algorithm for

continually operating networks may be obtained by choosing h and h’ so that h—h’ is large enough

that a reasonable approximation to the true gradient is obtained and so that h/h’ is reasonably

close to 1.

8.3. Subgrouping in Real-Time Recurrent Learning

The RT'RL approach suggests another approximation strategy which is designed to reduce the

complexity of the computation and which also has some intuitive justification. While truncated

BPTT achieves a simplification by ignoring long-term temporal dependencies in the network’s

operation, this modification to RTRL, proposed in (Zipser, 1989), achieves its simplification by

ignoring certain structural dependencies in the network’s operation.

This simplification is obtained by viewing a recurrent network for the purpose of learning as

consisting of a set of smaller recurrent networks all connected together. Connections within each

subnet are regarded as the recurrent connections for learning, while activity flowing between sub-

nets is treated as external input by the subnet which receives it. The overall physical connectivity

of the network remains the same, but now forward gradient propagation is only performed within

the subnets. Note that this means that each subnet must have at least one unit which is given

target values.

More precisely, in this approach the original network is regarded as divided into g equal-sized

subnetworks, each containing n/g units (assuming that n is a multiple of g, as we will throughout

this discussion). Each of these subnetworks needs to have at least one target, but the way the

targets are distributed among the subnetworks is not germane at this point. Then equations (33)

and (32) of the RTRL algorithm are used to update the Di, values and determine the appropriate

error gradient, except that the value of Di, is regarded as being fixed at zero whenever units 7 and

k belong to different subnetworks. If we regard each weight w,; as belonging to the subnetwork

to which unit i belongs, this amounts to ignoring Oy,/Ow,;; whenever the k“ unit and weight w;,

26

belong to different subnets. The computational effect is that RIT'RL is applied to g decoupled

subnetworks, each containing n/g units. We denote this algorithm RTRL(g). Clearly, RTRL(1)
is the same as RTRL. Figure 11 illustrates how RTRL is simplified by using the subgrouping

strategy.

Insert Figure 11 about here.

The number of nonzero Di, values to be stored and updated for this algorithm is nwa/g.
To analyze its time requirements, we assume for simplicity that every subnetwork has the same

number of adjustable weights and that every unit receives input from the same number of units,

which implies that each subnetwork then contains w,/g adjustable weights and wy/g? within-

group weights. But then equation (33) for updating the pj, values requires O((wy/g?)(wa/g))
operations within each subnetwork on each time step, or a total of O(wyw,/g?) operations on
each time step. In addition, the average number of operations required for equation (32) per

time step is nrwa/g. Altogether, then, the time complexity of this algorithm per time step is in

O(wywa/g? + nrwa/g).
To examine the worst case complexity, assume that the network is fully connected, all weights

are adaptable, and nr is in O(n). In this case RTRL(g) has space complexity in @(n?/g) and
average time complexity per time step in O(n*/g?+n?/g) = O(n*/g?) (since g < n). In particular,
note that if g is increased in proportion to n, which keeps the size of the subnets constant, the

resulting algorithm has, in the worst case, space and time complexity per time step both in O(n’).

These complexity results are summarized in ‘Tables 1 and 2.

One strategy which avoids the need for assigning specific target values to units from each

subgroup is to add a separate layer of output units with O-delay connections from the entire

recurrent network to these output units, which are the only units given targets. This is then an

example of a two-stage architecture having only hidden-to-hidden recurrence, and the training

method described earlier for such networks, involving both backpropagation and RTRL, can be

modified so that the full RTRL is replaced by subgrouped RTRL. This approach amounts to giving

the recurrent network virtual targets by means of backpropagation from the output units.

Note also that this subgrouping strategy could be used to advantage in the hybrid algorithm

FP/BPTT(h). Such an approximation algorithm would provide an interesting blend of aspects of
both truncated BPTT and subgrouped RTRL.

9 Teacher Forcing

An interesting strategy that has appeared implicitly or explicitly in the work of a number of

investigators studying supervised learning tasks for recurrent nets (Doya & Yoshizawa, 1989;

Jordan, 1986; Narendra & Parthasarathy, 1990; Pineda, 1988; Rohwer & Renals, 1989; Williams

& Zipser, 1989a; 1989b) is to replace, during training, the actual output y;,(¢) of a unit by the

teacher signal d;,(t) in subsequent computation of the behavior of the network, whenever such a

target value exists. We call this intuitively sensible technique teacher forcing.

27

Formally, the dynamics of a teacher-forced network during training are given by equations (2)

and (3), as before, but where x(t) is now defined by

oe'(t) ifkel
r,(t)=< d,(t) if k € T(t) (50)

y(t) ifkeU\ T(t).

rather than by equation (1). Because Od;,(t)/Ow,; = 0 for all k € T(¢) and for all ¢, this leads
to very slight differences in the resulting gradient computations, giving rise to slightly altered

algorithms. It is an easy exercise to rework the computations given earlier for BPT'T and RTRL

using these modified dynamics. We omit the details and content ourselves here with a description

of the results.

The one simple change necessary to incorporate teacher forcing into any version of BPTT is

that the backpropagation computation from later times must be “blocked” at any unit in the

unrolled network whose output has been set to a target value. Equivalently, any unit given an

external target value at a particular time step should be given no virtual error for that time step.

