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Abstract

A new recurrent neural network based language model (RNN

LM) with applications to speech recognition is presented. Re-

sults indicate that it is possible to obtain around 50% reduction

of perplexity by using mixture of several RNN LMs, compared

to a state of the art backoff language model. Speech recognition

experiments show around 18% reduction of word error rate on

the Wall Street Journal task when comparing models trained on

the same amount of data, and around 5% on the much harder

NIST RT05 task, even when the backoff model is trained on

much more data than the RNN LM. We provide ample empiri-

cal evidence to suggest that connectionist language models are

superior to standard n-gram techniques, except their high com-

putational (training) complexity.

Index Terms: language modeling, recurrent neural networks,

speech recognition

1. Introduction

Sequential data prediction is considered by many as a key prob-

lem in machine learning and artificial intelligence (see for ex-

ample [1]). The goal of statistical language modeling is to

predict the next word in textual data given context; thus we

are dealing with sequential data prediction problem when con-

structing language models. Still, many attempts to obtain such

statistical models involve approaches that are very specific for

language domain - for example, assumption that natural lan-

guage sentences can be described by parse trees, or that we

need to consider morphology of words, syntax and semantics.

Even the most widely used and general models, based on n-

gram statistics, assume that language consists of sequences of

atomic symbols - words - that form sentences, and where the

end of sentence symbol plays important and very special role.

It is questionable if there has been any significant progress

in language modeling over simple n-gram models (see for ex-

ample [2] for review of advanced techniques). If we would mea-

sure this progress by ability of models to better predict sequen-

tial data, the answer would be that considerable improvement

has been achieved - namely by introduction of cache models

and class-based models. While many other techniques have

been proposed, their effect is almost always similar to cache

models (that describe long context information) or class-based

models (that improve parameter estimation for short contexts by

sharing parameters between similar words).

If we would measure success of advanced language model-

ing techniques by their application in practice, we would have

to be much more skeptical. Language models for real-world

speech recognition or machine translation systems are built on

huge amounts of data, and popular belief says that more data

is all we need. Models coming from research tend to be com-
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Figure 1: Simple recurrent neural network.

plex and often work well only for systems based on very limited

amounts of training data. In fact, most of the proposed advanced

language modeling techniques provide only tiny improvements

over simple baselines, and are rarely used in practice.

2. Model description

We have decided to investigate recurrent neural networks for

modeling sequential data. Using artificial neural networks in

statistical language modeling has been already proposed by

Bengio [3], who used feedforward neural networks with fixed-

length context. This approach was exceptionally successful

and further investigation by Goodman [2] shows that this sin-

gle model performs better than mixture of several other models

based on other techniques, including class-based model. Later,

Schwenk [4] has shown that neural network based models pro-

vide significant improvements in speech recognition for several

tasks against good baseline systems.

A major deficiency of Bengio’s approach is that a feedfor-

ward network has to use fixed length context that needs to be

specified ad hoc before training. Usually this means that neural

networks see only five to ten preceding words when predicting

the next one. It is well known that humans can exploit longer

context with great success. Also, cache models provide comple-

mentary information to neural network models, so it is natural

to think about a model that would encode temporal information

implicitly for contexts with arbitrary lengths.

Recurrent neural networks do not use limited size of con-

text. By using recurrent connections, information can cycle in-
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side these networks for arbitrarily long time (see [5]). However,

it is also often claimed that learning long-term dependencies by

stochastic gradient descent can be quite difficult [6].

In our work, we have used an architecture that is usually

called a simple recurrent neural network or Elman network [7].

This is probably the simplest possible version of recurrent neu-

ral network, and very easy to implement and train. The network

has an input layer x, hidden layer s (also called context layer

or state) and output layer y. Input to the network in time t is

x(t), output is denoted as y(t), and s(t) is state of the network

(hidden layer). Input vector x(t) is formed by concatenating

vector w representing current word, and output from neurons in

context layer s at time t − 1. Input, hidden and output layers

are then computed as follows:

x(t) = w(t) + s(t − 1) (1)

sj(t) = f
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!

(2)

yk(t) = g
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(3)

where f(z) is sigmoid activation function:

f(z) =
1

1 + e−z
(4)

and g(z) is softmax function:

g(zm) =
ezm

P

k
ezk

(5)

For initialization, s(0) can be set to vector of small values, like

0.1 - when processing a large amount of data, initialization is

not crucial. In the next time steps, s(t+1) is a copy of s(t). In-

put vector x(t) represents word in time t encoded using 1-of-N

coding and previous context layer - size of vector x is equal to

size of vocabulary V (this can be in practice 30 000− 200 000)

plus size of context layer. Size of context (hidden) layer s is

usually 30 − 500 hidden units. Based on our experiments, size

of hidden layer should reflect amount of training data - for large

amounts of data, large hidden layer is needed1.

