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ABSTRACT

Automated generate-and-validate (G&V) program repair techniques

(APR) typically rely on hard-coded rules, thus only fixing bugs

following specific fix patterns. These rules require a significant

amount of manual effort to discover and it is hard to adapt these

rules to different programming languages.

To address these challenges, we propose a new G&V techniqueÐ

CoCoNuT, which uses ensemble learning on the combination of

convolutional neural networks (CNNs) and a new context-aware

neural machine translation (NMT) architecture to automatically fix

bugs in multiple programming languages. To better represent the

context of a bug, we introduce a new context-aware NMT archi-

tecture that represents the buggy source code and its surrounding

context separately. CoCoNuT uses CNNs instead of recurrent neu-

ral networks (RNNs), since CNN layers can be stacked to extract

hierarchical features and better model source code at different gran-

ularity levels (e.g., statements and functions). In addition, CoCoNuT

takes advantage of the randomness in hyperparameter tuning to

build multiple models that fix different bugs and combines these

models using ensemble learning to fix more bugs.

Our evaluation on six popular benchmarks for four programming

languages (Java, C, Python, and JavaScript) shows that CoCoNuT

correctly fixes (i.e., the first generated patch is semantically equiva-

lent to the developer’s patch) 509 bugs, including 309 bugs that are

fixed by none of the 27 techniques with which we compare.

CCS CONCEPTS

· Computing methodologies→ Neural networks; · Software

and its engineering → Empirical software validation; Soft-

ware defect analysis; Software testing and debugging.
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1 INTRODUCTION

To improve software reliability and increase engineering produc-

tivity, researchers have developed many approaches to fix software

bugs automatically. One of the main approaches for automatic

program repair is the G&V method [17, 38, 52, 69, 88, 89]. First,

candidate patches are generated using a set of transformations or

mutations (e.g., deleting a line or adding a clause). Second, these

candidates are ranked and validated by compiling and running a

given test suite. The G&V tool returns the highest-ranked fix that

compiles and passes fault-revealing test cases.

While G&V techniques successfully fixed bugs in different data-

sets, a recent study [53] showed that very few correct patches are

in the search spaces of state-of-the-art techniques, which puts an

upper limit on the number of correct patches that a G&V tech-

nique can generate. Also, existing techniques require extensive

customization to work across programming languages since most

fix patterns need to be manually re-implemented to work for a

different language.

Therefore, there is a need for a new APR technique that can fix

more bugs (i.e., with a better search space) and is easily transferable

to different programming languages.

Neural machine translation is a popular deep-learning (DL) ap-

proach that uses neural network architectures to generate likely

sequences of tokens given an input sequence. NMT uses an encoder

block (i.e., several layers of neurons) to create an intermediate rep-

resentation of the input learned from training data and a decoder

block to decode this representation into the target sequence. NMT

has mainly been applied to natural language translation tasks (e.g.,

translating French to English).
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APR can be seen as a translation from buggy to correct source

code. Therefore, there is a unique opportunity to apply NMT tech-

niques to learn from the readily available bug fixes in open-source

repositories and generate fixes for unseen bugs.

Such NMT-based APR techniques have two key advantages. First,

NMT models automatically learn complex relations between input

and output sequences that are difficult to capture manually. Simi-

larly, NMT models could also capture complex relations between

buggy and clean code that are difficult for manually designed fix pat-

terns to capture. Second, while G&V methods often use hard-coded

fix patterns that are programming-language-dependent and require

domain knowledge, NMT techniques can be retrained for different

programming languages automatically without re-implementing

the fix patterns, thus requiring little manual effort.

Despite the great potential, there are two main challenges of

applying NMT to APR:

(1) Representing context: How to fix a bug often depends

on the context, e.g., statements before and after the buggy lines.

However, to represent the context effectively is a challenge for

NMT models in both natural language tasks and bug fixing tasks;

thus, the immediate context of the sentence to be translated is

generally ignored. Two techniques that use NMT to repair bugs [13,

77] concatenate context and buggy code as one input instance.

This design choice is problematic. First, concatenating context and

buggy code makes the input sequences very long, and existing NMT

architectures are known to struggle with long input. As a result,

such approaches only fix short methods. For example, Tufano et

al. [77] have to focus on short methods that contain fewer than

50 tokens. Second, concatenating buggy and context lines makes

it more difficult for NMT to extract meaningful relations between

tokens. For example, if the input consists of 1 buggy line and 9 lines

of context, the 9 context lines will add noise to the buggy line and

prevent the network from learning useful relations between the

buggy line and the fix, which makes the models inefficient and less

effective on fixing the buggy code.

We propose a new context-aware NMT architecture that has

two separate encoders: one for the buggy lines, the other one for

the context. Using separate encoders presents three advantages.

First, the buggy line encoder will only have shorter input sequences.

Thus, it will be able to extract strong relations between tokens in

the buggy lines and the correct fix without wasting its resources on

relations between tokens in the context. Second, a separate context

encoder helps the model learn useful relations from the context

(such as potential donor code, variables in scope, etc.) without

adding noise to the relations learned from the buggy lines. Third,

since the two encoders are independent, the context and buggy line

encoders can have different complexity (e.g., different number of

layers), which could improve the performance of the model. For

example, since the context is typically much longer than the buggy

lines, the context encoder may need larger convolution kernels to

capture long-distance relations, while the buggy line encoder may

benefit from a higher number of layers (i.e., a deeper network) to

capture more complex relations between buggy and clean lines.

This context-aware NMT architecture is novel and can also be applied

to improve other tasks such as fixing grammar mistakes and natural

language translation.

- catch (org.mockito.exceptions.verification.junit.

ArgumentsAreDifferent e) {

+ catch (AssertionError e) {

(a) Patch for Mockito 5 in Defects4J for Java.

if (actualTypeArgument instanceof WildcardType) {

contextualActualTypeParameters.put(typeParameter , boundsOf ((

WildcardType) actualTypeArgument));

- } else {

+ } else if (typeParameter != actualTypeArgument) {

contextualActualTypeParameters.put(typeParameter ,

actualTypeArgument);

}

(b) Patch for Mockito 8 only fixed by a context-aware model.

Figure 1: Two bugs in Defects4J fixed by CoCoNuT that

other tools did not fix.

(2) Capturing the diversity of bug fixes: Due to the diversity

of bugs and fixes (i.e., many different types of bugs and fixes), a

single NMT model using the łbestž hyperparameters (e.g., number

of layers) would struggle to generalize.

