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Using Relevance to Reduce Network Size 
Automatically 

MICHAEL C. MOZER & PAUL SMOLENSKY 

This paper proposes a means of using the knowledge in a network to determine the 
functionality or relevance of individual units, both for the purpose of understanding the 
network's behavior and improving iu  performance. The basic idea is to iteratively train 
the network to a certain pe?formance criterion, compute a measure of relevance that 
identifies which input or hidden units are most critical to petformance, and automatic- 
ally remove the least relevant units. This skeletonization technique can be used to 
simplify networks by eliminating units that convey redundant information; to improve 
learning performance by jrst learning with spare hidden units and then removing the 
unnecessaly ones, thereby constraining generalization; and to understand the behavior of 
networks in terms of minimal 'rules: 

One thing that connectionist networks have in common with brains is that if you open 
them up and peer inside, all you can see is a big pile of goo. Internal organization is 
obscured by the sheer number of units and connections. Although techniques such as 
hierarchical cluster analysis (Sejnowski & Rosenberg, 1987) have been suggested as a 
step in understanding network behavior, one would like a better handle on the role that 
individual units play. This paper proposes one means of using the knowledge in a 
network to determine the functionality or relevance of individual units. Given a 
measure of relevance for each unit, the least relevant units can be automatically 
removed from the network to construct a skeleton version of the network. 

Skeleton networks have several potential applications: 

.Constraining generalization. By eliminating input and hidden units that serve no 
purpose, the number of parameters in the network is reduced and generalization 
will be constrained (and hopefully improved). 

.Speeding up learning. Learning is fast with many hidden units, but a large 
number of hidden units allows for many possible generalizations. Learning is 
slower with few hidden units, but generalization tends to be better. One idea for 
speeding up learning is to train a network with many hidden units and then 
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4 Michael C. Mozer & Paul Smolensky 

eliminate the irrelevant ones. This may lead to a rapid learning of the training 
set and then, gradually, an improvement in generalization performance.' 

.Understanding of the behavior of a network in terms of 'rules'. One often wishes 
to get a handle on the behavior of a network by analyzing the network in terms 
of a small number of rules instead of an enormous number of parameters. In 
such situations, one may prefer a simple network that performed correctly on 
95% of the cases over a complex network that performed correctly on 100%. 
The skeletonization process can discover such a simplified network. 

Several researchers (Chauvin, 1989; Hanson & Pratt, 1989; David Rumelhart, personal 
communication, 1988) have studied techniques for the closely related problem of 
reducing the number of free parameters in back propagation networks (Rumelhart et 
al., 1986). Their approach involves adding extra cost terms to the usual error function 
that cause nonessential weights and units to decay away. We have opted for a different 
approach-the all-or-none removal of units-which is not a gradient descent proce- 
dure. The motivation for our approach was twofold. First, our initial interest was in 
designing a procedure that could serve to focus 'attention' on the most important units, 
hence an explicit relevance metric was needed. Second, our impression is that it is a 
tricky matter to balance a primary and secondary error term against one another. One 
must determine the relative weighting of these terms, weighting that may have to be 
adjusted over the course of learning. In our experience, it is often impossible to avoid 
local minima-compromise solutions that partially satisfy each of the error terms. This 
conclusion is supported by the experiments of Hanson & Pratt (1989). 

Another class of techniques related to skeletonization is' based on principal 
component analysis of hidden unit activities or weights (Elman, 1989). Sanger (1989) 
applies principal component analysis to vectors what he calls contributions-the 
activity of a given hidden unit times its weight to a given output unit for a given 
training input-and shows that this can be effectively used to understand what work is 
being done by various patterns of hidden units. Principal component analysis, like 
cluster analysis, identifies important patterns in the network; while it may be possible 
to develop methods for reducing the size of a network based on this pattern 
information, these methods would undoubtedly be less straightforward than the 
method we study here: simply removing individual units that are determined to be less 
relevant for good performance than others. 

