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I
n the last decade, brain–machine interfaces (BMIs) have tran-
sitioned from animal models into human participants, demon-
strating that some amount of motor function can be restored to 

tetraplegics—typically, continuous movements with two degrees of 
freedom1–3. Although this type of control can be used in conjunc-
tion with a virtual keyboard to produce text, even under ideal cur-
sor control (not currently achievable), the word rate would still be 
limited to that of typing with a single finger. The alternative is direct 
decoding of spoken (or attempted) speech, but heretofore such BMIs 
have been limited either to isolated phonemes or monosyllables4–8 
or, in the case of continuous speech on moderately sized vocabular-
ies (about 100 words)9, to decoding correctly less than 40% of words.

To achieve higher accuracies, we exploit the conceptual similar-
ity of the task of decoding speech from neural activity to the task 
of machine translation; that is, the algorithmic translation of text 
from one language to another. Conceptually, the goal in both cases 
is to build a map between two different representations of the same 
underlying unit of analysis. More concretely, in both cases the aim is 
to transform one sequence of arbitrary length into another sequence 
of arbitrary length—arbitrary because the lengths of the input and 
output sequences vary and are not deterministically related to each 
other. In this study, we attempt to decode a single sentence at a time, 
as in most modern machine-translation algorithms, so in fact both 
tasks map to the same kind of output, a sequence of words corre-
sponding to one sentence. The inputs of the two tasks, on the other 
hand, are very different: neural signals and text. But modern archi-
tectures for machine translation learn their features directly from 
the data with artificial neural networks10,11, suggesting that end-to-
end learning algorithms for machine translation can be applied with 
little alteration to speech decoding.

To test this hypothesis, we train one such ‘sequence-to-sequence’ 
architecture on neural signals obtained from the electrocorticogram 
(ECoG) during speech production, and the transcriptions of the cor-
responding spoken sentences. The most important remaining dif-
ference between this task and machine translation is that, whereas 
datasets for the latter can contain upwards of a million sentences12,13, 
a single participant in the acute ECoG studies that form the basis of 
this investigation typically provides no more than a few thousand. 

To exploit the benefits of end-to-end learning in the context of such 
comparatively exiguous training data, we use a restricted ‘language’ 
consisting of just 30–50 unique sentences; and, in some cases, trans-
fer learning from other participants and other speaking tasks.

Results
Participants in the study read aloud sentences from one of two data-
sets: a set of picture descriptions (30 sentences, about 125 unique 
words), typically administered in a single session; or MOCHA-
TIMIT14 (460 sentences, about 1,800 unique words), adminis-
tered in blocks of 50 (or 60 for the final block), which we refer to 
as MOCHA-1, MOCHA-2 and so on. Blocks were repeated as time 
allowed. For testing, we considered only those sets of sentences that 
were repeated at least three times (that is, providing one set for test-
ing and at least two for training), which in practice restricted the 
MOCHA-TIMIT set to MOCHA-1 (50 sentences, about 250 unique 
words). We consider here the four participants with at least this 
minimum of data coverage.

Decoding pipeline. We begin with a brief description of the decod-
ing pipeline, illustrated in Fig. 1, and described in detail in the 
Methods. We recorded neural activity with high-density (4-mm 
pitch) ECoG grids from the peri-Sylvian cortices of participants, 
who were undergoing clinical monitoring for seizures, while they 
read sentences aloud. At each electrode, the envelope of the high-
frequency component (70–150 Hz, that is ‘high-γ’) of the ECoG sig-
nal—that is, the amplitude of the analytic signal in this range—was 
extracted at about 200 Hz (ref. 15), and the resulting sequences—
each corresponding to a single sentence—passed as input data to 
an ‘encoder–decoder’-style artificial neural network10. The network 
processes the sequences in three stages:

 (1) Temporal convolution: a fully connected, feed-forward net-
work cannot exploit the fact that similar features are likely to 
recur at different points in the sequence of ECoG data. For ex-
ample, the production of a particular phoneme is likely to have 
a similar signature at a particular electrode independently of 
when it was produced16. To learn efficiently such regularities, 
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the network applies the same temporally brief filter (depicted 
with a rectangle across high-γ waveforms in Fig. 1) at regular 
intervals (strides) along the entire input sequence. Setting the 
stride greater than one sample effectively downsamples the re-
sulting output sequence. Our network learns a set of such fil-
ters, yielding a set of filtered sequences effectively downsam-
pled to 16 Hz.

 (2) Encoder recurrent neural network (RNN): the downsampled 
sequences are consumed seriatim by an RNN. That is, at each 
time step, the input to the encoder RNN consists of the current 
sample of each of the downsampled sequences, as well as its  
own previous state. The final hidden state (yellow bars in Fig. 1)  
then provides a single, high-dimensional encoding of the en-
tire sequence, independent of its length. To guide the encoder 
toward useful solutions during training, we also require it to 
predict, at each time step, a representation of the speech au-
dio signal, the sequence of Mel-frequency cepstral coefficients 
(MFCCs; see the Methods).

 (3) Decoder RNN: finally, the high-dimensional state must be 
transformed back into another sequence, this time of words. 
A second RNN is therefore initialized at this state, and then 
trained to emit at each time step either a word or the end-of-
sequence token—at which point decoding is terminated. At 
each step in the output sequence, the decoder takes as input, 
in addition to its own previous hidden state, either the preced-
ing word in the actual sentence uttered by the participant (dur-
ing the model-training stage), or its own predicted word at the 
preceding step (during the testing stage). The use of words for 
targets stands in contrast to previous attempts at speech decod-
ing, which target phonemes4–9.

The entire network is simultaneously trained to make the 
encoder emit values close to the target MFCCs, and the decoder 
assign high probability to each target word. Note that the MFCC-
targeting provides an ‘auxiliary loss’, a form of multi-task learn-
ing17,18: its purpose is merely to guide the network toward good 
solutions to the word-sequence decoding problem; during test-
ing, the MFCC predictions are simply discarded, and decoding is 
based entirely on the decoder RNN’s output. All training proceeds 
by stochastic gradient descent via backpropagation19, with drop-
out20 applied to all layers. (A more mathematical treatment of the 
decoder appears in the Methods.)

Decoding performance. Here and throughout, we quantify perfor-
mance with the average (across all tested sentences) word error rate 
(WER); that is, the minimum number of deletions, insertions and 
substitutions required to transform the predicted sentence into the 
true sentence, normalized by the length of the latter. Thus, the WER 
for perfect decoding is 0%, and for erroneous decoding is techni-
cally unbounded, although in fact can be capped at 100% simply 
by predicting empty sentences. For reference, in speech transcrip-
tion, WERs of 5% are professional-level21, and 20–25% is the outer 
bound of acceptable performance22. It is also the level at which 
voice-recognition technology was widely adopted, albeit on much 
larger vocabularies23.

We begin by considering the performance of the encoder–
decoder framework for one example participant speaking the 50 
sentences of MOCHA-1 (50 sentences, about 250 unique words) 
(Fig. 2a). (The relative performance of decoders for the other three 
participants is quite similar; see Supplementary Fig. 1.) The mean 
WER for the participant shown in Fig. 2a is approximately 3%. The 
previous state-of-the-art WER for speech decoding is 60%, and 
operated with a smaller (100-word) vocabulary9.