Thus, we leverage ensemble learning to combine models of

different levels of complexity that capture different relations be-

tween buggy and clean code. This allows our technique to learn

diverse repair strategies to fix different types of bugs.

In this paper, we propose a newG&V technique calledCoCoNuT

that consists of an ensemble of fully convolutional (FConv) models

and new context-aware NMT models of different levels of com-

plexity. Each context-aware model captures different information

about the repair operations and their context using two separate

encoders (one for buggy lines and one for the context). Combining

such models allows CoCoNuT to learn diverse repair strategies

that are used to fix different types of bugs while overcoming the

limitations of existing NMT approaches.

Evaluated against 27 APR techniques on six bug benchmarks

in four programming languages, CoCoNuT fixes 509 bugs, 309 of

which have not been fixed by any existing APR tools. Figure 1

shows two of such patches for bugs in Defects4J [31], demonstrat-

ing CoCoNuT’s capability of learning new and complex relations

between buggy and clean code from the 3,241,966 instances in the

Java training set. CoCoNuT generates the patch in Figure 1a using a

new pattern (i.e., updating the Error type to be caught) that previ-

ous work [12, 27, 29, 35, 37, 38, 45ś48, 50, 58, 67ś69, 71, 82, 86, 87]

did not discover. In the Figure, ł-ž denotes a line to be deleted that

is taken as input by CoCoNuT, while ł+ž denotes the line gener-

ated by CoCoNuT and is identical to the developer’s patch. These

previous techniques represent a decade of APR research that

uses manually-designed Java fix patterns. This demonstrates that

CoCoNuT complements existing APR approaches by automatically

learning new fix patterns that existing techniques did not have, and

automatically fixing bugs that existing techniques did not fix. To

fix the bug in Figure 1b, CoCoNuT learns from the context lines

the correct variables (typeParameter and actualTypeArgument)

to be inserted in the conditional statement.

This paper makes the following contributions:

• A new context-aware NMT architecture that represents context

and buggy input separately. This architecture is independent of

our fully automated tool and could be applied to solve general
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problems in other domains where long-term context is necessary

(e.g., grammatical error correction).

• The first application of CNN (i.e., FConv [20] architecture) for

APR. We show that the FConv architecture outperforms LSTM

and Transformer architectures when trained on the same dataset.

• An ensemble approach that combines context-aware and FConv

NMT models to better capture the diversity of bug fixes.

• CoCoNuT is the first APR technique that is easily portable to dif-

ferent programming languages. With little manual effort, we ap-

plied CoCoNuT to four programming languages (Java, C, Python,

and JavaScript), thanks to the use of NMT and new tokenization.

• A thorough evaluation of CoCoNuT on six benchmarks in four

programming languages. CoCoNuT fixes 509 bugs, 309 of which

have not been fixed by existing APR tools.

• Ause of attentionmaps to explain why certain fixes are generated

or not by CoCoNuT.

Artifacts are available1.

2 BACKGROUND AND TERMINOLOGY

Terminology: A DL network is a structure (i.e., a graph) that con-

tains nodes or layers that are stacked to perform a specific task.

Each type of layer represents a specific low-level transformation

(e.g., convolution, pooling) of the input data with specific param-

eters (i.e., weights). We call DL architecture an abstraction of a set

of DL networks that have the same types and order of layers but

do not specify the number and dimension of layers. A set of hy-

perparameters specifies how one consolidates an architecture to a

network (e.g., it defines the convolutional layer dimensions or the

number of convolutions in the layer group). The hyperparameters

also determine which optimizer is used in training along with the

optimization parameters, such as the learning rate and momentum.

We call a model (or trained model), a network that has been trained,

which has fixed weights.

Attention: The attention mechanism [9] is a recent DL improve-

ment. It helps a neural network to focus on the most important

features. Traditionally, only the latest hidden states of the encoder

are fed to the decoder. If the input sequence is too long, some in-

formation regarding the early tokens are lost, even when using

LSTM nodes [9]. The attention mechanism overcomes this issue by

storing these long-distance dependencies in a separate attention

map and feeding them to the decoder at each time step.

Candidate, Plausible, andCorrect Patches:We call patches gen-

erated by a tool candidate patches. Candidate patches that pass the

fault triggering test cases are plausible patches. Plausible patches

that are semantically equivalent to the developers’ patches are

correct patches.

3 APPROACH

Our technique contains three stages: training, inference, and vali-

dation. Figure 2 shows an overview of CoCoNuT. In the training

phase, we extract tuples of buggy, context, and fixed lines from

open-source projects. Then, we preprocess these lines to obtain

sequences of tokens, feed the sequences to an NMT network, and

tune the network with different sets of hyperparameters. We further

1https://github.com/lin-tan/CoCoNut-Artifact

train the top-k models until convergence to obtain an ensemble of

k models. Since each model has different hyperparameters, each

model learns different information that helps fix different bugs.

In the inference phase, a user inputs a buggy line and its context

into CoCoNuT. It then tokenizes the input and feeds it to the top-k

best models, which each outputs a list of patches. These patches

are then ranked and validated by compiling the patched project.

CoCoNuT then runs the test suite on the compilable fixes to filter

incorrect patches. The final output is a list of candidate patches that

pass the validation stage.

Section 3.1 presents the challenges of using NMT to automat-

ically fix bugs, while the rest of Section 3 describes the different

components of CoCoNuT.

3.1 Challenges

In addition to the two main challenges discussed in Introduction,

i.e., (1) representing context and (2) capturing the diversity of

fix patterns, using NMT for APR has additional challenges:

(3) Choice of Layers of Neurons: While natural language text is

read sequentially from left to right, source code is generally not

executed in the same sequential way (e.g., conditional blocks might

be skipped in the execution). Thus, relevant information can be

located farther away from the buggy location (e.g., a variable defi-

nition can be lines away from its buggy use). As a result, traditional

recurrent neural networks (RNN) using LSTM layers [56] may not

perform well for APR.

To address these challenges, we build our new context-aware

NMT architecture using convolutional layers as the main compo-

nent of the two encoders and the decoder, as they better capture

such different dependencies than RNN layers [16, 20]. We stack con-

volutional layers with different kernel sizes to represent relations

of different levels of granularity. Layers of larger kernel sizes model

long-term relations (e.g., relations within a function), while layers

of smaller kernel sizes model short-term relations (e.g., relations

within a statement). To further track long-term dependencies in

both input and context encoders, we use a multi-step attention

mechanism.

