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Self-play reinforcement learning guides 
protein engineering

Yi Wang    1, Hui Tang    1, Lichao Huang    1, Lulu Pan2, Lixiang Yang    1, 
Huanming Yang3,4, Feng Mu    1   & Meng Yang    1 

Designing protein sequences towards desired properties is a fundamental 
goal of protein engineering, with applications in drug discovery and 
enzymatic engineering. Machine learning-guided directed evolution 
has shown success in expediting the optimization cycle and reducing 
experimental burden. However, efficient sampling in the vast design 
space remains a challenge. To address this, we propose EvoPlay, a self-play 
reinforcement learning framework based on the single-player version 
of AlphaZero. In this work, we mutate a single-site residue as an action to 
optimize protein sequences, analogous to playing pieces on a chessboard. 
A policy-value neural network reciprocally interacts with look-ahead Monte 
Carlo tree search to guide the optimization agent with breadth and depth. 
We extensively evaluate EvoPlay on a suite of in silico directed evolution 
tasks over full-length sequences or combinatorial sites using functional 
surrogates. EvoPlay also supports AlphaFold2 as a structural surrogate to 
design peptide binders with high affinities, validated by binding assays. 
Moreover, we harness EvoPlay to prospectively engineer luciferase, 
resulting in the discovery of variants with 7.8-fold bioluminescence 
improvement beyond wild type. In sum, EvoPlay holds great promise for 
facilitating protein design to tackle unmet academic, industrial and  
clinical needs.

Protein engineering seeks to discover highly functional sequences by 
searching the complex high-dimensional surface of the fitness land-
scape, which characterizes the mapping between protein sequence 
and the desired property of interest. For a 100-amino-acid target pro-
tein, the resulting design space comprises 20100 possibilities, which 
is larger than the number of atoms in the universe. Directed evolu-
tion (DE)1, inspired by natural evolution, employs iterative protocols 
of random mutation and selection, and scores the candidates using 
high-throughput functional assays. DE navigates the fitness landscape 
by acquiring beneficial sequences in a greedy hill-climbing manner, 
often leading to local optima and discarding enormous mutations. 
Recently, machine learning surrogate models have been introduced 
to guide DE (MLDE)2,3 and accelerate design cycles4,5. The model is 
trained on labelled variants, and predicts protein properties and 

proposes new candidates for functional characterization, reducing 
the wet-lab test burden and improving sampling efficiency6,7. Cluster 
learning-assisted directed evolution (CLADE)8 has improved the hit 
rate over random-sampling-based focused training MLDE6 by putting a 
fitness model on top of hierarchical clusters, and labelled designs from 
multiple rounds can be iteratively added to refine the surrogate. The 
input encoding format can vary, ranging from classical one-hot encod-
ing of the 20 amino acids to physicochemical encoding (AAindex9, 
Georgiev10,11) and neural network-derived embeddings, particularly 
from large self-supervised masked language models12–14.

In model-based optimization, a common practice is to use 
greedy selections to acquire top-ranked predictions. However, this 
approach may limit the diversity. To address this, AdaLead15 intro-
duced recombination of mutations with an adaptive greedy search. 
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size 20 × L, where 20 represents the number of types of amino acid and 
L is the length of the design space. A play move in this context involves 
changing the residue type in a single column of the state matrix, that is, 
a single-site mutation. In each play episode, EvoPlay’s RL agent keeps 
playing move πt (0 < t < T) of mutations until this episode reaches 
the end condition (Fig. 1b and Methods). Before playing each actual 
mutation move πt, a series of simulations are performed to iteratively 
execute four steps: selection, expansion, evaluation and backup. In 
each simulation, EvoPlay traverses the MCTS tree from the root node 
(initial state, st) towards a leaf node where nodes of the tree represent 
different sequences. Given the current node state s, the selection of 
the next node depends on the maximum sum value of Qs,a and Us,a, 
both of which are determined by the corresponding edges that lead 
out of s (Methods). When a leaf node with no child is encountered, it is 
expanded and evaluated on the basis of p and v, which are outputs of 
the policy-value network. When Qs,a updates, the visit count Ns,a of the 
edges on the traversal path is incremented by 1 (equations (2) and (3)). 
A play move πt is sampled and is proportional to the exponentiated visit 
counts at time-step t (Fig. 1b).

EvoPlay implements an iterative look-ahead MCTS procedure 
(simulations) to generate samples for training a policy-value neu-
ral network, which is then used to guide the search. The improved 
MCTS operator selects a move and queries the surrogate model to 
retrieve environmental reward r. The neural network is updated by 
matching the policy vector p with MCTS execution probabilities π 
and minimizing the error between predicted value v and surrogate 
score r. In this case, the policy head of the neural network confines 
the search to high-probability moves, while the value head evalu-
ates mutants during the tree search process. The surrogate can 
be a machine learning model that maps sequences to functions or 
structural predictors or other simulators (Fig. 1c). EvoPlay starts 
from a complete sequence and mutates selected positions to cer-
tain residue types as actions, which better mimics natural evolution 
or laboratory mutagenesis and has stronger interpretability than 
DyNA-PPO and latent space optimization. The mutating agent can 
stop at any time during each episode and deliver valid sequences 
with dense rewards. We will show that EvoPlay is robust to surrogate 
models. Top designed sequences proposed by EvoPlay can be further 
validated by wet-lab functional assays or molecular dynamics (MD)  
simulations (Fig. 1d).

Competitiveness in evolving full-length proteins of high 
fitness
We first test EvoPlay on two proteins, green fluorescent protein (GFP)42 
from Aequorea victoria and poly(A)-binding protein (PAB1)43. We con-
sider the full length of GFP and the RNA recognition motif of PAB1 as 
design spaces, with 20237 and 2044 possible variants, respectively. Our 
objective is to optimize GFP for higher fluorescence intensity and 
PAB1 for higher binding fitness. Following previous works17,44, we use 
TAPE45 as an in silico oracle to simulate the ground-truth landscape and 
compare EvoPlay with four baseline algorithms: classical BO, regular-
ized generative model Cbas, evolutionary search-based AdaLead and 
RL-based DyNA-PPO, representing four major paradigms. As naive RL 
often converges in a single mode with poor diversity, DyNA-PPO adds a 
diversity-promoting reward to penalize repeating candidates. We also 
implement Soft Actor-Critic (SAC)46, an off-policy maximum entropy 
RL method with stochastic policies to diversify explorations.

We perform five repeats for each starting seed, sampling five dif-
ferent seed sequences from the bottom 30% of observed fitness. To 
ensure a fair comparison, we restrict the total number of surrogate pre-
dictions to 4,000 in one repeat, providing the same surrogate-query 
budget to each method. We use a convolutional neural network 
(CNN)47 architecture (detailed in Supplementary Table 13) for the 
surrogate after evaluating several other architectures (recurrent 
neural network-based UniRep48, MuFacNet17, GP25 and hybrid49 in 

eUniRep16 employed Markov chain Monte Carlo (MCMC) algorithms 
with simulated annealing to stochastically sample candidates. Another 
method is proximal exploration, used by PEX17 to locally search for 
lower-order mutations around the wild type (WT). Recently, MCMC 
has also been used for structure-based protein design through hal-
lucinating sequences with valid folds18 or iteratively querying a 
language-model-based structure predictor19 to design unnatural 
proteins20 using hierarchical programming21. Bayesian optimization 
(BO) is an alternative to greedy acquisition22, which estimates model 
uncertainty and balances exploration and exploitation through upper 
confidence bound acquisition23. Gaussian process (GP)24,25 regression 
is a popular surrogate for BO, but its inference cost scales exponen-
tially, which can be intractable for large design space. Utilizing model 
ensembles to quantify prediction variance can also help in selecting the 
most reliable models26. Regularized generative models can be used to 
adaptively sample in the latent space, known as latent space optimiza-
tion. The variational autoencoder-based Dbas27, and an advanced ver-
sion, Cbas28, which penalizes samples in the distribution tail, are some 
examples. More recently, ReLSO29 uses a Transformer autoencoder and 
optimizes sequences by gradient ascent.

