
Optimal Brain Surgeon and General Network Pruning

Babak Hassibi*

Ricoh California Research Center and

Department of Electrical Engineering
Stanford University
Stanford, CA 94305

David G. Stork

Ricoh California Research Center

2882 Sand Hill Road Suite 115

Menlo Park, CA 94025-7022
stork @crc.ricoh.com

Gregory J. Wolff
Ricoh California Research Center

2882 Sand Hill Road Suite 115

Menlo Park, CA 94025-7022
wolff@crc.ricoh.com

Abstract— We investigate the use of informa-

tion from all second order derivatives of the error

function to perform network pruning (i.e., remov-
ing unimportant weights from a trained network)
in order to improve generalization, simplify net-

works, reduce hardware or storage requirements,

increase the speed of further training, and in some

cases enable rule extraction. Our method, Op-

timal Brain Surgeon (OBS), is significantly bet-
ter than magnitude-based methods and Optimal

Brain Damage, which often remove the wrong

weights. OBS permits pruning of more weights

than other methods (for the same error on the

training set), and thus yields better generalization

on test data. Crucial to OBS is a recursion re-

lation for calculating the inverse Hessian matrix

H~! from training data and structural informa-

tion of the net. OBS permits a 76%, a 62%, and
a 90% reduction in weights over backpropagation

with weight decay on three benchmark MONK’s

problems. Of OBS, Optimal Brain Damage, and

a magnitude-based method, only OBS deletes the

correct weights from a trained XOR network in ev-

ery case. Finally, whereas Sejnowski and Rosen-

berg used 18,000 weights in their NETtalk net-

work, we used OBS to prune a network to just

1,560 weights, yielding better generalization.

I. INTRODUCTION

A central problem in machine learning and pattern

recognition is to minimize the system complexity

(description length, VC-dimension, etc.) consis-
tent with the training data. In neural networks
this regularization problem is often cast as mini-

mizing the number of connection weights. With-

*Supported in part by grants AFOSR 91-0060 and DAAIL03-91-

C-0010 to T. Kailath, who in turn provided constant encouragement.

Deep thanks go to Jerome Friedman (Stanford) for pointers to rele-

vant. statistics literature.

out such weight elimination overfitting problems
and thus poor generalization will result. Converse-
ly, if there are too few weights, the network might
not be able to learn the training data.

If we begin with a trained network having too
many weights, the questions then become: Which

weights should be eliminated? How should the re-

maining weights be adjusted for best performance?
How can such network pruning be done in a com-

putationally efficient way?

One possible magnitude based method [3] elim-
inates weights that have the smallest magnitude.
This simple, plausible idea unfortunately often leads

to the elimination of the wrong weights — small

weights can be necessary for low error. Optimal

Brain Damage [6] uses the criterion of minimal
increase in training error for weight elimination.

For computational simplicity, OBD assumes that

the Hessian matrix is diagonal; in fact, however,

Hessians for every problem we have considered are

strongly non-diagonal, and this leads OBD to elim-

inate the wrong weights. The method described

here — Optimal Brain Surgeon (OBS) — accept-

s the criterion used by Le Cun et al., but makes

no restrictive assumptions about the form of the

network’s Hessian. OBS thereby eliminates the

correct weights. Moreover, unlike other methods,

OBS does not demand (typically slow) retraining

after the pruning of a weight.

Il. OPTIMAL BRAIN SURGEON

In deriving our method we begin, as do Le Cun,

Denker and Solla [6], by considering a network
trained to a local minimum in error. The func-

tional Taylor series of the error with respect to

weights (or parameters, see below) is:

bE = (yr dw + sow? H-éw + O(|| éw ||) (1)

293

Figure 1: Error as a function of two weights in a network.