(4) Large vocabulary size: Compared to traditional natural lan-

guage processing (NLP) tasks such as translation, the vocabulary

size of source code is larger and many tokens are infrequent be-

cause developers can practically create arbitrary tokens. In addition,

letter case indicates important meanings in source code (e.g., zone

is a variable and ZONE a constant), which increases the vocabulary

size further. For example, previous work [13] had to handle a code

vocabulary size larger than 560,000 tokens. Practitioners need to cut

the vocabulary size significantly to make it scalable for NMT, which

leaves a large number of infrequent out-of-vocabulary tokens. We

address this challenge by using a new tokenization approach that

reduces the vocabulary size significantly without increasing the

number of out-of-vocabulary words. For Java, our tokenization

reduces the vocabulary size from 1,136,767 to 139,423 tokens while

keeping the percentage of tokens out-of-vocabulary in our test sets

below 2% (Section 3.3).
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  public static int max_sublist_sum(int[] arr) {
   int max_ending_here, max_so_far = 0;
   for (int x : arr) {
-   max_ending_here=max_ending_here+x;
    max_so_far = Math.max(max_so_far,max_ending_here);
   }
   return max_so_far;}}

src/jvm/backtype/storm/utils/RotatingMap.java

Training Stage
Training and tuningData extraction

Inference Stage Top-k networks

Buggy line localization

Validation Stage
Compilation Test suite validation

Candidate 2.1

Candidate 5.N

Candidate 1.1

Candidate 3.1

...

Compiled 2.1

Compiled 5.N

Compiled 1.1

...

Plausible Patches

Patch 5.N

Patch 1.1

...

Candidate 4..1
Compiled 4.1

Patch 4.1

Re-ranking

Candidate 2.1

Candidate 5.N

Candidate 1.1

Candidate 3.1

...
Candidate 4.1

QuixBugs: MAX_SUBLIST_SUM.java
1

2 3

4 5

Tokenization

Buggy line

Context lines

Tokenization

Fixed lines

Buggy lines

Context lines- public void rotate() {
+ public Map<K,V> rotate() {
    Map<K, V> dead = _buckets.removeLast();
    _buckets.addFirst(new HashMap<K, V>());

Ensemble

Figure 2: CoCoNuT’s overview

3.2 Data Extraction

We train CoCoNuT on tuples of buggy, context, and fixed lines of

code extracted from the commit history of open-source projects.

To remove commits that are not related to bug fixes, we follow

previous work [81] and only keep commits that have the keywords

łfix,ž łbug,ž or łpatchž in their commit messages. We also filter

commits using six commit messages anti-patterns: łrename,ž łclean

up,ž łrefactor,ž łmerge,ž łmisspelling,ž and łcompiler warning.ž We

manually investigate a random sample of 100 commits filtered using

this approach and 93 of them are bug-related commits. This is a

reasonable amount of noise (7%) for ML training on large training

data [34, 85]. We split commits into hunks (groups of consecutive

differing lines) and consider each hunk as a unique instance.

We represent the context of the bug using the function surround-

ing the buggy lines because it gives semantic information about

the buggy functionality, is relatively small, contains most of the

relevant variables, and can be extracted for millions of instances.

The block łData Extractionž in Figure 2 shows an example with

one buggy line (highlighted in red), one correct line (highlighted in

blue), and some lines of context (with purple on the left).

The proposed context-aware NMT architecture is independent

of the choice of the context and would still work with different

context definitions (e.g., full file or data-flow context). Our contri-

bution is to represent the buggy line and the context separately as

a second encoder, independently of the chosen context. Exploring

other context definitions is interesting future work.

3.3 Input Representation and Tokenization

CoCoNuT has two separate inputs: a buggy line and its context.

The block "Buggy line localizationž in Figure 2 shows the inputs for

the MAX_SUBLIST_SUM bug in QuixBugs [43]. The line highlighted

in red is the buggy line and the lines with a purple block on the left

(i.e., the entire function) represent the context. Since typical NMT

approaches take a vector of tokens as input, our first challenge is

to choose a correct abstraction to transform a buggy line and its

context into sequences of tokens.

We use a tokenization method analogous to word-level tokeniza-

tion (i.e., space-separated), a widely used tokenization in NLP. How-

ever, word-level tokenization presents challenges that are specific

to programming languages. First, we separate operators from vari-

ables as they might not be space-separated. Second, the vocabulary

size is extremely large and many words are infrequent or com-

posed of multiple words without separation (e.g., getNumber and

get_Number are two different words). To address this issue, we en-

hance the word-level tokenization by also considering underscores,

camel letters, and numbers as separators. Because we need to cor-

rectly regenerate source code from the list of tokens generated by

the NMT model, we also need to introduce a new token (<CAMEL>)

to mark where the camel case split occurs. In addition, we abstract

string and number literals except for the most frequent numbers (0

and 1) in our training set.

Thanks to these improvements, we reduce the size of the vo-

cabulary significantly (e.g., from 1,136,767 to 139,423 tokens for

Java), while limiting the number of out-of-vocabulary tokens (in our

benchmarks, less than 2% of the tokens were out-of-vocabulary).

3.4 Context-Aware NMT Architecture

CoCoNuT’s architecture presents two main novelties. The first one

consists of using two separate encoders to represent the context and

the buggy lines (Figure 3). The second is a new application of fully

convolutional layers (FConv) [20] for APR instead of traditional

RNN such as LSTM layers used in previous work [13]. We choose

the FConv layers because FConv’s CNN layers can be stacked to

extract hierarchical features for larger contexts [16], which enables

modeling source code at different granularity levels (e.g., variable,

statement, block, and function). This is closer to how developers

read code (e.g., looking at the entire function, a specific block, and

then variables). RNN layers model code as a sequence, which is

more similar to reading code from left to right.

We evaluate the impact of FConv and LSTM in Section 5.3.

Our architecture consists of several components: an input en-

coder, a context encoder, a merger, a decoder, and an attention

module. For simplicity, Figure 3 only displays a network with one
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convolutional layer. In practice, depending on the hyperparame-

ters, a complete network has 2 to 10 convolutional layers for each

encoder and the decoder.

In training mode, the context-aware model has access to the

buggy lines, its context, and the fixed lines. The model is trained to

generate the best representation of the transformation from buggy

lines with context to fixed lines. In practice, this is conducted by

finding the best combination of weights that translates the input

instances from the training set to fixed lines. Multiple passes on

the training data are necessary to obtain the best set of weights.