Reinforcement learning (RL) enables an intelligent agent to learn 
how to perform actions by interacting with its environment and maxi-
mizing a reward function. DeepMind has successfully combined Monte 
Carlo tree search (MCTS)30 with deep RL to master a suite of chess 
games, evolving from AlphaGo31 and AlphaGo Zero32 to AlphaZero33. 
Beyond games, RL has also shown promise in solving combinatorial 
optimization problems in a range of domains, including chip place-
ment34, nuclear fusion control35, flow battery design36, matrix multipli-
cation acceleration37 and autonomous driving38. In protein engineering, 
DyNA-PPO39 was a pioneer in using model-based RL with proximal 
policy optimization and adaptive surrogate selections. DyNA-PPO 
formulates the design problem as a Markov decision process, where 
a blank sequence is initialized and residues are generated from left 
to right autoregressively. However, the design can only be evaluated 
at the end of each episode, leading to sparse rewards and increased 
risk of generating invalid sequences with misfolds. Recently, Baker’s 
laboratory developed an MCTS-based ‘top-down’ approach that uses 
fragments to assemble protein nanomaterials for a prespecified design 
purpose40, although they have not incorporated neural networks to 
guide the search.

We propose that the principles of AlphaZero’s self-play RL can be 
adapted to a single-player optimization problem, such as goal-directed 
protein design. To facilitate DE, we introduce EvoPlay as an in silico 
mutating agent. In this paper, we demonstrate EvoPlay’s effectiveness 
through four tasks. Task 1 involves in silico benchmarking of protein 
engineering in the full-length design space, evaluated by a simulated 
oracle. Task 2 is in silico DE of peptide binders using AlphaFold2 (AF2) 
as a surrogate to incorporate structure reward at the protein–peptide 
interface. Task 3 involves MLDE for a four-site combinatorial library 
of GB1 and PhoQ in an active learning setting. Finally, task 4 involves 
prospective enzymatic engineering to improve the activity of Gaussia 
luciferase (GLuc)41, validated by a bioluminescence assay.

Results
Mutating amino acids in a similar way to playing pieces on a 
chessboard
EvoPlay leverages a neural network-guided MCTS to design proteins, 
resembling playing on a chessboard (Fig. 1 and Methods). The initial 
sequence of EvoPlay can be arbitrary, ranging from WT to any other 
sequences that the user wishes to improve upon. EvoPlay can optimize 
on a single sequence or a pool of sequences. Additionally, users have the 
option to specify a full-length input to mimic random mutagenesis, or 
to specify several positions to narrow down the design space (Fig. 1a).

The optimization process of EvoPlay is a chain of sequential play 
episodes. The environmental state s is represented by a binary matrix of 
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Fig. 1 | Overview of EvoPlay. a, EvoPlay can accept different types of input, such 
as full-length proteins, peptide binders and combinatorial sites. b, The play 
moves and MCTS simulations generate training samples for the policy-value 
network, which guides the MCTS search. c, Surrogate models can be functional 

predictors with different architectures, such as CNNs or GP regressors, or 
structure-based predictors, such as AF2. d, The generated sequences can be 
validated using wet-lab measurements or MD simulations (Methods).
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Supplementary Table 12) on observed GFP datasets. The network 
architectures of the policy-value network are given in Supplementary 
Table 11. We use the open-source FLEXS environment15 to implement 
benchmarking methods and gradually increase the training sam-
ples for the surrogate by 10% in each round to prevent overfitting. In 
every repeat, we conduct ten rounds, each calling the surrogate 400 
times, and record all proposed sequences to track the cumulative 
maximum fitness scored by the TAPE oracle. As depicted in Fig. 2a and 
Supplementary Figs. 1 and 2, EvoPlay outperforms other algorithms 
and produces higher maximal fitness sequences within prespecified 
optimization steps for both datasets (listed in Supplementary Tables 
1 and 2). EvoPlay also demonstrates the best sampling efficiency, 
evaluated by mean fitness in most starting cases for PAB1. As for GFP, 
AdaLead is the only comparable method, while others are inferior. 
Diversity and novelty metrics are calculated on the basis of the top 
100 and all generated designs by RL-based methods, as presented in 
Supplementary Tables 3 and 4. Across all five seeds, EvoPlay explores 
more novel and functional space than other RL methods. AdaLead’s 
exploration diversity, driven by recombination, does not contribute 
proportionally to fitness improvement, as shown in Fig. 2b(ii),(iv). 
We count the number of sequences exceeding functional thresholds 
(3.5 for GFP and 0.5 for PAB1) for all methods (Fig. 2b(i),(iii) and Sup-
plementary Tables 16 and 17). The results demonstrate that EvoPlay 
achieves a well balanced trade-off between exploration and exploita-
tion, generating more high-quality sequences.

For PAB1, we perform MD simulations on randomly selected 
mutants from the top 1% of designs (see the mutants in Supplementary 
Table 19) together with the WT, to validate our results. After 200 ns of 
MD simulation, the structure of EvoPlay designs superimposes well 
with WT (Fig. 2d), and quickly enters an equilibrium state (Fig. 2d(iii)). 
Overall, the root-mean-square deviation (RMSD) fluctuations of the 
complexes formed by EvoPlay designs are smaller than those of the 
WT and AdaLead designs (Fig. 2d(iv)), indicating that EvoPlay gener-
ates more stable complexes. The binding free energies of EvoPlay 
designs are lower than those of WT and AdaLead designs, supporting 
the stronger binding affinity of EvoPlay designs with RNA (a detailed 
energy decomposition is presented in Supplementary Table 5). Taken 
together, these MD simulations (see Supplementary Fig. 13 for GFP) 
further justify EvoPlay’s superior performance and its ability to cap-
ture some intrinsic rationalities regarding the structure–function 
mapping.

Recently, language models trained on millions of protein 
sequences (ESM-1b13, ESM-1v50) have enabled zero-shot prediction 
of mutational effects on function. In this study, we hypothesize that 
EvoPlay designs towards extrinsic fitness could be correlated with the 
intrinsic patterns learned by these models. To test this, we select one 
ESM-1b model and five ESM-1v models—six in total—to calculate the 
continuous information entropy of top EvoPlay designs and natural 
ones. Our results, shown in Fig. 2c, reveal that EvoPlay converges to 
natural positional variability with high correlation for both the GFP 
and PAB1 datasets (Spearman’s rs = 0.967, P < 1.31 × 10−14, for GFP and 
Spearman’s rs = 0.896, P < 2.41 × 10−27, for PAB1). To further improve 
EvoPlay for fitness enhancement, we explore whether using prior 
natural evolutionary information can help constrain its action space. 
As an example, we narrow down the full-length space of GFP from 
237 to a 35-site subspace by selecting amino acids on the basis of 
corresponding entropy obtained from the same evolutionary-scale 
modelling (ESM) models. We find that this approach (EvoPlay-ESM) 
produces a higher cumulative fitness value more robustly, with a lower 
variance in five runs (Fig. 2a(iii)). We also compare these 35 positions 
selected by the language models with the 30 sites having the highest 
information entropy indicated by the position-specific scoring matrix 
and find 12 overlapping positions. In addition, we find 24 overlapping 
positions with the disordered regions predicted by DisEMBL51 (see 
Supplementary Table 18 for more details).

Designing peptide binders using AF2 as a surrogate
AF2 has revolutionized reliable structure prediction of protein mono-
mers52 and multimers53 as well as peptide–protein complexes54. AF2 has 
also been utilized for fixed-backbone sequence design as an inverse 
problem55. Wicky et al.56 leveraged Monte Carlo search coupled with AF2 
prediction to design cyclic homo-oligomers from a random sequence. 
In this study, we focus on designing peptide binders using AF2 with the 
concatenation of the target receptor MSA (multiple sequence align-
ment) and the peptide sequence as input. Although the monomeric ver-
sion of AF2 was trained on single chains, it has been proved to achieve 
high-resolution structure prediction for 12 out of 96 peptide–pro-
tein complexes resulting from a search against the Protein Data Bank 
(PDB) using peptide–protein binding constraints54. This approach 
outperforms traditional docking protocols and achieves performance 
approaching that of crystallography experiments. ProteinMPNN57,58 has 
successfully utilized the backbone structure to generate binders with 
a success rate comparable to that of Rosetta. EvoBind59 introduced a 
per-residue local distance difference test (pLDDT)-correlated loss term 
to optimize receptor–peptide interfaces. However, EvoBind’s random 
mutation sampling with greedy search is susceptible to becoming 
trapped in local optima. Additionally, by using AF2 with eight recy-
cles, EvoBind consumes an average of 12 h 46 min for one peptide on 
NVIDIA A100 Tensor Core graphics processing units with 40 GB of 
random-access memory, which is not computationally efficient.