Since all training and testing sentences belong to the same set 
of 50, it is also possible to compare performance against a sen-
tence classifier (as opposed to word-by-word decoder). Here we 
compare against a state-of-the-art phoneme-based classifier for 
speech production24. Briefly, each of the 50 MOCHA-1 sentences 
was assigned its own hidden Markov model (HMM), whose emis-
sions are neural activity and whose hidden state can transition 
only through the phonemes of that sentence (including self transi-
tions). Test sequences of ECoG data were classified by choosing the 
HMM—and corresponding MOCHA-1 sentence—whose most-
likely phoneme sequence (Viterbi path) had the highest probability 
across all 50 HMMs. (See the Methods for details.) The WERs for 
this model, approximately 33% (Fig. 2a, ‘phoneme-based HMM’), 
are about an order of magnitude larger than that of the encoder–
decoder network.

What accounts for the superior performance of the encoder–
decoder network? To quantify the contributions of its various 
elements, we systematically remove or cripple them, and retrain 
networks from scratch. The second box in Fig. 2a shows perfor-
mance on data that have been spatially downsampled to simulate 
lower-density ECoG grids. Specifically, we simply discarded every 
other channel along both dimensions of the grid, leaving just one 
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Fig. 1 | the decoding pipeline. Each participant read sentences from one of two datasets (MOCHA-TIMIT, picture descriptions) while neural signals 

were recorded with an ECoG array (120–250 electrodes) covering peri-Sylvian cortices. The analytic amplitudes of the high-γ signals (70–150 Hz) were 

extracted at about 200 Hz, clipped to the length of the spoken sentences and supplied as input to an artificial neural network. The early stages of the 

network learn temporal convolutional filters that, additionally, effectively downsample these signals. Each filter maps data from 12-sample-wide windows 

across all electrodes (for example, the green window shown on the example high-γ signals in red) to single samples of a feature sequence (highlighted 

in the green square on the blue feature sequences); then slides by 12 input samples to produce the next sample of the feature sequence; and so on. One 

hundred feature sequences are produced in this way, and then passed to the encoder RNN, which learns to summarize them in a single hidden state. The 

encoder RNN is also trained to predict the MFCCs of the speech audio signal that temporally coincide with the ECoG data, although these are not used 

during testing (see “The decoder pipeline” for details). The final encoder hidden state initializes the decoder RNN, which learns to predict the next word in 

the sequence, given the previous word and its own current state. During testing, the previous predicted word is used instead.
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quarter of the channels; that is, nominally 64 instead of 256. The 
error rates are about four times greater—although within the usable 
range, showing the importance of the algorithm in addition to high-
density grids. The third box shows performance when MFCCs are 
not targeted during training. The error rates are similar to those of 
models trained on data from a low-density grid, but notably supe-
rior to previous attempts at speech decoding. Thus, where speech 
audio is not available, as may well be the case for a candidate for a 
speech prosthesis, error rates are several times greater—but again 
within the usable range. Next, we consider a network whose input 
layer is fully connected, rather than convolutional (fourth box). 
WERs octuple. Note that the temporal convolution in our model 
also effectively downsamples the signal by a factor of 12 (see the 
Decoding pipeline subsection above), bringing the length of the 
average sequence seen by the encoder RNN down from about 450 
to about 40 samples. And, indeed, our exploratory analyses showed 
that some of the performance lost by using fully connected input 
layers can be recovered simply by downsampling the high-γ activity 
before passing it to them. Thus, the decrease in performance due to 
removing temporal convolution may be explained in part by the dif-
ficulty encoder–decoder networks have with long input sequences25.

Recall that the endpoints of each ECoG sequence fed to the 
encoder–decoder were determined by the endpoints of the corre-
sponding speech audio signal. Thus, it might seem possible for the 
network to have learned merely the (approximate) length of each 
unique sentence in MOCHA-1, and then during testing to be sim-
ply classifying them on this basis, the decoder RNN having learned 
to reconstruct individual sentences from an implicit class label. To 
show that this is not the case, we replace each sample of ECoG data 
with (Gaussian) noise, retrain encoder–decoder networks and re-
test. Performance is much worse than that of any of the decoders—
indeed, near chance (WERs of about 100%; see ‘length info. only’ 
box in Fig. 2a).

Next we consider how many data are required to achieve high 
performance. Figure 2b shows WERs for all four participants as a 
function of the number of repeats of the training set used as train-
ing data for the neural networks. We note that for no participant 
did the total amount of training data exceed 40 min in total length. 
When at least 15 repeats were available for training, WERs could be 
driven below 25%, the outer bound of acceptable speech transcrip-
tion, although in the best case (participant b/pink) only four repeats 
were required. On two participants (participant b/pink, participant 
d/brown), training on the full training set yielded WERs below 8%, 
which is approximately the performance of professional transcrib-
ers for spoken speech21.

Transfer learning. In Fig. 2b we included two participants with few 
training repeats of the MOCHA sentences (participant a/green, par-
ticipant d/brown) and, consequently, poor decoding performance. 
Here we explore how performance for these participants can be 
improved with transfer learning17,26; that is, by training the network 
on a related task, either in parallel with or before training on the 
decoding task at hand, namely the MOCHA-1 sentence set.

We begin with participant a, who spoke only about 4 min of the 
MOCHA-1 dataset (that is, two passes through all 50 sentences, not 
counting the held-out block on which performance was evaluated). 
The first box of Fig. 3a (encoder–decoder) shows WERs for encoder–
decoder networks trained on the two available blocks of MOCHA-1 
(corresponding to the final point in the green line in Fig. 2b), which 
is about 53%. Next, we consider performance when networks are first 
pretrained (see the Methods for details) on the more plentiful data 
for participant b (ten repeats of MOCHA-1). Indeed, this transfer-
learning procedure decreases WER by about 17% (from the first to the 
second box, participant TL’, of Fig. 3a; the improvement is significant 
under a one-sided Wilcoxon signed-rank test, Holm–Bonferroni cor-
rected for multiple comparisons, with P < 0.0005).
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and a state-of-the-art sentence classifier based on ECoG-to-phoneme Viterbi decoding (phoneme-based HMM). No MFCCs, trained without requiring 

the encoder to predict MFCCs; low density, trained and tested on simulated lower-density grid (8-mm rather than 4-mm spacing); no conv., the network’s 

temporal convolution layer is replaced with a fully connected layer; length info. only, the input ECoG sequences are replaced with Gaussian noise, but of 

the correct length. The box and whiskers show, respectively, the quartiles and the extent (excepting outliers which are shown explicitly as black diamonds) 

of the distribution of WERs across n = 30 networks trained independently from scratch and evaluated on randomly selected held-out blocks. Significance, 

indicated by asterisks (***P < 0.0005), was computed with a one-sided Wilcoxon signed-rank test and Holm–Bonferroni corrected for five comparisons. 

Exact P values appear in Supplementary Table 5. b, For four different participants, WER as a function of the number of repeats of the sentence sets used 

for training; that is, the number of training tokens for each sentence type. Results for MOCHA-1 (50 sentence types; see “Results” for details) are shown 

in solid lines (pink, green, brown); for the picture descriptions (30 sentence types), in dashed lines (blue, brown). Note that participant d (brown) read 

from both sets. The endpoint of the pink curve corresponds to the first bar of a. Whiskers indicate standard errors of the mean WERs (vertical) and mean 

number of repeats (horizontal) across n = 10 networks trained independently from scratch and evaluated on randomly selected held-out blocks (The 

number of repeats varies because data were divided on the basis of blocks, which vary slightly in length).
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We have so far excluded blocks of MOCHA-TIMIT beyond 
the first 50 (MOCHA-1), since we were unable to collect a suffi-
cient number of repeats for training and testing. However, the data 
from these excluded blocks may nevertheless provide subsentence 
information that is useful for decoding MOCHA-1, in particular 
word-level labels as well perhaps as information about lower-level 
features in the ECoG data. To test this hypothesis, we extend the 
training set to include also the rest of the MOCHA sentences spo-
ken by participant a—namely, two repeats of MOCHA-2 through 
MOCHA-9, which together comprise 410 unique sentences (dis-
joint from MOCHA-1); train from scratch on this complete set of 
MOCHA-TIMIT; and test again on MOCHA-1. This cross-task 
training decreases WER by 31% over the baseline (from the first 
to the third box, ‘task TL’, of Fig. 3a; P ≪ 0.001). This result is par-
ticularly important because it shows that the encoder–decoder is  
not merely classifying sentences (in the encoder) and then  
reconstructing them (in the decoder), without learning their  
constituent parts (words), in which case the decoding scheme 
would not generalize well. Instead, the network is evidently  
learning subsentence information.

