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Speech synthesis from neural decoding

of spoken sentences

Gopala K. Anumanchipallib>#, Josh Chartier»?%* & Edward F. Changh3*

Technology that translates neural activity into speech would be transformative for people who are unable to communicate
as a result of neurological impairments. Decoding speech from neural activity is challenging because speaking requires
very precise and rapid multi-dimensional control of vocal tract articulators. Here we designed a neural decoder that
explicitly leverages kinematic and sound representations encoded in human cortical activity to synthesize audible
speech. Recurrent neural networks first decoded directly recorded cortical activity into representations of articulatory
movement, and then transformed these representations into speech acoustics. In closed vocabulary tests, listeners
could readily identify and transcribe speech synthesized from cortical activity. Intermediate articulatory dynamics
enhanced performance even with limited data. Decoded articulatory representations were highly conserved across
speakers, enabling a component of the decoder to be transferrable across participants. Furthermore, the decoder could
synthesize speech when a participant silently mimed sentences. These findings advance the clinical viability of using
speech neuroprosthetic technology to restore spoken communication.

Neurological conditions that result in the loss of communication are
devastating. Many patients rely on alternative communication devices
that measure residual nonverbal movements of the head or eyes!, or
on brain-computer interfaces (BCIs)>* that control a cursor to select
letters one-by-one to spell out words. Although these systems can
enhance a patient’s quality of life, most users struggle to transmit more
than 10 words per min, a rate far slower than the average of 150 words
per min of natural speech. A major hurdle is how to overcome the
constraints of current spelling-based approaches to enable far higher
or even natural communication rates.

A promising alternative is to directly synthesize speech from brain
activity*®. Spelling is a sequential concatenation of discrete letters,
whereas speech is a highly efficient form of communication produced
from a fluid stream of overlapping, multi-articulator vocal tract move-
ments®. For this reason, a biomimetic approach that focuses on vocal
tract movements and the sounds that they produce may be the only
means to achieve the high communication rates of natural speech, and
is also likely to be the most intuitive for users to learn”®. In patients
with paralysis—caused by for example, amyotrophic lateral sclerosis
or brainstem stroke—high-fidelity speech-control signals may only be
accessed by directly recording from intact cortical networks.

Our goal was to demonstrate the feasibility of a neural speech prosthetic
by translating brain signals into intelligible synthesized speech at the
rate of a fluent speaker. To accomplish this, we recorded high-density
electrocorticography (ECoG) signals from five participants who under-
went intracranial monitoring for epilepsy treatment as they spoke
several hundreds of sentences aloud. We designed a recurrent neural
network that decoded cortical signals with an explicit intermediate rep-
resentation of the articulatory dynamics to synthesize audible speech.

Speech decoder design

The two-stage decoder approach is shown in Fig. 1a-d. Stage 1, a bidi-
rectional long short-term memory (bLSTM) recurrent neural network®,
decodes articulatory kinematic features from continuous neural activity

(high-gamma amplitude envelope!® and low frequency component! 12,
see Methods) recorded from ventral sensorimotor cortex (vSMC)'3,
superior temporal gyrus (STG)!' and inferior frontal gyrus (IFG)'®
(Fig. 1a, b). Stage 2, a separate bLSTM, decodes acoustic features (pitch
(Fy), mel-frequency cepstral coefficients (MFCCs), voicing and glot-
tal excitation strengths) from the decoded articulatory features from
stage 1 (Fig. 1c). The audio signal is then synthesized from the decoded
acoustic features (Fig. 1d). To integrate the two stages of the decoder,
stage 2 (articulation-to-acoustics) was trained directly on output of
stage 1 (brain-to-articulation) so that it not only learns the transforma-
tion from kinematics to sound, but also corrects articulatory estimation
errors made in stage 1.

A key component of our decoder is the intermediate articulatory
representation between neural activity and acoustics (Fig. 1b). This step
is crucial because the vSMC exhibits robust neural activations during
speech production that predominantly encode articulatory kinemat-
ics'®17, Because articulatory tracking of continuous speech was not
feasible in our clinical setting, we used a statistical approach to estimate
vocal tract kinematic trajectories (movements of the lips, tongue and
jaw) and other physiological features (for example, manner of articu-
lation) from audio recordings. These features initialized the bottleneck
layer within a speech encoder-decoder that was trained to reconstruct
a participant’s produced speech acoustics (see Methods). The encoder
was then used to infer the intermediate articulatory representation used
to train the neural decoder. With this decoding strategy, it was possible
to accurately reconstruct the speech spectrogram.

Synthesis performance

Opverall, we observed detailed reconstructions of speech synthesized
from neural activity alone (see Supplementary Video 1). Figure le, f
shows the audio spectrograms from two original spoken sentences
plotted above those decoded from brain activity. The decoded spec-
trogram retained salient energy patterns that were present in the orig-
inal spectrogram and correctly reconstructed the silence in between
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Fig. 1 | Speech synthesis from neurally decoded spoken sentences.

a, The neural decoding process begins by extracting relevant signal
features from high-density cortical activity. b, A bLSTM neural network
decodes kinematic representations of articulation from ECoG signals.

¢, An additional bLSTM decodes acoustics from the previously decoded
kinematics. Acoustics are spectral features (for example, MFCCs)
extracted from the speech waveform. d, Decoded signals are synthesized

the sentences when the participant was not speaking. Extended Data
Figure 1a, b illustrates the quality of reconstruction at the phonetic
level. Median spectrograms of original and synthesized phonemes—
units of sound that distinguish one word from another—showed that
the typical spectrotemporal patterns were preserved in the decoded
examples (for example, resonant frequency bands in the spectrograms
called formants F;-F; in vowels /i:/ and /e/; and key spectral patterns
of mid-band energy and broadband burst for consonants /z/ and /p/,
respectively).

To understand to what degree the synthesized speech was percep-
tually intelligible to naive listeners, we conducted two listening tasks
that involved single-word identification and sentence-level transcrip-
tion, respectively. The tasks were run on Amazon Mechanical Turk
(see Methods), using all 101 sentences from the test set of participant 1.

For the single-word identification task, we evaluated 325 words
that were spliced from the synthesized sentences. We quantified the
effect of word length (number of syllables) and the number of choices
(10, 25 and 50 words) on speech intelligibility, since these factors
inform optimal design of speech interfaces'®. Overall, we found that
listeners were more successful at word identification as syllable length
increased, and the number of word choices decreased (Fig. 2a), con-
sistent with natural speech perception'®.