More precisely, for real-time BPTT or any of its variants, equation (14) must be replaced by

e,(T — 1) =0 (51)

whenever k € T(7 — 1) for any 7 < t. Similarly, for epochwise BPTT, equation (19) must be
replaced by

Ex(7 — 1) = eg(7 — 1) (52)

whenever & € T(7 — 1) for any 7 < #).
In the case of RI'RL, the one simple change required to accommodate teacher forcing is to

treat the value of pj,(t) as zero for any | € T(t) when computing pj,(t + 1) via equation (33).
Equivalently, equation (33) is replaced by

pi (t+1) = fi(se(t)) | D2 waepiy(t) + dinas(t)| - (53)
ICU\T(t)

There seem to be several ways that teacher forcing can be useful. For one thing, one might

expect that teacher forcing could lead to faster learning because it enables learning to proceed

on what amounts to the assumption that the network is performing all earlier parts of its task

correctly. In this way, all learning effort is focused on the problem of performing correctly at a

particular time step given that the performance is correct on all earlier time steps. When teacher

forcing provides this benefit, one would expect that its absence would simply slow down learning

but not prevent it altogether. It may also play a useful, or even critical, role in situations where

there is some approximation involved. For example, when using subgrouping in RTRL, it has

sometimes been found to make the difference between success and failure.

Beyond these potential benefits of teacher forcing is what we now recognize as its sometimes

essential role in the training of continually operating networks. One such situation we have studied

involves training networks to oscillate autonomously using RTRL. If the network starts with small

enough weights, its dynamical behavior will consist of settling to a single point attractor from

any starting state. Furthermore, assuming that the learning rate is reasonably small, it will

28

eventually converge to its point attractor regardless of where it was started. Once it has stayed at

this attractor sufficiently long the task can never be learned by moving along the negative error

gradient in weight space because this error gradient information only indicates what direction to

move to alter the fixed point, not what direction would change the overall dynamical properties.

This is the same phenomenon described earlier in our discussion of the relationship between BPTT

and the recurrent backpropagation algorithm for training settling networks. The gradient of error

occurring long after the transient portion has passed contains no information about the overall

dynamics of the network. Applying BPTT or RTRL to such a network is then equivalent to

applying RBP; the only effect is that the point attractor is moved around. A network being

trained to oscillate will thus simply adjust its weights to find the minimum error between its

constant output and the desired oscillatory trajectory without ever becoming an oscillator itself.

We believe that this is a particular case of a much more general problem in which the weights

need to be adjusted across a bifurcation boundary but the gradient itself cannot yield the necessary

information because it is zero (or moving arbitrarily close to zero over time). The information lost
when the network has fallen into its attractor includes information which might tell the weights

where to move to perform the desired task. As long as the network is moving along a transient,

there is some gradient information which can indicate the desired direction in which to change the

weights; once the network reaches its steady-state behavior, this information disappears.

Another example of this justification for the use of teacher forcing is provided by the work of

Pineda (1988; [chapter ??, this volume]), who has combined it with RBP as a means of attempting
to add new stable points to an associative memory network. Without teacher forcing, RBP would

just move existing stable point around without ever creating new ones.

Still another class of examples where teacher forcing is obviously important is where the weights

are correct to perform the desired task but the network is currently operating in the wrong region

of its state space. For example, consider a network having several point attractors which happens

to be currently sitting on the wrong attractor. Attempting to get it onto the right attractor by

adjusting the weights alone is clearly the wrong strategy. A similar case is a oscillator network

faced with a teacher signal essentially identical to its output except for being 180 degrees out of

phase. Simulation of such problems using RTRL without teacher forcing leads to the result that

the network stops oscillating and produces constant output equal to the mean value of the teacher

signal. In contrast, teacher forcing provides a momentary phase reset which avoids this problem.

The usefulness of teacher forcing in these situations is obviously related to the idea that both

the network weights and initial conditions determine the behavior of the network at any given

time. Error gradient information in these learning algorithms allows control over the network

weights, but one must also gain control over the initial conditions, in some sense. By using desired

values to partially reset the state of the net at the current time one is helping to control the initial

conditions for the subsequent dynamics.

It should also be noted that there are situations for which teacher forcing is clearly not applica-

ble or may be otherwise inappropriate. It is certainly not applicable when the units to be trained

do not feed their output back to the network, as in one of the special two-stage architectures

discussed earlier. Furthermore, a gradient algorithm using teacher forcing is actually optimizing a

different error measure than its unforced counterpart, although any setting of weights giving zero

error for one also gives zero error for the other. This means that, unless zero error is obtained,

the two versions of a gradient algorithm need not give rise to the same solutions. In fact, it is

29

easy to devise examples where the network is incapable of matching the desired trajectory and

the result obtained using teacher forcing is far different from a minimum-error solution for the

unforced network.

A simple example is the problem of attempting to train a single unit to perform a sequence

consisting of n Os alternating with n 1s. It is not hard to see that when n > 2 the best least-squares

fit to this training data is achieved when the unit produces the constant output 0.5 at all times.

This is the behavior to which a gradient algorithm will essentially converge for this problem if

teacher forcing is not used. Such a solution is achieved by setting the unit’s bias and recurrent

weight to zero. Note that this actually makes 0.5 a global attractor for this dynamical system; if

the output were somehow perturbed to some other value momentarily, it would converge back to

0.5 (in one time step, in this case).

However, when teacher forcing is used, the behavior tends toward creating point attractors for

the output of the unit at 1/n and 1—1/n. When n = 2 this is identical to the solution obtained

without teacher forcing, but for n > 3 it is quite different. When n > 3, the weights obtained

using teacher forcing lead to bistable behavior, with an output of 0.5 representing an unstable

critical point separating the two basins of attraction for the system.

Teacher forcing leads to such a result because it emphasizes transitions in the training data.

According to the training data, a correct output of either 0 or 1 is followed by that same value 1 —

1/n of the time and by the opposite value 1/n of the time; the result obtained using teacher forcing

simply represents the minimum mean-square error for such transition data. In this particular

problem only the transitions between successive output values are relevant because there are no

other state variables potentially available to record the effect of earlier output values. More

generally, teacher forcing attempts to fit transitions from the collection of all prior correct output

values to the next correct output value, subject to the ability of the net to capture the relevant

distinctions in its state of activity.