Determining the  Relevance of a Unit  

Consider a multi-layer feedforward network. How might we determine whether a given 
unit serves an important function in the network? One obvious source of information 
is its outgoing connections. If a unit layer t has many large-weighted connections, then 
one might expect its activity to have a big impact on higher layers. However, this need 
not be. The effects of these connections may cancel each other out; even a large input 
to units in layer 1+1 will have little influence if these units are near saturation; 
outgoing connections from the innervated units in I+ 1 may be small; and the unit in 1 
may have a more-or-less constant activity, in which case it could be replaced by a bias 
on units in I+ 1. Thus, a more accurate measure of the relevance of a unit is needed. 

What one really wants to know is, what will happen to the performance of the 
network when a unit is removed? That is, how well does the network do with the unit 
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Reducing Network Size 5 

versus without it? For unit i ,  then, a straightforward measure of the relevance, pi, is 

Pi=Evithour unit i -  Evith unit i, 
where E is the error of the network on the training set. The problem with this measure 
is that to compute the error with a given unit removed, a complete pass must be made 
through the training set. Thus, the cost of computing p is O(np) stimulus presenta- 
tions, where n is the number of units in the network and p is the number of patterns in 
the training set. Further, if the training set is not fixed or is not known to the 
experimenter, additional difficulties arise in computing p. 

We therefore set out to find a computationally cheaper alternative to p. Before 
presenting this alternative, it is first necessary to introduce an additional bit of 
notation. Suppose that associated with each unit i is a coefficient ai which represents 
the anenrional strength of the unit (see Figure 1). This coefficient gates the flow of 
activity from the unit: 

Figure 1. A 4-2-3 network with attentional coefficients on all units. 
and 

oj = a,uj, 
where aj is the activity of unit j ,  oj is its output as observed by the rest of the network 
(for input and hidden units) or by the teacher (for output units), wji is the connection 
strength to j from i, and f is the sigmoid squashing function. If ai=O, unit i produces 
the constant output 0 and thus has no influence on other units; if ai= 1, unit i behaves 
like a conventional unit. In terms of a i ,  the relevance of unit i can then be rewritten as 

P ~ = E , ~ , ~ - E , , ~ , ~ .  
The simpler alternative we have adopted for pi, which we term i ,  is just the negative 
of the derivative of the error function with respect to ai, evaluated at the point where 
all aj= 1: 

Pi= -- 
aE l aai ( a l  ...., an)=(, ...., 1 )  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

L
ib

ra
ry

] 
at

 1
7:

26
 1

5 
Ja

nu
ar

y 
20

15
 



6 Michael C. Mozer & Paul Smolensky 

This definition is derived from the simple fact that 

Thus, pi is the area under the -aE/aa,  curve between ai=O and a i = l ;  ji is the 
derivative evaluated at a,= 1-the rightmost value of the curve. 

T o  motivate the use of ji instead of pi, consider the simple task of estimating the 
relevance of two output units based on a single training pattern. Assume that both 
units have a target activity level of 1 for this pattern, and the activity level of unit 1 is 
0.2 and unit 2 is 0.5. Using the usual quadratic error function, unit 1 should be judged 
as less relevant than unit 2 because the removal of unit 1 will affect the error less than 
the removal of unit 2. 

I 
I I 
I J unit 1 

At tent iona l  S t reng th ,  a 

Figure 2. The derivative of the error function with respect to ai for two output units 
plotted against ai.  The target activity level of both units is assumed to be 1, and the 
actual activity level of unit 1 is 0.2 and unit 2 is 0.5. pi is the area under the -aE/aai 

curve, and ji is the value of the curve at ai= I-the rightmost point. 
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Reducing Network Size 7 

Figure 2 shows the derivative of the error function with respect to a ,  -aE/aai, 
for each output unit. Clearly, p,-the area under each curve-is different than &the 
rightmost value of each curve. T o  what extent, then, can ji serve in place of pi? 
Because our goal is to decide which unit is least relevant so that we can eliminate it 
from the network, what matters is whether comparing j, and j, gives the same result 
as comparing p, and p,. It need not in principle, but in practice it serves us well. We 
can appreciate why from Figure 2. If the height of the -aE/aa curve at a= 1 for unit 
2, j2, is significantly greater than that for unit 1, j,, it will follow that the area under 
the curve for unit 2, p,, is greater than that for unit 1, pl ,  unless the curve for unit 1 
not only crosses over that for unit 2 between a = 1  and a=O, but does so quite 
dramatically. As Figure 2 shows, the relation p2>p, is correctly predicted by the 
relation j2>j,. While the conditions under which the ji have the same ordering as the 
pi can be worked out analytically for this simple case, the general case of multiple 
patterns and hidden units is difficult to analyze. Fundamentally, the justification for 
our method is its empirical success, as we report below. 