Finally, we consider a combined form of transfer learning, in 
which encoder–decoder networks are pretrained on all MOCHA-
TIMIT data for participant b (an additional single set of MOCHA-2 
through MOCHA-9); then trained on all MOCHA-TIMIT data 
for participant a; and then tested as usual on a held-out block of 
MOCHA-1 for participant a. This ‘dual transfer learning’ (Fig. 3a, 
fourth bar) decreases WER by 36% over baseline, although the 
improvement over task transfer learning alone is not statistically 
significant after correction for multiple comparisons.

Do the improvements transfer in the opposite direction, from 
participant a to participant b? Since decoding performance for par-
ticipant b is already essentially perfect when training on all blocks 
(Fig. 2a), we consider instead performance when training on just 
two passes through all 50 sentences, as for participant a. We repeat 
the series of transfer-learning experiments and find a very similar 
pattern of results (Fig. 3b): pretraining on the data from participant a  
improves performance (second bar, +participant TL), as does training  

on sentences outside of the test set (that is, MOCHA-2 through 
MOCHA-9; third bar, +task TL). Using both types of transfer learn-
ing together improves results further still (P < 0.005 after correcting 
for multiple comparisons), again by about 36% over baseline.

For the participant with the worst performance on the MOCHA-
TIMIT data, participant d (see again Fig. 2b), adding the rest of 
the MOCHA sentences to the training set does not improve results, 
perhaps unsurprisingly (Fig. 3c, ‘task TL’). However, cross-par-
ticipant transfer learning (from participant b into participant d) 
again significantly improves decoding (P < 0.005 after correcting 
for multiple comparisons). The small improvement due to cross-
participant transfer learning in the context of cross-task transfer 
learning, on the other hand, does not survive correction for mul-
tiple comparisons.

Finally, for the two participants reading picture descriptions, 
participant transfer learning did not improve results.

Anatomical contributions. To determine what areas of the cor-
tex contribute to decoding in the trained models, we compute the 
derivative of the encoder–decoder’s loss function with respect to the 
electrode activities across time. These values measure how the loss 
function would be changed by small changes to the electrode activi-
ties, and therefore the relative importance of each electrode. (A sim-
ilar technique is used to visualize the regions of images contributing 
to object identification by convolutional neural networks27.) Under 
the assumption that positive and negative contributions to the gra-
dient are equally meaningful, we compute their norm (rather than 
average) across time and examples, yielding a single (positive) num-
ber for each electrode. More details are available in the Methods, but 
we emphasize here one in particular: this method can give mislead-
ing results if the electrodes are referenced against a common mean 
or mode, which can smear the effects of some electrodes across  
the grid. All of our models, in contrast, were trained on bipolar-
referenced electrodes28,29.

Figure 4 shows, for each of the four participants, the distribu-
tion of these contributions to decoding within each anatomical area. 
The projections onto the cortical surface appear in Fig. 5. For all 
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participants, the largest contributing areas are the ventral sensorim-
otor cortex (vSMC) and superior temporal gyrus (STG), as expected 
from the cortical areas most strongly associated with, respectively, 
speech production30 and speech perception31,32. This is true even 
in the participant with right-hemisphere coverage (a/green). (This 
participant, similar to the others, was determined to be left-hemi-
sphere language-dominant.) More specifically, in patients with STG 
coverage (all except participant c), strong contributions were made 
from the middle portion of STG, directly inferior to vSMC: the pri-
mary auditory areas (Brodmann areas 41 and 42), as well as nearby 
portions of Wernicke’s area. The activities of neural populations in 
this region are known to be influenced by the anticipated, as well 
as actual, feedback of self-vocalization33. These results therefore 

suggest that the network has learned to decode commands to the 
speech articulators (vSMC) and auditory feedback, either actual or 
anticipated (STG).

Discussion
We have shown that spoken speech can be decoded reliably from 
ECoG data, with WERs as low as 3% on datasets with 250-word 
vocabularies. But there are several provisos. First, the speech to be 
decoded was limited to 30–50 sentences. The decoder learns the 
structure of the sentences and uses it to improve its predictions. 
This can be seen in the errors the decoder makes, which frequently 
include pieces or even the entirety of other valid sentences from the 
training set (see Table 1). Although we should like the decoder to 
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learn and to exploit the regularities of the language, it remains to 
show how many data would be required to expand from our tiny 
languages to a more general form of English.

On the other hand, the network is not merely classifying 
sentences, since performance is improved by augmenting the  
training set even with sentences not contained in the testing set 
(Fig. 3a,b). This result is critical: it implies that the network has 
learned to identify words, not just sentences, from ECoG data, and 
therefore that generalization to decoding of novel sentences is pos-
sible. Indeed, where data are plentiful, encoder–decoder models 
have been shown to learn very general models of English34. And, 
as we have seen, the number of data required can be reduced by 
pretraining the network on other participants—even when their 
ECoG arrays are implanted in different hemispheres (Figs. 3 and 5). 
In principle, transfer learning could also be used to acquire a gen-
eral language model without any neural data at all, by pretraining 
an encoder–decoder network on a task of translation to, or auto-
encoding of, the target language (for example, English)—and then 
discarding the encoder.

We attribute the success of this decoder to three major factors. 
First, RNNs with long short-term memory (LSTM) are known 
to provide state-of-the-art information extraction from complex 
sequences, and the encoder–decoder framework in particular has 
been shown to work well for machine translation, a task analogous 
to speech decoding. Furthermore, the network is trained end-to-
end, obviating the need to hand-engineer speech-related neural 
features about which our knowledge is quite limited. This allows 
the decoder to be agnostic even about which cortical regions might 
contribute to speech decoding.

Second, the most basic labeled element in our approach is the 
word, rather than the phoneme as in previous approaches. Here 
the trade-off is between coverage and distinguishability: far fewer 
phonemes than words are required to cover the space of English 
speech, but individual phonemes are shorter, and therefore less dis-
tinguishable from each other, than words. In fact, the production of 
any particular phoneme in continuous speech is strongly influenced 
by the phonemes preceding it (coarticulation), which decreases 
its distinguishability still further (or, equivalently, reduces cover-
age by requiring parsing in terms of biphones, triphones or even 
quinphones). At the other extreme, English sentences are even more 
distinguishable than words, but their coverage is much worse. Of 

course, in this study we have limited the language to just a few hun-
dred words, artificially reducing the cost of poor coverage. But our 
results suggest that expanding the amount of data beyond 30 min 
will allow for an expansion in vocabulary and flexibility of sentence 
structure. We also note that even a few hundred words would be 
quite useful to a patient otherwise unable to speak at all. Finally, the 
use of words rather than phonemes may also make possible access 
to semantic and lexical representations in the cortex.