Pineda (1989, [chapter ??, this volume]) has pointed out some other potential problems with
teacher forcing. One of these is that it may create trajectories which are not attractors but

repellers. One potential way around this and other difficulties with teacher forcing is to consider

a slight generalization in which x;,(t) is set equal to y,(t) + Ge,(t) for k € U, where @ € [0,1] is
a constant. Teacher forcing uses G = 1 while G = 0 represents its absence. But other values of @

represent a mix of the two strategies. For this generalization, the correct gradient computation

involves attenuating the virtual error backpropagated from later times by the factor 1 — 6 in

BPTT or multiplying Pi, (t) by 1 — @ before propagating the activity gradient forward in RTRL.
A related strategy is to use teacher forcing intermittently rather than on every time step when

target values are available. This has been tested by Tsung (1990) and found useful for dealing with

the somewhat different but related problem of training network trajectories that vary extremely

slowly.

Finally, we note that Rohwer (1990) has expanded on this idea of teacher forcing to develop an

interesting new epochwise learning algorithm based on computation of the gradient of performance

with respect to unit activities rather than network weights.

30

10 Experimental Studies

The important question to be addressed in studies of recurrent network learning algorithms, what-

ever the constraints to which they must conform, is how much total computational effort must

be expended to achieve the desired performance. For many of the algorithms described here an

analysis of the amount of computation required per time step has been presented, but this must

be combined with knowledge of the number of time steps required and success rate obtained

when training particular networks to perform particular tasks. Any speed gain from performing

a simplified computation on each time step is of little interest unless it allows successful training

without inordinately prolonging the training time.

To examine the relative performance of some of the more computationally attractive approxi-

mation algorithms for continually operating networks described here, both subgrouped RT'RL and

truncated BPTT were tested for their ability to train fully recurrent networks to emulate the finite

state machine part of a Turing machine for balancing parentheses, a task that had previously been

shown to be learnable by RTRL (Williams & Zipser, 1989b). For this task the network receives
as input the same tape mark that the Turing machine “sees,” and is trained to produce the same

outputs as the Turing machine for each cell of the tape that it visits. There are 4 output lines in

the version of the problem used here. They code for the direction of movement, the character to

be written on the tape and whether a balanced or unbalanced final state has been reached. It had

previously been found that a fully recurrent network with 12 units was the smallest that learned

the Turing machine task. Although this could be formulated as an epochwise task by resetting

the network every time the Turing machine halts and begins anew, the network was allowed to

run continually, with transitions from a halt state to the start state being considered part of the

state transition structure which the network had to infer.

To test the subgrouping strategy on this task, a 12-unit fully connected network was divided

for learning into 4 subnets of 3 units each, with one unit in each subnet designated as an output

unit. The full RTRL algorithm allowed the network to learn the task with or without teacher

forcing about 50% of the time after seeing fewer than 100,000 cells of the Turing machine tape.

The RTRL(4) algorithm also allowed the network to learn the task about 50% of the time in
fewer than 100,000 Turing machine cycles, but only in the teacher forcing mode. The subdivided

network never learned the task without teacher forcing.

To test the truncation strategy on this task, BPTT(h) was tried, with various values of h.'! No

teacher forcing was used. It was found that with h < 4, BPTT(h) was successful in training the
network only about 9% of the time, while BPTT(9) succeeded more than 80% of the time. The
fact that BPTT(9) succeeded more often than the various RTRL algorithms, including the version

with no subgrouping, may indicate that the error committed in computing an exact gradient

as if the weights had been constant throughout the past may outweigh the error committed by

discarding all effects of activity and input in the distant past. On the other hand, it might also

represent a beneficial effect of failing to follow the exact gradient and thereby avoiding becoming

trapped at a local optimum.

The relative actual running times of the these algorithms on a single-processor machine were

also compared. It was found that BPTT(9) ran 28 times faster on this task than RTRL, while

RTRL(4) ran 9.8 times faster than RTRL.

‘1 For these studies the variant in which past weight values are stored in the history buffer was used.

31

In another set of studies (Williams & Peng, 1990), BPTT(16;8) was found to succeed as often
as BPTT(9) on this task, while running twice as fast.'? Note that BPTT(16;8) is thus well over
50 times faster than RTRL on this task.

Insert Table 1 about here.

Insert Table 2 about here.

11 Discussion

In this chapter we have described a number of gradient-based learning algorithms for recurrent

networks, all based on two different approaches to computing the gradient of network error in

weight space. The existence of these various techniques, some of them quite reasonable in terms

of their computational requirements, should make possible much more widespread investigation

of the capabilities of recurrent networks.

In the introduction we noted that investigators studying learning algorithms for such networks

might have various objectives, each of which might imply different constraints on which algorithms

might be considered to meet these objectives. Among the possible constraints one might wish to

impose on a learning algorithm are biological plausibility and locality of communication. Feed-

forward backpropagation is generally regarded as biologically implausible, but its requirement for

reverse communication along only the connections already in place allows it to be considered a

locally implementable algorithm, in the sense that it does not require a great deal of additional

machinery beyond the network itself to allow implementation of the algorithm. Except in very

restricted cases involving severely limited architectures or extreme approximations, the algorithms

described here cannot be considered biologically plausible as learning algorithms for real neural

networks, nor do they enjoy the locality of feeforward backpropagation.