We aim to investigate whether EvoPlay’s look-ahead search can 
efficiently generate high-quality binders. We select four representative 
peptides, including 1ssc and 2cnz, for which AF2 gave the best interface 
structure predictions (with the lowest interface RMSD < 0.5 Å), as well 
as two additional targets (3r7g and 6seo in Supplementary Fig. 7). In 
the experiment, EvoPlay initializes five random seeds using a Gumbel 
distribution of all 20 amino acids and evaluates 1,000 design rounds, 
repeated five times for each starting seed. During optimization, EvoPlay 
uses the reciprocal of EvoBind’s structural loss terms as the reward 
to score each explored state (that is, a peptide) and a replay buffer to 
store accumulated states, moves and rewards, which are then used 
to train the neural network to continuously guide MCTS with policy 
improvement. To improve generation efficiency, sequences from 
both simulation moves and play moves are taken into account. We also 
modify AF2’s Evoformer module (v2.0) to generate reliable predic-
tions even at recycle 060 (Supplementary Notes and Supplementary 
Fig. 8) and add a ‘jump out’ option to reduce EvoPlay’s sensitivity to 
the initial state, helping it evade local optima by adding randomness. 
Specifically, this option randomly mutates one to three sites on the 
current best sequence as the starting state for the next iteration when 
no reward improvement is detected for six consecutive episodes. In 
addition to EvoBind, we include MCMC with simulated annealing18 as a 
benchmarking algorithm. To illustrate, we performed five repetitions 
from five random seeds for 1ssc, each consisting of 1,000 iterations, 
resulting in a total of 25,000 sequences across 25 groups of runs (see 
Fig. 3a for starting sequence 4 and Supplementary Fig. 9 for others). 
The results indicate that EvoPlay achieves a significantly higher hit 
rate (Kruskal–Wallis test, P = 0.046) at a loss threshold of 0.01 when 
compared with EvoBind and MCMC (Fig. 3b). Even at more stringent 
thresholds of 0.005 and 0.001, EvoPlay shows more hit counts than 
EvoBind and MCMC (Fig. 3c; the results for 2cnz are available in Sup-
plementary Figs. 10–12). Distance-preserving scaling plots suggest 
that EvoPlay can explore with greater novelty and diversity than greedy 
EvoBind (Fig. 3d; results for other starting seeds can be found in Sup-
plementary Fig. 5 and Supplementary Table 6).

We analyse the top 1% of designs extracted from all runs and visual-
ize contact sequence logos61. The frequency distribution of amino acids 
in the designed peptides converged to a pattern similar to that of the 
native structure (Fig. 3h). We conduct MD simulations (200 ns) for the 
peptide–protein complexes designed by EvoPlay and EvoBind, as well as 
the native complex. The average RMSD values were 0.260 ± 0.037 nm, 
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Fig. 2 | PAB1 and GFP design evaluated by TAPE oracle. a, Cumulative maximum 
results of five repeats using a single starting sequence on PAB1 and GFP datasets, 
comparing EvoPlay against other methods, including AdaLead, evolutionary BO, 
Cbas, SAC and DyNA-PPO. The solid line represents the average of five repeats, 
and the error bar shows the s.d. (Supplementary Tables 1 and 2). EvoPlay-ESM, an 
evolutionary confined version of EvoPlay, is compared against six other models 
evaluated on the GFP dataset. All scores are obtained using the TAPE oracle.  
b, Heatmaps showing the average count of sequences generated by EvoPlay and 
other benchmark methods, with fitness scores exceeding the threshold (3.5 on 
the GFP dataset and 0.5 on the PAB1 dataset), in five replicates of each starting 
sequence, and distance-preserving scaling plots showing the top 100 sequences 
generated by EvoPlay, AdaLead, DyNA-PPO and SAC (see Supplementary  

Figs. 3 and 4 for the other four starting sequences). c, Information entropy 
(bits) of EvoPlay-designed sequences when compared with natural sequences 
(Methods). d, Native PAB1 (green) superimposed with EvoPlay-designed mutant 
(magenta) and AdaLead-designed mutant (cyan) after 200 ns MD simulation and 
the RMSD trends of PAB1 WT (WT-RNA) and EvoPlay-designed mutants  
(MT1-RNA, MT2-RNA, MT3-RNA and MT4-RNA) and AdaLead-designed mutants 
(MT5-RNA, MT6-RNA, MT7-RNA and MT8-RNA) during 200 ns MD simulations. 
The average RMSD values of the WT-RNA, MT1-RNA, MT2-RNA, MT3-RNA, 
MT4-RNA, MT5-RNA, MT6-RNA, MT7-RNA and MT8-RNA complexes are 
0.30 ± 0.06 nm, 0.33 ± 0.05 nm, 0.21 ± 0.03 nm, 0.17 ± 0.04 nm, 0.23 ± 0.04 nm, 
0.27 ± 0.08 nm, 0.36 ± 0.03 nm, 0.38 ± 0.003 nm and 0.27 ± 0.04 nm, 
respectively.
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Fig. 3 | High-quality peptide binder designed by EvoPlay. a, Performance 
comparison of EvoPlay, EvoBind and MCMC on 1ssc (PDB) with the same starting 
sequence. The x axis represents iterations; the y axis represents the optimized 
loss. The dashed line represents the threshold 0.01. b, Box plot displaying 
the hit rates among benchmarking algorithms for 1ssc (n = 25 independent 
repeated experiments for each algorithm). The box plots show the median, 
the first quartile and the third quartile. The whiskers extend to points that lie 
within 1.5 times the interquartile ranges of the lower and upper quartiles, and 
then observations that fall outside this range are displayed independently. A 
two-sided Kruskal–Wallis test is used for statistics analysis, P = 0.046, *P < 0.05. 
c, Heatmap displaying hit counts for reaching three thresholds (0.01, 0.005 and 
0.001). d, Distance-preserving scaling plot visualizing the novelty and diversity 

of generated sequences. e, RMSD changes and hydrogen bonds formed during 
200 ns MD simulations of the peptide–protein complex. f, Superposition 
comparison of the designed peptide–protein complex (receptor in cyan, 
native peptide in green and designed peptide in magenta). TM-score, template 
modelling score. g, Left: interface residues (<8 Å) of the 1ssc protein (cyan) and 
peptide (green) in stick mode. Right: electrostatic surface of the native 1ssc 
protein. h, Contact sequence logos for the native (upper) and top 1% of EvoPlay-
designed (lower) peptides. i, Binding affinity of designed peptides to RNase1 
targets characterized by biolayer interferometry. The octet signal is normalized 
by the maximum signal of the cognate binder–target pair. ‘KD ≈ NA’ indicates 
undetectable binding affinity.
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Fig. 4 | EvoPlay-assisted MLDE. a, Illustration of two-stage mutant sampling to 
evaluate EvoPlay-assisted MLDE. The first stage involves sampling 96 mutants 
using K-means clustering and random in-cluster sampling, followed by sampling 
288 mutants using EvoPlay-agent, and prioritizing another 96 mutants using 
focused training MLDE (ftMLDE) ensemble models in the second stage.  
b, Ablation studies of different surrogate models (CNN, GP, MuFacNet, 
EVmutation and MSA Transformer). Each bar plot represents the values of mean 
squared error and Pearson correlation coefficients on GB1 (149,361 sequences 
excluding 96 or 384 training samples) and PhoQ (160,000 sequences excluding 
96 or 384 training samples) test sets and the error bars show the 95% confidence 
interval. c, Ablation studies of different encoding schemes (AAindex, Georgiev, 
one-hot encoding, UniRep embeddings) for the GP regression model. Each 

bar plot represents corresponding values as in b and the error bars show the 
95% confidence interval. In b and c there are ten independent repeats for each 
bar. Black dots represent results of each repeat after first-round sampling (96 
samples), and red dots represent results after four rounds of sampling (384 
samples). d, Comparison of top hit counts using one-hot encodings of the  
500 highest-fitness sequences from the PhoQ dataset, transformed to a  
two-dimensional array through DMS dimensionality reduction. Circle size 
represents experimental fitness value, and the pie chart depicts hit counts of 
the top seven highest-fitness mutants discovered by EvoPlay and CLADE. Mean 
squared error and Pearson correlation coefficient are calculated using the Python 
libraries sklearn and NumPy, respectively.
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0.267 ± 0.038 nm and 0.240 ± 0.037 nm, respectively, indicating con-
sistent behaviour (Fig. 3e left). We also count the number of hydrogen 
bonds formed in the complexes designed by EvoPlay (9.96 ± 1.61), 
EvoBind (9.25 ± 1.91) and the native complex (7.97 ± 1.61) (Fig. 3e 
right). Additionally, we estimate the binding free energy (Supple-
mentary Table 9) using the MM/PBSA approach62. When compared 
with the native complex (−74.86 ± 5.79 kcal mol−1) and EvoBind designs 
(−87.43 ± 5.42 kcal mol−1), EvoPlay (−96.13 ± 5.45 kcal mol−1) achieves 
28.41% and 9.95% improvements in stabilization, respectively, which 
rationalizes its superiority. EvoPlay with recycle 0 (of AF2) even shows 
comparable performance to EvoBind with recycle 8 (Fig. 3f). The struc-
ture of interfacial residues and electrostatic interactions of the EvoPlay 
design are shown in Fig. 3g. Results for 3r7g and 6seo (recycle 3) are 
available in Supplementary Fig. 7 and Supplementary Tables 8 and 9.

