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Abstract— We investigate the use of informa- 

tion from all second order derivatives of the error 

function to perform network pruning (i.e., remov- 
ing unimportant weights from a trained network) 
in order to improve generalization, simplify net- 

works, reduce hardware or storage requirements, 

increase the speed of further training, and in some 

cases enable rule extraction. Our method, Op- 

timal Brain Surgeon (OBS), is significantly bet- 
ter than magnitude-based methods and Optimal 

Brain Damage, which often remove the wrong 

weights. OBS permits pruning of more weights 

than other methods (for the same error on the 

training set), and thus yields better generalization 

on test data. Crucial to OBS is a recursion re- 

lation for calculating the inverse Hessian matrix 

H~! from training data and structural informa- 

tion of the net. OBS permits a 76%, a 62%, and 
a 90% reduction in weights over backpropagation 

with weight decay on three benchmark MONK’s 

problems. Of OBS, Optimal Brain Damage, and 

a magnitude-based method, only OBS deletes the 

correct weights from a trained XOR network in ev- 

ery case. Finally, whereas Sejnowski and Rosen- 

berg used 18,000 weights in their NETtalk net- 

work, we used OBS to prune a network to just 

1,560 weights, yielding better generalization. 

I. INTRODUCTION 

A central problem in machine learning and pattern 

recognition is to minimize the system complexity 

(description length, VC-dimension, etc.) consis- 
tent with the training data. In neural networks 
this regularization problem is often cast as mini- 

mizing the number of connection weights. With- 
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out such weight elimination overfitting problems 
and thus poor generalization will result. Converse- 
ly, if there are too few weights, the network might 
not be able to learn the training data. 

If we begin with a trained network having too 
many weights, the questions then become: Which 

weights should be eliminated? How should the re- 

maining weights be adjusted for best performance? 
How can such network pruning be done in a com- 

putationally efficient way? 

One possible magnitude based method [3] elim- 
inates weights that have the smallest magnitude. 
This simple, plausible idea unfortunately often leads 

to the elimination of the wrong weights — small 

weights can be necessary for low error. Optimal 

Brain Damage [6] uses the criterion of minimal 
increase in training error for weight elimination. 

For computational simplicity, OBD assumes that 

the Hessian matrix is diagonal; in fact, however, 

Hessians for every problem we have considered are 

strongly non-diagonal, and this leads OBD to elim- 

inate the wrong weights. The method described 

here — Optimal Brain Surgeon (OBS) — accept- 

s the criterion used by Le Cun et al., but makes 

no restrictive assumptions about the form of the 

network’s Hessian. OBS thereby eliminates the 

correct weights. Moreover, unlike other methods, 

OBS does not demand (typically slow) retraining 

after the pruning of a weight. 

Il. OPTIMAL BRAIN SURGEON 

In deriving our method we begin, as do Le Cun, 

Denker and Solla [6], by considering a network 
trained to a local minimum in error. The func- 

tional Taylor series of the error with respect to 

weights (or parameters, see below) is: 

bE = (yr dw + sow? H-éw + O(|| éw ||) (1) 
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Figure 1: Error as a function of two weights in a network. 

The (local) minimum occurs at weight w*, found by gradi- 

ent. descent. or other learning method. In this illustration, 

a magnitude based pruning technique (mag) then removes 

the smallest weight, weight 2; Optimal Brain Damage 

(OBD) before retraining removes weight 1. In contrast, 

our Optimal Brain Surgeon method (OBS) not only re- 

moves weight 1, but also automatically adjusts the value 

of weight 2 to minimize the error, without retraining. The 

error surface here is general in that it has different curva- 

ture (second derivatives) along different directions, a min- 

imum at a non-special weight value, and a non-diagonal 

Hessian (i.e., principal axes are not parallel to the weight 

axes). We have found (to our surprise) that every problem 

we have investigated has strongly non-diagonal Hessians 

- thereby explaining the improvement of our method over 

that of Le Cun et al. 

where H = 6?E/dw? is the Hessian matrix (con- 

taining all second order derivatives) and the super- 

script T denotes vector transpose. For a network 

trained to a local minimuin in error, the first (lin- 

ear) term vanishes; we also ignore the third and all 
higher order terms. Our goal is then to set one of 

the weights to zero (which we call w,) to minimize 

the increase in error given by Eq. 1. Eliminating 

wg, is expressed as dw, + w, = 0 or more generally: 

(2} 

where e, is the unit vector in weight space corre- 
sponding to (scalar) weight w,. Our goal is then 

e) Ow + Wy =0 

to solve: 

. . 1 T T o 

min{min(; dw -H-dw) | e, -dbwtug=0} (3) 

To solve Eq. 3 we form a Lagrangian from Eqs. 1 

and 2: 

= sow? H - dw + Xe? (4) dow + wy) 

where \ is a Lagrange undetermined multiplier. 