However, many of the algorithms discussed here can be implemented quite reasonably and effi-

ciently in either vector parallel hardware or special-purpose parallel hardware designed around the

storage and communication requirements of the particular algorithm. Several of these algorithms

are quite well suited for efficient serial implementation as well. Thus one might expect to see these

algorithms used especially for off-line development of networks having desired temporal behaviors

in order to study the properties of these networks. Some of these techniques have already been

used successfully to fit models of biological neural subsystems to data on the temporal patterns

they generate (Arnold & Robinson, 1989; Lockery, Fang, & Sejnowski, 1990; Tsung, Cottrell, &

Selverston, 1990; Anastasio, 1991) and a number of studies have been undertaken to apply these

12Careful analysis of the computational requirements of BPTT(9) and of BPTT(16;8), taking into account the
fixed overhead of running the network in the forward direction that must be borne by any algorithm, would suggest

that one should expect about a factor of 4 speedup when using BPTT(16;8). Because this particular task has targets

only on every other time step, the use of BPTT(9) here really amounts to using BPTT(9;2), which therefore reduces

the speed gain by essentially one factor of 2.

32

methods to develop networks which carry out various language processing or motor control tasks

as a means of understanding the information processing strategies involved (Elman, 1988; Jordan,

1986; Mozer, 1989, [chapter ??, this volume]; Cleeremans, Servan-Screiber, and McClelland, 1989,

[chapter ??, this volume]; Smith & Zipser, 1990). One might also expect to see specific engineering

applications of recurrent networks developed by these methods as well.

Thus there is much that can be done with the currently available algorithms for training

recurrent networks, but there remains a great deal of room for further development of such al-

gorithms. It is already clear that more locally implementable or biologically plausible algorithms

remain to be found, and algorithms with improved overall learning times are always desirable. It

seems reasonable to conjecture that such algorithms will have to be more architecture-specific or

task-specific than the general-purpose algorithms studied here.

Of particular importance are learning algorithms for continually operating networks. Here

we have described both “exact” and approximate gradient algorithms for training such networks.

However, by our definition, the exact algorithms compute the true gradient at the current value of

the weights only under the assumption that the weights are held fixed, which cannot be true in a

continually operating learning network. This problem need not occur in a network which operates

epochwise; when weight changes are only performed between epochs, an exact gradient algorithm

can compute the true gradient of some appropriate quantity.

Thus all the algorithms described here for continually operating networks are only capable

of computing approximate gradient information to help guide the weight updates. The degree

of approximation involved with the so-called “exact” algorithms depends on the degree to which

past history of network operation influences the gradient computation and the degree to which

the weights have changed in the recent past. Truncated BPTT alleviates this particular problem

because it ignores all past contributions to the gradient beyond a certain distance into the past.

Such information is also present in RTRL, albeit implicitly, and Gherrity (1989) has specifically

addressed this issue by incorporating into his continuous-time version of RT'RL an exponential

decay on the contributions from past times. For the discrete-time RTRL algorithm described

here, this is easily implemented by multiplying all the Di, values by an attenuation factor less than

1 before computing their updated values. Unlike truncated BPTT, however, this does not reduce

the computational complexity of the algorithm.

Another way to attempt to alleviate this problem is to use a very low learning rate. The effect

of this is make the constant-weight approximation more accurate, although it may slow learning.

One way to view this issue is in terms of time scales, as noted by Pineda [chapter ??, this volume].

The accuracy of the gradient computation provided by an exact algorithm in our sense depends

on the extent to which the time scale of the learning process is decoupled from the time scale of

the network’s operation by being much slower. In general, with the learning rate set to provide

sufficiently fast learning, these time scales may overlap. This can result in overall dynamical

behavior which is determined by a combination of the dynamics of the network activation and

the dynamics of the weight changes brought about by the learning algorithm. At this point one

leaves the realm of gradient-based learning algorithms and enters a realm in which a more general

control-theoretic formulation is more appropriate. A particular issue here of some importance is

the overall stability of such a system, as emphasized in the theory of adaptive control (Narendra &

Annaswamy, 1989). It is to be expected that satisfactory application of the techniques described

here to situations requiring on-line adaptation of continually operating recurrent networks will

33

depend on gaining further understanding of these questions.

It is useful to recognize the close relationship between some of the techniques discussed here

and certain approaches which are well known in the engineering literature. In particular, the

specific backward error propagation and forward gradient propagation techniques which we have

used here as the basis for all the algorithms investigated turn out to have their roots in standard

optimal-control-theoretic formulations dating back to the 1960’s. For example, leCun (1988) has

pointed to the work of Bryson and Ho (1969) in optimal control theory as containing a description

of what can now be recognized as error backpropagation when applied to multilayer networks.

Furthermore, it is also clear that work in that tradition also contains the essential elements of the

backpropagation-through-time approach. The idea of backpropagating through time, at least for

a linear system, amounts to running forward in time what is called in that literature the adjoint

system. The two-point boundary-value problems discussed in the optimal control literature arise

from such considerations. Furthermore, the idea of propagating gradient information forward

in time, used as the basis for RTRL, was proposed by McBride and Narendra (1965), who also

noted that use of the adjoint system may be preferable when on-line computation is not required

because of its lower computational requirements. The teacher forcing technique has its counterpart

in engineering circles as well. For example, it appears in the adaptive signal processing literature

as an “equation error” technique for synthesizing linear filters having an infinite impulse response

(Widrow & Stearns, 1985).
In work very similar in spirit to that we have presented here, Piche (1994) has shown how

various forms of backpropagation through time and forward gradient computation may be de-

rived in a unified manner from a standard Euler-Lagrange optimal-control-theoretic formulation.

Furthermore, he also discusses the computational complexity of the various algorithms described.

Included among the algorithms covered by his analysis are some of those we have described in

Section 7 for special architectures.