We further validate EvoPlay’s design performance with wet-lab 
experiments. For each starting sequence used for three benchmark-
ing algorithms, the peptides with the highest pLDDT value are chosen 
among the top five designed sequences ranked by loss (Supplementary 
Table 15). Plasmid construction, expression and purification of recep-
tor protein as well as peptide synthesis are described in Supplementary 
Notes. Subsequently, biolayer interferometry (Methods) is performed 
to measure the binding interactions between peptide candidates and 
the RNase1 (PDB 1ssc) protein. The results show that all five peptides 
designed by EvoPlay demonstrate outstanding binding affinity target-
ing the RNase1 protein (Fig. 3i and Supplementary Fig. 15). Three out 
of the five peptides exceed WT, and one of them achieves the highest 
affinity (KD = 80 nM), in the nanomolar range. In contrast, MCMC and 
EvoBind designs show lower binding affinity, with only one of MCMC’s 
designs exceeding the WT, and the overall affinity performance only at 
the micromolar level. Therefore, the wet-lab validation results provide 
strong evidence supporting the superior performance of EvoPlay over 
EvoBind and MCMC.

Designing mutants across four-site combinatorial libraries
The goal of this task is to improve the efficiency of MLDE. The original 
MLDE approach trains ensemble regressors using random sampling in 
sequential rounds and acquires samples greedily. However, exploring 
low-fitness regions may not provide useful landscape knowledge. To 
address this, CLADE8 introduces a two-stage protocol (Supplemen-
tary Notes). In the first stage, an unsupervised hierarchical clustering 
guides the exploration of the fitness landscape to iteratively select 
384 informative training variants. In the second stage, supervised 
ensembled regression models6 are trained to evaluate the entire library 
and prioritize the top 96 predicted variants. The main challenge is 
to reduce the inclusion of minimally informative holes in the train-
ing set to improve the surrogate. CLADE uses GP-type sampling with 
upper-confidence-bound acquisition, which has been shown to be the 
most effective sampling method. Additionally, the model is iteratively 
updated by adding labelled samples in an active learning manner.

In this section, we evaluate EvoPlay on two four-site combinatorial 
libraries, GB1 and PhoQ, using the same setting as CLADE (depicted 
in Fig. 4a). EvoPlay generates a starting sequence pool of 96 variants 
using K-means clustering and then selects one sample from the pool 
to initialize the optimization. In the generation process, EvoPlay fol-
lows the same method as in other tasks, with the only difference being 
that if initial sequences do not change during ten episodes the agent 
will select a new initial sequence from the pool (see Methods for more 
details). Then, the agent proposes 96 variants for three rounds (a total 
of 288 variants) iteratively and the GP regressor scores each move 
and rewards the agent. During optimization, we progressively add 
labelled 96 mutants from the previous round to update the GP regres-
sor of the current round. We evaluate various surrogates (including 
CNN47, MuFacNet17 and zero-shot predictors EVmutation63 and MSA 
Transformer14) with different input formats (AAindex9, Georgiev11 
and UniRep48 embedding) using mean squared error and Pearson 

coefficient as metrics, and find that GP with one-hot encoding performs 
the best for our small-scale training samples selected from a large 
unseen landscape. The ablation results (ten independent validations 
for GB1 and PhoQ datasets respectively) support our choice of GP as sur-
rogate and one-hot encoding as the input encoding method (Fig. 4b,c).

We conduct 500 independent runs for both EvoPlay and CLADE 
to compare their performances. In each run, 384 variants are sampled 
from the combinatorial space (which has a size of around 160,000) in 
the first stage, and another 96 mutants are selected in the second stage. 
We evaluate the global maximal fitness hit count and predict maximal 
fitness across all 480 variants. In addition, we assess the predicted mean 
fitness of the top 96 variants predicted by the second-stage machine 
learning model ensembles (results summarized in Table 1). For both GB1 
and PhoQ datasets, EvoPlay achieves slightly better maximal fitness 
on the union set while notably higher mean fitness of top 96 machine 
learning-predicted variants in the second stage, with around 15% rela-
tive improvement. Furthermore, EvoPlay outperforms CLADE in hitting 
global maximal fitness counts by 5 and 7 for GB1 and PhoQ, respectively. 
For the PhoQ dataset, we visualize the 500 highest-fitness variants from 
the library (Fig. 4d). EvoPlay can hit all top seven variants, while CLADE 
fails to discover two local peaks, that is, QHDG and QMGE, which rank 
second and third among all mutants. For the highest-fitness variant 
(TEMH), EvoPlay hits it more frequently than does CLADE (70 versus 
63). In addition, it is worth noting that CLADE’s approach of inferring 
over the entire design space can be computationally challenging for 
datasets such as GFP and PAB1 with much larger design space, and even 
more intractable for sophisticated surrogates such as AF2. On the other 
hand, EvoPlay eliminates the need for enumeration and exhaustive 
ranking, making it more manageable for handling more complex sur-
rogates, as demonstrated in the peptide-binder section. By accepting 
prespecified sites as input, EvoPlay provides protein engineers with the 
flexibility to customize their design windows, acting as a more practical 
and versatile tool for MLDE tasks.

Prospective engineering of improved luciferase
To evaluate EvoPlay prospectively, we attempt to optimize the biolu-
minescence of GLuc41 on the basis of our in-house pool (Fig. 5a). GLuc 
(weight-averaged molecular mass, Mw = 18.2 kDa, excluding secretion 
tag) is isolated from a marine copepod, Gaussia princeps, and is used 
to catalyse the bioluminescence reaction, emitting bright blue light 
by oxidizing coelenterazine (CTZ) without any other co-factors except 
oxygen. Despite its small molecular mass, the luminescence intensity 
driven by GLuc is stronger than that of most other luciferases, making 
it an attractive tool for evaluating biological events64,65.

Here, we provide a brief description of how we construct our 
in-house variant pool. First, we utilize MSA search (DeepMSA v1 

Table 1 | Evaluation of EvoPlay and CLADE over DE tasks 
(GB1, PhoQ)

Predicted max. 
fitness

Predicted 
mean fitness

Global maximal 
fitness hit count 
(max.: 500)

GB1

CLADE 7.24 (max.: 
8.761)

2.79 83

EvoPlay 7.38 (max.: 
8.761)

3.21 88

PhoQ

CLADE 64.41 (max.: 
133)

9.77 63

EvoPlay 64.90 (max.: 
133)

11.27 70

All statistics for both methods are obtained from 500 independent repeats. The predicted 
maximum fitness and global maximal fitness hit count are evaluated on the union of the 
first-stage 384 sampled mutants and the second-stage top 96 predictions by the ensemble 
regression model. The predicted mean fitness is evaluated only on the top 96 predictions by 
the ensemble regression model. One-hot encoding is used for both methods.
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pipeline66) to identify non-conserved regions (MSA sequences are 
presented in Supplementary Data 1, and the resulting logo plot is shown 
in Extended Data Fig. 1). Next, we create three random mutant libraries—
L2, L3 and L4—that encompass residues in these regions. Specifically, 
L2 includes the following residues: Phe 9, Asn 10, Val 12, Ala 13, Ser 16, 
Ala 19, Thr 20 and Leu 23. L3 contains the following residues: Lys 49, 
His 62, Pro 67, Glu 85, Glu 93, Asp 106, Leu 107 and Val 121. L4 com-
prises the residues Gln 135, Gln 146, Thr 150, Ser 153, Gly 157, Gln 158, 
Lys 161, Ala 165 and Gly 166. In addition to these regions, we intro-
duce other empirical sites from the GLuc cavity (Ala 13, Val 14, Asn 17, 
His 78, Thr 79 and Ile 114), the entrance loop (Ser 86, Ala 87, Gln 88, 
Gly 89, Gly 92 and Ile 95) and PCR errors (Ala 15, Pro 36, Lys 71, Glu 81 
and Glu 111) to build mutant combinations. Finally, we construct 200 
combinational mutants into plasmids, transform them into bacteria, 
induce protein expression and measure luminescence (Methods). On 
the basis of these experimental results, we further remove mutants in  
the loosely packed moiety region (sites 150–168)67 and obtain a pool 
of 164 variants (Supplementary Data 2). This variant pool serves as 
both the seed candidates for EvoPlay and the training dataset for the 
surrogate GP regressor.