Third and finally, decoding was improved by modifying the 
basic encoder–decoder architecture10 in two ways: adding an auxil-
iary penalty to the encoder that obliges the middle layer of the RNN 
to predict the MFCCs of the speech audio; and replacing the fully 
connected feedforward layers with temporal-convolution layers, 
which also effectively downsamples the incoming ECoG signals by 
a factor of about ten. (For a detailed discussion of the architecture,  
see the Methods, and especially Figs. 6 and 7.) In fact, very recent 
work in machine learning has shown that RNNs can sometimes be 
replaced entirely with temporal-convolution networks, with superior  
results35—a promising avenue for future improvements to the 
decoder presented here.

We have emphasized the practical virtue of neural networks 
learning their own features from the data, but it comes at a scientific 
price: the learned features—in this case, neural activity in differ-
ent brain regions—can be difficult to characterize. This is an open 
research area in machine learning. What we can say (Figs. 4 and 5) 
is that the anatomical areas predominantly contributing to decoding 
are the vSMC30 and the STG31,32—the major loci of speech produc-
tion and perception, respectively. The highly contributing vSMC 
electrodes are themselves clustered near the central sulcus and the 
Sylvian fissure, directly superior to the highly contributing elec-
trodes of the STG. The contributions from STG may reflect direct 
perception of the participant’s own speech (auditory feedback), but 
neural activity in middle STG is also known to be influenced by the  
anticipated feedback of self-vocalization33, arguably via efference  
copy36, so these contributions may likewise reflect predicted  
auditory responses.

To investigate the kinds of features being used, one can exam-
ine the patterns of errors produced. However, these are not always 
indicative of the feature space used by the network, whose errors 
often involve substitution of phrases or even whole sentences from 
other sentences of the training set (a strong bias that presumably  

Table 1 | Example incorrectly decoded sentences (‘Prediction’, right) and the actual sentence spoken (‘Reference’, left) for 
participants a–d. iD, participant iD; 〈ooV〉, out-of-vocabulary token

iD Reference Prediction

a those musicians harmonize marvelously  
the museum hires musicians every evening  
a roll of wire lay near the wall  
those thieves stole thirty jewels

the spinach was a famous singer  
the museum hires musicians every expensive morning  
a big felt hung to it were broken  
which theatre shows mother goose

b she wore warm fleecy woolen overalls  
tina turner is a pop singer  
he will allow a rare lie  
a roll of wire lay near the wall

the oasis was a mirage  
did turner is a pop singer  
where were you while we were away  
will robin wear a yellow lily

c several adults and kids are in the room  
part of the cake was eaten by the dog  
how did the man get stuck in the tree  
the woman is holding a broom

several adults the kids was eaten by  
part of the cake was the cookie  
bushes are outside the window  
the little is giggling giggling

d there is chaos in the kitchen  
if only there if only the mother 〈OOV〉 pay  
    attention to her children  
a little bird is watching the commotion  
the ladder was used to rescue the cat and the man

there is is helping him steal a cookie  
if only the boy 〈OOV〉 pay pay  
    attention to her children  
the little bird is watching watching the commotion  
which ladder will be used to rescue the cat and the man
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improves decoding performance overall by guiding decoded 
output toward ‘legitimate’ sentences of the limited language). 
Nevertheless, some examples are suggestive. There appear to be 
phonemic errors (for example, in Table 1, ‘robin wear’ for ‘roll of 
wire’, ‘theatre’ for ‘thieves’, ‘did’ for ‘tina’), as expected, but also 
semantic errors—for example, the remarkable series of errors for 
‘those musicians harmonize marvelously’, by different models 
trained on the data from participant a, in terms of various seman-
tically related but lexically distinct sentences (‘the spinach was a 
famous singer’, ‘tina turner those musicians harmonize singer’, 
‘does turner 〈OOV〉 increases’). Since the focus of the present 
work was decoding quality, we do not pursue questions of neural 
features any further here. But these examples nevertheless illus-
trate the utility of powerful decoders in revealing such features, 
and we consider a more thorough investigation to be the most 
pressing future work.

Finally, we consider the use of the encoder–decoder frame-
work in the context of a BMI, in particular as a speech prosthe-
sis. The decoding stage of the network already works in close to 
real time. Furthermore, in a chronically implanted participant, 
the amount of available training data will be orders of magni-
tude greater than the half hour or so of speech used in this study, 
which suggests that the vocabulary and flexibility of the language 
might be greatly expandable. On the other hand, MFCCs may 
not be available—the participant may have already lost the ability  
to speak. This will degrade performance, but not insuperably  
(Fig. 2a; see also Supplementary Fig. 1 for the other three partici-
pants). Indeed, without MFCCs, the only data required beyond the 
ECoG and the text of the target sentences are their start and end 
times—a distinct advantage over decoders that rely on phoneme 
transcription. Recent work shows that speech onset and offset 
can be reliably decoded from ECoG data alone24. A more difficult  
issue is likely to be the changes in cortical representation induced 
by the impairment or by postimpairment plasticity. Here again 
the fact that the algorithm learns its own features makes it a 
promising candidate.
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Methods
The participants in this study were undergoing treatment for epilepsy 
at the University of California San Francisco (UCSF) Medical Center. 
Electrocorticographic (ECoG) arrays were surgically implanted on each patient’s 
cortical surface to localize the foci of their seizures. Before surgery, the patients 
gave written, informed consent to participate in this study, which was executed 
according to protocol approved by the UCSF Committee on Human Research. 
All four participants of this study (referred to herein by lowercase letters) were 
female, right-handed and determined to be left-hemisphere language-dominant. 
At the time of the recordings, they were aged 47 (a), 31 (b), 29 (c) and 49 (d) 
years. Data collection and analysis were not performed blind to the conditions of 
the experiments. Further details can be found in the companion Nature Reearch 
Reporting Summary.

Task. Participants read sentences aloud, one at a time. Each sentence was presented 
briefly on a computer screen for recital, followed by a few seconds of rest (blank 
display). Two participants (a and b) read from the 460-sentence set known as 
MOCHA-TIMIT14. These sentences were designed to cover essentially all of the 
forms of coarticulation (connected speech processes) that occur in English, but  
are otherwise unremarkable specimens of the language, averaging 9 ± 2.3 words  
in length, yielding a total vocabulary of about 1,800 unique words. Sentences  
were presented in blocks of 50 (or 60 for the ninth set), within which the order of 
presentation was random (without replacement). The other two participants  
(c and d) read from a set of 30 sentences describing three (unseen) cartoon drawings, 
running 6.4 ± 2.3 words on average, and yielding a total vocabulary of about 125 
words; see Supplementary Table 1. A typical block of these ‘picture descriptions’ 
consisted of either all 30 sentences or a subset of just 10 (describing one picture).

The reading of these blocks was distributed across several days. The number of 
passes through the entire set depended on available time and varied by patient. The 
breakdown is summarized in Supplementary Table 2.

Data collection and preprocessing. Neural data. The recording and preprocessing 
procedures have been described in detail elsewhere15,24, but we repeat them briefly 
here. Participants were implanted with 4-mm-pitch ECoG arrays in locations 
chosen for clinical purposes. Three participants (a, b, b) were implanted with 
256-channel grids over peri-Sylvian cortices; the remaining participant was 
implanted with a 128-channel grid located dorsal to the Sylvian fissure, primarily 
over premotor, motor and primary sensory cortices (see Fig. 5). Grids were 
implanted over the left hemisphere of all patients except participant a.