Networks are trained in several epochs, in which all data

from training corpus are sequentially presented. Weights are

initialized to small values (random Gaussian noise with zero

mean and 0.1 variance). To train the network, we use the stan-

dard backpropagation algorithm with stochastic gradient de-

scent. Starting learning rate is α = 0.1. After each epoch,

the network is tested on validation data. If log-likelihood of

validation data increases, training continues in new epoch. If no

significant improvement is observed, learning rate α is halved

at start of each new epoch. After there is again no signifi-

cant improvement, training is finished. Convergence is usually

achieved after 10-20 epochs.

In our experiments, networks do not overtrain significantly,

even if very large hidden layers are used - regularization of net-

works to penalize large weights did not provide any significant

improvements. Output layer y(t) represents probability dis-

tribution of next word given previous word w(t) and context

1Consequently, time needed to train optimal network increases faster
than just linearly with increased amount of training data: vocabulary
growth increases the input and output layer sizes, and also the optimal
hidden layer size increases with more training data.

s(t − 1). Softmax ensures that this probability distribution is

valid, ie. ym(t) > 0 for any word m and
P

k
yk(t) = 1.

At each training step, error vector is computed according to

cross entropy criterion and weights are updated with the stan-

dard backpropagation algorithm:

error(t) = desired(t) − y(t) (6)

where desired is a vector using 1-of-N coding representing the

word that should have been predicted in a particular context and

y(t) is the actual output from the network.

Note that training phase and testing phase in statistical lan-

guage modeling usually differs in the fact that models do not get

updated as test data are being processed. So, if a new person-

name occurs repeatedly in the test set, it will repeatedly get a

very small probability, even if it is composed of known words.

It can be assumed that such long term memory should not re-

side in activation of context units (as these change very rapidly),

but rather in synapses themselves - that the network should con-

tinue training even during testing phase. We refer to such model

as dynamic. For dynamic model, we use fixed learning rate

α = 0.1. While in training phase all data are presented to net-

work several times in epochs, dynamic model gets updated just

once as it processes testing data. This is of course not optimal

solution, but as we shall see, it is enough to obtain large perplex-

ity reductions against static models. Note that such modification

is very similar to cache techniques for backoff models, with the

difference that neural networks learn in continuous space, so if

’dog’ and ’cat’ are related, frequent occurrence of ’dog’ in test-

ing data will also trigger increased probability of ’cat’.

Dynamically updated models can thus automatically adapt

to new domains. However, in speech recognition experiments,

history is represented by hypothesis given by recognizer, and

contains recognition errors. This generally results in poor per-

formance of cache n-gram models in ASR [2].

The training algorithm described here is also referred to as

truncated backpropagation through time with τ = 1. It is not

optimal, as weights of network are updated based on error vec-

tor computed only for current time step. To overcome this sim-

plification, backpropagation through time (BPTT) algorithm is

commonly used (see Boden [5] for details).

One of major differences between feedforward neural net-

works as used by Bengio [3] and Schwenk [4] and recurrent

neural networks is in amount of parameters that need to be

tuned or selected ad hoc before training. For RNN LM, only

size of hidden (context) layer needs to be selected. For feedfor-

ward networks, one needs to tune the size of layer that projects

words to low dimensional space, the size of hidden layer and

the context-length2.

2.1. Optimization

To improve performance, we merge all words that occur less

often than a threshold (in the training text) into a special rare

token. Word-probabilities are then computed as

P (wi(t+1)|w(t), s(t−1)) =

(

yrare(t)
Crare

if wi(t + 1) is rare,

yi(t) otherwise

(7)

2It is out of scope of this paper to provide a detailed comparison of
feedforward and recurrent networks. However, in some experiments we
have achieved almost twice perplexity reduction over n-gram models by
using a recurrent network instead of a feedforward network.
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Table 1: Performance of models on WSJ DEV set when increas-

ing size of training data.

Model # words PPL WER

KN5 LM 200K 336 16.4

KN5 LM + RNN 90/2 200K 271 15.4

KN5 LM 1M 287 15.1

KN5 LM + RNN 90/2 1M 225 14.0

KN5 LM 6.4M 221 13.5

KN5 LM + RNN 250/5 6.4M 156 11.7

where Crare is number of words in the vocabulary that occur

less often than the threshold. All rare words are thus treated

equally, ie. probability is distributed uniformly between them.