This is a combinatorial-sites design, in which we first calculate 
the mutation frequencies of each site from the 164-variant pool and 

identify 32 positions that mutate at least once (GLuc input data pre-
processing for surrogate model). These 32 sites are then combined to 
form a new input space, resulting in a 20 × 32 matrix that represents the 
state environment. Starting sequences are reselected from the seed 
pool when no reward improvement is detected for ten episodes. In each 
independent run, we collect 150 sequences as outputs from EvoPlay’s 
play moves, resulting in a total of 1,047 candidates after deduplication 
across ten replicates. We further implement K-means clustering of all 
candidates and select top mutants within each cluster ranked by sur-
rogate score. Ultimately, we choose 36 variants for wet-lab validation 
(Supplementary Fig. 14). We include one positive control (B6 from the 
164-variant pool) and a WT control. Plasmids carrying mutants are 
transformed into Escherichia coli strain Origami B (DE3) for protein 
expression (Methods). Subsequently, we successfully construct and 
purify 29 mutants (Supplementary Data 3) using the His-tag approach. 
Bioluminescence signals are measured immediately after adding  
CTZ (Methods).

We normalize the signal intensity of 164 in-house variants and 29 
EvoPlay designs by using WT fitness as reference (which is equal to 1, 
Fig. 5b). Among the 164 in-house variants, the maximum fitness is 3.86 
times that of WT, and the B6 positive control is 3.05 times that of WT. 
The results reveal that 26 out of 36 variants (including seven variants 
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Fig. 5 | Prospective GLuc engineering. a, Workflow of GLuc engineering. 
EvoPlay designs mutants based on a starting sequence pool and validates the 
proposed designs by bioluminescence measurement and MD simulations. 
b, Luminescence intensities of 29 EvoPlay designs and 164 starting mutants. 
Among the 29 EvoPlay designs, 11 exceed the maximum value of the starting 
library and 4 achieve a sixfold improvement beyond the WT level. The maximum 
luminescence intensity of the EvoPlay designs reaches eight times that of WT, 
which is twice the maximum value in the starting library. c(i),(ii), MD simulations 
show similar binding patterns of GLuc-MT1 (V12A, H62K, P67L, E85S, S86T, A87G, 
E93P, L107M, V121E) and GLuc-MT2 (N10S, V12A) with CTZ. In detail, CTZ can 

form hydrogen -bond interactions with the Ile 63, Glu 81 and Thr 79 residues 
of GLuc-MT1 and GLuc-MT2, and the benzene ring of CTZ can form strong π–π 
conjugate interaction with the imidazolyl of His 78. (iii), Comparison of residue-
level energy contributions of GLuc-WT, GLuc-MT1 and GLuc-MT2. The Glu 85 
of GLuc-WT and GLuc-MT2 are positively charged, exerting a certain repulsive 
effect on CTZ molecules and unfavourable for the GLuc–CTZ binding. Ser 85 
contributes notably to binding CTZ. His 62, Ile 63, His 78, Thr 79 and Ala 87 
residues contribute greatly to CTZ binding affinity. Asn 10 and Val 12 are mutated 
into Ser 10 and Ala 12, increasing the cavity adaptability.
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that are not successfully purified) emit stronger bioluminescence 
than WT; among them, 4 variants achieve a sixfold improvement over 
WT, and 11 designs outperform all in-house variants, with the maximal 
design achieving a 7.8-fold improvement over WT (twofold improve-
ment over the best in-house variant). Moreover, MD simulations show 
that two proposed mutants, GLuc-MT1 and GLuc-MT2, form hydrogen 
bonds, π–π conjugates and hydrophobic interactions with the CTZ 
compound to improve binding affinity and stability. In particular, 
Glu 85 of WT and GLuc-MT2 contribute positive energy for binding 
(3.93 and 6.76 kJ mol−1, respectively; Fig. 5c(iii)) while the energy con-
tribution of Ser 85 in GLuc-MT1 becomes negative (−0.223 kJ mol−1), 
resulting in a notable increase in GLuc-MT1’s binding affinity with 
CTZ (−122.76 ± −23.41 kJ mol−1). The His 62 to Lys 62 mutation shows 
an improved energy contribution to substrate binding (Fig. 5c(iii)). 
Additionally, the combinatorial mutations (E85S, S86T, A87G, E93P, 
L107M) promote hydrophobic interactions with CTZ in the loop region 
(85–107) (Fig. 5c(i)). More discussions of the MD analysis result for 
GLuc-MT2 are provided in Supplementary Notes (Fig. 5c(ii)). In sum-
mary, EvoPlay is effective in identifying substantially higher-fitness 
mutants beyond the starting library and can be integrated into existing 
engineering workflows.

Discussion
In this study, we comprehensively demonstrate the merits of self-play RL 
to facilitate protein design towards functional or structural properties. 
Neural network-guided MCTS has been proven powerful for exploring 
complex landscapes, outperforming a host of algorithms including 
in silico optimization of full-length proteins, peptide-binder design 
using AF2-derived structural rewards, and assisting DE sampling over 
empirical combinatorial libraries with sequential surrogate refinements. 
Additionally, EvoPlay can substantially improve luciferase activity on 
our in-house pool. We highlight several key advantages of EvoPlay. (1) 
EvoPlay explicitly defines an interpretable action space that scores each 
visited state and avoids receiving sparse rewards only from end-states 
as in other RL models. It can accept full-length or prespecified sites. 
(2) EvoPlay can either use only play states as output or incorporate 
simulation states as additional output sequences. EvoPlay requires 
only a limited number of surrogate evaluations, while BO’s acquisi-
tion process requires exhaustive scoring and prioritizing in the whole 
design space, which becomes computationally intractable for more 
complex libraries or full-length design. Furthermore, when the surro-
gate is a structural predictor or has a more sophisticated architecture, 
look-ahead MCTS shows greater advantages in sampling efficiency 
and substantially reducing the query budget. (3) EvoPlay effectively 
addresses the exploration–exploitation trade-off, generating candidate 
sequences with higher fitness. (4) EvoPlay shows robustness to surrogate 
models, preferring computational speed over nominally more accurate 
predictive models. Even with less accurate surrogates trained on limited 
datasets, EvoPlay extrapolates well and proposes high-quality variants.

EvoPlay can also benefit from the use of zero-shot predictors to 
exclude possible zero- or low-fitness mutants. Self-supervised learning 
approaches such as MutCompute268, ProteinBiRNN69 and ESM-IF70 can 
be introduced to provide evolutionary or structural constraints and 
thus reduce the search space. In drug discovery or enzyme develop-
ment, where optimizing multiple aspects is necessary, improving one 
specified function may harm others. EvoPlay can synthesize a combina-
tion of properties into a single reward and search for a Pareto-optimal 
set36,71. Though in silico DE cannot replace experimental validation, it 
can substantially expedite the screening of large-scale libraries driven 
by high-throughput microfluids72,73 or automated robotics74,75. EvoPlay’s 
efficient sequence generation module can fit well into a stepwise opti-
mization workflow to facilitate the design cycle. EvoPlay is also scalable 
through employing multiple workers in parallel to process batched 
designs starting from independent seeds. As the cost of automation 
and microfluid-based profiling decreases, it becomes increasingly 

important to balance resource consumption between dry-lab and 
wet-lab experiments. EvoPlay’s sampling efficiency under a controlled 
budget well supports the synergy.

Several improvements can be made to EvoPlay. (1) Structural con-
straints can be incorporated into MCTS moves. Inspired by ProteinMP-
NN’s sequence–structure cogeneration57,76, residue probability can be 
evaluated on the fly on the basis of backbone coordinates and orienta-
tions58, which injects structural information into EvoPlay. (2) EvoPlay 
can be customized to scaffold functional sites. Energy interaction terms 
and motif RMSD constraints, as in RFDesign77, can be integrated to hal-
lucinate scaffolds. (3) The enzyme conformational landscape78 can be 
incorporated into the surrogate to aid biocatalytic design of targeted 
conformation, leading to tailored activity or selectivity. (4) EvoPlay 
can extend the mutating action from the residue level to the fragment 
level. Helices or loops can be substituted under geometric constraints. 
To sum up, EvoPlay highlights the great promise of deploying self-play 
RL for protein engineering.