Analog ECoG signals were amplified and then digitized at about 3 kHz, and 
channels with visible artifact or excessive noise were removed. These digital signals 
were then anti-aliased (low-pass filtered at 200 Hz) and downsampled to 400 Hz. 
Next, from the N remaining electrodes, 2N channels were generated by bipolar 
referencing. Specifically, from the activity of each electrode, the activities of its 
neighbor below (first channel) and its neighbor to the right (second channel) 
were subtracted. (This is similar to the scheme used by Burke and colleagues28 
and shown by others to improve brain-state classification29, except that they 
generate 4N channels by using all four neighboring electrodes. But half of these are 
redundant, being but additive inverses of the remainder.) This corresponds exactly 
to a two-dimensional spatial derivative, a high-pass filter that discards information 
varying slowly over the grid (which we take to be noise). Bipolar referencing 
obviates notch filtering; improves the interpretation of electrode contributions 
(see “The relative contributions of electrodes to decoding”) by obviating common-
average referencing, which can spread the activities of electrodes across the whole 
grid; and, in our experiments, mildly improved overall decoding.

Finally, the analytic amplitudes (at each channel) were extracted in each of 
eight adjacent frequency bands between 70 and 150 Hz, averaged across bands 
and downsampled to about 200 Hz. More precisely, the high-γ band filters 
were designed in the frequency domain as Gaussian windows, with mean ± s.d. 
frequencies (in Hz) of 73.0 ± 4.68, 79.5 ± 4.92, 87.8 ± 5.17, 96.9 ± 5.43, 107.0 ± 5.70, 
118.1 ± 5.99, 130.4 ± 6.30, 144.0 ± 6.62. The analytic signal was computed directly 
by zeroing out the negative frequency components in the frequency domain. 
The analytic signals from participant a and participant b were downsampled to 
precisely 200 Hz, whereas the signals from participant c and participant d were 
downsampled to 58∕211 ≈ 190 Hz for consistency with another study involving 
the same participants24. The amplitudes of the (complex) analytic signal were 
then z-scored on the basis of a 30-s sliding window, yielding the ‘high-γ’ signals 
discussed in the main text.

Speech transcriptions. Speech was transcribed at the word level by hand or, 
where aided by speech-to-text software, with manual correction. Participants 
did not always read the sentences correctly, so the actual spoken vocabulary 
was generally a superset of the nominal vocabularies of the MOCHA-TIMIT or 
picture-description sentence sets, including nonwords (false starts, filled pauses, 
mispronunciations and the like). Nevertheless, the decoder represents words with 
a ‘one-hot’ encoding, and consequently requires a fixed-size vocabulary. To allow 
the decoder to generalize to new participants engaged in the same task (namely, 
producing sentences from either MOCHA-TIMIT or the picture descriptions), all 
words not in the nominal sets (less than 1% of the total) were replaced with a single 
out-of-vocabulary token before their use as training data.

Sentence onset and offset times were manually extracted and used to clip the 
neural data into sentence-length sequences.

Speech audio signal. The speech audio of the participants was recorded 
simultaneously with the neural data at about 24 kHz with a dedicated microphone 
channel, and time aligned.

MFCCs are features commonly extracted from speech audio for the purpose of 
rendering linguistic (phonemic) content more perspicuous. Briefly, the coefficients 
at each ‘frame’ characterize (the logarithm of) the local power spectrum in log-
spaced bins, a spacing that reflects the frequency discrimination of human hearing. 
Following typical practice, we used the leading 13 coefficients (of the discrete 
cosine transform), replacing the first of these with the log of the total frame energy. 
We extracted MFCCs in Python with the python_speech_features package37, using 
20-ms sliding frames with a slide of 1∕Fsampling, where Fsampling is the sampling rate of 
the high-γ data (about 200 Hz).

The network. High-level description. The encoder–decoder is an artificial neural 
network—essentially an extremely complicated, parameterized function that is 
constructed by composition of simple functions, and ‘trained’ by changing those 
parameters so as incrementally to decrease a penalty on its outputs. In our case, the 
input, outputs and penalties for a single sentence are:

•	 Input: the sequence of high-γ vectors (with the length of each vector the num-
ber of recording electrodes) recorded during production of the sentence

•	 Outputs: the sequence of predicted MFCCs extracted from the speech audio 
signal, and the sequence of predicted words

•	 Penalties: the deviations of the predicted from the observed sequences of 
MFCCs and words

The deviations are quantified in terms of cross entropy. For each word in the 
sequence, cross entropy is (proportional to) the average number of yes/no questions 
that would be required to ‘guess’ correctly the true word, given the output (predicted 
probabilities) of the decoder. For each element (vector) of the MFCC sequence, 
which is assumed to be normally distributed, the cross entropy is just the mean 
square error between the observed and predicted vectors (plus a constant term). 
At each step of the training procedure, the cross entropies are computed over 
a randomly chosen subset of all sentences, and the parameters (weights) of the 
network are changed in the direction that decreases these penalties. Note that we do 
not actually use the predicted MFCCs during the testing phase: the point of training 
the network to predict the speech audio signal is simply to guide the network 
toward solutions to the primary goal, predicting the correct sequence of words17.

Mathematical description. We now describe and justify this procedure more 
technically. Notational conventions are standard: capital letters for random 
variables, lowercase for their instantiations, boldface font for vectors and italic 
for scalars. We use angle brackets, h i

I

, strictly for sample averages (as opposed 
to expectation values). For empirical probability distributions of data generated 
by ‘the world’, we reserve P, and for distributions under models, Q. The set of all 
parameters of the model is denoted Θ.

Consider the probabilistic graphical model in Fig. 6a. Some true but unknown 
relationships (denoted by the probability distribution P) obtain between the 
sequences of spoken words, Wf gJ

0

I

, corresponding audio waveforms, Af gM
0

I

,  
and contemporaneous neural activity, Nf gK

0

I

—commands to the articulators, 
neurolinguistic representations, efference copy, auditory feedback and so on. 
(Clearly, the number of words (J) in a given sentence will not be the same as the 
number (K) of vectors in a given ECoG sequence, or the number (M) in a given 
MFCC sequence. But neither will K and M be equal, since MFCCs need to be 
downsampled relative to the ECoG sequence, due to the decimating effect of the 
temporal convolution. We discuss this below (see “Implementation: the data”). 
Also, to lighten notation, we do not mark the fact that these integers are themselves 
random variables.) The task of the network is to predict (provide probability 
distribution Q over) each MFCC and word sequence, given just a neural sequence 
as input. The training procedure thus aims to bring Q closer to P, or more precisely 
to minimize the conditional Kullback–Leibler (KL) divergences,

DKL Pð af gM
0
j nf gK

0
ÞjjQð af gM

0
j nf gK

0
;ΘÞ

� �

and

DKL Pð wf gJ
0
j nf gK

0
ÞjjQð wf gJ

0
j nf gK

0
;ΘÞ
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averaged under the observed data Pð nf gK
0
Þ

I

, by improving the parameters Θ. This is 
the standard formulation for fitting probabilistic models to data.