In inference mode, since the model does not have access to the

fixed line, the decoder processes tokens one by one, starting with a

generic <START> token. The outputs of the decoder and the merger

are then combined through the multi-step attention module. Finally,

new tokens are generated based on the outputs of the attention, the

encoders, and the decoder. The generated token is then fed back to

the decoder until the <END> token is generated.

Following the example input in Figure 3, a user inputs the buggy

statement łint sum=0;ž and its context to CoCoNuT. After tok-

enization, the buggy statement (highlighted in red) is fed to the

Input encoder while the context (highlighted in purple) is fed to

the Context encoder. The outputs of both encoders are then con-

catenated in the Merger layer.

Since CoCoNuT did not generate any token yet, the token genera-

tion starts by feeding the token <START> to the decoder (iteration 0).

The output of the decoder (𝑑𝑜𝑢𝑡 ) is then combined with the merger

output using a dot product to form the first column of the attention

map. The colors of the attention map indicate how important each

input token is for generating the output. For example, to generate

the first token (double), the token int is the most important input

token as it appears in red. The token generation combines the out-

put of the attention, as well as the sum of the merger and decoder

outputs (Σ 𝑒𝑜𝑢𝑡 and Σ𝑑𝑜𝑢𝑡 ) to generate the token double. This new

token is added to the list of generated tokens and the list is given

back as a new input to the decoder (iteration 1). The decoder uses

this new input to compute the next 𝑑𝑜𝑢𝑡 that is used to build the

second column of the attention map and to generate the next token.

The token generation continues until <END> is generated.

We describe the different modules of the network below.

Encoders and Decoder: The purpose of the encoders is to provide

a fixed-length vectorized representation of the input sequence while

the decoder translates such representation to the target sequence

(i.e., the patched line). Both modules have a similar structure that

consists of three main blocks: an embedding layer, several convolu-

tional layers, and a layer of gated linear units (GLU).

The embedding layers represent input and target tokens as vec-

tors, with tokens occurring in similar contexts having a similar

vector representation. In a sense, these layers represent the model’s

knowledge of the programming language.

The output of the embedding layers is then fed to several convo-

lutional layers. The size of the convolution kernel represents the

number of surrounding tokens that are taken into consideration.

Stacking such convolutional layers with different kernel sizes pro-

vides multiple levels of abstraction for our network to work with.

For example, a layer with a small kernel size will only focus on a

few surrounding tokens within a statement, while larger layers will

Merger

A
tte

nt
io

n

INPUT:

OUTPUT:

Input encoder

Decoder

Token generation

<END>;double ...

ΣdoutΣeout

...

...... ...

int

0

<START>

double

; 

...

...

...

...

...

emb. conv. GLU
hidden 
states

...
0

1

n

CONTEXT: Context encoder
public

static

distance

}

...

...... ...

...
...

...

......

...

...

... ... ...

...

...

...

... ... ...

;

sum

...

...

...

... ...

...

... ... ...

Figure 3: The new NMT architecture used in CoCoNuT.

focus on a block of code or even a full function. These layers are

different in the encoder and the decoder. The encoders use infor-

mation from both the previous and the next tokens in the input

sequence (since the full input sequence is known at all times), while

the decoder only uses information about the previously generated

tokens (since the next tokens have not been generated yet). Fig-

ure 3 shows these differences (full triangles in the encoders and

half triangles in the decoder).

After the convolutional layers, a layer of GLU (represented by

the sigmoid and multiplication boxes in Figure 3) decides which

information should be kept by the network. The Merger then con-

catenates the outputs of the input and context encoders.

Multi-Step Attention: Compared to traditional attention (see Sec-

tion 2), multi-step attention uses an attentionmechanism to connect

the output of each convolutional layer in the encoders and the de-

coder. When multiple convolutional layers are used, it results in

multiple attention maps. Multi-step attention is useful because it

connects each level of abstraction (i.e., convolutional layer) to the

output. This increases the amount of information an encoder passes

to the decoder when generating the target tokens.

The attention map represents the impact of input tokens on

generating a specific output token and can help explain why a

specific output is generated. We analyze attention maps in RQ4.

Token Generation: The token generation combines the outputs

of the attention layers, merger (Σ 𝑒𝑜𝑢𝑡 ) and decoder (Σ 𝑑𝑜𝑢𝑡 ) to

generate the next token. Each token in the vocabulary is ranked by

the token generation component based on their likelihood of being

the next token in the output sequence. The token selected by the

search algorithm is then appended to the list of generated tokens,

and the list is sent back as the new input of the decoder. The token

generation stops when the <END> token is generated.

Beam Search: We use a common search strategy called beam

search to generate and rank a large number of candidate patches.

For each iteration, the beam search algorithm checks the 𝑡 most

likely tokens (𝑡 corresponds to the beam width) and ranks them by

the total likelihood score of the next 𝑠 prediction steps (𝑠 correspond
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Table 1: Training set information.

Language # projects # instances

Java 2006 45,180 3,241,966

Java 2010 59,237 14,796,149

Python 2010 13,899 480,777

C 2005 12,577 2,735,506

JavaScript 2010 10,163 3,217,093

to the search depth). In the end, the beam search algorithm outputs

the top 𝑡 most likely sequences ordered based on the likelihood of

each sequence.

3.5 Ensemble Learning

Fixing bugs is a complex task because there are very diverse bugs

with very different fixing patterns that vary in terms of complexity.

Some fix patterns are very simple (e.g., changing the operator < to

>) while others require more complex modifications (e.g., adding a

null checker or calling a different function). Training a model to fix

all types of bugs is difficult. Instead, it is more effective to combine

multiple specialized models into an ensemble model that will fix

more bugs than one single model.

Therefore, we propose an ensemble approach that combines: (1)

models with and without context, and (2) models with different

hyperparameters (different networks) that perform the best on our

validation set.

As described in Section 2, hyperparameters consolidate an archi-

tecture to a network. Different hyperparameters have a large impact

on the complexity of a network, the speed of the training process,

and the final performance of the trained model. For this tuning pro-

cess, we apply random search because previous work showed that it

is an inexpensive method that performs better than other common

hyperparameter tuning strategies such as grid search and manual

search [10]. For each hyperparameter, based on our hardware limi-

tations, we define a range from which we can pick a random value.