Schwenk [4] describes several possible approaches that can

be used for further performance improvements. Additional pos-

sibilities are also discussed in [10][11][12] and most of them

can be applied also to RNNs. For comparison, it takes around 6

hours for our basic implementation to train RNN model based

on Brown corpus (800K words, 100 hidden units and vocab-

ulary threshold 5), while Bengio reports 113 days for basic

implementation and 26 hours with importance sampling [10],

when using similar data and size of neural network. We use

only BLAS library to speed up computation.

3. WSJ experiments

To evaluate performance of simple recurrent neural network

based language model, we have selected several standard

speech recognition tasks. First we report results after rescor-

ing 100-best lists from DARPA WSJ’92 and WSJ’93 data sets

- the same data sets were used by Xu [8] and Filimonov [9].

Oracle WER is 6.1% for dev set and 9.5% for eval set. Training

data for language model are the same as used by Xu [8].

The training corpus consists of 37M words from NYT sec-

tion of English Gigaword. As it is very time consuming to train

RNN LM on large data, we have used only up to 6.4M words

for training RNN models (300K sentences) - it takes several

weeks to train the most complex models. Perplexity is evalu-

ated on held-out data (230K words). Also, we report results

for combined models - linear interpolation with weight 0.75 for

RNN LM and 0.25 for backoff LM is used in all these experi-

ments. In further experiments, we denote modified Kneser-Ney

smoothed 5-gram as KN5. Configurations of neural network

LMs, such as RNN 90/2, indicate that the hidden layer size is

90 and threshold for merging words to rare token is 2. To cor-

rectly rescore n-best lists with backoff models that are trained

on subset of data used by recognizer, we use open vocabulary

language models (unknown words are assigned small probabil-

ity). To improve results, outputs from various RNN LMs with

different architectures can be linearly interpolated (diversity is

also given by random weight initialization).

The results, reported in Tables 1 and 2, are by no means

among the largest improvements reported for the WSJ task ob-

tained just by changing the language modeling technique. The

improvement keeps getting larger with increasing training data,

suggesting that even larger improvements may be achieved sim-

ply by using more data. As shown in Table 2, WER reduc-

tion when using mixture of 3 dynamic RNN LMs against 5-

gram with modified Kneser-Ney smoothing is about 18%. Also,

perplexity reductions are one of the largest ever reported, al-

most 50% when comparing KN 5gram and mixture of 3 dy-

Table 2: Comparison of various configurations of RNN LMs

and combinations with backoff models while using 6.4M words

in training data (WSJ DEV).

PPL WER

Model RNN RNN+KN RNN RNN+KN

KN5 - baseline - 221 - 13.5

RNN 60/20 229 186 13.2 12.6

RNN 90/10 202 173 12.8 12.2

RNN 250/5 173 155 12.3 11.7

RNN 250/2 176 156 12.0 11.9

RNN 400/10 171 152 12.5 12.1

3xRNN static 151 143 11.6 11.3

3xRNN dynamic 128 121 11.3 11.1

Table 3: Comparison of WSJ results obtained with various mod-

els. Note that RNN models are trained just on 6.4M words.

Model DEV WER EVAL WER

Lattice 1 best 12.9 18.4

Baseline - KN5 (37M) 12.2 17.2

Discriminative LM [8] (37M) 11.5 16.9

Joint LM [9] (70M) - 16.7

Static 3xRNN + KN5 (37M) 11.0 15.5

Dynamic 3xRNN + KN5 (37M) 10.7 16.34

namic RNN LMs - actually, by mixing static and dynamic RNN

LMs with larger learning rate used when processing testing data

(α = 0.3), the best perplexity result was 112.

All LMs in the preceding experiments were trained on only

6.4M words, which is much less than the amount of data used

by others for this task. To provide a comparison with Xu [8] and

Filimonov [9], we have used 37M words based backoff model

(the same data were used by Xu, Filimonov used 70M words).

Results are reported in Table 3, and we can conclude that RNN

based models can reduce WER by around 12% relatively, com-

pared to backoff model trained on 5x more data3.

4. NIST RT05 experiments

While previous experiments show very interesting improve-

ments over a fair baseline, a valid criticism would be that the

acoustic models used in those experiments are far from state

of the art, and perhaps obtaining improvements in such cases

is easier than improving well tuned system. Even more crucial

is the fact that 37M or 70M words used for training baseline

backoff models is by far less than what is possible for the task.