The (local) minimum occurs at weight w*, found by gradi-

ent. descent. or other learning method. In this illustration,

a magnitude based pruning technique (mag) then removes

the smallest weight, weight 2; Optimal Brain Damage

(OBD) before retraining removes weight 1. In contrast,

our Optimal Brain Surgeon method (OBS) not only re-

moves weight 1, but also automatically adjusts the value

of weight 2 to minimize the error, without retraining. The

error surface here is general in that it has different curva-

ture (second derivatives) along different directions, a min-

imum at a non-special weight value, and a non-diagonal

Hessian (i.e., principal axes are not parallel to the weight

axes). We have found (to our surprise) that every problem

we have investigated has strongly non-diagonal Hessians

- thereby explaining the improvement of our method over

that of Le Cun et al.

where H = 6?E/dw? is the Hessian matrix (con-

taining all second order derivatives) and the super-

script T denotes vector transpose. For a network

trained to a local minimuin in error, the first (lin-

ear) term vanishes; we also ignore the third and all
higher order terms. Our goal is then to set one of

the weights to zero (which we call w,) to minimize

the increase in error given by Eq. 1. Eliminating

wg, is expressed as dw, + w, = 0 or more generally:

(2}

where e, is the unit vector in weight space corre-
sponding to (scalar) weight w,. Our goal is then

e) Ow + Wy =0

to solve:

. . 1 T T o

min{min(; dw -H-dw) | e, -dbwtug=0} (3)

To solve Eq. 3 we form a Lagrangian from Eqs. 1

and 2:

= sow? H - dw + Xe? (4) dow + wy)

where \ is a Lagrange undetermined multiplier.

We take functional derivatives, employ the con-

straints of Eq. 2, and use matrix inversion to

find that the optimal weight change and resulting

change in error are:

bw -o tw. (5)
(H7 "Jaq

ty = att (6)
4 2[H- "Jag

Note that neither H nor H7! need be diago-

nal (as is assumed by Le Cun et al.); moreover,

our method recalculates the magnitude of all the

weights in the network, by Eq. 5. We call L, the

“saliency” of weight q — the increase in error that

results when the weight is eliminated — a defini-

tion more general than Le Cun et al.’s, and which

includes theirs in the special case of diagonal H.

Thus we have the algorithm of Table 1.

Table 1: Optimal Brain Surgeon procedure

1. Train a “reasonably large” network to mini-

mum error.

2. Compute H7!.

3. Find the q that gives the smallest saliency

Ly = wl: (2(H~']gq). If this candidate error in-
crease is much smaller than E, then the gth

weight should be deleted, and we proceed to

step 4; otherwise go to step 5. (Other stop-

ping criteria can be used too.)

4. Use the q from step 3 to update all weights

(Eq. 5). Go to step 2.

an
 . No more weights can be deleted without large

increase in E. (At this point it may be desir-

able to retrain the network.)

Figure 1 illustrates the basic idea. The relative

magnitudes of the error after pruning (before re-

training. if any) depend upon the particular prob-

lem. but to second order obey: E(mag) > E(OBD)

> E(OBS), which is the key to the superiority of

OBS. In this example OBS and OBD lead to the e-

limination of the same weight (weight 1). In many

cases, however, OBS will eliminate different weights

than those eliminated by OBD (cf. Sect. V}. We

294

call our method Optimal Brain Surgeon because
in addition to deleting weights, it calculates and
changes the strengths of other weights without the
need for gradient descent or other incremental re-
training.

III. CoMPUTING THE INVERSE HESSIAN

The difficulty appears to be step 2 in the OBS pro-
cedure, since inverting a matrix of thousands or
millions of terms seems computationally intractab-
le. In what follows we shall give a general deriva-
tion of the inverse Hessian for a fully trained neu-
ral network. It makes no difference whether it was
trained by backpropagation, competitive learning,
the Boltzmann algorithm, or any other method, so
long as derivatives can be taken (see below). We
shall show that the Hessian can be reduced to the
sample covariance matrix associated with certain
gradient vectors. Furthermore, the gradient vec-
tors necessary for OBS are normally available at
small computational cost; the covariance form of
the Hessian yields a recursive formula for comput-
ing the inverse.