For sentence-level intelligibility, we designed a closed vocabulary,
free transcription task. Listeners heard the entire synthesized sentence
and transcribed what they heard by selecting words from a defined pool
(of either 25 or 50 words) that included the target words and random
words from the test set. The closed vocabulary setting was necessary
because the test set was a subset of sentences from MOCHA-TIMITZ,
which was primarily designed to optimize articulatory coverage of
English but contains highly unpredictable sentence constructions and
low-frequency words.

Listeners were able to transcribe synthesized speech well. Of the
101 synthesized trials, at least one listener was able to provide a perfect
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into an acoustic waveform. e, Spectrogram shows the frequency content
of two sentences spoken by a participant. f, Spectrogram of synthesized
speech from brain signals recorded simultaneously with the speech in e
(repeated five times with similar results). MCD was computed for

each sentence between the original and decoded audio. Fivefold cross-
validation was used to find consistent decoding.

transcription for 82 sentences with a 25-word pool and 60 sentences
with a 50-word pool. Of all submitted responses, listeners transcribed
43% and 21% of the trials perfectly, respectively (Extended Data Fig. 2).
Figure 2b shows the distributions of mean word error rates (WER) of
each sentence. Transcribed sentences had a median 31% WER with
a 25-word pool size and 53% WER with a 50-word pool size. Table 1
shows listener transcriptions for a range of WERs. Median level tran-
scriptions still provided a fairly accurate, and in some cases legitimate,
transcription (for example, ‘mum’ transcribed as ‘mony’). The errors
suggest that the acoustic phonetic properties of the phonemes are still
present in the synthesized speech, albeit to the lesser degree (for exam-
ple, rabbits” transcribed as ‘rodents’). This level of intelligibility for
neurally synthesized speech would already be immediately meaningful
and practical for real world application.

We then quantified the decoding performance at a feature level
for all participants. In speech synthesis, the spectral distortion of
synthesized speech from ground-truth is commonly reported using
the mean mel-cepstral distortion (MCD)?!. Mel-frequency bands
emphasize the distortion of perceptually relevant frequency bands of
the audio spectrogram?’. We compared the MCD of neurally synthe-
sized speech to a reference synthesis from articulatory kinematics and
chance-level decoding (a lower MCD is better; Fig. 2c). The reference
synthesis simulates perfect neural decoding of the kinematics. For our
five participants (participants 1-5), the median MCD scores of decod-
ing speech ranged from 5.14 dB to 6.58 dB (P < 1 x 10~'8, Wilcoxon
signed-rank test, for each participant).

We also computed the correlations between original and decoded
acoustic features. For each sentence and feature, the Pearson’s correla-
tion coefficient was computed using every sample (at 200 Hz) for that
feature. The sentence correlations between the mean decoded acoustic
features (consisting of intensity, MFCCs, excitation strengths and voic-
ing) and inferred kinematics across participants are plotted in Fig. 2d.
Prosodic features such as pitch (F), speech envelope and voicing were
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Fig. 2 | Synthesized speech intelligibility and feature-specific
performance. a, Listening tests for identification of excerpted single
words (n = 325) and full sentences (n = 101) for synthesized speech from
participant 1. Points represent mean word identification rate. Words were
grouped by syllable length (n = 75, 158, 68 and 24, respectively, for one,
two, three and four syllables). Listeners identified speech by selecting from
a set of choices (10, 25 or 50 words). Data are mean =+ s.e.m. b, Listening
tests for closed vocabulary transcription of synthesized sentences (1 = 101).
Responses were constrained in word choice (25 or 50), but not in sequence
length. Outlines are kernel density estimates of the distributions. ¢, Spectral
distortion, measured by MCD (lower values are better), between original
spoken sentences and neurally decoded sentences (n = 101, 100, 93, 81
and 44, respectively, for participants 1-5). Reference MCD refers to the
synthesis of original (inferred) kinematics without neural decoding.

d, Correlation of original and decoded kinematic and acoustic features

(n =101, 100, 93, 81 and 44 sentences, respectively, for participants 1-5).
Kinematic and acoustic values represent mean correlation of 33 and

32 features, respectively. e, Mean MCD of sentences (n = 101) decoded
from models trained on varying amounts of training data. The neural
decoder with an articulatory intermediate stage (purple) performed better
than the direct ECoG to acoustics decoder (grey). All data sizes: n = 101
sentences; P < 1 x 107>, Wilcoxon signed-rank test. f, Anatomical
reconstruction of the brain of participant 1 with the following regions
used for neural decoding: ventral sensorimotor cortex (vSMC), superior
temporal gyrus (STG) and inferior frontal gyrus (IFG). g, Difference in
median MCD of sentences (n = 101) between decoder trained on all regions
and decoders trained on all-but-one region. Exclusion of any region
resulted in decreased performance. n = 101 sentences; P < 3 x 1074,
Wilcoxon signed-rank test. All box plots depict median (horizontal line
inside box), 25th and 75th percentiles (box), 25th or 75th percentiles
+1.5x% interquartile range (whiskers) and outliers (circles). Distributions
were compared with each as other as indicated or with chance-level
distributions using two-tailed Wilcoxon signed-rank tests. ***P < 0.001.

decoded well above the level expected by chance (r > 0.6, except F, for
participant 2: r = 0.49 and all features for participant 5 P < 1 x 1071,
Wilcoxon signed-rank test, for all participants and features in Fig. 2d).
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Table 1 | Listener transcriptions of neurally synthesized speech

Word error rate Original sentences and transcriptions of synthesized speech

0% o: Is this seesaw safe
t: Is this seesaw safe

~10% 0: Bob bandaged both wounds with the skill of a doctor

t: Bob bandaged full wounds with the skill of a doctor

~20% o: Those thieves stole thirty jewels

t: Thirty thieves stole thirty jewels

0: Help celebrate brother's success
t: Help celebrate his brother's success

~30% 0: Get a calico cat to keep the rodents away

t: The calico cat to keep the rabbits away

o: Carl lives in a lively home
t: Carl has a lively home

~50% o: Mum strongly dislikes appetizers

t: Mom often dislikes appetizers

o: Etiquette mandates compliance with existing regulations
t: Etiquette can be made with existing regulations

o: At twilight on the twelfth day we’ll have Chablis
t: I was walking through Chablis

>70%

Examples are shown for several word error rate levels. The original text is indicated by ‘0" and the
listener transcriptions are indicated by ‘t".