We take functional derivatives, employ the con- 

straints of Eq. 2, and use matrix inversion to 

find that the optimal weight change and resulting 

change in error are: 

bw -o tw. (5) 
(H7 "Jaq 

ty = att (6) 
4 2[H- "Jag 

Note that neither H nor H7! need be diago- 

nal (as is assumed by Le Cun et al.); moreover, 

our method recalculates the magnitude of all the 

weights in the network, by Eq. 5. We call L, the 

“saliency” of weight q — the increase in error that 

results when the weight is eliminated — a defini- 

tion more general than Le Cun et al.’s, and which 

includes theirs in the special case of diagonal H. 

Thus we have the algorithm of Table 1. 

Table 1: Optimal Brain Surgeon procedure 

  

1. Train a “reasonably large” network to mini- 

mum error. 

2. Compute H7!. 

3. Find the q that gives the smallest saliency 

Ly = wl: (2(H~']gq). If this candidate error in- 
crease is much smaller than E, then the gth 

weight should be deleted, and we proceed to 

step 4; otherwise go to step 5. (Other stop- 

ping criteria can be used too.) 

4. Use the q from step 3 to update all weights 

(Eq. 5). Go to step 2. 

an
 . No more weights can be deleted without large 

increase in E. (At this point it may be desir- 

able to retrain the network.) 

  

Figure 1 illustrates the basic idea. The relative 

magnitudes of the error after pruning (before re- 

training. if any) depend upon the particular prob- 

lem. but to second order obey: E(mag) > E(OBD) 

> E(OBS), which is the key to the superiority of 

OBS. In this example OBS and OBD lead to the e- 

limination of the same weight (weight 1). In many 

cases, however, OBS will eliminate different weights 

than those eliminated by OBD (cf. Sect. V}. We 
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call our method Optimal Brain Surgeon because 
in addition to deleting weights, it calculates and 
changes the strengths of other weights without the 
need for gradient descent or other incremental re- 
training. 

III. CoMPUTING THE INVERSE HESSIAN 

The difficulty appears to be step 2 in the OBS pro- 
cedure, since inverting a matrix of thousands or 
millions of terms seems computationally intractab- 
le. In what follows we shall give a general deriva- 
tion of the inverse Hessian for a fully trained neu- 
ral network. It makes no difference whether it was 
trained by backpropagation, competitive learning, 
the Boltzmann algorithm, or any other method, so 
long as derivatives can be taken (see below). We 
shall show that the Hessian can be reduced to the 
sample covariance matrix associated with certain 
gradient vectors. Furthermore, the gradient vec- 
tors necessary for OBS are normally available at 
small computational cost; the covariance form of 
the Hessian yields a recursive formula for comput- 
ing the inverse. 

Consider a general non-linear neural network 
that maps an input vector, in, of dimension 17; into 
an output vector, 0, of dimension n,, according to 
the following: 

o = F(w. in) (7) 

where w is an n-dimensional vector representing 
the neural network’s weights or other parameters. 
We shall refer to w as a weight vector below for 
simplicity and definiteness, but it must be stressed 
that w could represent any continuous parameters, 
such as those describing neural transfer function, 
weight sharing, and so on. The mean square error 
on the training set is defined as: 

P 

1 
=>) [A] _ oll) T (lA) _ GIA E 5 aut oll)? (t o!”!) (8) 

where P is the number of training patterns, and 
tl and of! are the desired response and network 
response for the kth training pattern. The first 
derivative with respect to w is: 

aE 1S aF(w. init), dw 7p El te — ofl) (9) 

k=1 

and the second derivative or Hessian is: 

Ow Ow 

°F (w, in) (el — of))] 
Ww 

P 

_ 1 OF(w,in!*l)  aF(w, ink)? H= Pd [ 

(10) 

Next we consider a network fully trained to a lo- 

cal minimum in error at w*. Under this condition 
the network response o!*] will be close to the de- 

sired response t!*], and hence we neglect the term 

involving (t!*) — ol*]), Even late in pruning, when 
this error is not small for a single pattern, this 

approximation can be justified (see next Section). 