The derivative defining ji can be computed using an error propagation procedure 
very similar to that used in adjusting the weights with the back propagation algorithm. 
Additionally, note that because the definition of ji assumes that all q are 1, the aj 
never need be changed. Thus, the aj are not actual parameters of the system, just a bit 
of notational convenience used in estimating relevance. 

In practice, we have found that aE/aai fluctuates strongly in time and a more 
stable measure that yields better results is an exponentially decaying time average of 
the derivative. In the simulations reported below, we use: 

Relevance Computation is Based on a Linear Error Function 

One problem with the proposed relevance measure is that the quadratic error function 
ordinarily used in back propagation networks is not suitable for estimating relevance. 
This error function, 

(where p is an index over patterns, j over output units; tpj is the target output, opj the 
actual output), has the serious drawback that its derivative goes to zero as the total 
error decreases, and consequently, if ji= -aEq/aai, the relevance of all units will tend 
to zero as the error decreases. This certainly violates intuitions as to how the relevance 
measure should behave. 

T o  see the problem more clearly, consider again the situation of estimating the 
relevance of an output whose target activity level is 1. Using the quadratic error 
function, 

As the unit's output, o, approaches the target value of 1, the relevance goes to zero. 
Thus, 9 grossly underestimates the relevance of outputs that are close to the target. 
Figure 3 depicts the situation graphically. The solid curve is the 'true' relevance, p, as 
a function of the activity of the output unit. Note that if the activity is close to zero, so 
is the relevance because suppressing the unit by setting a to zero will not alter its 
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8 Michael C. Mozer 0 Paul Smolensky 

output much; if the activity is close to 1, setting cr to zero will have maximal effect. 
The short-dashed curve is 9, rescaled by a multiplicative constant to best fit the p 
curve. This measure is reasonably good only when the activity of the unit is less than 
0.5. As the activity of the output unit approaches 1, 9 decreases whereas p increases2 

Output Unit Ac t iv i ty  Level  

Figure 3. Three measures of the relevance of an output unit whose target activity is 1, 
as a function of the unit's activity level. The solid curve labeled p is the true relevance, 
E&-E&,; the short-dashed curve is the measure using the derivative of Eq; and the 
long-dashed line is the measure using the derivative of El. The two derivative measures 

have been rescaled by a multiplicative constant to best fit the p curve. 

One possibility is to make use of 9 only for ranges of output unit activities where 
the measure is good. In practice, this turns out to be quite difficult. Instead, we have 
opted for a different solution: to use a linear error function, 

E'= C Zltpj-opjl 
P 1 

in computing the relevance. The derivative of E' does not depend on how close the 
output unit activity is to the target, and thus does not go to zero as the error decreases. 
Figure 3 shows an estimate of relevance, /?, computed from the derivative of El. 
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Reducing Network Size 9 

Unlike $,? is monotonically increasing, which is particularly important because the 
skeletonization procedure we will present uses i to rank order the units by relevance. 

T o  summarize, in the results reported below, while Eq is used as the error metric in 
training the weights via conventional back propagation, i is measured using El. This 
involves separate back propagation phases for computing the weight updates and the 
relevance measures. 

In the next two sections, we discuss sample applications of relevance assessment. 
We then discuss how to use relevance assessment for the construction of skeleton 
networks. 

A Simple Example: The Cue Salience Problem 

Consider a network with four inputs labeled A-D, one hidden unit, and one output. We 
generated ten training patterns such that the correlations between each input unit and 
the output are as shown in the first row of Table I. (In this particular task, a hidden 
layer is not necessary. The inclusion of the hidden unit does not affect any of the 
reported results, and in fact increases the difficulty of relevance assessment. I t  simply 
allowed us to use a standard three-layer architecture for all tasks.) 