Correlation decoding performance for all other features is shown in
Extended Data Fig. 4a, b.

Decoder characteristics

The following analyses were performed on data from participant 1.
When designing a neural decoder for clinical applications, there are
several key considerations that determine model performance. First,
in patients with severe paralysis or limited speech ability, training data
may be very difficult to obtain. Therefore, we assessed the amount
of data that would be necessary to achieve a high level of performance.
We found a clear advantage in explicitly modelling articulatory
kinematics as an intermediate step over decoding acoustics directly
from the ECoG signals. The ‘direct’ decoder was a bLSTM recurrent
neural network that was optimized for decoding acoustics (MFCCs)
directly from same ECoG signals as used in an articulatory decoder.
We found robust performance could be achieved with as little as 25 min
of speech, but performance continued to improve with the addition
of data (Fig. 2e). Without the articulatory intermediate step, the
direct ECoG to acoustic decoding MCD was offset by 0.54 dB (0.2 dB
is perceptually noticeable?') using the full dataset (Fig. 3a; n = 101,
P =1 x 1077, Wilcoxon signed-rank test).

This performance gap between the two approaches persisted
with increasing data sizes. One interpretation is that aspects of
kinematics are more preferentially represented by cortical activity
than acoustics'®, and are thus learned more quickly with limited
data. Another aspect that may underlie this difference is that
articulatory kinematics lie on a low-dimensional manifold that
constrains the potential high-dimensionality of acoustic sig-
nals®”?® (Extended Data Fig. 5). Therefore, separating out the high-
dimensional translation of articulation to speech, as done in stage 2 of
our decoder may be critical for performance. It is possible that with
sufficiently large datasets both decoding approaches would converge
on one another.

Second, we wanted to understand the phonetic properties that were
preserved in synthesized speech. We used Kullback-Leibler divergence
to compare the distribution of spectral features of each decoded pho-
neme to those of each ground-truth phoneme to determine how similar
they were (Extended Data Fig. 6). We expected that, in addition to the
same decoded and ground-truth phoneme being similar to one another,
phonemes with shared acoustic properties would also be characterized
as similar to one another.

Hierarchical clustering based on the Kullback-Leibler divergence of
each phoneme pair demonstrated that phonemes were clustered into
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Fig. 3 | Speech synthesis from neural decoding of silently mimed
speech. a—c, Spectrograms of original spoken sentence (a), neural
decoding from audible production (b) and neural decoding from silently
mimed production (c) (repeated five times with similar results). d, e, MCD
(d) and correlation of original and decoded spectral features (e) for audibly
and silently produced speech (n = 58 sentences). Decoded sentences

were significantly better than chance-level decoding for both speaking
conditions. n = 58; audible, P =3 x 10~ ''; mimed, P=5 x 107!},
Wilcoxon signed-rank test. Box plots as described in Fig. 2. ***P < 0.001.

four main groups. Group 1 contained consonants with an alveolar place
of constriction (for example, /s/ and /t/). Group 2 contained almost all
other consonants (for example, /f/ and /g/). Group 3 contained mostly
high vowels (for example, /i/ and /u/). Group 4 contained mostly mid
and low vowels (for example, /a/ and /e/). The difference between
groups tended to correspond to variations along acoustically signif-
icant dimensions (frequency range of spectral energy for consonants
and formants for vowels). Indeed, these groupings explain some of the
confusions reflected in listener transcriptions of these stimuli. This
hierarchical clustering was also consistent with the acoustic similarity
matrix of only ground-truth phoneme pairs (Extended Data Fig. 7;
cophenetic correlation®* = 0.71,P=1 x 10719).

Third, because the success of the decoder depends on the initial elec-
trode placement, we quantified the contribution of several anatomical
regions (VSMC, STG and IFG) that are involved in continuous speech
productionzs. Decoders were trained in a leave—one—region-out fashion,
for which all electrodes from a particular region were held out (Fig. 2f).
Removing any region led to some decrease in decoder performance
(Fig. 2g; n = 101, P= 3 x 10~* Wilcoxon signed-rank test). However,
excluding the vSMC resulted in the largest decrease in performance
(MCD increase of 1.13 dB).
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Fourth, we investigated whether the decoder generalized to novel
sentences that were never seen in the training data. Because participant
1 produced some sentences multiple times, we compared two decod-
ers: one that was trained on all sentences (not the particular instances
in the test set), and one that was trained excluding every instance of
the sentences in the testing set. We found no significant difference in
decoding performance of the sentences for both MCD and correla-
tions of spectral features (P = 0.36 and P = 0.75, respectively, n = 51,
Wilcoxon signed-rank test; Extended Data Fig. 8). Notably, this sug-
gests that the decoder can generalize to arbitrary words and sentences
that the decoder was never trained on.

Synthesizing mimed speech

To rule out the possibility that the decoder is relying on the auditory
feedback of participants’ vocalization, and to simulate a setting in which
subjects do not overtly vocalize, we tested our decoder on silently mimed
speech. We tested a held-out set of 58 sentences in which the participant
1 audibly produced each sentence and then mimed the same sentence,
making the same articulatory movements but without making sound.
Even though the decoder was not trained on mimed sentences, the spec-
trograms of synthesized silent speech demonstrated similar spectral pat-
terns to synthesized audible speech of the same sentence (Fig. 3a—c).
With no original audio to compare, we quantified performance of the
synthesized mimed sentences with the audio from the trials with spo-
ken sentences. We calculated the spectral distortion and correlation of
the spectral features by first dynamically time-warping the spectro-
gram of the synthesized mimed speech to match the temporal profile
of the audible sentence (Fig. 3d, e) and then comparing performance.
Although synthesis performance for mimed speech was inferior to the
performance for audible speech—which is probably due to absence of
phonation signals during miming—this demonstrates that it is possible
to decode important spectral features of speech that were never audibly
uttered (P < 1 x 101! compared to chance, n = 58; Wilcoxon signed-
rank test) and that the decoder did not rely on auditory feedback.

State-space of decoded speech articulation

Our findings suggest that modelling the underlying kinematics
enhances the decoding performance, so we next wanted to better
understand the nature of the decoded kinematics from population
neural activity. We examined low-dimensional kinematic state-space
trajectories, by computing the state—space projection using principal
components analysis onto the articulatory kinematic features. The first
ten principal components (of 33 components in total) captured 85%
of the variance and the first two principal components captured 35%
(Extended Data Fig. 5).