This simplification yields: 

P . - ° kT l OF(w,in'*l) @F(w, ini) = — 11 
H BD Ow Ow (11) 

If our network has just a single output, we may 

define the n-dimensional data vectorX™! of deriva- 
tives as: 

  

OF (w, in!*)) (*] = 12 x= Sw (12) 

Thus Eq. 11 can be written as: 

i< 
==) > xl. xbir 13 H=5 a (13) 

If instead our network has multiple output units, 

then X will be an nxn, matrix of the form: 

  

OF (w. in!*)) OF, (w, in!*)) OF no (w. inl*]) 

Ow ~ Ow Ow 
(x), ..., xl) 

xh) = 

(14) 

where F; is the ith component of F. Hence in this 

multiple output unit case Eq. 11 generalizes to: 

P no 

H=5>. > xix 
k=1t=1 

(15) 

Equations 13 and 15 show that H is the sam- 

ple covariance matrix associated with the gradient 

variable X. Equation 13 also shows that for the 
single output case we can calculate the full Hessian 

by sequentially adding in successive “component” 

Hessians as: 

H 4a = H,, + | ime . XlmtilT (16) 
m2 Z P 

with Hy = aI and Hp = H. 

But Optimal Brain Surgeon requires the inverse 

of H (Eq. 5). This inverse can be calculated using 

a standard matrix inversion formula [4]: 

(A+B-.C-D)"= (17) 

A7?~A™?.B-(C7'+D-A7’-B)? -D-A™ 
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applied to each term in the analogous sequence in 

Eq. 17: 

H>! XKlm4+i) . ylet ur -H7} 

P+ Xim41r . H;! . X[m+1] 
  

H,, 41 = HA! m (18) 

with Hj’ = a7!I and Hj’ = H™! and a (107? < 
a < 1074) a small constant needed to make Hy 

meaningful, and to which our method is not es- 

pecially sensitive [2]. Actually, Eq. 18 leads to 

the calculation of the inverse of (H + al), and this 

corresponds to the introduction of a penalty term 

a||dw||? in Eq. 4. This effective weight decay has 
the benefit of penalizing large candidate jumps in 

weight space, and thus helping to insure that the 

neglecting of higher order terms in Eq. 1 is valid. 

Equation 18 permits the calculation of H~! us- 

ing a single sequential pass through the training 

data 1 < m< P. It is also straightforward to gen- 

eralize Eq. 19 to multiple outputs: im this case 

Eq. 16 is generalized to have recursions on both 

the indices m and | giving: 

1 m. Mm 

Hy 41 =Hnit+ pei -xllt 

Ami 1= Hm net px. xine (19) 

To sequentially calculate H~! for the multiple out- 

put case, we use Eq. 17 , as before. 

IV. THE (t — 0) 4 0 APPROXIMATION 

The approximation used for Eq. 11 can be jus- 

tified on computational and functional grounds, 

even late in pruning when the training error is 

not negligible. From the computational view, we 

note first that normally H is degenerate -- especial- 

ly before significant pruning has been done ~— and 

its inverse not well defined. The approximation 

guarantees that there are no singularities in the 

calculation of H~!. It also keeps the computation- 

al complexity of calculating H~! the same as that 

for calculating H, O(Pn?). In Statistics the approx- 

imation is the basis of Fisher’s method of scoring 
and its goal is to replace the true Hessian with its 

expected value and hence guarantee that H is pos- 

itive definite (thereby avoiding stability problems 

that can plague Gauss-Newton methods) [9]. 
Equally important are the functional justifica- 

tions of the approximation. Consider a high capac- 

ity network trained to small training error. We can 

consider the network structure as involving both 

signal and noise. As we prune, we hope to elimi- 

nate those weights that lead to “overfitting.” i.e.. 

learning the noise. If our pruning method did not 

employ the (t -o) — 0 approximation, every prun- 

ing step (Eqs. 9 and 5) would inject the noise back 

into the system, by penalizing for noise terms. A 

different way to think of the approximation is the 

following. After some pruning by OBS we have 

reached a new weight vector that is a local mini- 

mum of the error (cf. Fig. 1). Even if this error 

is not negligible, we want to stay as close to that 
value of the error as we can. Thus we imagine a 

new, effective teaching signal t*, that would keep 
the network near this new error minimum. It is 

then (t*—o) that we in effect set to zero when using 

Eq. 11 instead of Eq. 10. 