Table I 

Input unit 

Correlation with output unit 1 .O 0.6 0.2 0.0 
Input-hidden connection strengths 3.15 1.23 0.83 -0.01 

Pi 5.36 0.07 0.06 0.00 

Pi 0.46 -0.03 0.01 -0.02 

In this and subsequent simulations, unit activities range from - 1 to 1, input and 
target output patterns are binary (-1 or 1) vectors. Training continues until all 
output activities are within some acceptable range of the target value. Additional 
details of the training procedure and network parameters are described in the 
Appendix. 

T o  perform perfectly, the network need only attend to input A. This is not what 
the input-hidden connections do, however; their weights have the same qualitative 
profile as the correlations (second row of Table I).' In contrast, the relevance values 
for the input units show A to be highly relevant while B-D have negligible relevance. 
Additionally, the qualitative picture presented by the profile of pi is identical to that of 
the pis. Thus, while the weights merely reflect the statistics of the training set, pi 
indicates the functionality of the units. 

The Rule-Plus-Exception Problem 

Consider a network with four binary inputs labeled A-D and one binary output. The 
task is to learn the function AB+-: the output unit should be on whenever both A 

and B are on, or in the special case that all inputs are off. With two hidden units, back 
propagation arrives at a solution in which one unit responds to AB-the rule-and the 
other to Z E - t h e  exception (Figure 4). Clearly, the AB unit is more relevant to the 
solution; it accounts for 15 cases whereas the ZiE6 unit accounts for only one. This 
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10 Michael C. Mozer & Paul Smolensky 

fact is reflected in the ii: in 100 replications of the simulation, the mean value of i, 
was 1.49 whereas was only 0.17. These values are extremely reliable; the standard 
errors are 0.003 and 0.005, respectively. 

Figure 4. A 4-2-1 network used to learn the rule-plus-exception problem. One hidden - 
unit learns to respond to AB-the rule-and the other to ABCD-the exception. 

Relevance was also measured using the quadratic error function. With this metric, 
the AB unit is incorrectly judged as being less relevant than the ABCd unit: &,is 0.029 
and $= is 0.033. As explained above, the basis of the failure of the quadratic error 
function is that $ grossly underestimates the true relevance as the output error goes to 
zero. Because the one exception pattern is invariably the last to be learned, the output 
error for the 15 non-exception patterns is significanly lower, and consequently, the 
relevance values derived from the non-exception patterns are much smaller than that 
derived from the one exception pattern. This results in the relevance assessment based 
on the exception pattern dominating the overall relevance measure, and in the 
incorrect relevance assignments described above. However, this problem can be 
avoided by assessing relevance using the linear error function. 

If we attempted to 'trim' the rule-plus-exception network by eliminating hidden - 
units, the logical first candidate would be the less relevant ABCD unit. This trimming 
process would leave us with a simpler network-a skeleton network-whose behavior 
is easily characterized in terms of a simple rule, but which could only account for 15 of 
the 16 input cases. 

Constructing Skeleton Networks 

In the remaining examples we construct skeleton networks using the relevance metric 
i. The procedure is as follows: (1) train the network until all output unit activities are 
within some specified range of the target value (see Appendix); (2) compute i for each 
unit; (3) remove the unit with the smallest and (4) repeat steps 1-3 a specified 
number of times. In the examples below, we have chosen to trim away either the input 
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Reducing Network Size 11 

units or the hidden units, not both simultaneously, but there is no reason why this 
could not be done. 

We have not yet addressed the crucial question of how much to trim away from the 
network. At present, we specify in advance when to stop trimming. However, the 
procedure described above makes use only of the ordinal values of the p. One 
untapped source of information that may be quite informative is the magnitudes of the 
j. A large increase in the minimum value as trimming progresses may indicate that 
further trimmings will seriously disrupt performance in the network. 

T h e  T r a i n  Problem 

Consider the task of determining a rule that discriminates the 'east' trains from the 
'west' trains in Figure 5. There are two simple rules-simple in the sense that the rules 
require a minimal number of input features: east trains have a long car and m'angle 
load in car or an open car or white wheels on car. Thus, of the seven features that 
describe each train, only two are essential for making the east/west discrimination. 