Methods
EvoPlay workflow
The environmental state of EvoPlay is represented by a binary matrix 
of size 20 × L with columns indicating positions (L) and rows indicating 
amino acids (20) and the action space is correspondingly a flattened 
vector of size 20 × L. When a move is performed, one element from 
the action space vector is selected, resulting in a single-site mutation 
on the state sequence. The element indicated by the move in the state 
matrix is changed to 1 while the other elements (residue types) of the 
same column (position in protein) are all set to 0. An episode contains a 
series of moves with the corresponding states denoted by st (0 < t < T), 
and the rewards denoted by rt (0 < t < T). The state is updated iteratively 
until the episode reaches the end condition.

	(1)	 The surrogate score rt of the current state is lower than that of 
the previous state rt−1.

	(2)	 The current move is invalid, which means when the state 
sequence remains unchanged or changes to a previously gener-
ated sequence.

During MCTS simulations, a policy-value neural network fθ guides 
the process. Each simulation corresponds to an episode and travels 
from the root node sroot towards a leaf node sL in the MCTS tree, where 
each node represents a different state (sequence). To reach the next 
state s′, an action a (simulation move) is performed on the current 
state s, and the edge between s and s′ is denoted as (s, a). The selec-
tion of the next node during the simulation is based on the maximal 
value of Qs,a + Us,a, where Qs,a is evaluated and updated by the output v 
of the neural network and Ns,a. Qs,a is the action value of edge (s, a). Us,a 
is determined from

Us,a = CpuctPs,a
√Nparents,a

1 + Ns,a
(1)

where Cpuct is an exploration–exploitation tuning constant. Ps,a repre-
sents the prior probability of visiting child nodes from parent node s, 
and is obtained by putting the parent’s state into the neural network. 
When the search algorithm encounters a leaf node sL, it expands the tree 
by creating new child nodes. Finally, the tree is updated in a backward 
manner, starting from the leaf node towards the root:

Ns,a = Ns,a + 1 (2)

Qs,a =
Qs,a (Ns,a − 1) + v

Qs,a
= Qs,a +

v −Qs,a

Qs,a
(3)

where v is evaluated from
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(p (sL) , v) = fθ(sL). (4)

When the simulations on a root node st are completed, a play 
move πt is sampled and is proportional to the exponentiated visit 
counts at time-step t, πt ∝ N(st, a)1/τ, where τ is a tunable temperature 
parameter. rt for each move is evaluated using a surrogate model. The 
data (st, πt, rt) of the episodes are stored in a buffer for RL. The neural 
network (p, v) = fθ(s) is trained using a combination of loss terms as

l = (r − v)2 − πT log p + γ‖θ‖2 (5)

where γ is the regularization parameter of θ. p and v are computed by 
the neural network, representing the mutation probabilities and state 
value, respectively. An episode ends if the reward of the current move 
is lower than that of the previous move, and a new episode starts with 
the sequence that achieved the highest reward in the previous episode 
for the PAB1/GFP and peptide-binder tasks. In the EvoPlay-assisted DE 
task and GLuc design task, a new starting sequence of an episode can be 
alternatively selected from a sequence pool if no fitness improvement 
is observed for ten consecutive episodes

Policy-value neural network. The input to the policy-value neural 
network is a state matrix with a shape of 20 × L, where L is the length 
of the input variable sites and 20 represents the length of one-hot 
encoded residue types. The model architecture consists of a stack of 
one-dimensional convolutional layers, followed by a policy head and 
value head (Supplementary Table 11).

Sequence design evaluated by TAPE oracle
Dataset. We utilize two datasets in this task: PAB1 (UniProt P04147) 
and GFP (UniProt P42212). The fitness of PAB143 represents its binding 
ability. The PAB1 dataset contains 36,523 mutants with a length of 75, 
and we adopt the XY Enrichment score as the fitness label. The GFP 
dataset42 includes 51,715 mutant sequences with fitness represent-
ing the fluorescence intensity. We remove the first residue of all GFP 
sequences and keep all sequences of equal length (237). Our goal is to 
design mutants with high fitness scored by the oracle.

Surrogate model. The surrogate model takes a full-length protein in a 
one-hot encoded format as input. We use CNN47 as the baseline model 
and compare it with four other models (UniRep48, GP regression25, 
MuFacNet17, hybrid49), with ablation results listed in Supplementary 
Table 12 and a detailed CNN architecture provided in Supplementary 
Table 13. To avoid overfitting, we gradually increase the number of 
training data by 10% to update each surrogate model (more details in 
Benchmark methods in Supplementary Notes).

Oracle and metrics. In this task, we use TAPE45 as the oracle, which is 
fine-tuned in PEX17 to orthogonally evaluate generated sequences in 
silico. We calculate the cumulative maximum score (fitness) of all the 
sequences generated by each method. To ensure a fair benchmark, 
we maintain consistent query costs across all methods by aligning 
the querying times.

Novelty and diversity. We calculate novelty and diversity44 metrics 
for sequences generated by three RL methods: EvoPlay, DyNA-PPO39 
and SAC46. Novelty is calculated from

novelty (G) =
∑n

i=1 levenshtein(si, sstart)(si ∈ G)
|G| (6)

where G denotes the generated sequences, |G| denotes the number of 
generated sequences, si denotes the ith starting sequence and leven-
shtein(,) is the Levenshtein distance between the ith and jth sequences. 
Diversity is defined by the following equation:

diversity (G) =
∑n−1

i=1 ∑
n
j=i+1 levenshtein(si, sj)(si, sj ∈ G)

|G| (|G| − 1) . (7)

Restricting search space via zero-shot predictors. Inspired by the 
language-model-guided antibody evolution79, we used a zero-shot 
language model to select positions with high information entropy. 
The generated sequences were one-hot encoded and input into six 
ESM models (esm1b, esm1v1, esm1v2, esm1v3, esm1v4, esm1v5)13,50. 
The output represents the mutation frequency value for each site. The 
continuous information entropy of each position in the sequence was 
calculated using equation (8) with the six ESM models, and the average 
information entropy was calculated using equation (9). We filtered 
highly variable positions where Shannon entropy was greater than 
3, resulting in 35 selected sites for the GFP dataset benchmark task 
(positions 13, 23, 37, 44, 45, 46, 55, 64, 67, 68, 71, 75, 76, 78, 79, 86, 92, 
137, 146, 151, 155, 167, 175, 178, 179, 181, 182, 190, 197, 202, 215, 216, 229, 
231, 232). We restricted EvoPlay to start from and search only over the 
design space defined by these 35 selected sites. The total number of 
surrogate queries was set to 4,000, and we compared the generated 
sequences with those obtained using full-length searching.

H (Xj) = −∫
x
p (xi) logp (xi) dxi (8)

Aj =
1
M

M
∑
1
H (Xj) (9)

where H(Xj) denotes the Shannon entropy of position j. The analysis is 
performed with M language models from the Meta ESM library (esm1b, 
esm1v1, esm1v2, esm1v3, esm1v4, esm1v5). The method of assessing 
the similarity between the natural and generated sequences of PAB1 
and GFP is described in Supplementary Notes.

Protein–RNA complex model preparation for MD. The structures 
of PAB1 and GFP were obtained from UniProt (http://www.uniprot.
org/, P04147, P42212). The PyMOL2.1 package80 was used to plot the 
structure of the 126–200 region (RNA recognition motifs). To build 
the PAB1–RNA complex structure, we superimposed it on the crystal 
structure of the human PAB1 (PDB 1cvj) and optimized it using MD simu-
lation. UniDesign tools81 were used to construct the three-dimensional 
structures of PAB1 mutants.

Peptide binder design using AF2 as surrogate
Receptor and peptide structure datasets. The protein–peptide 
complexes (PDB 1ssc, 2cnz, 3r7g, 6seo) were chosen from a group of 96 
peptide–protein complexes on the basis of specific criteria such as the 
length of the peptide chain, distance between the peptide chain and 
receptor chain, and other factors. These proteins were then used in a 
recent study54, where their interface structures were predicted with 
high accuracy using AF2.