The minimization can equivalently be written in terms of cross entropies (by 
dropping the entropy terms from the KL divergences, since they do not depend on 
the parameters), which can be further simplified by assuming specific forms for the 
conditional distributions over MFCCs and words. In particular, we assume that at 
each step m in the sequence, the deviations of the observed vector of MFCCs, am, 
from the model predictions, âðse

m
;ΘÞ

I

, are normally distributed and conditionally 
independent of all other sequence steps:

Qð af gM0 j nf gK0 ;ΘÞ ¼
Y

M

m

1

Z
exp �

1

2
am � âðsem;ΘÞ
� T

am � âðsem;ΘÞ
� 

 
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(For simplicity we let the covariance matrix be the identity matrix here, but it does 
not affect the minimization.) The prediction âðse

m
;ΘÞ

I

—the vector output of the 
encoder RNN at step m—depends on the entire sequence of neural data only by 
way of the encoder state at step m:

s
e
m ¼ f ð nf gK

0
;ΘÞ

where the function f is given by the encoder RNN. (In the networks discussed 
in the main text, f is a three-layer bidirectional network of LSTM cells; see the 
discussion of the architecture in “Implementation: architecture” below.) The cross 
entropy for the MFCC sequences then becomes

H
Pð af gM0 ; nf gK0 Þ

Qð af gM0 j nf gK0 ;ΘÞ
 

¼ � logQð af gM0 j nf gK0 ;ΘÞ
 

Pð af gM0 ; nf gK0 Þ

¼
PM

m

P13
i

1
2
am;i � âm;iðs

e
m;ΘÞ

� 2
D E

Pð af gM0 ; nf gK0 Þ
þ C;

ð1Þ

where the inner sum is over all 13 coefficients used at each step.
Similarly, at each step of the word sequence, we interpret the (vector) output 

of the decoder RNN, ŵ, as a set of categorical probabilities over the words of the 
vocabulary:

Qð wf gJ
0
j nf gK

0
;ΘÞ ¼

QJ
j¼0

Qðwjj wf g
j�1

0
; nf gK

0
;ΘÞ

¼
QJ

j¼0
w
T

j ŵðs
d
j ;ΘÞ

where ŵðsdj ;ΘÞ

I

 is the vector of probabilities over words predicted by the decoder 
based on its current state, sdj . The first equality follows from the chain rule of 
probability, but the second follows only from the graph in Fig. 6b, and embodies 
the hypothesis that the decoder state, sdj , can provide a compact summary of the 
preceding words in the sequence (that is, up through step j − 1). The second line 
is consistent with the first because the decoder state sdj  depends on only preceding 
words and the sequence of neural data, via the recursion

s
d
j ¼ f ðwj�1; s

d
j�1

;ΘÞ; w�1 :¼ hEOSi; s
d
�1

:¼ s
e
Mð nf gK

0
Þ

where the function f is given by the decoder RNN (see again Fig. 6). Note that the 
dependence on the neural data enters in only through the final encoder state, se

M

I

. 
This embodies the hypothesis that all of the information about the word sequence 
that can be extracted from the neural sequence can be summarized in a single, 
fixed-length vector. In any case, the resulting cross entropy for the word sequences 
is therefore

HPð wf gJ0 ; nf gK0 Þ
Qð wf gJ0j nf gK0 ;ΘÞ
 

¼ � logQð wf gJ0j nf gK0 ;ΘÞ
 

Pð wf gJ0 ; nf gK0 Þ

¼ �
PJ

j¼0 log w
T
j ŵðs

d
j ;ΘÞ

n oD E

Pð wf gJ0 ; nf gK0 Þ

ð2Þ

Note that, since the observed words are one-hot, the inner product in the last 
line simply extracts from the vector of predicted probabilities, ŵ, the predicted 
probability of the observed word (so that the predicted probabilities of the other 
words have no effect on the cost function).

The relative importance of the cross entropies in equations (1) and (2) is not 
obvious a priori: ultimately, we require only that the model produce (good) word 
sequences—no MFCCs need be generated—but MFCC-targeting nevertheless 
guides the network toward better solutions (especially early in training). In 
practice, then, we set the loss function equal to a weighted sum of these penalties 
(dropping the constants), with the weight, λ, determined empirically (see below):

‘ðΘÞ ¼ λ
PM

m

P13
i

1
2
am;i � âm;iðs

e
m;ΘÞ

� 2
D

�
PJ

j¼0 log w
T
j ŵðs

d
j ;ΘÞ

n oE

Pð af gM0 ; wf gJ0 ; nf gK0 Þ
:

ð3Þ

As usual, we minimize this loss by stochastic gradient descent. That is, we evaluate 
the gradient (with respect to Θ) of the function in brackets not under the total 
data distribution P, but rather under a random subset of these data; take a step 
in the direction of this gradient; and then repeat the process until approximate 
convergence.

Implementation: the data. A single training datum consists of the triple 
af gM

0
; wf gJ

0
; nf gK

0

� �

I

. The neural sequence nf gK
0

I

 consists of vectors of high-γ 
activity from precisely (see Data collection and preprocessing above) that period of 
time during which the participant produced the sequences of words and MFCCs. 
The length K of this sequence thus depends on this time but also on the sampling 
rate (approximately 200 Hz). Before entering the neural network, this sequence 
is reversed in time, to reduce the number of computations separating the initial 
element of the input sequence from the (presumably most correlated) initial 
element of the output (word) sequence10. The length of each vector in this sequence 
is equal to the number of (functioning) ECoG channels.

Similarly, the length J of the word sequence is simply the number of words in 
the sentence, plus one extra terminating token, 〈EOS〉. A single element of this 
sequence, wj, that is, a ‘word’, is likewise a vector, being a one-hot encoding, with 
length equal to the vocabulary size (about 1,800 for MOCHA-TIMIT and 125 
for the picture descriptions; see Supplementary Table 2). This includes an out-
of-vocabulary token, 〈OOV〉, to cover words not in the actual sentence sets but 
erroneously produced by the participants (in practice less than 1% of the data).

The length M of the MFCC sequences would seem, at first blush, to be perforce 
identical to K, the length of the neural sequences, since the encoder neural network 
maps each element of the input sequence to an output. However, the layer of 
temporal convolution that precedes the encoder RNN effectively decimates the 
neural sequences by a factor of 12 (see “Implementation: architecture”). Since the 
input sequences are initially sampled at about 200 Hz, data thus enter the encoder 
RNN at about 16 Hz. To achieve the same sampling rate for the audio signal, the 
MFCC sequences were simply decimated by a factor of 12, starting from the zeroth 
sequence element. In fact, the MFCC sequences ought to be low-pass filtered 
first (at about 8 Hz) to prevent aliasing, but since the production of high-fidelity 
MFCCs is not ultimately a desideratum for our network, in practice we used the 
crude approximation of simply discarding samples. The length of a single element 
of the MFCC sequence is 13, corresponding to the total frame energy (first 
element) and MFCCs 2–13 (see Speech audio signal above).

The sequences in any given triple af gM
0

; wf gJ
0
; nf gK

0

� �

I

 will not in general have 
the same lengths as the sequences of any other triple, since speaking time and the 
number of words per sentence vary by example. The network was nevertheless 
trained in mini-batches, simply by zero-padding the data out to the longest 
sequence in each mini-batch, and making sure to read out RNN outputs at each 
sequence’s true, rather than nominal, length (see “Implementation: architecture”). 
Clearly, training will be inefficient if mini-batches are dominated by padding, 
which can happen if (for example) one input sequence is much longer than the 
others. To alleviate this, one can try to group sentences into mini-batches with 
similar lengths, but we did not attempt such expedients. Instead, we simply 
enforced a maximum sentence length of 6.25 s, which in practice truncated less 
than 1% of examples. Mini-batches were then created simply by randomizing, 
at the beginning of each epoch, the order of the sequences, and then dividing 
the result into consecutive batches of 256 examples. (There is one exception: the 
networks trained with fully connected, rather than temporal-convolution, input 
layers (no conv.) were too large to be trained at this batch size, and were instead 
trained on batches of 64 examples apiece. No other adjustments were made in 
training this network.)