EAST WEST 

Figure 5. The train problem. Adapted from Medin et al. (1987). 

A 7-1-1 network trained on this task using back propagation learns quickly, but 
the final solution takes into account nearly all the inputs because 6 of the 7 features 
are partially correlated with the east/west discrimination. When the skeletonization 
procedure is applied to trim the network from 7 inputs to 2, however, the minimal set 
of input features is discovered-either long car and m'angle load, or open car and white 
wheels on car-on each of 100 replications of the simulation we ran. 

The trimming task is far from trivial. The expected success rate with random 
removal of the inputs is only 9.5%. Other skeletonization procedures we experimented 
with resulted in success rates of 50-90%. 
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12 Michael C. Mozer & Paul Smolensky 

The Four-bit Multiplexor Problem 

Consider a network that learns to behave as a four-bit multiplexor. The task is, given 6 
binary inputs labeled A-D, M,, and M ~ ,  and one binary output, to map one of the inputs 
A-D to the output contingent on the values of MI and M2. The logical function being 
computed is M , M ~ A + I ; ~ ; M ~ B + M , ~ C + M , M ~ D .  

A standard 4-hidden-unit back propagation network was tested against a skeleton- 
ized network that began with 8 hidden units initially and was trimmed to 4 (an 8-4 
nerwork). If the network did not reach the performance criterion within 1000 training 
epochs, we assumed that the network was stuck in a local minimum and counted the 
run as a failure. 

Table 11 

Architecture 

Median epochs Median epochs 

Failure to criterion to criterion 

(46) (with 8 hidden) (with 4 hidden) 

Standard 4-hidden network 17 - 
8-4 network 0 25 

Performance statistics for the two networks are shown in Table 11, averaged over 
100 replications. The standard network fails to reach criterion on 17% of the runs, 
whereas the 8-4 network always obtains a solution with 8 hidden units and the 
solution is not lost as the hidden layer is trimmed to 4 units.4 The 8-4 network with 8 
hidden units reaches criterion in about half the number of training epochs required by 
the standard network. From this point, hidden units are removed one at a time from 
the 8-4 network, and after each cut the network is retrained to criterion. Nonetheless, 
the total number of epochs required to train the initial 8 hidden unit network and then 
trim it down to 4 is still less than that required for the standard network with 4 units. 
Furthermore, as hidden units are removed, the performance of the 8-4 network 
remains close to criterion, so the improvement in learning is substantial (Figure 6). 

The Random Mapping Problem 

The problem here is to map a set of random 20-element input vectors to random 2- 
element output vectors. Twenty random input-output pairs were used as the training 
set. Ten such training sets were generated and tested. A standard 2-hidden unit 
network was tested against a 6-2 network. For each training set and architecture, 100 
replications of the simulation were run. If criterion was not reached within 1000 
training epochs, we assumed that the network was stuck in a local minimum and 
counted the run as a f a i l ~ r e . ~  

As Table I11 shows, the standard network failed to reach criterion with two hidden 
units on 17% of all runs, whereas the 6-2 network failed with the hidden layer 
trimmed to two units on only 8.3% of runs. In 9 of the 10 training sets, the failure rate 
of the 6-2 network was lower than that of the standard network. Both networks 
required comparable amounts of training to reach criterion with two hidden units, but 
the 6-2 network reaches criterion much sooner with six hidden units, and its 
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Reducing Network Size 13 

Training Epoch 
Figure 6. Average performance on the four-bit multiplexor task. 

Table 111 

Standard network 6-2 network 

Median epochs Median epochs Median epochs 
Failures to criterion Failures to criterion to criterion 

Training set (%) (2  hidden) (96) (6 hidden) (2  hidden) 
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14 Michael C. Mozer & Paul Smolensky 

performance does not significantly decline as the network is trimmed. These results 
parallel those of the four-bit multiplexor. 

Summary and Conclusions 

We proposed a method of using the knowledge in a network to determine the relevance 
of individual units. The relevance metric can identify which input or hidden units are 
most critical to the performance of the network. The least relevant units can then be 
removed to constuct a skeleton version of the network. 