Finally, we remark that the techniques we have discussed here are far from being the only

ones available for creating networks having certain desired properties. We have focused here

specifically on those techniques which are based on computation of the error gradient in weight

space, with particular emphasis on methods appropriate for continually operating networks. As

described earlier in the discussion of the teacher forcing technique, Rohwer (1990) has proposed

an epochwise approach based on computation of the error gradient with respect to unit activities

rather than network weights. Also, another body of techniques has been developed by Baird

(1989) for synthesizing networks having prescribed dynamical properties. Unlike the algorithms

discussed here, which are designed to gradually perturb the behavior of the network toward the

target behavior as it runs, these algorithms are intended to be used to “program in” the desired

dynamics at the outset. Another difference is that these techniques are currently limited to creating

networks for which external input must be in the form of momentary state perturbations rather

than more general time-varying forcing functions.

12 Acknowledgement

R. J. Williams was supported by Grant IRI-8703566 from the National Science Foundation. D.

Zipser was supported by Grant I-RO1-M445271-01 from the National Institute of Mental Health

34

and grants from the System Development Foundation.

References

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a com-
binatorial environment. Proceedings of the IEEE First International Conference on Neural

Networks, IT, 609-618.

Anastasio, T. J. (1991). Neural network models of velocity storage in the horizontal vestibulo-

ocular reflex. Biological Cybernetics, 64, 187-196.

Arnold, D. & Robinson, D. A. (1989). A learning neural-network model of the oculomotor inte-
grator. Society of Neuroscience Abstracts, 15: part 2, 1049.

Bachrach, J. (1988). Learning to represent state. Unpublished master’s thesis. University of

Massachusetts, Amherst, Department of Computer and Information Science.

Baird, B. (1989). A bifurcation theory approach to vector field programming for periodic attrac-

tors. Proceedings of the International Joint Conference on Neural Networks, I, 381-388.

Bryson, A. E., Jr. and Ho, Y-C. (1969). Applied Optimal Control. New York: Blaisdell.

Cleeremans, A., Servan-Schreiber, D., & McClelland, J. L. (1989). Finite-state automata and
simple recurrent networks. Neural Computation, 1, 372-381.

Doya, K. & Yoshizawa, S. (1989). Adaptive neural oscillator using continuous-time back-propagation

learning. Neural Networks, 2, 375-385.

Elman, J. L. (1988). Finding structure in time (CRL Technical Report 8801). La Jolla: Univer-
sity of California, San Diego, Center for Research in Language.

Gherrity, M. (1989). A learning algorithm for analog, fully recurrent neural networks. Proceedings

of the International Joint Conference on Neural Networks, I, 643-644.

Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist sequential machine.
Proceedings of the Eighth Annual Conference of the Cognitive Science Society, 531-546.

Kuhn, G. (1987). A first look at phonetic discrimination using a connectionist network with re-

current links (SCIMP Working Paper No. 4/87). Princeton, NJ: Communications Research
Division, Institute for Defense Analyses.

leCun, Y. (1988). A theoretical framework for back-propagation (Technical Report CRG-TR-88-

6). Toronto: University of Toronto, Department of Computer Science.

Lockery, S., Fang, Y., & Sejnowski, T. (1990). Neural network analysis of distributed rep-
resentations of dynamical sensory-motor transformations in the leech. Advances in Neural

Information Processing Systems, 2. San Mateo, CA: Morgan Kaufmann.

39

McBride, L. E., Jr. & Narendra, K. S. (1965). Optimization of time-varying systems. [EEE

Transactions on Automatic Control, 10, 289-294.

Mozer, M. C. (1989). A focused back-propagation algorithm for temporal pattern recognition.

Complex Systems, 3, 349-381.

Narendra, K. S., & Annaswamy, A. M. (1989). Stable Adaptive Systems Englewood Cliffs, NJ:

Prentice-Hall.

Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamic systems using

neural networks. JEEE Transactions on Neural Networks, 1, 4-27.

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural networks, Neural
Computation, 1, 263-269.

Piche, S. W. (1994). Steepest descent algorithms for neural network controllers and filters. JEEE
Transactions on Neural Networks, 5.

Pineda, F. J. (1987). Generalization of backpropagation to recurrent neural networks, Physical

Review Letters, 18, 2229-2232.

Pineda, F. J. (1988). Dynamics and architecture for neural computation, Journal of Complezity,

4, 216-245.

Pineda, F. J. (1989). Recurrent backpropagation and the dynamical approach to adaptive neural

computation. Neural Computation, 1, 161-172.

Robinson, A. J. & Fallside, F. (1987). The utility driven dynamic error propagation network

(Technical Report CUED/F-INFENG/TR.1). Cambridge, England: Cambridge University
Engineering Department.

Rohwer, R. & Renals S. (1989). Training recurrent networks. In L. Personnaz & G. Dreyfus,
Eds. Neural Networks from Models to Applications. I.D.E.S.T., Paris.

Rohwer, R. (1990). The “moving targets” training algorithm. Proceedings of the EURASIP
Workshop on Neural Networks, Sesimbra, Portugal, 15-17 Feb. 1990, L. B. Almeida and C.

J. Wellekens, Eds., Lecture Notes in Computer Science v. 412, p. 100, series Eds. G. Goos

and J. Hartmanis, Springer-Verlag.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations
by error propagation. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Group,

Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1:

Foundations. Cambridge: MIT Press/Bradford Books.

Sato, M. (1990a). A real time learning algorithm for recurrent analog neural networks. Biological

Cybernetics, 62, 237-241.

Sato, M. (1990b). A learning algorithm to teach spatiotemporal patterns to recurrent neural

networks. Biological Cybernetics, 62, 259-263.

36

Schmidhuber, J. (1992). A fixed size storage O(n?) time complexity learning algorithm for fully
recurrent continually running networks. Neural Computation 4, 243-248.