Consider a general non-linear neural network
that maps an input vector, in, of dimension 17; into
an output vector, 0, of dimension n,, according to
the following:

o = F(w. in) (7)

where w is an n-dimensional vector representing
the neural network’s weights or other parameters.
We shall refer to w as a weight vector below for
simplicity and definiteness, but it must be stressed
that w could represent any continuous parameters,
such as those describing neural transfer function,
weight sharing, and so on. The mean square error
on the training set is defined as:

P

1
=>) [A] _ oll) T (lA) _ GIA E 5 aut oll)? (t o!”!) (8)

where P is the number of training patterns, and
tl and of! are the desired response and network
response for the kth training pattern. The first
derivative with respect to w is:

aE 1S aF(w. init), dw 7p El te — ofl) (9)

k=1

and the second derivative or Hessian is:

Ow Ow

°F (w, in) (el — of))]
Ww

P

_ 1 OF(w,in!*l) aF(w, ink)? H= Pd [

(10)

Next we consider a network fully trained to a lo-

cal minimum in error at w*. Under this condition
the network response o!*] will be close to the de-

sired response t!*], and hence we neglect the term

involving (t!*) — ol*]), Even late in pruning, when
this error is not small for a single pattern, this

approximation can be justified (see next Section).

This simplification yields:

P . - ° kT l OF(w,in'*l) @F(w, ini) = — 11
H BD Ow Ow (11)

If our network has just a single output, we may

define the n-dimensional data vectorX™! of deriva-
tives as:

OF (w, in!*)) (*] = 12 x= Sw (12)

Thus Eq. 11 can be written as:

i<
==) > xl. xbir 13 H=5 a (13)

If instead our network has multiple output units,

then X will be an nxn, matrix of the form:

OF (w. in!*)) OF, (w, in!*)) OF no (w. inl*])

Ow ~ Ow Ow
(x), ..., xl)

xh) =

(14)

where F; is the ith component of F. Hence in this

multiple output unit case Eq. 11 generalizes to:

P no

H=5>. > xix
k=1t=1

(15)

Equations 13 and 15 show that H is the sam-

ple covariance matrix associated with the gradient

variable X. Equation 13 also shows that for the
single output case we can calculate the full Hessian

by sequentially adding in successive “component”

Hessians as:

H 4a = H,, + | ime . XlmtilT (16)
m2 Z P

with Hy = aI and Hp = H.

But Optimal Brain Surgeon requires the inverse

of H (Eq. 5). This inverse can be calculated using

a standard matrix inversion formula [4]:

(A+B-.C-D)"= (17)

A7?~A™?.B-(C7'+D-A7’-B)? -D-A™

295

applied to each term in the analogous sequence in

Eq. 17:

H>! XKlm4+i) . ylet ur -H7}

P+ Xim41r . H;! . X[m+1]

H,, 41 = HA! m (18)

with Hj’ = a7!I and Hj’ = H™! and a (107? <
a < 1074) a small constant needed to make Hy

meaningful, and to which our method is not es-

pecially sensitive [2]. Actually, Eq. 18 leads to

the calculation of the inverse of (H + al), and this

corresponds to the introduction of a penalty term

a||dw||? in Eq. 4. This effective weight decay has
the benefit of penalizing large candidate jumps in

weight space, and thus helping to insure that the

neglecting of higher order terms in Eq. 1 is valid.

Equation 18 permits the calculation of H~! us-

ing a single sequential pass through the training

data 1 < m< P. It is also straightforward to gen-

eralize Eq. 19 to multiple outputs: im this case

Eq. 16 is generalized to have recursions on both

the indices m and | giving:

1 m. Mm

Hy 41 =Hnit+ pei -xllt

Ami 1= Hm net px. xine (19)

To sequentially calculate H~! for the multiple out-

put case, we use Eq. 17 , as before.

IV. THE (t — 0) 4 0 APPROXIMATION

The approximation used for Eq. 11 can be jus-

tified on computational and functional grounds,

even late in pruning when the training error is

not negligible. From the computational view, we

note first that normally H is degenerate -- especial-

ly before significant pruning has been done ~— and

its inverse not well defined. The approximation

guarantees that there are no singularities in the

calculation of H~!. It also keeps the computation-

al complexity of calculating H~! the same as that

for calculating H, O(Pn?). In Statistics the approx-

imation is the basis of Fisher’s method of scoring
and its goal is to replace the true Hessian with its

expected value and hence guarantee that H is pos-

itive definite (thereby avoiding stability problems

that can plague Gauss-Newton methods) [9].
Equally important are the functional justifica-

tions of the approximation. Consider a high capac-

ity network trained to small training error. We can

consider the network structure as involving both

signal and noise. As we prune, we hope to elimi-

nate those weights that lead to “overfitting.” i.e..