Implementation: architecture. The basic architecture of the network, shown in Fig. 7,  
was modeled after the encoder–decoder neural network for machine translation of 
Sutskever and colleagues10, although there are significant modifications.

Each sequence of ECoG data (orange boxes, bottom left) enters the network 
through a layer of temporal convolution (green boxes). The stride length (that is, 
number of samples of temporal shift) of the convolutional filters sets the effective 
decimation factor—in this case, 12. In this network the filter width is also fixed 
to the stride length. This order-of-magnitude downsampling is crucial to good 
performance: without it, the input sequences are too long even for the LSTM cells 
to follow. Since the analytic amplitude does not have much content beyond about 
20 Hz, the procedure also throws away little information. The convolutional  
layer consists of 100 filters (channels); no max-pooling or other nonlinearity  
was applied to them.

Output from the convolutional layer at each time step (that is, a 
100-dimensional vector) passes into the encoder RNN (gold rectangles), which 
consists of three layers of bidirectional RNNs. In particular, each ‘layer’ consists 
of an RNN processing the sequence in the forward direction (receiving input 
m − 1 before receiving input m) and an RNN processing the sequence in the 
backward direction (receiving input m before receiving input m − 1). The outputs 
of these RNNs are concatenated and passed as input to the next layer. Each ‘unit’ 
in a single RNN layer is a cell of LSTM: a complex of simple units that interact 
multiplicatively, rather than additively, allowing the model to learn to gate the flow 
of information and therefore preserve (and dump) information across long time 
scales38. We used the LSTM design of Gers and colleagues39. Since both the forward 
and backward RNNs have 400 units, the total RNN state is an 800-dimensional 
vector (the state of the LSTM cells in the two directions, concatenated together).

The outputs of the second (middle) layer of the encoder RNN also pass 
through a fully connected output layer (bluish boxes; 225 linear units followed by 
rectified-linear functions) and thence through a ‘fat’ (13 × 225) matrix, yielding the 
MFCC predictions.

The decoder RNN (gold rectangles) is initialized with the final state of the final 
layer of the encoder RNN. (In fact, this state is a concatenation of the final state 
of the forward encoder RNN with the first state of the backward encoder RNN, 
although both correspond to step M of the input sequence. Thus, the dimension of 
the decoder state is 800 = 400 × 2.) This RNN receives as input the preceding word, 
encoded one-hot and embedded in a 150-dimensional space with a fully connected 
layer of rectified-linear units (bluish boxes below). The decoder RNN is necessarily 
unidirectional, since it cannot be allowed to access future words. The output of the 
decoder RNN passes through a single matrix that projects the state into the space 
of words, with dimension equal to the vocabulary size. For the picture-description 
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task, with its small vocabulary, this dimension is 125. For MOCHA-TIMIT, we let 
the output dimension be 1,806 even when training and testing only with MOCHA-1;  
that is, the first set of 50 sentences, with its much smaller vocabulary (about 250 
words). This facilitated comparisons with cross-task training, as in Fig. 3 in the 
main text.

The architecture hyperparameters are summarized in Supplementary Table 3. 
Note that we refer to the temporal-convolution layer as an encoder ‘embedding’, a 
slight abuse of terminology since the neural data are dense even before this layer, 
but which emphasizes the parallel to machine-translation architectures. In those 
networks, the encoder and decoder embeddings are sometimes shared (to facilitate, 
for example, translation of proper nouns), but this is inappropriate in the present 
case, neural and word data being different in kind.

Training, testing, hyperparameter optimization and cross-validation. Training. 
The network described in the previous section (“Implementation: architecture”) 
was implemented in TensorFlow, an open-source machine-learning framework 
with a Python API40. Gradient descent was performed with AdaM optimization41. 
Dropout20 was applied to all layers, but the network was not regularized in any 
other way (for example, weight decay). Dropout in the RNN was applied to the 
nonrecurrent connections only42.

Across-participant transfer learning proceeded as follows. First, the network 
was initialized randomly and then ‘pretrained’ for 200 epochs on one participant. 
Then the input convolutional layer was reset to random initial values, all other 
weights in the network were ‘frozen’ and the network was trained on the second 
(target) participant for 60 epochs. That is, the error gradient was backpropagated 
through the entire network but only the convolutional layer was updated. Thus, 
during this stage of training, the convolutional layer is trained to extract, from the 
second participant’s data, features that work well with an encoder–decoder network 
fit to the first participant’s data. Finally, the weights in the encoder–decoder 
were unfrozen, and the entire network ‘post-trained’ for another 540 epochs 
(for a total of 800 epochs). This allowed the rest of the network to accommodate 
idiosyncrasies in the second participant’s data.

Testing. To test the network, data are passed through as during training, with one 
very important, and one minor, difference. During both training and testing, the 
output of the decoder provides a probability distribution over word sequences:

Q wf gJ
0
j nf gK

0
;Θ

� 

¼
Y

J

j¼0

w
T

j ŵðs
d
j ðwj�1; s

d
j�1

Þ;ΘÞ ð4Þ

During training, it is necessary to evaluate this distribution only under each 
observed word sequence, wf gJ

0

I

. That is, at each step in the sequence, the output of 
the network is evaluated only at the current observed word (wj in the right-hand 
side of equation (4)); and likewise the input to the network is set equal to a one-
hot vector encoding the previous observed word (wj−1 in the right-hand side of 
equation (4)). During testing, however, one would like to compute the probability 
distribution over all sequences, or at least to find the most probable sequence 
under this distribution. Evaluating all sequences is, however, intractable, because 
the number of sequences grows exponentially in the sequence length. Instead, 
we employ the usual heuristic to find the most probable sequence: at each step, 
we simply pick the most likely word, and use it as input at the next step10. This is 
not guaranteed to find the most probable sequence under the model distribution 
because (for example) the first word in this most probable sequence need not be  
the most probable first word. To alleviate this difficulty, it is possible to maintain  
a ‘beam’ (as opposed to point) of the N most probable sequences, where the width 
N of the beam controls the trade-off between optimality and tractability—but in 
our experiments using a beam search did not notably improve performance, so we 
did not use it.

The minor difference between testing and training is in the set of parameters 
used. We evaluate the network not under the final parameter values, ΘT, but rather 
under an exponential moving average of these parameters, ΘT

I

, across update  
steps t:

Θt ¼ ηΘt�1 þ ð1� ηÞΘt ; for t 2 ½0; ¼ ;T

where the decay rate η is a hyperparameter. This smooths out shocks in the weight 
changes.

Training and testing hyperparameters and their values are listed in 
Supplementary Table 4.

Hyperparameter optimization and cross-validation. All hyperparameters were 
chosen based on performance of a single participant (b, pink in the main-text 
figures) on a single validation block. Initial choices were made ad hoc by trial 
and error, and then a grid search was performed for the dropout fractions, the 
MFCC-penalty weight (λ) and the layer sizes. This validation block was not, in fact, 
excluded from the final tests, since it was but one tenth of the total test size and 
therefore unlikely to ‘leak’ information from the training into the results.

Results (WERs) were cross-validated. For each evaluation, N randomly chosen 
blocks were held out for testing, and a network was trained from scratch on the 

remaining blocks, where N was chosen so as to hold out approximately 10% of the 
data. Numerical breakdowns are given in Supplementary Table 2.