Skeleton networks have application in two different scinarios, as our simulations 
demonstrated: 

.Understanding the behaviour of a network in terms of 'rules' 
-The cue salience problem. The relevance metric singled out the one input that 

was sufficient to solve the problem. The other inputs conveyed redundant 
information. 

-The rule-plus-exception problem. The relevance metric was able to distinguish 
the hidden unit that was responsible for correctly handling most cases (the 
general rule) from the hidden unit that dealt with an exceptional case. 

-The main problem. The relevance metric correctly discovered the minimal set 
of input features required to describe a category. 

.Improving learning performance 
-The four-bit multiplexor. Whereas a standard network was often unable to 

discover a solution, the skeleton network never failed. Further, the skeleton 
network learned the training set more quickly. 

-The random mapping problem. As in the multiplexor problem, the skeleton 
network succeeded considerably more often with comparable overall learning 
speed, and less training was required to reach criterion initially. 

Basically, the skeletonization technique allows a network to use spare input and 
hidden units to learn a set of training examples rapidly, and gradually, as units are 
trimmed away, to discover a more concise characterization of the underlying regulari- 
ties of the task. In the process, local minima seem to be avoided without increasing the 
overall learning time. It is difficult to say how this result will scale up with network 
size, but experiments with a larger version of the random mapping problem suggest 
that the approach is promising. 

One somewhat surprising result is the ease with which a network is able to recover 
when a unit is removed. Conventional wisdom has it that if a network is given excess 
hidden units, it will memorize the training set, thereby making use of all the hidden 
units available to it. However, in our simulations, the network does not seem to be 
distributing the solution across all hidden units because even with no further training, 
removal of a hidden unit often does not drop performance below the criterion. In any 
case, there generally appears to be an easy path from the solution with many units to 
the solution with fewer. 

Although we have presented skeletonization as a technique for removing units from 
a network, there is no reason why a similar procedure could not operate on individual 
connections instead. Basically, an a coefficient would be required for each connection, 
allowing for the computation of aE/acu. Yann le Cun (personal communication, 1989) 
has independently developed a procedure quite similar to our skeletonization technique 
which operates on individual connections and uses the second derivative of the 
quadratic error function instead of the first derivative of the linear error function. 
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Reducing Network Size 15 

In simple problems where it is possible to find a minimal network that completely 
solves the problem, skeletonization provides an effective means of automatically 
trimming a larger network down to the minimal size. In more complex problems, 
where it is likely that even the large initial network will not be capable of learning the 
training set perfectly, as network size shrinks, the achievable performance on the 
training set will simply degrade monotonically. The network size selects a point in the 
trade-off between the poorer performance on the training set that comes from smaller 
networks and the greater consumption of resources, greater difficulty of analysis, and 
likely poorer generalization that come from larger networks. Analyses such as that of 
Baum & Haussler (1989) provide theoretical insight into the trade-off, while skeletoniz- 
ation provides a computational process by which networks can systematically explore 
this trade-off for themselves. 

Notes 

1. Overall learning speed improves only if the total time spent learning with a decreasing number of units is 
less than the time that would have been spent learning with just the minimal number of units. It is not 
obvious a priori that reducing a large network will be faster than starting with a small network: the 
process of converting the end product of learning with more units to the initial weights for learning with 
fewer units-here, by discarding units according to a relevance measure-must be well designed. 
Learning can be slower overall if the end product of learning with more units does not provide a good 
starting point for learning with fewer units; for example, if the starting point is no better than random, all 
the time spent on learning with more units is wasted. 

2. Note that the example illustrated in Figure 2 behaves as desired with the quadratic error function because 
the units-with activity values 0.2 and 0.5 and target values I-are not in the range of small error. 

3. The values reported in Table I are an average over 100 replications of the simulation with different initial 
random weights. Before averaging, however, the signs of the weights were dipped if the hidden-output 
connection was negative. 

4. Here and below we repon median epochs to criterion rather than mean epochs to avoid aberrations 
caused by the large number of epochs consumed in failure runs. 

5. To  eliminate Boor and ceiling effects, we rejected training sets that were either extremely simple to 
learn-the standard network could learn in under 20 epochs and were impossible to learn-the standard 
network was never able to find a solution. 