learning the noise. If our pruning method did not

employ the (t -o) — 0 approximation, every prun-

ing step (Eqs. 9 and 5) would inject the noise back

into the system, by penalizing for noise terms. A

different way to think of the approximation is the

following. After some pruning by OBS we have

reached a new weight vector that is a local mini-

mum of the error (cf. Fig. 1). Even if this error

is not negligible, we want to stay as close to that
value of the error as we can. Thus we imagine a

new, effective teaching signal t*, that would keep
the network near this new error minimum. It is

then (t*—o) that we in effect set to zero when using

Eq. 11 instead of Eq. 10.

V. OBS AND BACKPROPAGATION

Using the standard terminology from backpropa-

gation [8] and the single output network of Fig. 2,
it is straightforward to show from Eq. 12 that the

derivative vectors are:

(20)

where

px = (F' (ret) of, mes, f’ (net) olf) (21)

refers to derivatives with respect to hidden-to-output

weights v; and

[xr = (Ff (netl*l) f(net™ }) 1A} ah

fi(nctl)) f' (nett) Moh)

Freaypreeha -
f' (netl*]) f (nett yt Volt)

(22)

refers to derivatives with respect to input-to-hidden

weights u;;. and where lexicographical ordering has

been used. The neuron nonlinearity is f(-).

eutput

hidden

input

Figure 2: Backpropagation net with n; inputs and nj;

hidden units. The input-to-hidden weights are uj; and

hidden-to-output weights v;. The derivative (“data”) vec-

tors are X, and X,, (Eqs. 20 and 21).

296

bias

input

Figure 3: A nine weight XOR network trained to a lo-

cal minimum. The thickness of the lines indicates the
weight magnitudes, and inhibitory weights are shown

dashed. Subsequent pruning using a magnitude based

method (Mag) would delete weight v3; using Optimal

Brain Damage (OBD) would delete woz. Even with re-

training, the network pruned by those methods cannot

learn the XOR problem. In contrast, Optimal Brain Sur-

geon (OBS) deletes wo3 and furthermore changed all other

weights (cf. Eq. 5} to achieve zero error on the problem.

VI. SIMULATION RESULTS

We have found that OBS performs better than

OBD and magnitude-based method on illustrative

problems. We applied all three methods to the

2-2-1 network trained on the XOR. problem. The

network was first trained to a local minimum, which

had zero error, and then each methods was used

to prune a single weight. Depending on the ac-

tual minimum found in the initial training, the

three methods sometimes chose identical weights

to prune, but oftentimes chose different weights.

A typical run is shown in Fig. 3, where each of

the methods has selected a different weight to be

deleted. In this particular case, both OBD and the

Magnitude based methods have made a fatal mis-

take: they have deleted a crucial weight, such that

no amount of retraining can reduce the error back

to 0. OBS on the other hand, never deletes such a

crucial weight. In fact, in every case we observed,

applying OBS to delete a weight and alter the re-

maining weights (Eq. 5) resulted in a networked

that maintained perfect performance on the XOR.

problem. So, even in cases where the other prun-

ing methods delete an incorrect weight (i.e. the

resulting net can never relearn the problem), OBS

provides a network which maintains perfect per-

formance without any retraining by gradient descent.

Figure 4 shows the Hessian of the trained but

Vi Vo Vg Uyy Ure Uyg Yor U2 U3

Figure 4: The Hessian of the trained but unpruned XOR

network, calculated by means of Eq. 13. White represents

large magnitudes and black small magnitudes. The rows

and columns are labeled by the weights shown in Fig. 3.

As is to be expected, the hicdden-to-output weights have

significant Hessian components. Note especially that. the

Hessian, while symmetric, is far from being diagonal. The

Hessians for all problems we have investigated, including

the MONK’s problems, are far from being diagonal.

unpruned XOR network of Fig. 3. It is clear that

the off-diagonal terms do contribute significantly

to the error of the network. This has been true of

every problem we have looked at.