Since training a model until convergence is very expensive, we tune

with only one epoch (i.e., one pass on the training data). We train 𝑛

models with different random sets of parameters to obtain models

with different behavior and keep the top 𝑘 best models based on

the performance of each model on a separate validation set. This

tuning process allows us to discard underfit or overfit models while

keeping the 𝑘 best models that converge to different local optima

and fix different real-world bugs.

Finally, we sort patches generated by different models based on

their ranks. We use the likelihood of each sequence (i.e., bug fix)

generated by each model to sort patches of equal ranks.

3.6 Patch Validation

Statement Reconstruction: A model outputs a list of tokens that

forms a fix for the input buggy line. The statement reconstruction

module generates a complete patch from the list of tokens. For the

abstracted tokens (i.e., strings and numbers), we extract donor code

from the original file in which the bug occurred. Once the fix is

generated, it is inserted at the buggy location, and we move to the

validation step.

Compilation and Test Suite Validation: The model does not

have access to the entire project; therefore, it does not knowwhether

the generated patches are compilable or pass the test suite. The

validation step filters out patches that do not compile or do not pass

the triggering test cases. We use the same two criteria as previous

work [89] for the validation process. First, the test cases that make

the buggy version pass should still pass on the patched version.

Second, at least one test case that failed on the buggy version should

pass on the patched version.

3.7 Generalization to Other Languages

Since CoCoNuT learns patterns automatically instead of relying on

handcrafted patterns, it can be generalized to other programming

languages with minimum effort. The main required change is to

obtain new input data. Fortunately, this is easy to do since our

training set is extracted from open-source projects. Once the data

for the new programming language has been extracted, the top

k models can be retrained without re-implementation. CoCoNuT

will learn fix patterns automatically for the new programming

language.

4 EXPERIMENTAL SETUP

Selecting TrainingData: Since the earliest bugs in our Java bench-

marks are from 2006 and the latest are from 2016, we divide the

instances extracted from the training projects into two training sets.

The first one contains all instances committed before 2006 and the

second one contains instances committed before 2010. Instances

committed after 2010 are discarded. The models trained using the

first training set can be used to train models to fix all bugs in the test

benchmarks, while the models trained using the second training

set should only be used on the bugs fixed after 2010. This setup

is to ensure the validity of experiments so that no future data is

used [75] (Section 5).

For Java, we use GHTorrent [21] to collect instances from 59,237

projects that contain commits before 2010. We also extract data

from the oldest 20,000 Gitlab projects (restriction caused by the

limitation of Gitlab search API) because we expect older projects

to contain more bugs fixed before the first bug in our benchmarks,

and 10,111 Bitbucket repositories (ranked by popularity because of

limitations of the Bitbucket search API).

For other languages, we use GHTorrent to extract data from all

GitHub projects before the first bug in their associated benchmark.

Table 1 shows the number of projects and the number of instances

in all training sets.

Selecting State-of-the-art Tools for Comparison:We compare

CoCoNuT against 27 APR techniques, including all Java tools used

in previous comparisons [47], two additional recent techniques [33,

71], five state-of-the-art C tools [2, 52, 55, 59], and two NMT-based

techniques [13, 42]. We chose DLFix [42] and SequenceR [13] over

other NMT techniques [23, 60, 77] for comparison, because [77]

only generates templates and [23, 60] focus on compilation errors,

which is a different problem.

Training, Tuning, and Inference: For tuning, we pick a random

sample of 20,000 instances as our validation dataset and use the

rest for training.
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We use random search to tune hyperparameters. We limit the

search space to reasonable values: embedding size (50-500), convolu-

tional layer dimensions (128*(1-5), (1-10)), number of convolutional

layers (1-10), dropout, gradient clipping level, and learning rate (0-

1). For tuning, we train 100 models for one epoch on the 2006 Java

training set with different hyperparameters and rank the hyperpa-

rameters sets based on their perplexity [28], which is a standard

metric in NLP that measures howwell a model generates a sequence.

We train the top-k (default k=10) models using ReduceLRonPlateau

schedule, with a plateau of 10−4, and stop at convergence or until

we reach 20 epochs. In inference mode, we use beam search with a

beam width of 1,000.

Infrastructure:Weuse the Pytorch [65] implementations of LSTM,

Transformer, and FConv provided by fairseq-py [1]. We train and

evaluate CoCoNuT on three 56-core servers with NVIDIA TITAN

V, Xp, and 2080 Ti GPUs.

5 EVALUATION AND RESULTS

Realistic Evaluation Setup: To evaluate CoCoNuT, we use six

benchmarks commonly used for APR that contain realistic bugs.

When dealing with time-ordered data, it is not uncommon to

incorrectly set up the evaluation [75]. If the historical data used

to build the APR technique is more recent than the bugs in the

benchmarks, it could contain helpful information (e.g., code clones

and regression bugs) that would realistically be unavailable at the

time of the fix. Using training/validation instances that are newer

than the bugs in the benchmark to train or validate our models

would be an incorrect setup and might artificially improve the

performances of the models.

This incorrect setup potentially affects all previous APR tech-

niques that use historical data. Although the effect may be smaller,

even pattern-based techniques could suffer from this problem since

patterns might have been manually learned from bugs that were

fixed after the bugs in the benchmarks. To the best of our knowl-

edge, we are the first to acknowledge and address this incorrect

setup issue in the context of APR. The using-future-data threat is

also one of the reasons that we did not use k-fold cross-validation

for evaluation.

To address the setup issue, we extract the timestamp of the oldest

bug in the benchmark (based on the date of the fixing commits)

and only use training and validation instances before that time-

stamp. However, adding newer data to the training set would help

CoCoNuT fix more recent bugs (e.g., using data until 2010 would

be helpful to fix bugs from 2011). A straightforward solution would

be to retrain CoCoNuT using different training data for each bug

timestamp in the benchmark; however, this is not scalable. Instead,

we split our benchmark into two parts. The first part contains bugs

from 2006 to 2010 and is used to evaluate CoCoNuT trained with

data from before 2006. The second part of the benchmark contains

bugs from 2011 to 2016 and is used to evaluate CoCoNuT trained

with data from before 2011 (including data from before 2006). This

split allows CoCoNuT to learn from instances up to 2010 to fix newer

bugs while keeping the overhead reasonable. We then combine the

results of CoCoNuT on these two sub-benchmarks to obtain the

final number of bugs fixed. With this correct setting, CoCoNuT has

no access to data that would be unavailable in a realistic scenario.