V. OBS AND BACKPROPAGATION 

Using the standard terminology from backpropa- 

gation [8] and the single output network of Fig. 2, 
it is straightforward to show from Eq. 12 that the 

derivative vectors are: 

(20) 

where 

px = (F' (ret) of, mes, f’ (net) olf) (21) 

refers to derivatives with respect to hidden-to-output 

weights v; and 

[xr = (Ff (netl*l) f(net™ }) 1A} ah 

fi(nctl)) f' (nett) Moh) 

Freaypreeha - 
f' (netl*]) f (nett yt Volt) 

(22) 

refers to derivatives with respect to input-to-hidden 

weights u;;. and where lexicographical ordering has 

been used. The neuron nonlinearity is f(-). 

eutput 

hidden 

  

input 

Figure 2: Backpropagation net with n; inputs and nj; 

hidden units. The input-to-hidden weights are uj; and 

hidden-to-output weights v;. The derivative (“data”) vec- 

tors are X, and X,, (Eqs. 20 and 21). 
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bias 

  

input 

Figure 3: A nine weight XOR network trained to a lo- 

cal minimum. The thickness of the lines indicates the 
weight magnitudes, and inhibitory weights are shown 

dashed. Subsequent pruning using a magnitude based 

method (Mag) would delete weight v3; using Optimal 

Brain Damage (OBD) would delete woz. Even with re- 

training, the network pruned by those methods cannot 

learn the XOR problem. In contrast, Optimal Brain Sur- 

geon (OBS) deletes wo3 and furthermore changed all other 

weights (cf. Eq. 5} to achieve zero error on the problem. 

VI. SIMULATION RESULTS 

We have found that OBS performs better than 

OBD and magnitude-based method on illustrative 

problems. We applied all three methods to the 

2-2-1 network trained on the XOR. problem. The 

network was first trained to a local minimum, which 

had zero error, and then each methods was used 

to prune a single weight. Depending on the ac- 

tual minimum found in the initial training, the 

three methods sometimes chose identical weights 

to prune, but oftentimes chose different weights. 

A typical run is shown in Fig. 3, where each of 

the methods has selected a different weight to be 

deleted. In this particular case, both OBD and the 

Magnitude based methods have made a fatal mis- 

take: they have deleted a crucial weight, such that 

no amount of retraining can reduce the error back 

to 0. OBS on the other hand, never deletes such a 

crucial weight. In fact, in every case we observed, 

applying OBS to delete a weight and alter the re- 

maining weights (Eq. 5) resulted in a networked 

that maintained perfect performance on the XOR. 

problem. So, even in cases where the other prun- 

ing methods delete an incorrect weight (i.e. the 

resulting net can never relearn the problem), OBS 

provides a network which maintains perfect per- 

formance without any retraining by gradient descent. 

Figure 4 shows the Hessian of the trained but 

  

Vi Vo Vg Uyy Ure Uyg Yor U2 U3 

Figure 4: The Hessian of the trained but unpruned XOR 

network, calculated by means of Eq. 13. White represents 

large magnitudes and black small magnitudes. The rows 

and columns are labeled by the weights shown in Fig. 3. 

As is to be expected, the hicdden-to-output weights have 

significant Hessian components. Note especially that. the 

Hessian, while symmetric, is far from being diagonal. The 

Hessians for all problems we have investigated, including 

the MONK’s problems, are far from being diagonal. 

unpruned XOR network of Fig. 3. It is clear that 

the off-diagonal terms do contribute significantly 

to the error of the network. This has been true of 

every problem we have looked at. 

Figure 5 shows two-dimensional “slices” of the 

nine-dimensional error surface in the neighborhood 

of a local minimum at w* for the XOR network. 

The cuts compare the weight elimination the Mag- 

nitude method (left) and OBD (right) with the e- 

limination and weight adjustment given by OBS. 

After pruning by OBS all network weights are up- 

dated by Eq. 5 and the system is at zero error 

(not shown). 

It is especially noteworthy that for this error 

minimum w*, the resulting networks after prun- 

ing by OBD or by the Magnitude method cannot 

achieve zero error, even after retraining. In short, 

magnitude methods and Optimal Brain Damage 

delete the wrong weights, and their mistake cannot 

be overcome by further network training. Only 

Optimal Brain Surgeon deletes the correct weight. 

We also applied OBS to larger problems, three 

MONK’s problems. and compared our results to 

those of Thrun et al. [11]. whose backpropagation 

network outperformed all other approaches (net- 

work and rule-based) on these benchmark prob- 

lems in an extensive machine learning competi- 
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Figure 5: 

weights v3 and ug3 (cf. Fig. 4). A magnitude based prun- 
ing method would delete weight v3 whereas OBS deletes 

(Left) the XOR error surface as a function of 

uo3. (Right) The XOR error surface as a function of 
weights u22 and u23. Optimal Brain Damage would delete 
ug2 whereas OBS deletes uo3. For this minimum, only 
deleting u23 will allow the pruned network to solve the 
XOR problem. 

tion. The Hessians for all three MONKs problems 
are far from diagonal. 