Significance testing. Recall that each box in Fig. 2a and Fig. 3 shows the average 
(and its standard error) WER across 30 models trained from scratch and tested 
on randomly held-out validation blocks. Now, the identity of the validation block 
influences the results (some blocks are harder to decode than others), so the 
performance (WER) differences between any two decoders will vary less if taken 
only between matching pairs of validation blocks. Therefore, the randomization of 
validation blocks was performed just once for each participant, allowing pairings 
of all 30 model instances for any two decoders under comparison. To the WER 
differences from these validation-block-matched pairs, we applied a (one-sided) 
Wilcoxon signed-rank test, asking whether a particular model or form of transfer 
learning were not superior to its rivals. (Note that this test does not assume 
anything about the shape of the underlying distributions.) The resulting P values 
were then Holm–Bonferroni corrected for multiple comparisons. For example, 
the encoder–decoder network was compared with five other decoders (four 
variants, plus the phoneme-based HMM), so the P values reported for Fig. 2a were 
corrected for five comparisons. The transfer-learning results were corrected for 14 
comparisons: the 12 comparisons annotated in Fig. 3, plus the two comparisons 
of WER with and without transfer learning for the picture-description data (not 
shown in the figure but discussed in the “Transfer learning” section of Results).

The (minimum) number of participants and the number of model instances 
used in the across-decoder comparisons were not predetermined with statistical 
methods but are similar to those reported in previous publications9,24.

The relative contributions of electrodes to decoding. The contribution of an 
individual electrode, and therefore local anatomical area, might be estimated 
in multiple ways. Perhaps the most straightforward is simply to train a network 
with that electrode left out, and measure the increase in WER. Unfortunately, 
that increase will generally be small compared with the variation in WER across 
retrainings due simply to the randomness of stochastic gradient descent with 
random initialization, and therefore hard to detect without repeated retrainings—
each of which takes upwards of 45 min of wall time. Multiplying these 45 min 
by the number of electrodes (about 250) and again by the number of repeats 
required to detect the WER signal in the noise of retrainings (about ten) yields a 
prohibitively large amount of computation time.

Alternatively, this electrode-omission procedure could be modified for 
groups of electrodes, each perhaps corresponding to a gross anatomical area. 
But even setting aside the loss of spatial resolution, second-order effects—that is, 
interactions between (groups of) electrodes—would be ignored. For example, the 
electrode-omission procedure would underestimate the contribution of  
those electrodes that contribute significantly to decoding when present, but for 
which the network can to some extent compensate, when absent, by leaning on 
other channels.

Instead, then, we examine the gradient of the loss function, equation (3), with 
respect to the inputs; that is, the sequences of high-γ activity. This measures how 
much small deviations from an input sequence at each electrode affect the loss, and 
is the same quantity proposed27 to determine which regions of an image are most 
useful to its classification by a convolutional neural network. In the present case, 
we should like to know the relative usefulness of electrodes, not for a particular 
sequence of ECoG data, nor for a particular time in the sequences, but for all 
sequences at all moments in time. To remove this ‘nuisance’ variation, we take 
the norm of the derivatives across example sequences and time steps within those 
sequences. (We use a norm rather than an average because it is the magnitudes of 
the derivatives that matter: it doesn’t matter whether an increase or a decrease in 
the high-γ activity is required to decrease the loss.) The gradient itself is computed 
via backpropagation through the trained model, all of the way into the testing (as 
opposed to training) data.

As the bipolar referencing scheme derives each input channel from a pair of 
electrodes, the assignment of channels to anatomical areas is not unequivocal. In 
particular, some channels comprise pairs that cross anatomical boundaries. Our 
solution was simply to assign each channel to the location of the upper or leftmost 
electrode in its pair. This determined the anatomical label used to construct Fig. 4,  
and the corresponding color in Fig. 5. However, in the latter, each channel was 
plotted halfway between the locations of its corresponding pair of electrodes.

Finally, since we are interested only in relative electrode contributions within, 
rather than across, participants, for display in Fig. 4 we rescaled all data into the 
same range of arbitrary units.

Phoneme-based sentence classifier. The Viterbi decoders against which the 
encoder–decoder models were compared (as in Fig. 2a and Supplementary Fig. 1) 
were trained and tested as follows (see also ref. 24). First, phonetic transcriptions 
were obtained for each sentence, aligned with the neural data. Next, small time 
windows of high-γ activity around each time point were projected onto their first 
few principal components, yielding low-dimensional neural features. Finally, a 
(fully observed) HMM with Gaussian emissions was trained to map phoneme 
identities to these neural features. However, rather than learn the hidden-state 
transition probabilities from the data, and infer phoneme sequences from 
test data under the resulting model, inferences were made with 50 different 
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transition-probability models, one for each sentence in the MOCHA-1 set. Each 
model allowed only those transitions consistent with the corresponding sentence 
(transition to the next phoneme in the sequence, or a self transition). For each 
of these 50 transition-probability models, the most probable (Viterbi) hidden 
path and its corresponding probability were computed; and then the sentence 
corresponding to the most probable path over all models was selected. This process 
of training and testing was repeated over the (random) 30 train/test breakdowns 
used for the other decoders (see Significance testing above) to obtain the results 
shown in Fig. 2a and Supplementary Fig. 1.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Deidentified copies of the data used in this study will be provided upon reasonable 
request. Please contact E.F.C. via e-mail with any inquiries. Source data for the 
figures are likewise available upon request; please contact J.G.M. via e-mail with 
inquiries.

Code availability
The code used to train and test the encoder–decoders is available at https://github.
com/jgmakin/machine_learning. Code used to assemble data and generate figures 
is also available upon reasonable request; please contact J.G.M. via e-mail with any 
inquiries.
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- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Deidentified copies of the data used in this study will be provided upon reasonable request.  Please contact the corresponding author via e-mail with any inquiries.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The number of participants was not determined by a sample-size calculation since the study did not aim to make claims about groups or 

treatment effects.  Instead, speech decoding was demonstrated and statistically validated separately on each participant.

Data exclusions Participants' data were used only if they included three passes through (readings of) the text corpus, two for training and one for testing, 

under the assumption that it would be impossible for the model to decode words from only a single exposure.  This criterion was established 

before data analysis.

Replication For each of four subjects, and for each analysis of speech decoding, 30 decoders were trained independently and from scratch.  All 

replications were successful.

Randomization During the task, MOCHA-TIMIT sentences were presented in blocks of 50 (or 60 for the ninth set), within which the order of 

presentation was random (without replacement).  The picture descriptions were not randomized within blocks but the subsets (of 10 

sentences) were presented pseudo-randomly.  Model performance was evaluated with cross validation: 30 models trained from scratch and 

tested on randomly held-out validation blocks.  For each participant, the randomization of validation blocks was performed just once, allowing 

pairings of all 30 model instances for any two decoders under comparison.

Blinding Data collection and analysis were not performed blind to the conditions of the experiments (no group allocation was performed).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Clinical data

Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics All participants were female, right-handed, and determined to be left-hemisphere language-dominant.  Their ages were 47, 31, 

39, and 49, and all were being treated for epilepsy, but we do not believe these factors to have had any influence on the 

decoding task (see also next item).

Recruitment Participants were undergoing treatment for epilepsy at the UCSF Medical Center.  Since no seizures occurred during the blocks 

analyzed in this study, this was unlikely to affect results; and in any case would certainly not *improve* decoding.  Thus as far as 

the results of this study go--speech decoding--we believe these patients to be unbiased representatives of the population at 

large.  (Of course, members of the population at large do not have electrodes implanted on their cortical surfaces, which is why 

we performed the study on this group.)

Ethics oversight UCSF Committee on Human Research

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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