We projected the kinematic trajectory of an example sentence onto
the first two principal components (Fig. 4a, b). These trajectories were
well decoded, as shown in the example (Pearson’s correlation: r = 0.91
and r = 0.91, principal components 1 and 2, respectively; Fig. 4a, b),
and summarized across all test sentences and participants (median
r > 0.72 for all participants except participant 5, where r represents
the mean r of first two principal components, Fig. 4e). Furthermore,
state-space trajectories of mimed speech were well decoded (median
r=0.6,P=1 x 10>, n = 38, Wilcoxon signed-rank test; Fig. 4e).

The state-space trajectories appeared to manifest the dynamics of
syllabic patterns in continuous speech. The time courses of consonants
and vowels were plotted on the state-space trajectories and tended to
correspond with the troughs and peaks of the trajectories, respectively
(Fig. 4a, b). Next, we sampled from every vowel-to-consonant transi-
tion (n = 22,453) and consonant-to-vowel transition (n = 22,453), and
plotted 500-ms traces of the average trajectories for principal compo-
nents 1 and 2 centred at the time of transition (Fig. 4c, d). Both types
of trajectories were biphasic in nature, transitioning from the ‘high’
state during the vowel to the ‘low’ state during the consonant and vice
versa. When examining transitions of specific phonemes, we found
that principal components 1 and 2 retained their biphasic trajectories
of vowel or consonant states, but showed specificity towards particular
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Fig. 4 | Kinematic state-space representation of speech production.
a, b, A kinematic trajectory (grey-blue) from a single trial (participant 1)
projected onto the first two principal components—principal components
(PC)1 (a) and 2 (b)—of the kinematic state-space. Decoded audible
(dashed) and mimed (dotted) kinematic trajectories are also plotted.
Pearson’s r, n = 510 time samples. The trajectory for mimed speech
was uniformly stretched to align with the audible speech trajectory for
visualization as it occurred at a faster time scale. ¢, d, Average trajectories
for principal components 1 (¢) and 2 (d) from a and b, respectively, for
transitions from a vowel to a consonant (black, n = 22,453) and from a
consonant to a vowel (white, n = 22,453). Time courses are 500 ms.
e, Distributions of correlations between original and decoded kinematic
state—space trajectories (averaged across principal components 1 and 2)
(n =101, 100, 93, 81, 44 sentences, respectively, for participants 1-5).
Pearson’s correlations for mimed trajectories were calculated by

phonemes, indicating that principal components 1 and 2 do not nec-
essarily describe only jaw opening and closing, but rather describe
global opening and closing configurations of the vocal tract (Extended
Data Fig. 9). These findings are consistent with theoretical accounts of
human speaking behaviour, which postulate that high-dimensional
speech acoustics lie on a low-dimensional articulatory state-space®.

To evaluate the similarity of the decoded state-space trajectories,
we correlated productions of the same sentence across participants
that were projected onto their respective kinematic state—spaces (only
participants 1, 2 and 4 had comparable sentences). The state-space
trajectories were highly similar (» > 0.8; Fig. 4f), suggesting that the
decoder is probably relying on a shared representation across speakers,
a critical basis for generalization.

A shared kinematic representation across speakers could be very
advantageous for someone who cannot speak as it may be more intu-
itive and faster to learn to use the kinematics decoder (stage 1), while
using an existing kinematics-to-acoustics decoder (stage 2) trained on
speech data collected independently. We show synthesis performance
when transferring stage 2 from a source participant (participant 1) to
a target participant (participant 2) (Fig. 4g). The acoustic transfer per-
formed well, although less than when both stage 1 and stage 2 were
trained on the target (participant 2), probably because the MCD metric
is sensitive to speaker identity.

Discussion
Here we demonstrate speech synthesis using high-density, direct cor-
tical recordings from the human speech cortex. Previous strategies for

Participant pair Distortion (MCD)

dynamically time-warping to the audible production of the same sentence
and then compared to correlations of the dynamically time-warping of a
randomly selected sentence trajectory. n = 58 sentences; ***P =1 x 107>,
Wilcoxon signed-rank test. f, Distributions of correlations for state-space
trajectories of the same sentence across participants. Alignment between
participants was done by dynamically time-warping and compared to
correlations of dynamically time-warping of unmatched sentence pairs.
n=92;¥*¥*%P =1 x 10 1°and n = 44; ***P =1 x 1073, respectively,
Wilcoxon signed-rank test. g, Comparison between acoustic decoders
(stage 2) (n = 101 sentences). ‘Target’ refers to an acoustic decoder trained
on data from the same participant as the kinematic decoder (stage 1) is
trained on (participant 1). ‘Transfer’ refers to an acoustic decoder that

was trained on kinematics and acoustics from a different participant
(participant 2). Box plots as described in Fig. 2.

neural decoding of speech production focused on direct classification
of speech segments such as phonemes or words2%27; however, these
approaches are generally limited in their ability to scale to larger vocab-
ulary sizes and communication rates. Meanwhile, sensory decoding
of auditory cortex has been promising for speech sounds**-3° or for
auditory imagery”! in part because of the direct relationship between
the auditory encoding of spectrotemporal information and the recon-
structed spectrogram. An outstanding question has been whether
motor decoding of vocal tract movements during speech produc-
tion could be used for generating high-fidelity acoustic speech output.

Previous work focused on understanding movement that was
encoded at single electrodes!®; however, a fundamentally different
challenge for speech synthesis is decoding the population activity that
addresses the complex mapping between vocal tract movements and
sounds. Natural speech production involves over 100 muscles and the
mapping from movement to sounds is not one-to-one. Our decoder
explicitly incorporated this knowledge to simplify the translation of
neural activity to sound by first decoding the primary physiological
correlate of neural activity and then transforming to speech acoustics.
This statistical mapping permits generalization with limited amounts
of training.

Direct speech synthesis has several major advantages over spelling-
based approaches. In addition to the capability to communicate uncon-
strained vocabularies at a natural speaking rate, it captures prosodic
elements of speech that are not available with text output, such as pitch
intonation®2. Furthermore, a practical limitation for current alternative
communication devices is the cognitive effort required to learn and use
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them. For patients in whom the cortical processing of articulation is
still intact, a speech-based BCI decoder may be far more intuitive and
easier to learn to use”®.