Similar to previous work [12, 27, 29, 35, 38, 45ś48, 50, 58, 67ś69,

71, 82, 86, 87], we stop CoCoNuT after the first generated patch that

is successfully validated against the test suite. If no patch passes the

test suite after the limit of six hours, we stop and consider the bug

not repaired by CoCoNuT. For evaluation purposes only, three co-

authors manually compare the plausible patches (i.e., patches that

pass the test cases) to the developers’ patches and consider a patch

correct if they all agree it is identical or semantically equivalent

to the developers’ patch using the equivalence rules described in

previous work [49].

5.1 RQ1: How does CoCoNuT perform against
state-of-the-art APR techniques?

Approach: Table 2 shows that we compare CoCoNuTwith 27 state-

of-the-art G&V approaches on six benchmarks for four different pro-

gramming languages. We use Defects4J [31] and QuixBugs [43]

for Java, Codeflaws [76] and ManyBugs [39] for C, and QuixBugs [43]

for Python. For JavaScript; we use the 12 examples associated with

common bug patterns in JavaScript described in previous work

(BugAID) [25]. The total number of bugs in each dataset is under

the name of the benchmark.

We compare our results with popular (e.g., GenProg) and recent

(e.g., TBar) G&V techniques for C and Java. We do not compare with

the JavaScript APR technique Vejovis [64] since it only fixes bugs

in Document Object Model (DOM). We extract the results for each

technique from a recent evaluation [46] and cross-check against

original results when available. Perfect buggy location results are

extracted from the GitHub repository of previous work [49] and

manually verified to remove duplicate bugs.

We run Angelix, Prophet, SPR, and GenProg on the entire Code-

flaws dataset because these techniques had not been evaluated

on the full dataset. We use the default timeout values provided by

the Codeflaws dataset authors. Since Codeflaws consists of small

single-file programs, it is unlikely that these techniques would

perform differently with a larger timeout.

The results in Table 2 are displayed as x/y, with x the number of

correct patches that are ranked first by an APR technique, and y

the number of plausible patches. We also show in parentheses the

number of bugs fixed by CoCoNuT that have not been fixed by other

techniques. ‘-’ indicates that a technique has not been evaluated

on the benchmark or does not support the programming language

of the benchmark. For the BugAID and ManyBugs benchmarks, we

could not run the validation step; therefore we only display the

number of patches that are identical to developers’ patches († in

the Table) and cannot show the number of plausible patches.

Since different approaches used different fault localization (FL)

techniques, we separate them based on FL types (Column FL), as

was done in previous work [48]. Standard FL-based approaches

use a traditional spectrum-based fault localization technique. Sup-

plemented FL-based APR techniques use additional methods or

assumptions to improve FL. For example, HD-Repair assumes that

the buggy file and method are known. Finally, Perfect FL-based

techniques assume that the perfect localization of the bug is known.

According to recent work [46, 49], this is the preferred way to

evaluate G&V approaches, as it enables fair assessment of APR

techniques independently of the fault localization approach used.
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Table 2: Comparison with state-of-the-art G&V approaches. The number of bugs that only CoCoNuT fixes is in parentheses

(309). The results are displayed as x/y, with x the number of bugs correctly fixed. and y the number of bugs with plausible

patches. * indicates tools whose manual fix patterns are used by TBAR. Numbers are extracted from either the original papers

or from previous work [49] which reran some approaches with perfect localization. In Defects4J, we exclude Closure 63 and

Closure 93 from the total count since they are duplicates of Closure 62 and 92, respectively. † indicates the number of patches

that are identical to developer patchesÐthe minimal number of correct patches. - indicates tools that have not been evaluated

on a specific benchmark. The highest number of correct patches for each benchmark is in bold.

FL Tool

Java C Python JavaScript

Defects4J QuixBugs Codeflaws ManyBugs QuixBugs BugAID

393 bugs 40 bugs 3,902 bugs 69 bugs 40 bugs 12 bugs

S
ta
n
d
a
rd

1 Angelix [59] - - 318/591 18/39 - -

2 Prophet [55] - - 301/839 15/39 - -

3 SPR [52] - - 283/783 11/38 - -

4 Astor* [58] - 6/11 - - - -

5 LSRepair [45] 19/37 - - - - -

6 DLFix [42] 29/65 - - - - -

S
u
p
p
le
m
e
n
te
d

7 JAID [12] 9/31 - - - - -

8 HD-Repair* [37] 13/23 - - - - -

9 SketchFix* [27] 19/26 - - - - -

10 ssFix* [86] 20/60 - - - - -

11 CapGen* [82] 21/25 - - - - -

12 ConFix [33] 22/92 - - - - -

13 Elixir* [69] 26/41 - - - - -

14 Hercules [71] 49/72 - - - - -

P
e
rfe

ct

15 SOSRepair [2] - - - 16/23 - -

16 Nopol [88] 2/9 1/4 - - - -

17 (j)Kali [58, 68] 2/8 1/2 - 3/27 - -

18 (j)GenProg [38, 58] 6/16 0/2 [255-369]/1423 2/18 - -

19 RSRepair [67] 10/24 2/4 - 2/10 - -

20 ARJA [91] 12/36 - - - - -

21 SequenceR [13] 12/19 - - - - -

22 ACS [87] 16/21 - - - - -

23 SimFix* [29] 27/50 - - - - -

24 kPAR* [46] 29/56 - - - - -

25 AVATAR* [48] 29/50 - - - - -

26 FixMiner* [35] 34/62 - - - - -

27 TBar [47] 52/85 - - - - -

CoCoNuT (not fixed by others) 44/85 (6) 13/ 20 (10) 423/ 716 (271) 7 †/- (0) 19/21 (19) 3 †/- (3)

Total bugs fixed by CoCoNuT 509 (309)

We exclude iFixR [36] because it uses kPAR to generate fixes

which is already in the Table. We choose kPAR since its evaluation

is similar to our evaluation setup and allows for a fairer comparison.

iFixR proposes to use bug reports instead of test cases. However,

we believe that it is reasonable to keep test cases for validation

because, even if they were committed at a later stage, they were

often available to the developers at the time of the bug report since

developers generally discover bugs by seeing a program fail given

one failing test case. Regardless, this is still a fair comparison with

the 27 existing techniques which all use test cases for validation.