Smith, A. W. & Zipser, D. (1990). Learning sequential structure with the real-time recurrent

learning algorithm. International Journal of Neural Systems, 1, 125-131

Tsung, F. S. (1990). Learning in recurrent finite difference networks. In Touretzky, D. S., Elman,

J. L., Sejnowski, T. J., and Hinton, G. E. (eds.), Proceedings of the 1990 Connectionist Models

Summer School. San Mateo, CA: Morgan Kaufmann.

Tsung, F-S, Cottrell, G. W., & Selverston, A. (1990). Some experiments on learning stable

network oscillations. Proceedings of the International Joint Conference on Neural Networks,

June, San Diego, CA.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1987). Phoneme recognition

using time-delay neural networks (Technical Report TR-I-0006). Japan: Advanced Telecom-

munications Research Institute.

Watrous, R. L. & Shastri, L. (1986). Learning phonetic features using connectionist networks: an

experiment in speech recognition (Technical Report MS-CIS-86-78). Philadelphia: University

of Pennsylvania.

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the behavioral

sciences. Unpublished doctoral dissertation. Harvard University.

Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent gas

market model. Neural Networks, 1, 339-356.

Widrow, B. & Stearns, 5. D. (1985). Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-

Hall.

Williams, R. J. (1990). Adaptive state representation and estimation using recurrent connection-

ist networks. In: W. T. Miller, R. 5S. Sutton, & P. J. Werbos (Eds.) Neural Networks for
Control. Cambridge: MIT Press/Bradford Books.

Williams, R. J.. (1989). Complexity of exact gradient computation algorithms for recurrent neu-

ral networks (Technical Report NU-CCS-89-27). Boston: Northeastern University, College of
Computer Science.

Williams, R. J. & Peng, J. (1990). An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural Computation, 2, 490-501.

Williams, R. J., & Zipser, D. (1989a). A learning algorithm for continually running fully recurrent

neural networks. Neural Computation, 1, 2770-280.

Williams, R. J., & Zipser, D. (1989b). Experimental analysis of the real-time recurrent learning

algorithm. Connection Science, 1, 87-111.

Zipser, D. (1989). A subgrouping strategy that reduces complexity and speeds up learning in

recurrent networks. Neural Computation, 1, 552-558.

37

A Appendix

A.1 Preliminaries

For completeness, we first summarize some of the definitions and assumptions from the main text.

Given a network with n units and m input lines, we define an (m+ n)-tuple x(t) and index sets
U and I such that 2x;(t), the k** component of x(t), represents either the output of a unit in the
network at time t, if k € U, or an external input to the network at time t, ifk € J. When k € U,

we also use the notation y;,(t) for x(t). For each i € U and j © U UT we have a unique weight
wij on the connection from unit or input line 7 to unit @.

Letting T(t) denote the set of indices & € U for which there exists a specified target value d;(t)
that the output of the k“" unit should match at time t, we also define a time-varying n-tuple e(t)

whose k*® component is

a ={ O-me) ke TE
0 otherwise.

We then define the two functions

(54)

F(t) = —1/2 Slew)’ (55)
kcU

and .

Toe t= YS I(r), (56)
t= +1

where tg < t’ < ¢, with tp denoting some fixed starting time.

For purposes of analyzing the backpropagation-through-time approach, we replace the dynam-

ical equations (2) and (3) in the main text by the equations

y(t + 1) = S- wee (t) x1 (Et), (57)

leUUl

ye(t + 1) = fr(se(t + 1)), (58)

and

Wij (t) = Wij; (59)

for all k € U, i € ;U, j € U UT, which give rise to equivalent dynamics for the s, and yy

values. These equations can be viewed as representing the multilayer computation performed in

the unrolled version \V* of the original arbitrary net MN’, where ¢ represents a layer index in *

rather than a time index in NV.
Now suppose we are given a differentiable function F' expressed in terms of {y,(7) | k € U,t’ <

T <t}, the outputs of the network over the time interval (¢’,¢]. Note that while / may have an
explicit dependence on some y;(T), it may also have an implicit dependence on this same value

through later output values. To avoid the resulting ambiguity in interpreting partial derivatives

like OF /Oy;,(7), we introduce variables y;(7) such that yz(7) = yx(7) for all k € U and 7 € (t,#|

38

and treat F as if it were expressed in terms of the variables {y{(7)} rather than the variables

{ya(r)}."°
Then, for all k € U, define

OF

é4(7; F) = yg (T) (60)

for all 7 € [to, #] and define

Bult F) = 5 (61)
for all rT € (to, #]. Also, define

a(n) = 5o (62)
for all 7 € (t,t]. Note that e,(7;F) = 0 whenever 7 < t' because we assume that F' has no
explicit dependence on the output of the network for times outside the interval (t’, t]. Finally, for

t€U,j7E€UUI,k EU, and € [t,t], define

 Hit) = FE, (63)
with

Di (to) =0 (64)

for all such 2, 7, and k since we assume that the initial state of the network has no functional

dependence on the weights.

A.2 Derivation of the Backpropagation-Through-Time Formulation

Since F depends on y;(7) only through y;(7) and the variables s;(7 + 1), as 1 ranges over U, we
have

OF dOy(7r) OF Os (7 +1) OF
 = , 65
Oyn(T) Oyn(T) Oy;(T) 2 Oyx(T) Osy(7 +1) (65)

from which it follows that

om _ | ex(t; F) iff =t
ex(T; F) 7 | en (7; F) + Micy windi(T + 1; F) if 7 < t. (66)

Also, for all 7 < ¢,

Os,(T) 7 ds,(T) Oy, (T)’

13To see why this is necessary, consider, for example, the two possible interpretations of OF'/Ox given that

F(z,y) =2x+y and y = x. The confusion occurs because the variable named “x” represents two different function

arguments according to a strict use of the mathematical chain rule, a problem easily remedied by introducing

additional variable names to eliminate such duplication. Werbos (1974; 1988), in addressing this same problem,

uses the standard partial derivative notation to refer to explicit dependencies only, introducing the term ordered

derivative, denoted in a different fashion, for a partial derivative which takes into account all influences. Our use

of partial derivatives here corresponds to this latter notion.