Receptor sequence, peptide sequence, binding pocket residues. 
We retrieve the sequences of the receptor and peptide from the SEQRES 
lines of the PDB files54,59, and then search for the receptor MSA using 
HHblits82. We select the binding pocket residues as those with at least 
one backbone atom located within 8.0 Å of a peptide backbone atom, 
using PyMOL7480 v2.1.

AF2 as surrogate model. We use AF252 as the structure-based sur-
rogate. The input is the concatenation of the receptor MSA and the 
single peptide sequence, containing only sequence information. We 
adopt AF2 v2.0, model 1, ensemble number 1, with recycle 0 for 1ssc and 
recycle 3 for 2cnz, 3r7g and 6seo (Supplementary Fig. 7). The pLDDT 
score of model 1 is used to calculate the reward function and evaluate 
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the designed sequences. No additional refinement is performed on 
the models, and no structural templates are used.

EvoPlay-designed peptide binder and evaluation. In EvoPlay, the 
design process starts from a single sequence as the initial state s0, and 
then mutates one position in one EvoPlay move. Assuming that the cur-
rent state after a certain number of moves is st, the current move πt (at a 
simulation move) will change the state from st to st+1. Newly generated 
sequences from MCTS simulations during the expansion stage are also 
considered as design outputs. The reward for an episode of sequential 
moves is calculated according to equation (10). If rt is lower than rt−1, 
the episode ends. A new episode starts with the highest rewarded state 
from the previous episode. If the same state remains as the starting 
sequence more than E times (E is a hyperparameter), the sequence 
will be randomly mutated with one to three amino acids. Additionally, 
the play move πt will avoid hitting already-generated sequences. r is 
calculated using the following formula:

r =
pLDDTpeptide

(dpeptide + dreceptor)ΔCOM
C (10)

where pLDDTpeptide is the average pLDDT of the AF2 output for the 
peptide, and dpeptide, dreceptor and ΔCOM are defined as in EvoBind59, 
where the sum of dpeptide and dreceptor amounts to the distance of the 
binder–receptor interface between peptide and protein, and the dis-
tance between the centroids (alpha carbon centre of peptide) of the 
predicted peptide and the native peptide is denoted as ΔCOM, which 
ensures that the designed peptide does not drift too far from the recep-
tor residues. C is a balancing constant set to 0.002. We performed five 
repetitions for each of the five starting sequences to benchmark against 
EvoBind and MCMC. A Gumbel distribution was used to generate ran-
dom starting sequences and we collected 1,000 generated designs for  
comparison.

Binding characterization using biolayer interferometry. Kinetic 
parameters were measured using Gator Prime (Gatorbio). The recom-
binant protein was immobilized using Ni-NTA (nitrilotriacetic acid) 
biosensors, which were hydrated in a 96-well MAX plate (catalogue 
06-0101) for 10 min. Wells containing 200 µl of Q buffer (10 mM 
PBS + 0.02% Tween 20 + 0.2% BSA) were used for peptide dilution. 
The binding assay was initiated by placing hydrated biosensors on the 
Gator Prime instrument and incubating them in a 250 µl black assay 
plate containing 200 µl of Q buffer. The biosensor was then shifted to 
a second position, where the wells contained 200 µl of recombinant 
protein diluted using Q buffer (10 μg ml−1). After the loading step, the 
biosensor was shifted to Q-buffer-containing wells for baselining, fol-
lowed by monitoring of the association of the complexes by transfer-
ring the biosensors into wells containing peptides. The dissociation of 
the complexes was then measured by transferring the biosensor back 
into buffer. Biosensors were regenerated after each measurement. 
The sensors specifically bind to the recombinant RNase1 (PDB 1ssc) 
but not to peptides. We determined the optimal concentration of the 
protein and peptides by twofold dilution of the peptides to concen-
trations ranging from 320 μM to 5 μM in Q buffer. Finally, biosensors 
were hydrated, and the interactions were measured. The data were 
analysed using the Gator Prime analysing module, and the KD value 
was calculated. Biolayer interferometry experiments were conducted 
by AlpalifeBio.

EvoPlay-assisted DE for GB1 and PhoQ
Datasets. We utilize two datasets, namely GB1 (UniProt P19909) and 
PhoQ (UniProt P23837), for the MLDE task. These datasets consist of 
combinatorial libraries of four sites, resulting in a design space of 204, 
which equates to 160,000 possible variants. The GB1 dataset comprises 
149,361 variants (V39, D40, G41 and V54) that have been experimentally 

labelled with fitness defined as binding affinity to IgG-Fc. The PhoQ 
dataset contains 140,517 variants (A284, V285, S288 and T289), with 
fitness defined as fluorescence levels related to the signalling activ-
ity of kinase PhoQ interacting with PhoP in a regulatory system83,84. 
Fitness values for both datasets have been normalized to a range of 
[0, 1], with 92% of the variants having fitness values lower than 0.01 
and over 99% with fitness values lower than 0.3. Although the PhoQ 
dataset has fewer high-fitness variants, it exhibits a greater diversity 
of high-fitness sequences.

Surrogate model and episode starting sequence pool. The input 
consists of four-site sequences encoded in one-hot format. We utilize 
GP as a surrogate model to score mutants generated by play moves 
of EvoPlay. The GP surrogate is trained in an active learning manner, 
gradually updating the model by adding 96 generated mutants in each 
round. In the first round, 96 variants are generated through K-means 
clustering sampling, while a subsequent 288 variants are generated 
through EvoPlay sampling. If the same sequence is used in more than 
ten episodes, a new sequence from the starting sequence pool will be 
selected as the new episode start. Otherwise, the next episode will start 
with the sequence that scored the highest in the previous episode. 
Simulation times are set to 30. An ablation study comparing GP25, CNN47, 
MuFacNet17, EVmutation85 (zero shot) and MSA Transformer14 (zero 
shot) as surrogate models is included. For EVmutation, predictions 
of the combinatorial libraries are calculated using the EVcouplings 
webapp63, and MSA Transformer predictions are calculated using the 
naive probability using mask-filling protocols14.

Evaluation and metrics. We sequentially selected 480 sequences from 
the library, with 384 sequences generated by the first-stage sampling, 
including 288 sequences from EvoPlay sampling and 96 sequences 
from K-means clustering as the MCTS starting sequence pool, and 96 
sequences selected from the predictions of the second-stage super-
vised learning. In 500 independent repeats for both methods without 
cherry-picking, we evaluated the predicted maximum fitness and 
global maximal fitness hit count on the union of the 384 sequences 
generated in the first stage and the 96 sequences predicted in the 
second stage. Predicted mean fitness was evaluated only on the top 96 
sequences from the supervised ensemble models in the second stage.

GLuc designed by EvoPlay
Materials. The protein sequence of the WT GLuc gene (UniProt 
Q9BLZ2) excluding the secretion tag (17 residues) is

KPTENNEDFNIVAVASNFATTDLDADRGKLPGKKLPLEVLKE-
MEANARKAGCTRGCLICLSHIKCTPKMKKFIPGRCHTYEGDKESAQG-
GIGEAIVDIPEIPGFKDLEPMEQFIAQVDLCVDCTTGCLKGLANVQCSDLLK-
KWLPQRCATFASKIQGQVDKIKGAGGD.

The standard chemicals were purchased from BBI, while the 
enzymes for standard cloning procedures were purchased from TOY-
OBO, Thermo Fisher Scientific and New England Biolabs (NEB). The 
Plasmid Mini Kit II was bought from Omega, and the pCold plasmid was 
obtained from Takara. The Origami B (DE3) host cells were supplied by 
Shanghai Weidi Biotechnology, and the CTZ was synthesized by MGI.

Library construction for GLuc mutants. We used the online Deep-
MSA v1 pipeline66 service (https://zhanglab.ccmb.med.umich.edu/
DeepMSA/) to obtain a 30-sequence MSA, including the WT sequence. 
However, the small number of detected MSAs resulted in a normalized 
number of effective sequences, Nf, of only 0.86. We aligned the MSAs 
using Clustal Omega and generated a sequence logo using the conser-
vation analysis tool WebLogo86 (https://weblogo.berkeley.edu/logo.
cgi). The sequence logo represents each column of the alignment as 
a stack of letters, where the height of each letter is proportional to its 
frequency, and the overall height of each stack is proportional to the 
sequence conservation, which is defined by the entropy of the letter 
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distribution87 (refer to Supplementary Data 1 for the generated MSAs 
and Extended Data Fig. 1 for the sequence logo).