References 

Baum. E.B. & Haussler, D. (1989) What size net gives valid generalization? Neural Computation, 1, 
151-160. 

Chauvin, Y. (1989) A back-propagation algorithm with optimal use of hidden units. In D. Touretzky (Ed.) 
Advances in Neural Network Information Processing Sysremr I .  San Mateo, CA: Morgan Kaufmann. 

Elman, J.L. (1989) Smctured representations and connectionist models (CRL Technical Report 8901). La 
Jolla, CA: University of California, San Diego, Center for Research in Language. 

Hanson, S.J. & Pran, L.Y. (1989) Some comparisons of constraints for minimal network construction with 
back propagation. In D. Touretzky (Ed.) Advances in Neural Network Information Processing Systems 1. 
San Mateo, CA: Morgan Kaufmann. 

Medin, D.L., Wattenmaker, W.D. & Michalski, R.S. (1987) Constraints and preferences in inductive 
learning: an experimental study of human and machine performance. Cognitive Science, 11, 299-339. 

Mozer, M.C. & Smolensky, P. (1989) Skeletonization: a technique for trimming the fat from a network via 
relevance assessment. In D. Touretzky (Ed.) Advances in Neural Network Information Processing Sysrems 
1. San Mateo, CA: Morgan Kaufmann. 

Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986) Learning internal representations by error 
propagation. In D. E. Rumelhart & J. L. McClelland (Eds) Parallel Disrributed Processing: Explorations in 
the Microstructure of Cognition. Vol. 1. Foundations, pp. 318-362. Cambridge, MA: MIT Press/Bradford 
Books. 

Sanger, D. (1989) Conm.bution analyis: A technique for assigning responsibilities to hidden units in 
connectionist networks (Technical Repon CU-CS-435-89). Boulder, CO: University of Colorado, Depan- 
ment of Computer Science. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

uc
kl

an
d 

L
ib

ra
ry

] 
at

 1
7:

26
 1

5 
Ja

nu
ar

y 
20

15
 



16 Michael C. Mozer & Paul Smolensky 

Scjnowski, T.J. & Rosenberg, C.R. (1987) Parallel networks that learn to pronounce English text. Complex 
Systems, 1, 145-168. 

Appendix: Training Procedure 

All simulations made use of a three-layer feedforward network with input-hidden and 
hidden-output connections, as described in Rumelhart et al., (1986). For several tasks, 
the hidden layer was not strictly necessary, but was included to keep the architecture 
uniform across problems. The inclusion of the hidden layer in no way affected the 
qualitative results. Input and target output patterns were binary (- 1 or 1) vectors. 
Hidden and output units used the conventional sigmoidal activity function with an 
activity range of - 1 to 1: &)=tanh(x/2). 

Initially, connection strengths are selected at random from a mean-zero Gaussian 
distribution and are rescaled such that the L, norm of the connection strengths feeding 
into a unit is 2.0. Consequently, if a unit has many inputs, weights tend to be smaller. 
With the initial weights chosen in this manner, each unit has some variation in its 
activity but tends to operate in the linear range of the sigmoid curve. Weights are 
updated only after a complete pass through the entire training set, and training 
continues until all output unit activities are within some acceptable range around the 
target value (the margin, see Table IV). 

Table IV 

Simulation Margin Learning rate Layer trimmed 

Cue salience 0.1 4.0 input 
Rule plus exception 0.1 3.0 hidden 
Train 0.1 3.0 input 
4-bit multiplexor 0.9 2.0 hidden 
Random mapping 0.9 3.0 hidden 

A fixed learning rate was determined for each simulation to optimize performance 
for the standard network. This learning rate was divided by the number of inputs to a 
unit, so that it would scale up as units were trimmed from the network. Dividing the 
learning rate by the fan-in is probably an overly conservative procedure and, if 
anything, penalizes the simulations involving skeletonization of the hidden layer due to 
the larger number of hidden units initially. I t  also allows for different learning rates in 
the input-hidden and hidden-output connections. 

Momentum was used, with a generic momentum parameter of 0.5-probably not 
large enough to help a lot, but not large enough to hurt either. 
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