BClIs are rapidly becoming a clinically viable means to restore lost
function. Neural prosthetic control was first demonstrated in partici-
pants without disabilities**~>* before translating the technology to par-
ticipants with tetraplegia®*-*. Our findings represent one step forward
for addressing a major challenge posed by patients who are paralysed
and cannot speak. The generalization results presented here demon-
strate that speakers share a similar kinematic state-space representation
that is speaker-independent and that it is possible to transfer model
knowledge about the mapping of kinematics to sound across subjects.
Tapping into this emergent, low-dimensional representation of neural
activity from a coordinated population in the intact cortex may be a
critical for bootstrapping a decoder?, as well facilitating BCI learning’.
Our results may be an important next step in realizing speech restora-
tion for patients with paralysis.
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METHODS

Participants and experimental task. Five participants (a 30-year-old female,
31-year-old female, 34-year-old male, 49-year-old female and 29-year-old female)
underwent chronic implantation of a high-density, subdural electrode array over
the lateral surface of the brain as part of their clinical treatment for epilepsy
(Extended Data Fig. 3). Participants gave their written informed consent before
the day of the surgery. All participants were fluent in English. All protocols were
approved by the Committee on Human Research at UCSF and experiments and
data in this study complied with all relevant ethical regulations. Each participant
read and/or freely spoke a variety of sentences. Participant 1 read aloud two com-
plete sets of 460 sentences from the MOCHA-TIMIT? database. Additionally, par-
ticipant 1 also read aloud passages from the following stories: Sleeping Beauty, Frog
Prince, Hare and the Tortoise, The Princess and the Pea, and Alice in Wonderland.
Participant 2 read aloud one full set of 460 sentences from the MOCHA-TIMIT
database and further read a subset of 50 sentences an additional nine times each.
Participant 3 read 596 sentences that described 3 picture scenes and then freely
described the scene, which resulted in another 254 sentences. Participant 3 also
spoke 743 sentences during free-response interviews. Participant 4 read two com-
plete sets of MOCHA-TIMIT sentences, 465 sentences related to scene descriptions
and 399 sentences during free-response interviews. Participant 5 read one set of
MOCHA-TIMIT sentences and 360 sentences related to scene descriptions. In
addition to audible speech, participant 1 also read 10 sentences 12 times each
alternating between audible and silently mimed (that is, making the necessary
mouth movements) speech. Microphone recordings were obtained synchronously
with the ECoG recordings.
Data acquisition and signal processing. Electrocorticography was recorded
with a multi-channel amplifier optically connected to a digital signal proces-
sor (Tucker-Davis Technologies). Speech was amplified digitally and recorded
with a microphone simultaneously with the cortical recordings. The grid place-
ments were decided upon purely by clinical considerations. ECoG signals were
recorded at a sampling rate of 3,052 Hz. Each channel was visually and quantita-
tively inspected for artefacts or excessive noise (typically 60 Hz line noise). The
analytic amplitude of the high-gamma frequency component of the local field
potentials (70-200 Hz) was extracted with the Hilbert transform and downsam-
pled to 200 Hz. The low frequency component (1-30 Hz) was also extracted with
a fifth order Butterworth bandpass filter, downsampled to 200 Hz and parallelly
aligned with the high-gamma amplitude. Finally, the signals were z-scored rel-
ative to a 30-s window of running mean and standard deviation to normalize
the data across different recording sessions. We studied the high-gamma ampli-
tude, because it has been shown to correlate well with multi-unit firing rates
and it has the temporal resolution to resolve fine articulatory movements'®. We
also included a low-frequency signal component owing to the decoding perfor-
mance improvements noted for reconstructing perceived speech from auditory
cortex'"'2. Decoding models were constructed using all electrodes from vSMC,
STG and IFG except for electrodes with bad signal quality as determined by visual
inspection. We removed 8 electrodes for participant 1, 7 electrodes for participant
2 and 16 electrodes for participant 3. No electrodes were removed for participants
4 and 5. The decoder uses both high-gamma amplitude and raw low-frequency
signals together as input to the model. For instance, n electrodes will result in
n x 2 input features.
Phonetic and phonological transcription. For the collected speech acoustic
recordings, transcriptions were corrected manually at the word level so that the
transcript reflected the vocalization that the participant actually produced. Given
sentence level transcriptions and acoustic utterances chunked at the sentence
level, hidden Markov model-based acoustic models were built for each partici-
pant so as to perform sub-phonetic alignment’ within the Festvox*! framework.
Phonological context features were also generated from the phonetic labels, given
their phonetic, syllabic and word contexts.
Cortical surface extraction and electrode visualization. We localized electrodes
on each individual’s brain by co-registering the preoperative T1 MRI with a
postoperative computed tomography scan containing the electrode locations,
using a normalized mutual information routine in SPM12. Pial surface reconstruc-
tions were created using Freesurfer. Final anatomical labelling and plotting was
performed using the img_pipe Python package*’.
Inference of articulatory kinematics. One of the most accurate methods to record
vocal tract kinematics is called electromagnetic midsagittal articulography (EMA).
The process involves gluing small sensors to the articulators, generally three
sensors on the tongue, one on each lip and one on each incisor. A magnetic field
is projected at the participant’s head and as the participant speaks, each sensor
can be precisely tracked as it moves through the magnetic field. Each sensor hasa
wire leading out of the participant’s mouth and connected to a receiver to record
measurements.

Because of the above requirements, we did not pursue using EMA in the
setting of our ECoG recordings, because the potential disruption of medical
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instruments by the magnetic field and long set-up time conflicted with limited
recording session time with patients and the set-up procedure was too uncomfort-
able. Instead, we developed a model to infer articulatory kinematics from audio
recordings. The articulatory data used to build the articulatory inference models
was from MOCHA-TIMIT?® and MNGUO corpora®®.

The articulatory kinematics inference model comprises a stacked deep encoder-
decoder, in which the encoder combines phonological (linguistic and contex-
tual features, resulting from the phonetic segmentation process) and acoustic
representations (25-dimensional MFCC vectors sampled at 200 Hz) into a latent
articulatory representation (also sampled at 200 Hz) that is then decoded to recon-
struct the original acoustic signal. The latent representation is initialized with
inferred articulatory movement and appropriate manner features.