Amino acids at non-conserved regions were selected to build 
three oligonucleotide pools (synthesized by BGI), namely L2 (Phe 9, 
Asn 10, Val 12, Ala 13, Ser 16, Ala 19, Thr 20, Leu 23), L3 (Lys 49, His 62, 
Pro 67, Glu 85, Glu 93, Asp 106, Leu 107, Val 121) and L4 (Gln 135, Gln 146, 
Thr 150, Ser 153, Gly 157, Gln 158, Lys 161, Ala 165, Gly 166). The luciferase 
mutant libraries for L2, L3 and L4 were amplified in DH5α cells and 
expressed in Origami B (DE3) using recombinant plasmids constructed 
from PCR products of oligonucleotide pools and pCold vector using 
Gibson Assembly (NEB) (primer list 1). Mutants were also obtained 
through combination of the three libraries and the sites mentioned 
below. For instance, a catalytic cavity was hypothesized by heteronu-
clear NMR67, which was made up of 19 residues: Asn 10, Val 12, Ala 13, 
Val 14, Ser 16, Asn 17, Phe 18, Leu 60, Ser 61, Ile 63, Lys 64, Cys 65, Arg 76, 
Cys 77, His 78, Thr 79, Phe 113, Ile 114, Val 117. Of these, nine residues 
(Asn 10, Val 12, Ala 13, Val 14, Ser 16, Asn 17, His 78, Thr 79, Ile 114) were 
selected, along with six residues (Ser 86, Ala 87, Gln 88, Gly 89, Gly 92, 
Ile 95) from the loop related to the entrance to the cavity. However, 
due to PCR errors, additional changes (Ala 15, Pro 36, Lys 71, Glu 81, 
Glu 111) were introduced during the construction of the mutant library. 
Furthermore, an active mutant B6 was isolated (H62K, P67L, E85S, 
S86T, A87G, E93P, L107M, V121E), from which a dozen mutants were 
generated by combining B6 with other sites. Site-directed mutants 
were also generated on the basis of the WT luciferases (Asn 10, Val 12, 
His 78, Thr 79, Ala 87, Gln 88, Gly 89, Ile 114). After removing mutants 
with the loosely packed moiety (sites 150–168), a pool of 164 mutants 
was obtained for surrogate model training (Supplementary Data 2).

GLuc input data preprocessing for surrogate model. After aligning 
the mutation sites of the 164 mutants, the design space was narrowed 
down to 32 residue positions, namely positions 9, 10, 12–17, 19, 20, 23, 
36, 49, 62, 67, 71, 78, 79, 81, 85–89, 92, 93, 95, 106, 107, 111, 114 and 121. 
These 32 sites were combined to form the input sequence, and the 164 
sequences were used to train the surrogate model. During the design 
process, a single sequence in the current state was represented by a 
20 × 32 matrix after one-hot encoding. Therefore, the environment 
state of this task is a one-hot 20 × 32 matrix, where a single-site muta-
tion on the matrix corresponds to one play move.

Surrogate model and starting sequence pool. One-hot encoding is 
used to encode recombination sequences. We choose GP as the surro-
gate model to score EvoPlay moves. When no better scored sequences 
are generated and the same sequence starts for more than ten episodes, 
the next episode will randomly select one restarting seed from those 
164 recombination sequences. The EvoPlay simulation times are set 
to 30. Only sequences generated by EvoPlay play moves are kept for 
downstream evaluation.

GLuc mutant screening and protein purification. All mutants from 
the three libraries were amplified by PCR, followed by digestion with 
DpnI (NEB) at 37 °C for 1 h. The resulting PCR products were then trans-
formed into DH5α and cultured in lysogeny broth plates overnight. 
After single clones were picked and sequenced, plasmids were extracted 
and transformed into Origami B (DE3) host cells. Single colonies were 
then inoculated in 3 ml of lysogeny broth medium (5 g of yeast extract, 
10 g of tryptone and 10 g of NaCl per litre) with ampicillin (100 mg l−1) 
at 37 °C and 250 r.p.m. for 3–4 h. Isopropyl-β-D-thiogalactopyranoside 
was added to a final concentration of 0.01 mM, and the temperature was 
lowered to 16 °C when the optical density at 600 nm reached 0.5. After 
16 h of incubation, cells were collected by centrifugation (10,000 g, 
4 °C for 10 min) and resuspended in buffer (50 mM Tris-HCl, pH 7.5; 
250 mM NaCl, 1 mM phenylmethyl sulfonyl fluoride). The ratio of cell 
pellet to buffer was 1:10 (1 g of cell pellet to 10 ml of buffer). The cells 
were then sonicated in a cold-water bath for 20 min to rupture the cell 

membranes, followed by centrifugation at 10,000 g, 4 °C for 30 min 
to separate the soluble fraction (supernatant) and insoluble fraction 
(pellet). Protein in the supernatant was purified using a His MultiTrap 
FF 96-well filter plate (Cytiva GE), washed with buffer (50 mM Tris, pH 
8.0, 250 mM NaCl, 10 mM imidazole) three to five times (500 µl each 
time) and eluted with 100 µl of 300 mM imidazole (50 mM Tris, pH 
8.0, 250 mM NaCl, 10 mM imidazole). The 300 mM imidazole buffer 
was then removed using 1×PBS through an Ultracel-3 regenerated cel-
lulose membrane (Millipore). The total protein was quantified using 
Bradford reagent (Bio-Rad) and analysed using 12% SDS–PAGE followed 
by Coomassie brilliant blue staining.

Bioluminescence measurement. The bioluminescence signals from 
different mutants were measured using a BioTek Synergy H1 microplate 
reader. To begin with, 10 μl of protein solution (10 μg ml−1) was added to 
a flat-bottom 96-well black polystyrene plate (Thermo Fisher Scientific) 
and diluted with luciferase dilution buffer (50 mM Tris-HCl, 100 mM 
NaCl, 0.1% (v/v) Tween-20, pH 8.0). The bioluminescence signals were 
detected immediately after adding 90 μl of CTZ (50 μM, MGI) to each 
well at room temperature using the sample injection probe of the 
Synergy H1.

GLuc MD model preparation. The GLuc used in this study was obtained 
from the RCSB PDB (https://www.rcsb.org/, 7d2o). To determine the 
binding orientation of the top hit compound in different docking 
poses, GLuc was docked with CTZ using Autodock4.2 (ref. 88). Polar 
hydrogens were added, and the Lamarckian algorithm was applied. 
The grid size dimensions were set to 40 × 40 × 40 xyz points with a grid 
spacing of 0.375 Å. The docking centre coordinates (x, y and z), 3.282, 
−0.061, −7.119, were obtained from key interacting residues (Arg 76, 
His 78, Thr 79)67. To obtain a stable complex model of GLuc–CTZ, the 
top five poses with the lowest binding energy or higher binding affin-
ity were extracted and aligned for MD simulation. Three-dimensional 
structures of GLuc mutants (MT1—V12S, K49R, H62K, P67A, E85S, S86T, 
A87G, E93P, L107M, V121E; MT2—N10S, V12A) were constructed using 
UniDesign tools.

MD simulations
All MD simulations for the target systems are performed using the 
Gromacs89–96. The tools and settings of MD simulations are detailed in 
Supplementary Notes.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Datasets used in all benchmark studies have been published previously. 
The PAB1 (UniProt P04147) and GFP (UniProt P42212) datasets used for 
EvoPlay surrogate training have been archived97. The four-site library 
GB1 (UniProt P19909) and PhoQ (UniProt P23837) datasets have been 
provided98. Peptide and receptor sequences of the WT for 1ssc, 2cnz, 
3r7g and 6seo (PDB) have been referenced99. The MSA and logo used 
in GLuc design are presented in Supplementary Data 1 and Extended 
Data Fig. 1. Our in-house GLuc library can be found in Supplementary 
Data 2, and experimentally validated variants proposed by EvoPlay 
are presented in Supplementary Data 3. Source data are provided with 
this paper100.

Code availability
EvoPlay is written in Python (v3.8.10) using the PyTorch (v1.12.1) library. 
The source code is available on GitHub (https://github.com/melobio/
EvoPlay) under the GPLv3 license. The doi of the GitHub repository for 
EvoPlay is provided with the Zenodo link101. The Code Ocean capsule 
for EvoPlay is also published102.
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Extended Data Fig. 1 | Logo indicating the frequencies of amino acids from 30 MSAs of GLuc. The sequence logo represents each column of the MSA alignment 
as a stack of letters, where the height of each letter is proportional to its frequency, and the overall height of each stack is proportional to the entropy of the letter 
distribution.
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