Figure 5 shows two-dimensional “slices” of the

nine-dimensional error surface in the neighborhood

of a local minimum at w* for the XOR network.

The cuts compare the weight elimination the Mag-

nitude method (left) and OBD (right) with the e-

limination and weight adjustment given by OBS.

After pruning by OBS all network weights are up-

dated by Eq. 5 and the system is at zero error

(not shown).

It is especially noteworthy that for this error

minimum w*, the resulting networks after prun-

ing by OBD or by the Magnitude method cannot

achieve zero error, even after retraining. In short,

magnitude methods and Optimal Brain Damage

delete the wrong weights, and their mistake cannot

be overcome by further network training. Only

Optimal Brain Surgeon deletes the correct weight.

We also applied OBS to larger problems, three

MONK’s problems. and compared our results to

those of Thrun et al. [11]. whose backpropagation

network outperformed all other approaches (net-

work and rule-based) on these benchmark prob-

lems in an extensive machine learning competi-

297

Figure 5:

weights v3 and ug3 (cf. Fig. 4). A magnitude based prun-
ing method would delete weight v3 whereas OBS deletes

(Left) the XOR error surface as a function of

uo3. (Right) The XOR error surface as a function of
weights u22 and u23. Optimal Brain Damage would delete
ug2 whereas OBS deletes uo3. For this minimum, only
deleting u23 will allow the pruned network to solve the
XOR problem.

tion. The Hessians for all three MONKs problems
are far from diagonal.

Table 2 shows that for the same performance,
OBS (without retraining) required only 24%, 38%
and 10% of the weights of the backpropagation
network, which was already regularized with weight
decay (Fig. 6). The error increase L (Eq. 5) ac-
companying pruning by OBS negligibly affected
accuracy.

Accuracy

training | testing | # weights
MONK! BPWD 100 100 58

OBS 100 100 14
MONK? BPWD 100 100 39

OBS 100 100 15
MONK3 BPWD 93.4 97.2 39

OBS 93.4 97.2 4

Table 2: The accuracy and number of weights determined
by backpropagation with weight decay (BPWD) found by
Thrun et al., and by OBS on three MONK’s problems.

The dramatic reduction in weights achieved by
OBS yields a network that is simple enough that
the logical rules that generated the data can be
recovered from the pruned network, for instance
by the methods of Towell and Shavlik [12]. Hence
OBS may help to address a criticism often levied
at neural networks: the fact that they may be un-
intelligible.
We applied OBS to a three-layer NETtalk net-

work. While Sejnowski and Rosenberg [10] used

Figure 6: Optimal networks found by Thrun using back-

propagation with weight decay (Left) and by OBS (Right)

on MONK 1, which is based on logical rules. Solid

(dashed) lines denote excitatory (inhibitory) connections;

bias units are at. left.

18,000 weights, we began with just 5,546 weights,

which after backpropagation training had a sum-

squared test error of 5,259. After pruning this net

with OBS to 2,438 weights, and then retraining

and pruning again, we achieved a net with on-

ly 1.560 weights and test error of only 4,701 —

a significant improvement over the original, more

complex network. Thus OBS can be applied to

real-world pattern recognition problems such as
speech recognition and optical character recogni-

tion, which typically have several thousand param-
eters.

VII. ANALYSIS AND CONCLUSIONS

Why is Optimal Brain Surgeon so successful at

reducing excess degrees of freedom? Conversely,

given this new standard in weight elimination, we

can ask: Why are the simplest magnitude based

methods so poor? Consider again Fig. 1. Start-

ing from the local minimum at w*, a magnitude
based method deletes the wrong weight, weight 2,

and through retraining, weight 1 will increase. The

final “solution” is weight 1 > large, weight 2 = 0.

This is precisely the opposite of the solution found

by OBS: weight 1 = 0, weight 2 — large. Although

the actual difference in error shown in Fig. 1 may

be small, in large networks differences from many

incorrect weight elimination decisions can add up

to a significant increase in error. But most impor-

tantly, it is simply wishful thinking to believe that

after the elimination of many incorrect weights by

magnitude methods the net can “sort it all out”

through further training and reach a global opti-

mum, especially if the network has already been

pruned significantly (cf. XOR discussion, above).