TBar is a recent pattern-based technique that uses patterns imple-

mented by previous work (techniques marked with a * in Table 2).

TBar shows how a combination of most existing pattern-based tech-

niques behaves with perfect localization.

Results:Overall, Table 2 shows that CoCoNuT fixes 509 bugs across

six bug benchmarks in four programming languages. CoCoNuT is

the best technique on four of the six benchmarks and is the only

technique that fixes bugs in Python and JavaScript, indicating that

CoCoNuT is easily portable to different programming languages

with little manual effort.

On the Java benchmarks, CoCoNuT outperforms existing tools

on the QuixBugs benchmark, fixing 13 bugs, including 10 bugs that

have not been fixed before. On Defects4J, CoCoNuT performs

better than all techniques but TBar and Hercules. In addition, 6

bugs CoCoNuT fixes have not been fixed by any other techniques.

Two of the 6 bugs require new fix patterns that have not been

found by any previous work from a decade of APR research. We

investigate these six bugs in detail in RQ2. In addition, fifteen of

the bugs fixed by Hercules are multi-hunk bugs (i.e., bugs that need

changes in multiple locations to be fixed), currently out of scope

for CoCoNuT which mostly generates single-hunk bug fixes. In the

future, the method used by Hercules to fix multi-hunk bugs could

be applied to CoCoNuT.

Two of the 240 Defects4J bugs from after 2010 can only be

fixed by models trained with the training set containing data up

to 2010. Surprisingly, the models trained with data from before

2006 stay relevant and can fix bugs introduced 4 to 10 years after

the training data. This highlights the fact that, while training DL

108



CoCoNuT: Combining Context-Aware Neural Translation Models using Ensemble for Program Repair ISSTA ’20, July 18–22, 2020, Virtual Event, USA

- static float toJavaVersionInt(String version) {

+ static int toJavaVersionInt(String version) {

Figure 4: CoCoNuT’s Java Patch for Lang 29 in Defects4J

that have not been fixed by other techniques.

- int indexOfDot=namespace.indexOf('.');

+ int indexOfDot=namespace.lastIndexOf('.');

(a) Java patch for Closure 92 in Defects4J.

- int end = message.indexOf(templateEnd ,start);

+ int end = message.lastIndexOf(templateEnd ,start);

(b) Similar change to Closure 92 bug occurring in the training data.

Figure 5: Example of patches fixed only by CoCoNuT and

related changes in the training set.

- while True:

+ while queue:

(a) Python patch for BREADTH_FIRST_SEARCH in QuixBugs.

- while (true) {

+ while (! queue.isEmpty ()) {

(b) Java patch for BREADTH_FIRST_SEARCH in QuixBugs.

Figure 6: BREADTH_FIRST_SEARCH bugs fixed by Co-

CoNuT in both Python and Java QuixBugs benchmarks.

models is expensive, such models stay relevant for a long time and

do not need expensive retraining.

In Defects4J, 43% (19 out of 44) of the bugs fixed by CoCoNuT

are not fixed by TBar (the best technique), hence CoCoNuT com-

plements TBar very well. There are also several bugs fixed by TBar

that CoCoNuT fails to fix. Seven of them are if statement inser-

tions (e.g., null check), and three of them are fixes that move a

statement to a different location. These bugs are difficult to fix for

CoCoNuT because we targeted bugs that are fixed by modifying a

statement, hence these two transformations do not appear in our

training set. Fixing bugs by inserting if statements has been widely

studied [47, 52, 87, 88]. Instead, we propose a new technique that

fixes bugs that are more challenging for other techniques to fix.

While we generate 1,000 patches for each bug per model, correct

patches are generally ranked very high. Ten of the 44 correct patches

in Defects4J are ranked first by one of the models. The average

rank of a correct patch is 63 and the median rank is 4. The worst

rank of a correct patch is 728.

A potential threat to validity is that some tools use different fault

localization techniques. While we cannot re-implement all existing

tools using perfect localization (e.g., some tools are not publicly

available), we try our best to mitigate this threat. First, we consider

13 tools that also use perfect localization for comparison, including

TBar, which fixed the most number of bugs in Defects4J. Second,

TBar uses fix patterns from 10 tools (marked with * in Table 2)

with perfect localization. Thus, although some of these 10 tools do

not use perfect fault localization, we indirectly compare with these

tools using perfect fault localization. CoCoNuT fixes 6 bugs that

have not been fixed by existing tools including TBar.

On the C benchmarks, CoCoNuT fixes 430 bugs, 271 of which

have not been fixed before. CoCoNuT outperforms existing tech-

niques on the Codeflaws dataset, fixing 105more bugs than Angelix

and has a 59% precision (423 out of 716). On the ManyBugs bench-

mark, CoCoNuT fixes seven bugs, outperforming GenProg, Kali,

and RSRepair but is outperformed by other techniques.

We manually check for semantic equivalence for all generated

patches except for GenProg on ManyBugs. Instead, we manually

check a random sample of 310 out of the 1,423 plausible patches

for Codeflaws generated by GenProg, because GenProg rewrites

the program before patching it, e.g., replacing a for loop with a

while loop, which makes it difficult to manually investigate all

1,423 plausible patches. The margin of error for this sample is 4%

with a 95% confidence level, thus, Table 2 shows the projected range

of the number of Codeflaws bugs that GenProg fixes.

On the JavaScript andPython bug benchmarks, CoCoNuT fixes

three and 19 bugs respectively.

Since different bug benchmarks contain different distributions of

different types of bugs, and different APR tools fix different types of

bugs, it is important to evaluate new APR techniques on different

benchmarks for a fair and comprehensive comparison. CoCoNuT

is the best technique on four of the six benchmarks.

Summary: CoCoNuT is the first approach that has been suc-

cessfully applied without major re-implementation to different

programming languages, fixing 509 bugs in six benchmarks for

four popular programming languages, 309 of which that have

not been fixed by existing work, including six in Defects4J, a

dataset that has been heavily used to evaluate 22 other tools.

5.2 RQ2: Which bugs only CoCoNuT can fix?

Approach: For the bugs only CoCoNuT can fix in Defects4J, we

rerun TBar, the best technique for Java, on our hardware, with

perfect localization, and without a time limit to confirm that TBar

cannot fix these bugs, even under the best possible conditions. For

C, as stated in RQ1, we run Angelix, SPR, Prophet, and GenProg

on Codeflaws with the same hardware we used for CoCoNuT for

a fair comparison. CoCoNuT is the only technique fixing bugs in

the Python and JavaScript benchmarks.

