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Protein structure predictions to atomic accuracy 
with AlphaFold
AlphaFold is a neural-network-based approach to predicting protein structures with high accuracy. We describe 

how it works in general terms and discuss some anticipated impacts on the field of structural biology.

John Jumper and Demis Hassabis

I
n the 2020 Critical Assessment of protein 
Structure Prediction (CASP14), the 
AlphaFold system1 predicted almost 

two-thirds of the target protein structures 
at an accuracy that the assessors considered 
competitive with that of experimental 
methods (~1 Å typical deviation on the 
backbone)2. This advance, which builds on 
decades of work to create comprehensive 
databases of protein sequences and 
structures3–5, has enabled large increases in 
the structural coverage of model organism 
proteomes, including a doubling of the 
fraction of the human proteome whose 
structure is known to high accuracy6.

At the core of AlphaFold is a new 
kind of neural network whose building 
blocks are adapted specifically to the 
problem of predicting protein structure. 
Neural networks are a large class of 

machine-learning algorithms, consisting 
of pipelines of alternating linear and 
nonlinear components, called layers, that are 
typically ‘trained’ (the process of optimizing 
parameters) using gradient descent on the 
error of the final predictions. The accuracy 
and generality of the trained neural network 
is highly dependent on the design of the 
network architecture (the layers used and 
how they are connected) and its training. To 
develop AlphaFold’s neural network, we set 
out to create new network architectures and 
training procedures that are aligned with our 
understanding of protein biology.

A key to AlphaFold’s success is the 
establishment of communication patterns 
within and between components of the 
network that are sympathetic to the concepts 
of protein physics and biology. For example, 
wherever there is an interaction that can be 

interpreted as a communication between 
different sequence positions, we add a special 
connection to our ‘pair representation’ that 
enables the network to modulate these 
interactions on the basis of its understanding 
of pairwise residue interactions. In practice, 
this means that the network learns rapidly in 
training to enforce communication between 
sequence-distant positions in the protein 
that are spatially local in the folded structure, 
without requiring hard-coding of a specific 
geometric algorithm. Similarly, the training 
is adapted so that the neural network can 
make effective use of protein sequence data 
even when the structures are unknown 
and is encouraged to learn generalized 
coevolution patterns. The combined effect of 
these and many other ideas on the network 
are dramatic: AlphaFold can be trained 
to produce vastly more accurate structure 
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Fig. 1 | AlphaFold as an amplifier of sparse experimental data. Schematic illustration of the role of machine learning, which converts a smaller amount 

experimentally determined data into a comprehensive set of experimental predictions.
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predictions using the same Protein Data 
Bank (PDB) training data as earlier, less 
accurate methods.

Despite being trained on only single 
protein chains that appear in the PDB, 
the AlphaFold network shows significant 
generalization to other protein structure 
tasks due to its very high accuracy. 
AlphaFold predicts the structure of proteins 
with novel folds at approximately the 
same accuracy as that of proteins with 
known folds, implying that the network 
is prioritizing local interactions over 
recognition of global patterns. Similarly, the 
network is tolerant of sequences containing 
large disordered segments, and the low 
confidence of AlphaFold in these regions 
can be repurposed as a reliable predictor of 
intrinsically disordered regions6,7.

As a more stringent test of generalization, 
AlphaFold is able to accurately predict the 
structure of artificial constructs that include 
multiple proteins joined with flexible linkers 
or artificial sequence gaps8. Note that this 
is a situation that is rarely, if ever, observed 
in AlphaFold’s training data, but obeys the 
same physical and geometric principles 
as regular protein structure. Using these 
artificial linker or gap sequences, the 
AlphaFold network can be used to predict 
protein–protein interactions at an accuracy 
that exceeds even that of specialized protein 
interaction predictors despite being trained 
only on single protein chains9. Prediction of 
heteromeric interactions can be substantially 
increased, however, by including protein–
protein interactions in the training of the 
neural network10. Despite these advances, 
the prediction of protein interactions still 
requires development, and current issues 
including false negatives and difficulties 
with antibody binding can likely be greatly 
reduced with further research.

In the immediate term, the availability 
of an accurate method of predicting protein 
structure will allow many functional 
studies to proceed based on structural 
hypotheses developed from the predicted 
models that would previously have required 
experimental models. This will be especially 
useful for understudied organisms and in 
metagenomics, where structural coverage 
is often very sparse and slow to extend 

but genomic coverage can be increased 
much more rapidly. In effect, AlphaFold 
amplifies the combined output of the 
experimental protein structure community 
to create a vastly larger universe of reliable 
protein structures (Fig. 1). The structural 
prediction of entire proteomes also 
creates opportunities to interpret protein 
structure at scale and to add geometric 
and biophysical context to protein-coding 
variants in the genome. Just as with 
experimental models, however, care will 
need to be taken to interpret the confidence 
and limitations of the computational models 
to make sure that conclusions drawn from 
them are well founded and possible errors in 
the models are understood.

These computational models can also 
be expected to accelerate progress in 
experimental structure determination.  
A large fraction of X-ray structures can be 
phased via molecular replacement using 
AlphaFold-predicted structures11, and 
the network’s predictions are excellent 
starting points for building models 
into experimental electron densities12. 
Additionally, knowledge of the protein 
topology and domain structures will enable 
better design of experimental constructs for 
structure determination. Recent work on 
the nuclear pore complex13 has shown that 
monomer and pairwise heteromer modeling 
can be very effectively combined with 
low-resolution cryo-electron microscopy 
data to provide atomic-scale models of 
enormous molecular machines.

AlphaFold and related technologies will 
make it possible to build atomistic models 
of many more cellular processes using 
abundant pairwise connections made by 
protein interaction models. Early work in 
this direction has already uncovered many 
new eukaryotic interactions14,15, and further 
advances in heteromer modeling will greatly 
expand our coverage of protein interaction 
networks. This will create the need for new 
computational methods to interpret the 
structural biology of molecular pathways at 
scale and is likely to create new opportunities 
for deep learning systems to interpret 
these data in conjunction with large-scale, 
low-resolution experimental techniques such 
as cryo-electron tomography.

Although these and related developments 
will ultimately bring us quite a bit 
further toward modeling the geometry of 
well-structured protein components,  
there is still much more to achieve in 
understanding the dynamical and functional 
behavior of these components, as well as 
understanding the vast disordered regions 
of the proteome. It is quite possible, though, 
that other areas of cell biology can replicate 
what occurred for structure prediction: 
the impact of carefully collected, diverse 
biological resources like the PDB can be 
amplified by many orders of magnitude 
through the development of the right 
machine-learning tools. ❐
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