We have also seen how the approximation em-

ployed by Optimal Brain Damage - that the diag-

onals of the Hessian are dominant — does not hold

for the problems we have investigated. There are

298

typically many off-diagonal terms that are compa-

rable or larger than their diagonal counterparts.

This explains why OBD often deletes the wrong

weight, while OBS deletes the correct one.

We note too that our method is quite gener-

al, and subsumes previous methods for weight e-

limimation. In our terminology, magnitude based
methods assume isotropic Hessian (H x I); OBD

assumes diagonal H; FARM [5] assumes linear f(net)
and only updates the hidden-to-output weights.

We have shown that none of those assumptions are

valid nor sufficient for optimal weight elimination.

We should also point out that our method is

even more general than presented here [2]. For
instance, rather than pruning a weight (parame-

ter) by setting it to zero, one can instead reduce

a degree of freedom by projecting onto an arbitrary

plane, e.g., we = C a constant, though such net-

works typically have a large description length [7].
The pruning constraint w, = 0 discussed through-

out this paper makes retraining (if desired) par-

ticularly simple. Several weights can be delet-

ed simultaneously; bias weights can be exempt

from pruning, and so forth. A slight generalization

of OBS employs cross-entropy or the Kullback-

Leibler error measure, leading to Fisher Informa-

tion matrix rather than the Hessian [2]. We note
too that OBS does not by itself give a criterion for

when to stop pruning, and thus OBS can be uti-

lized with a wide variety of such criteria. More-

over, gradual methods such as weight decay during

learning can be used in conjunction with OBS.!

REFERENCES

{1] Hassibi, B. and Stork, D. G. (1992). Second
order derivatives for network pruning: Op-

timal Brain Surgeon, in Proceedings of the

Neural Information Processing Systems-5. S.

J. Hansen, J. D. Cowan, and C. L. Giles (ed-

s.), Morgan-Kaufmann.

[2] Hassibi, B. Stork, D. G. and Wolff, G.
(1993b). Optimal Brain Surgeon, Informa-
tion Theory and network capacity control (in
preparation)

[3] Hertz, J.. Krogh, A. and Palmer, R. G.

(1991). Introduction to the Theory of Neural

Computation Addison-Wesley.

[4] Kailath, T. (1980). Linear Systems Prentice-

Hall.

This is a revised and expanded version of Hassibi and Stork [1].

[5] Kung. S. Y. and Hu, Y. H. (1991). A
Frobenius approximation reduction method

(FARM) for determining the optimal number

of hidden units, Proceedings of the IJCNN-91

Seattle, Washington, vol. II 163-172.

Le Cun, Y.. Denker, J. S. and Solla, S. A.

(1990). Optimal Brain Damage, in Proceed-
ings of the Neural Information Processing

Systems-2, D. S. Touretzky (ed.) 598-605,

Morgan-Kaufmann.

[6]

Rissanen, J. (1978). Modeling by shortest da-

ta description, Automatica 14, 465-471.
[7]

Rumelhart, D. E., Hinton, G. E., and

Williams, R. J. (1986). Learning internal rep-

resentations by error propagation, Chapter 8

(318-362) in Parallel Distributed Processing I
D. E. Rumelhart and J. L. McClelland (eds.)

MIT Press.

(8]

Seber, G. A. F. and Wild, C. J. (1989). Non-

linear Regression 35-36 Wiley.
[9]

[10] Sejnowski, T. J., and Rosenberg, C. R. (1987).

Parallel networks that learn to pronounce En-

glish text, Complex Systems 1, 145-168.

[11] Thrun, S. B. and 23 co-authors (1991). The

MONK’s Problems - A performance compar-

ison of different learning algorithms, CMU-

CS-91-197 Carnegie-Mellon U. Department of

Computer Science Tech Report.

Towell, G. and Shavlik, J. W. (1992). Inter-

pretation of artificial neural networks: Map-

ping knowledge-based neural networks into

rules, in Proceedings of the Neural Informa-

tion Processing Systems-4, J. E. Moody, D.

S. Touretzky and R. P. Lippmann (eds.) 977-

984, Morgan-Kaufmann.

[12]

299