Table 2 shows that for the same performance, 
OBS (without retraining) required only 24%, 38% 
and 10% of the weights of the backpropagation 
network, which was already regularized with weight 
decay (Fig. 6). The error increase L (Eq. 5) ac- 
companying pruning by OBS negligibly affected 
accuracy. 

  

  

  

Accuracy 

training | testing | # weights 
MONK! BPWD 100 100 58 

OBS 100 100 14 
MONK? BPWD 100 100 39 

OBS 100 100 15 
MONK3 BPWD 93.4 97.2 39 

OBS 93.4 97.2 4           

Table 2: The accuracy and number of weights determined 
by backpropagation with weight decay (BPWD) found by 
Thrun et al., and by OBS on three MONK’s problems. 

The dramatic reduction in weights achieved by 
OBS yields a network that is simple enough that 
the logical rules that generated the data can be 
recovered from the pruned network, for instance 
by the methods of Towell and Shavlik [12]. Hence 
OBS may help to address a criticism often levied 
at neural networks: the fact that they may be un- 
intelligible. 
We applied OBS to a three-layer NETtalk net- 

work. While Sejnowski and Rosenberg [10] used 

  

Figure 6: Optimal networks found by Thrun using back- 

propagation with weight decay (Left) and by OBS (Right) 

on MONK 1, which is based on logical rules. Solid 

(dashed) lines denote excitatory (inhibitory) connections; 

bias units are at. left. 

18,000 weights, we began with just 5,546 weights, 

which after backpropagation training had a sum- 

squared test error of 5,259. After pruning this net 

with OBS to 2,438 weights, and then retraining 

and pruning again, we achieved a net with on- 

ly 1.560 weights and test error of only 4,701 — 

a significant improvement over the original, more 

complex network. Thus OBS can be applied to 

real-world pattern recognition problems such as 
speech recognition and optical character recogni- 

tion, which typically have several thousand param- 
eters. 

VII. ANALYSIS AND CONCLUSIONS 

Why is Optimal Brain Surgeon so successful at 

reducing excess degrees of freedom? Conversely, 

given this new standard in weight elimination, we 

can ask: Why are the simplest magnitude based 

methods so poor? Consider again Fig. 1. Start- 

ing from the local minimum at w*, a magnitude 
based method deletes the wrong weight, weight 2, 

and through retraining, weight 1 will increase. The 

final “solution” is weight 1 > large, weight 2 = 0. 

This is precisely the opposite of the solution found 

by OBS: weight 1 = 0, weight 2 — large. Although 

the actual difference in error shown in Fig. 1 may 

be small, in large networks differences from many 

incorrect weight elimination decisions can add up 

to a significant increase in error. But most impor- 

tantly, it is simply wishful thinking to believe that 

after the elimination of many incorrect weights by 

magnitude methods the net can “sort it all out” 

through further training and reach a global opti- 

mum, especially if the network has already been 

pruned significantly (cf. XOR discussion, above). 

We have also seen how the approximation em- 

ployed by Optimal Brain Damage - that the diag- 

onals of the Hessian are dominant — does not hold 

for the problems we have investigated. There are 
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typically many off-diagonal terms that are compa- 

rable or larger than their diagonal counterparts. 

This explains why OBD often deletes the wrong 

weight, while OBS deletes the correct one. 

We note too that our method is quite gener- 

al, and subsumes previous methods for weight e- 

limimation. In our terminology, magnitude based 
methods assume isotropic Hessian (H x I); OBD 

assumes diagonal H; FARM [5] assumes linear f(net) 
and only updates the hidden-to-output weights. 

We have shown that none of those assumptions are 

valid nor sufficient for optimal weight elimination. 

We should also point out that our method is 

even more general than presented here [2]. For 
instance, rather than pruning a weight (parame- 

ter) by setting it to zero, one can instead reduce 

a degree of freedom by projecting onto an arbitrary 

plane, e.g., we = C a constant, though such net- 

works typically have a large description length [7]. 
The pruning constraint w, = 0 discussed through- 

out this paper makes retraining (if desired) par- 

ticularly simple. Several weights can be delet- 

ed simultaneously; bias weights can be exempt 

from pruning, and so forth. A slight generalization 

of OBS employs cross-entropy or the Kullback- 

Leibler error measure, leading to Fisher Informa- 

tion matrix rather than the Hessian [2]. We note 
too that OBS does not by itself give a criterion for 

when to stop pruning, and thus OBS can be uti- 

lized with a wide variety of such criteria. More- 

over, gradual methods such as weight decay during 

learning can be used in conjunction with OBS.! 
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