39

so that

On(7; F) = fl 8e(7))en(7; F). (68)
In addition, for any appropriate 2 and j,

Owiy fay, Owij(T) Owig Sf, Owij(7)’

and, for any 7,
OF OF 0s,(7 +1)

= = 6; 1; F)x,;(7).
Owi(T) Os(7T +1) Ow,;(7) ir +1; Fay (7) (70)

Combining these last two results yields

F t-1

d = \> 6,(7 +1; F)a;(r). (71)
OWig Fahy

Equations (66), (68), and (71) represent the backpropagation-through-time computation of

OF /Ow;,; for any differentiable function F expressed in terms of the outputs of individual units in a

network of semilinear units. With F = J(t), these specialize to the real-time BPTT equations (12),
(13), (14), and (16) given in the main text because e,(t; J(t)) = e,(t) and e,(7; J(t)) = 0 for 7 < t.
Similarly, the equations (17), (18), (19), and (20) for epochwise BPTT are obtained by setting
t=t, and F = J‘*#!(¢o,¢,) and observing that e,(7; J*" (to, t1)) = eg(7) for all rT < ty.

A.3 Derivation of the Hybrid Formulation

Continuing on from equation (69), we may write

OF v-l OF t-l1 oF
ae . 5

Owij xX Owy(T) r au Owi;(T) (72)

But the first sum on the right-hand side of this equation may be rewritten as

‘| OF al OF dy (t')

Xu Ow; (7) 7 z a Oyr(wow ig (T)

_ — Omit ‘
d a t’) Ln Ow; (T

_ OF Oy (t’)

d Oy (t’) Ow

= ait; F)pi,;(#).
lcU

Incorporating this result and equation (70) into equation (72) yields

OF t-1

= Dall; F)pi,(t) + > 6i(r + 1; F)2;(r). (73)
Ow lcU rat!

40)

This last result, together with equations (66) and (68), represents the basis for the hybrid
FP/BPTT algorithm described in the text. For that algorithm we apply equation (73) a total of

n+] times, first to F = J*#!(¢’, t), and then to F = y(t) for each k € U. That is, backpropagation

through time, terminating at time step 7’, is performed n+1 different times. When F = J‘*#!(¢’, 2),
this computation yields the desired gradient of J‘°"'(t’, t), assuming that the values pi, (t’), for all
appropriate i, j, and k, are available. Performing the backpropagation with F' = y;,(t) yields the

values Di, for all appropriate 2 and 7, so this must be performed anew for each & to yield the entire

set of Di, values for use in the next time interval.
Not surprisingly, this hybrid formulation can be shown to subsume both the BPTT and RTRL

formulations. In particular, the pure BPTT equation (71) is the special case where ¢/ = to.
Likewise, if we let F = J(t) and t’ = t, we see that the second sum vanishes and the result is

 -= Va(t)pi; (0), (74)

while letting F = y,(t) and t/ = ¢ — 1 yields

pi, (t) = S- writ p(Sa(t)) pi, (t —1)+ dir fi; (si(t)) 2, (t — 1)
lcU

= filse(t)) | >) was (t — 1) + dinng(t — 1)] (75)

Al

Average Time

Algorithm Space Per Time Step

Epochwise BPTT O((m+n)h) O(wy + wa)
BPTT (oo) O((m+n)L) O((wy + wa)L/Ar)

RTRL O(nwa) O(wywa)
FP/BPTT(h) O(nwat(mt+nyjh) | O(nwy +nw,+n?wa/h)
FP/BPTT(cn) O(nwaten(m+n)) | O(nwy + nwa + nwa/c)
BPTT(h) O((m + n)jh) O((wy + wa)h/Ar)
BPTT(hA; h’) O((m + n)jh) O((wy + wa)h/h’)
BPTT(h; ch) O((m + n)jh) O(wy + wa)

RTRL(g) O(nwa/g) O(wywa/g* + nrwa/9)
RTRL(en) O(wa) O(wywa/(en?) + nrwa/n)

Table 1: Order of magnitude of space and time requirements for the various general-purpose

algorithms discussed here. Here c denotes a constant and the meaning of all the other symbols

used is summarized in Section 3.3. Note: For the variant of BPTT(A) in which past weight values
are saved, the space requirements are in O(wah).

Average Time

Algorithm Space Per Time Step

Epochwise BPTT O(nh) O(n")
BPTT (oo) O(nL) Q(n?L)
RTRL Q(n?) Q(n*)
FP/BPTT(h) O(n? + nh) | O(n? +n*/h)
FP/BPTT (cn) Q(n?) Q(n?)
BPTT(h) Q(nh) Q(n7h)
BPTT(h; h’) Q(nh) Q(n*h/h’)
BPTT(h; ch) O(nh) O(n")

RTRL(g) Q(n°/g) O(n*/9*)
RTRL(cen) Q(n?) Q(n?)

Table 2: Worst-case complexity for the various general-purpose algorithms discussed here ex-

pressed in terms of the number of units n. These results are based on the assumption that m, the

number of input lines, is in O(n). Here c denotes a constant. Note: For the variant of BPTT(h)
in which past weight values are saved, the worst-case space requirements are in O(n7h).