To show that it is possible to obtain meaningful improve-

ments in state of the art system, we experimented with lattices

generated by AMI system used for NIST RT05 evaluation [13].

Test data set was NIST RT05 evaluation on independent headset

condition.

The acoustic HMMs are based on cross-word tied-states tri-

phones trained discriminatively using MPE criteria. Feature ex-

3We have also tried to combine RNN models and discriminatively
trained LMs [8], with no significant improvement.

4Apparently strange result obtained with dynamic models on eval-
uation set is probably due to the fact that sentences in eval set do not
follow each other. As dynamic changes in model try to capture longer
context information between sentences, sentences must be presented
consecutively to dynamic models.
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Table 4: Comparison of very large back-off LMs and RNN LMs

trained only on limited in-domain data (5.4M words).

Model WER static WER dynamic

RT05 LM 24.5 -

RT09 LM - baseline 24.1 -

KN5 in-domain 25.7 -

RNN 500/10 in-domain 24.2 24.1

RNN 500/10 + RT09 LM 23.3 23.2

RNN 800/10 in-domain 24.3 23.8

RNN 800/10 + RT09 LM 23.4 23.1

RNN 1000/5 in-domain 24.2 23.7

RNN 1000/5 + RT09 LM 23.4 22.9

3xRNN + RT09 LM 23.3 22.8

traction use 13 Mel-PLP’s features with deltas, double and triple

deltas reduced by HLDA to 39-dimension feature vector. VTLN

warping factors were applied to the outputs of Mel filterbanks.

The amount of training data was 115 hours of meeting speech

from ICSI, NIST, ISL and AMI training corpora.

Four gram LM used in AMI system was trained on vari-

ous data sources, see description in [13]. Total amount of LM

training data was more than 1.3G words. This LM is denoted as

RT05 LM in table 4. The RT09 LM was extended by additional

CHIL and web data. Next change was in lowering cut-offs, e.g.

the minimum count for 4-grams was set to 3 instead of 4. To

train the RNN LM, we selected in domain data that consists

of meeting transcriptions and Switchboard corpus, for a total

of 5.4M words – RNN training was too time consuming with

more data. This means that RNNs are trained on tiny subset

of the data that are used to construct the RT05 and RT09 LMs.

Table 4 compares the performance of these LMs on RT05.

5. Conclusion and future work

Recurrent neural networks outperformed significantly state of

the art backoff models in all our experiments, most notably even

in case when backoff models were trained on much more data

than RNN LMs. In WSJ experiments, word error rate reduction

is around 18% for models trained on the same amount of data,

and 12% when backoff model is trained on 5 times more data

than RNN model. For NIST RT05, we can conclude that models

trained on just 5.4M words of in-domain data can outperform

big backoff models, which are trained on hundreds times more

data. Obtained results are breaking myth that language model-

ing is just about counting n-grams, and that the only reasonable

way how to improve results is by acquiring new training data.

Perplexity improvements reported in Table 2 are one of the

largest ever reported on similar data set, with very significant

effect of on-line learning (also called dynamic models in this

paper, and in context of speech recognition very similar to un-

supervised LM training techniques). While WER is affected

just slightly and requires correct ordering of testing data, on-

line learning should be further investigated as it provides natural

way how to obtain cache-like and trigger-like information (note

that for data compression, on-line techniques for training pre-

dictive neural networks have been already studied for example

by Mahoney [14]). If we want to build models that can really

learn language, then on-line learning is crucial - acquiring new

information is definitely important.

It is possible that further investigation into backpropagation

through time algorithm for learning recurrent neural networks

will provide additional improvements. Preliminary results on

toy tasks are promising. However, it does not seem that simple

recurrent neural networks can capture truly long context infor-

mation, as cache models still provide complementary informa-

tion even to dynamic models trained with BPTT. Explanation is

discussed in [6].

As we did not make any task or language specific assump-

tion in our work, it is easy to use RNN based models almost ef-

fortlessly in any kind of application that uses backoff language

models, like machine translation or OCR. Especially tasks in-

volving inflectional languages or languages with large vocabu-

lary might benefit from using NN based models, as was already

shown in [12].

Besides very good results reported in our work, we find pro-

posed recurrent neural network model interesting also because

it connects language modeling more closely to machine learn-

ing, data compression and cognitive sciences research. We hope

that these connections will be better understood in the future.
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