We performed statistical subject-independent acoustic-to-articulatory inver-
sion!® to estimate 12-dimensional articulatory kinematic trajectories (x and y
displacements of tongue dorsum, tongue blade, tongue tip, jaw, upper lip and
lower lip, as would be measured by EMA) using only the produced acoustics and
phonetic transcriptions. Because EMA features do not describe all acoustically
consequential movements of the vocal tract, we append complementary speech
features that improve reconstruction of original speech. First, to approximate laryn-
geal function, we add pitch, voicing (binary value indicating if a frame is voiced or
not) and speech envelope, that is, the frame level intensity computed as the sum
total power within all the Mel scale frequencies within a 25-ms analysis window,
computed at a shift of 5 ms. Next, we added place-manner tuples (represented as
continuous 0-1 valued features) to bootstrap the EMA with what we determined
were missing physiological aspects in EMA. There were 18 additional values to
capture the following place-manner feature tuples (such as palatal approximant
and labial stop; see Supplementary Information for the complete list). We used an
existing annotated speech database (Wall Street Journal Corpus**) and trained
speaker-independent deep recurrent network regression models to predict contin-
uous valued place-manner vectors only from the acoustics features, the phonetic
labels were used to determine the ground-truth values for these labels (for example,
the dimension labial stop would be 1 for all frames of speech that belong to the
phonemes /p/, /b/ and so forth). However, with a regression output layer, predicted
values were not constrained to the binary nature of the input features. The network
architecture was three feedforward layers followed by one bLSTM layer to predict
each time point of these manner descriptors from a 100-ms window of acoustic
features. Combined with the EMA trajectories, these 33 feature vectors form the
initial articulatory feature estimates.

To ensure that the articulatory representation has the potential to reliably recon-

struct speech for the target subject, we designed a stacked encoder-decoder net-
work to optimize these initial estimates for these values. Specifically, a recurrent
neural network encoder is trained to convert phonological and acoustic features
to the articulatory representation and then a decoder that converts the articula-
tory representation back to the acoustic features (original MFCC). The encoder
is implemented as two feedforward layers followed by two bLSTM layers. The
decoder is implemented as three feedforward layers. Software implementation
was done using Keras Functional API within Tensorflow**. The stacked network
is retrained optimizing the joint mean-squared error loss on acoustic and EMA
parameters using the ADAM optimizer, with an initial learning rate set at 0.001.
For regularization 40% dropout was allowed in all feedforward layers. After con-
vergence, the trained encoder is used to estimate the final articulatory kinematic
features that act as the articulatory intermediate to decode acoustic features from
ECoG.
Neural decoder. The decoder maps ECoG recordings to MFCCs through a two-
stage process by learning intermediate mappings between ECoG recordings and
articulatory kinematic features, and between articulatory kinematic features and
acoustic features. All data (ECoG, kinematics and acoustics) are sampled and pro-
cessed by the model at 200 Hz. We implemented this model using TensorFlow
in Python. In the first stage, a stacked three-layer bLSTM? learns the mapping
between 300-ms (60 time points) sequences of high-gamma and local frequency
component signals and a corresponding single time point (sampled at 200 Hz) of
the 33 articulatory features. In the second stage, an additional stacked three-layer
bLSTM learns the mapping between the output of the first stage (decoded articula-
tory features) and 32 acoustic parameters (200 Hz) for sequences of full sentences.
These parameters are 25-dimensional MFCCs, 5 sub-band voicing strengths for
glottal excitation modelling, log(F,) and voicing.

During testing, a full sentence sequence of neural activity (high-gamma and
low-frequency components) is processed by the decoder. The first stage processes
300 ms of data at a time, sliding over the sequence sample by sample, until it
has returned a sequence of kinematics that is equal in length to the neural data.
The neural data are padded with an additional 150 ms of data before and after the
sequence to ensure the result is the correct length. The second stage processes the
entire sequence at once, returning an equal length sequence of acoustic features.
These features are then synthesized into an audio signal.



ARTICLE

At each stage, the model is trained using the ADAM optimizer to minimize
mean-squared error. The optimizer was initialized with learning rate = 0.001,
betal = 0.9, beta2 = 0.999, epsilon = 1e-8. Training of the models was stopped
after the validation loss no longer decreased. Dropout rate is set to 50% in
stage 1 and 25% in stage 2 to suppress overfitting tendencies of the models. There
are 100 hidden units for each LSTM cell. Each model used three stacked bLSTMs
with an additional linear layer for regression. We use a bLSTM because of the
ability of this model to retain temporally distant dependencies when decoding
a sequence®®.

In the first stage, the batch size for training was 256 and in the second stage the
batch size was 25. Training and testing data were randomly split based on recording
sessions, meaning that the test set was collected during separate recording sessions
from the training set. The training and testing sets were split in terms of total
speaking time in minutes:seconds (n = number of sentences in test set) as follows:
participant 1: training, 92:15 and testing, 4:46 (n = 101); participant 2: training,
36:57 and testing, 3:50 (n = 100); participant 3: training, 107:42 and testing, 4:44
(n = 98); participant 4: training, 27:39 and testing, 3:12 (n = 82); participant 5:
training, 44:31 and testing, 2:51 (n = 44).

For shuffling the data to test for significance, we shuffled the order of the
electrodes that were fed into the decoder. This method of shuffling preserved the
temporal structure of the neural activity.

The direct ECoG to acoustics decoder described in Fig. 2e has a similar archi-
tecture as the stage 1 articulatory bLSTM, except with an MFCC output. Originally
we trained the direct acoustic decoder as a six-layer bLSTM that mimics the
architecture of the stage 2 decoder with MFCCs as the intermediate layer and as
the output. However, we found performance was better with a four-layer bLSTM
(no intermediate layer) with 100 hidden units for each layer, 50% dropout and
0.005 learning rate using ADAM optimizer for minimizing mean-squared error.
Models were coded using Tensorflow version 1.9 in Python.

Speech synthesis from acoustic features. We used an implementation of the Mel-
log spectral approximation algorithm with mixed excitation?’ within Festvox to
generate the speech waveforms from estimates of the acoustic features from the
neural decoder.