A2

Figure 1: Two representations of a completely connected recurrent network having 3 units and 2

input lines. One input line might serve as a bias and carry the constant value 1. Any subset of

these 3 units may serve as output units for the net, with the remaining units treated as hidden

units. The 3 x 5 weight matrix for this network corresponds to the array of heavy dots in the

version on the right.

Figure 2: The unrolled version of the network shown in Figure 1 as it operates from time to

through time ¢. Each connection in the network is assumed to have a delay of 1 time step.

Figure 3: A schematic representation of the storage and processing required for real-time BPTT

at each time step t. The history buffer, which grows by one layer at each time step, contains at

time ¢ all input and unit output values for every time step from ¢) through ¢. The solid arrows

indicate how each set of unit output values is determined from the input and unit outputs on the

previous time step. A backward pass, indicated by the dashed arrows, is performed to determine

separate 6 values for each unit and for each time step back to tg) +1. The first step is the injection

of external error based on the target values for time step ¢, and all remaining steps determine

virtual error for earlier time steps. Once the backward pass is complete the partial derivative of

the negative error with respect to each weight can then be computed.

Figure 4: A schematic representation of the storage and processing required for epochwise BPTT.

All input, unit output, and target values for every time step from to through ¢, are stored in

the history buffer. The solid arrows indicate how each set of unit output values is determined

from the input and unit outputs on the previous time step. After the entire epoch is complete,

the backward pass is performed as indicated by the dashed arrows. Each even-numbered step

determines the virtual error from later time steps, while each odd-numbered step corresponds to

the injection of external error. Once the backward pass has been performed to determine separate

6 values for each unit and for each time step back to tj) +1, the partial derivative of the negative

error with respect to each weight can then be computed.

Figure 5: The data structures that must be updated on each time step to run the RTRL algorithm

with the network of Figure 1. In addition to updating the 3 unit activities within the network

itself on each time step (along with the 15 weights, if appropriate), the 3 x 5 x 3 array of Di, values

must also be updated. It is assumed here that all 15 weights in the network are adjustable. In

general, a Di, value for each combination of adjustable weight and unit in the network must be

stored and updated on each time step for RTRL.

43

Figure 6: A schematic representation of the storage and processing required for the FP/BPTT(h)
algorithm for two consecutive executions of the error gradient computation, one at time step ¢t and

the next at time step {+ h. From time step t — h through time step t the network input, activity,

and target values are accumulated in the history buffer. At time t the cumulative error gradient

is computed on the basis of one BPTT pass through this buffer, also using the p values stored

for time step t — h. In addition, n separate BPTT passes, one for each unit in the network, are

performed to compute the p values for time ¢. Each such BPTT pass begins with the injection of

1 as “error” at a single unit at the top level. Once the weights have been adjusted on the basis

of the cumulative error gradient over the interval (¢ — h,t] and the p values have been updated at

time ¢, accumulation of the history begins anew over the interval [¢,t + hl.

Figure 7: A network having connections with delays of 0 and 1 and its unrolling from time tg to

t. The feedforward connections, indicated by the thinner arrows in the network itself, all have a

delay of 0. These correspond to the within-level connections in the unrolled version. The feedback

connections, indicated by the thicker arrows in the network, all have a delay of 1. These correspond

to the connections from each level to the next level above it in the unrolled version. Other delays

beside 0 and 1 are possible and would be represented by connections that skip levels. In the

unrolled network, updating of activity is assumed to occur from left to right within each level and

then upward to the next level. Thus a sequence of operations is performed within each single time

step when computing the activity in the network. When errors are backpropagated, processing

goes in the reverse direction, from higher levels to lower levels and from right to left within each

level.

Figure 8: Three special architectures where all connections have delays of 0 or 1 time step. In each

case the hidden stage and the output stage have only 0-delay feedforward connections within them.

They may each consist of multilayer networks, for example. It is also assumed that there is no delay

on the input connections or the feedforward connections from units in the hidden stage to units in

the output stage. The output stage must contain all units which receive target values. Input may

optionally feed directly to the output stage, as indicated. The feedback connections, indicated by

the heavier arrows, all have a delay of 1 time step. The 3 possible feedback configurations are

where: (A) all feedback is confined to the hidden stage; (B) all feedback goes from the output
stage to the hidden stage; and (C) all feedback is confined to the output stage. A specialized

mixture of backpropagation and RTRL is applicable to each of these architectures.

Figure 9: A schematic representation of the storage and processing required for the BPTT(h)

algorithm for two consecutive executions of the error gradient computation, one at time step ¢

and the next at time step {+ 1. The history buffer always contains the current network input,

activity, and target values, along with the values of network input and activity for the h prior

time steps. The BPTT computation requires injection of error only for the current time step and

is performed anew at each subsequent time step.

44

Figure 10: A schematic representation of the storage and processing required for the BPTT(h; h’)

algorithm for two consecutive executions of the error gradient computation, one at time step ¢t and

the next at time step t+h’. The history buffer always contains the values of the network input and

activity for the current time step as well as for the h prior time steps. It also contains target values

for the most recent h’ time steps, including the current time step. The BPTT computation thus

requires the injection of error only at the h’ uppermost levels in the buffer. This figure illustrates

a case where h’ < h/2, but it is also possible to have h' > h/2.

Figure 11: A network divided into 2 subnetworks for subgrouped RTRL. The full RTRL algorithm

requires keeping track of the sensitivity of each unit in the network with respect to each weight in

the network. When subgrouping is used, each unit only pays attention to its sensitivity to weights

on connections terminating in the group to which it belongs. Thus, among the 4 connections

shown, only those 2 indicated with the heavy lines are considered when computing the sensitivity

of the unit indicated by the shading to variations in the weights.

45