Mel-cepstral distortion. To examine the quality of synthesized speech, we calcu-
lated the MCD of the synthesized speech when compared the original ground-truth
audio. MCD is an objective measure of error determined from MFCCs and is
correlated to subjective perceptual judgments of acoustic quality*!. For each dimen-
sion d (0 < d < 25) of reference acoustic features mc” of speaker y, and decoded
features mc” we calculate MCD as follows:

10 2
D= (mc” — mc’)
In(10) | 0<§£25 ¢ ¢

Intelligibility assessment. Listening tests using crowdsourcing are a standard
way of evaluating the perceptual quality of synthetic speech®®. To comprehen-
sively assess the intelligibility of the neurally synthesized speech, we conducted
a series of identification and transcription tasks on Amazon Mechanical Turk.
The unseen test set from participant 1 (101 trials of 101 unique sentences,
see Supplementary Information) was used as stimuli for listener judgments. For
the word-level identification tasks, we created several cohorts of words grouped by
the number of syllables within. Using the time boundaries from the ground-truth
phonetic labelling, we extracted audio from the neurally synthesized speech into
four classes of one-syllable, two-syllable, three-syllable and four-syllable words.
We conducted tests on each of these groups of words that involved identification
of the synthesized audio from a group of 10 choices, 25 choices or 50 choices of
what they think the word is. The presented options included the true word and
the remaining choices were randomly drawn from the other words within the
class (see Supplementary Information for class sizes across these conditions). All
words within the word groups were judged for intelligibility without any further
subselection.

Because the content words in the MOCHA-TIMIT data are largely low-
frequency words to assess sentence-level intelligibility, along with the neurally
synthesized audio file, we presented the listeners to a pool of words that may be
in the sentence. This task is a limited-vocabulary free-response transcription. We
conducted two experiments in which the transcriber is presented with pool of 25
word choices or 50 word choices that may be used in the sentence (a sample inter-
face is shown in the Supplementary Information). The true words that make up the
sentence are included along with randomly drawn words from the entire test set
and displayed in alphabetical order. Given that the median sentence is only seven
words long (s.d. = 2.1, minimum = 4, maximum = 13), this task design allows
for reliable assessment of intelligibility. Each trial was judged by 10-20 different
listeners. Each intelligibility task was performed by 47-187 unique listeners (a total
of 1,755 listeners across 16 intelligibility tasks, see Supplementary Information
for breakdown per task) making all reported analyses statistically reliable.

All sentences from the test set were sent for intelligibility assessment without any
further selection. The listeners were required to be English speakers located in the
United States, with good ratings (>98% rating from prior tasks on the platform).
For the sentence transcription tasks, an automatic spell checker was used to correct
misspellings. No further spam detection, or response rejection was done in all
analyses reported. The WER metric computed on listener transcriptions is used
to judge the intelligibility of the neurally synthesized speech. I is the number of
word insertions, D is the number of word deletions and § is the number of word
substitutions for a reference sentence with N words, WER is computed as

WER = [T P+S
N

Data limitation analysis. To assess the amount of training data that affects decoder
performance, we partitioned the data by recording blocks and trained a separate
model for an allotted number of blocks. In total, eight models were trained, each
with one of the following block allotments: 1, 2, 5, 10, 15, 20, 25 or 28. Each block
comprised an average of 50 sentences recorded in one continuous session.
Quantification of silent speech synthesis. By definition, there was no acoustic
signal to compare the decoded silent speech. In order to assess decoding perfor-
mance, we evaluated decoded silent speech with regards to the audible speech
of the same sentence uttered immediately before the silent trial. We did so by
dynamically time-warping® the decoded silent speech MFCCs to the MFCCs of
the audible condition and computing Pearson’s correlation coefficient and MCD.
Phoneme acoustic similarity analysis. We compared the acoustic properties of
decoded phonemes to the ground-truth to better understand the performance of
our decoder. To do this, we sliced all time points for which a given phoneme was
being uttered and used the corresponding time slices to estimate its distribution of
spectral properties. Using principal components analyses, the 32 spectral features
were projected onto the first four principal components before fitting the Gaussian
kernel density estimate (KDE) model. This process was repeated so that each pho-
neme had two KDEs representing either its decoded and or ground-truth spectral
properties. Using Kullback-Leibler divergence, we then compared each decoded
phoneme KDE to every ground-truth phoneme KDE, creating an analogue to a
confusion matrix used in discrete classification decoders. Kullback-Leibler diver-
gence provides a metric of how similar two distributions are to one another by
calculating how much information is lost when we approximate one distribution
with another. Lastly, we used Ward’s method for agglomerative hierarchical clus-
tering to organize the phoneme similarity matrix.

To understand whether the clustering of the decoded phonemes was similar to

the clustering of ground-truth phoneme pairs (Extended Data Fig. 7), we used the
cophenetic correlation to assess how well the hierarchical clustering determined
from decoded phonemes preserved the pairwise distance between original pho-
nemes, and vice versa®*. For the decoded phoneme dendrogram, the cophenetic
correlation for preserving original phoneme distances was 0.71 compared to 0.80
for preserving decoded phoneme distances. For the original phoneme dendro-
gram, the cophenetic correlation for preserving decoded phoneme distances was
0.64 compared to 0.71 for preserving original phoneme distances. P < 1 x 1071
for all correlations.
State-space kinematic trajectories. For state—space analysis of kinematic trajecto-
ries, a principal components analysis was performed on the 33 kinematic features
using the training dataset from participant 1. Figure 4a, b shows kinematic trajec-
tories (original, decoded (audible and mimed) projected onto the first two principal
components. The example decoded mimed trajectory occurred faster in time by
a factor of 1.15 than the audible trajectory, so we uniformly temporally stretched
the trajectory for visualization. The peaks and troughs of the decoded mimed
trajectories were similar to the audible speech trajectory (r = 0.65 and r = 0.55,
principal components 1 and 2, respectively) although the temporal locations are
shifted relative to one another, probably because the temporal evolution of a pro-
duction, whether audible or mimed, is inconsistent across repeated productions.
To quantify the decoding performance of mimed trajectories, we used the dynamic
time-warping approach described above, although in this case, temporally warping
with respect to the inferred kinematics (not the state-space) (Fig. 4e).

For analysis of state—space trajectories across participants (Fig. 4f), we measured
the correlations of productions of the same sentence, but across participants. Since
the sentences were produced at different speeds, we dynamically time-warped them
to match and compared these against correlations of dynamically time-warped
mismatched sentences.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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Extended Data Fig. 1 | Median original and decoded spectrograms. n =69, /ae/, n = 86). These phonemes represent the diversity of spectral
a, b, Median spectrograms, time-locked to the acoustic onset of phonemes  features. Original and decoded median phoneme spectrograms were
from original (a) and decoded (b) audio (/i/, n = 112; /z/, n = 115; /p/, well-correlated (Pearson’s r > 0.9 for all phonemes, P =1 x 10718),
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Extended Data Fig. 2 | Transcription WER for individual trials. words from a defined pool of words. Word pools included correct words

a, b, WERs for individually transcribed trials for pools with a size 0of 25 (a) ~ found in the synthesized sentence and random words from the test set.
or 50 (b) words. Listeners transcribed synthesized sentences by selecting One trial is one transcription of one listener of one synthesized sentence.
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5, participants 1-5.

Extended Data Fig. 3 | Electrode array locations for participants. MRI reconstructions of participants’ brains with overlay of electrocorticographic

electrode (ECoG) array locations. P1
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Extended Data Fig. 4 | Decoding performance of kinematic and spectral
features. Data from participant 1. a, Correlations of all 33 decoded
articulatory kinematic features with ground-truth (n = 101 sentences).
EMA features represent x and y coordinate traces of articulators (lips,

jaw and three points of the tongue) along the midsagittal plane of the

vocal tract. Manner features represent complementary kinematic features

to EMA that further describe acoustically consequential movements.

b, Correlations of all 32 decoded spectral features with ground-truth

(n =101 sentences). MFCC features are 25 mel-frequency cepstral
coefficients that describe power in perceptually relevant frequency bands.
Synthesis features describe glottal excitation weights necessary for speech
synthesis. Box plots as described in Fig. 2.
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Extended Data Fig. 5 | Comparison of cumulative variance explained in
kinematic and acoustic state-spaces. For each representation of speech—
kinematics and acoustics—a principal components analysis was computed
and the explained variance for each additional principal component was
cumulatively summed. Kinematic and acoustic representations had 33 and
32 features, respectively.
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Extended Data Fig. 6 | Decoded phoneme acoustic similarity matrix. between a pair of decoded and original phoneme distributions. Each row
Acoustic similarity matrix compares acoustic properties of decoded compares the acoustic properties of a decoded phoneme with originally
phonemes and originally spoken phonemes. Similarity is computed by first ~ spoken phonemes (columns). Hierarchical clustering was performed on
estimating a Gaussian kernel density for each phoneme (both decoded the resulting similarity matrix. Data from participant 1.

and original) and then computing the Kullback-Leibler (KL) divergence
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Extended Data Fig. 7 | Ground-truth acoustic similarity matrix. Kullback-Leibler divergence between a pair of a phoneme distributions.
The acoustic properties of ground-truth spoken phonemes are compared Each row compares the acoustic properties of two ground-truth spoken
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Extended Data Fig. 8 | Comparison between decoding novel and
repeated sentences. a, b, Comparison metrics included spectral
distortion (a) and the correlation between decoded and original spectral
features (b). Decoder performance for these two types of sentences was
compared and no significant difference was found (P = 0.36 (a) and

P =10.75 (b), n = 51 sentences, Wilcoxon signed-rank test). A novel
sentence consists of words and/or a word sequence not present in the

ARTICLE

b Type of sentence
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training data. A repeated sentence is a sentence that has at least one
matching word sequence in the training data, although with a unique
production. Comparison was performed on participant 1 and the
evaluated sentences were the same across both cases with two decoders
trained on differing datasets to either exclude or include unique repeats
of sentences in the test set. ns, not significant; P > 0.05. Box plots as
described in Fig. 2.
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Extended Data Fig. 9 | Kinematic state-space trajectories for phoneme-  and 1,441, respectively, for k, p and t). PC1 was more selective for velar
specific vowel-consonant transitions. Average trajectories of principal constriction (k) and PC2 for bilabial constriction (p). ¢, Vowel to alveolars
components 1 (PC1) and 2 (PC2) for transitions from either a consonant (n=3,919, 3,010 and 4,107, respectively, for n, s and t). PC1 shows
or a vowel to specific phonemes. Trajectories are 500 ms and centred at separation by manner of articulation (nasal, plosive or fricative) whereas
transition between phonemes. a, Consonant to corner vowels (n = 1,387, PC2 is less discriminative. d, PC1 and PC2 show little, if any, delineation
1,964, 2,259, 894, respectively, for aa, ae, iy and uw). PCI shows separation  between voiced and unvoiced alveolar fricatives (n = 3,010 and 1,855,
of all corner vowels and PC2 delineates between front vowels (iy, ae) and respectively, for s and z).

back vowels (uw, aa). b, Vowel to unvoiced plosives (n = 2,071, 4,107
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for each subject, confirming that these speech data are a sufficient sampling of their vocal tract behavior.

Data exclusions  No data were excluded from analyses

Replication Decoding performance was first done with one participant's data and then re-done with four more participants to confirm findings.
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their ability to speak fluently, we do not expect there to be any selection bias and we believe them to be representative of
general population.

>
Q
=:
c
=
D
=
D
wn
D
Q
=
(@)
o
=
D
o
©)
=
2
Q
wn
C
Q
=
S

8102 [1dy




	Speech synthesis from neural decoding of spoken sentences

	Speech decoder design

	Synthesis performance

	Decoder characteristics

	Synthesizing mimed speech

	State–space of decoded speech articulation

	Discussion

	Online content

	Acknowledgements
	Reviewer information
	Fig. 1 Speech synthesis from neurally decoded spoken sentences.
	Fig. 2 Synthesized speech intelligibility and feature-specific performance.
	Fig. 3 Speech synthesis from neural decoding of silently mimed speech.
	Fig. 4 Kinematic state–space representation of speech production.
	Extended Data Fig. 1 Median original and decoded spectrograms.
	Extended Data Fig. 2 Transcription WER for individual trials.
	Extended Data Fig. 3 Electrode array locations for participants.
	Extended Data Fig. 4 Decoding performance of kinematic and spectral features.
	Extended Data Fig. 5 Comparison of cumulative variance explained in kinematic and acoustic state–spaces.
	Extended Data Fig. 6 Decoded phoneme acoustic similarity matrix.
	Extended Data Fig. 7 Ground-truth acoustic similarity matrix.
	Extended Data Fig. 8 Comparison between decoding novel and repeated sentences.
	Extended Data Fig. 9 Kinematic state–space trajectories for phoneme-specific vowel–consonant transitions.
	﻿Table 1 Listener transcriptions of neurally synthesized speech.