Results: CoCoNuT fixes bugs by automatically learning new pat-

terns that have not yet been discovered, despite a decade of research

on Java fix patterns. Mockito 5 (Figure 1a) is a bug in Defects4J

only CoCoNuT fixes because it requires patterns that are not cov-

ered by existing pattern-based techniques (i.e., exception type up-

date). Lang 29 (Figure 4) is another bug that cannot be fixed by

other tools because existing pattern-based techniques such as TBar

do not have a pattern for updating the return type of a function.

TBar cannot generate any candidate patches for these two bugs.

Thanks to the context-aware architecture, CoCoNuT fixes bugs

other techniques do not fix by correctly extracting donor code (e.g.,

correct variable names) from the context, while techniques such as

TBar rely on heuristics. An example of such bugs is in Figure 1b as

explained in Section 1.

CoCoNuT is the only technique that fixes Closure 92 because

it learns from historical data (Figure 5b) that the lastIndexOf

method in the String library is a likely candidate to replace the

indexOf method. Other techniques such as TBar fail to generate a

correct patch because the donor code is not in their search space.
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Figure 7: Number of bugs fixed as the number ofmodels con-

sidered in ensemble learning increases.

- Calendar c = new GregorianCalendar(mTimeZone);

+ Calendar c = new GregorianCalendar(mTimeZone , mLocale);

Figure 8: CoCoNuT’s Java patch for Lang 26 in Defects4J.

CoCoNuT directly learns patterns from historical data without

any additional manual work, making it portable to different pro-

gramming languages. Figure 6 shows the same bug in both the

Java (Figure 6a) and Python (Figure 6b) implementations of the

QuixBugs dataset. CoCoNuT fixes both bugs, even if the patches in

Java and Python are quite different. Adapting pattern-based tech-

niques for Java to Python would require much work because the

fix-patterns are very different, even for the same bug.

Summary:CoCoNuT fixes 309 bugs that have not been fixed by

existing techniques, including six bugs in Defects4J. CoCoNuT

fixes new bugs by (1) automatically learning new patterns that

have not been found by previous work, (2) extracting donor

code from the context of the bug, and (3) extracting donor

code from the historical training data.

5.3 RQ3: What are the contributions of the
different components of CoCoNuT and how
does it compare to other NMT-based APR
techniques?

Approach: To understand the impact of each component of Co-

CoNuT, we investigate them individually. More specifically, we

focus on three key contributions: (1) the performance of our new

NMT architecture compared to state-of-the-art NMT architectures,

(2) the impact of context, and (3) the impact of ensemble learning.

We compare CoCoNuT with DLFix [42] and SequenceR [13], two

state-of-the-art NMT-based APR techniques and three other state-

of-the-art NMT architectures (i.e., LSTM [56], Transformer [78],

and FConv [20]). These models have not been used for program

repair, so we implemented them in the same framework as our

work (i.e., using Pytorch [65] and the fairseq-py [1] library). To

ensure a fair comparison, we tune and train the LSTM, Transformer,

and FConv similarly to CoCoNuT. SequenceR [13] uses an LSTM

encoder-decoder approach to repair bugs automatically. We use

the numbers reported by SequenceR and DLFix’s authors on the

Defects4J dataset for comparison since working versions of Se-

quenceR and DLFix were unavailable at the time of writing. DL-

Fix [42] uses a new treeRNN architecture that represents source

code as a tree.

Comparison with State-of-the-art NMT: CoCoNuT fixes the

most number of bugs, with 44 bugs fixed in Defects4J. DLFix is

the second best, fixing 29 bugs, followed by FConv with 21 bugs

while Transformer and SequenceR have similar performances, fix-

ing 13 and 12 bugs respectively. The last baseline, LSTM, performs

poorly with only 5 bugs fixed. These results demonstrate that Co-

CoNuT performs better than state-of-the-art DL approaches and

that directly applying out-of-the-box deep-learning techniques for

APR is ineffective.

Impact of the Context: Figure 7 shows the total number of bugs

fixed using the top-kmodels, with𝑘 from 1 to 10. For all𝑘 , CoCoNuT

outperforms an ensemble of FConv models trained without using

context. Our default CoCoNuT (with 𝑘 = 10 models) fixes six more

bugs than using models without context (44 versus 38).

Advantage of Ensemble Learning: Figure 7 shows that as 𝑘 in-

creases from 1 to 10, the number of bugs that CoCoNuT fixes in-

creases from 22 to 44, a 50% improvement. We observe a similar

trend for the FConv models, indicating that ensemble learning is

beneficial independently of the architecture used. Model 9 and

Model 7 are the best FConv and Context-aware models respectively,

both fixing 26 bugs.

While increasing 𝑘 also increases the runtime of the technique,

this cost is not prohibitive because CoCoNuT is an offline technique

and can be run overnight. In the worse case, with 𝑘=10, CoCoNuT

takes an average of 16.7 minutes to generate 20,000 patches for one

bug (for 𝑘=1, it takes an average of 1.8 minutes per bug).

While CoCoNuT fixes 44 in Defects4J, the average number

of bug fixed by a single model is 15.65. in Defects4J, 40% of the

bugs are fixed by five or fewer models. Six of the correctly fixed

bugs are only fixed by one model, while only two bugs are fixed

by all models. This indicates that different models in our ensemble

approach specialize in fixing different bugs.

Summary: The new NMT architecture we propose performs

significantly better than baseline architectures. In addition, us-

ing ensemble learning to combine the models improves the

results, with a 50% improvement for 𝑘=10 compared to 𝑘=1.

5.4 RQ4: Can we explain why CoCoNuT can (or
fail to) generate specific fixes?

The Majority of the Fixes are not Clones: By learning from

historical data, the depth of our neural network allows CoCoNuT

to fix complex bugs, including the ones that require generating

new variables. As discussed at the start of Section 5, we only keep

training and validation instances from before the first bugs in our

benchmarks for a fair evaluation. As a result, the exact same bug

cannot appear in our training/validation sets and evaluation bench-

marks. However, the same patch may still be used to fix different

bugs introduced at different times in different locations. Having

such patch clones in both training and test sets is valid, as recurring

fixes are common. The majority of the bugs fixed by CoCoNuT

do not appear in the training sets: only two patches from the C

benchmark and one from the JavaScript benchmark appear in the

training or validation sets. This indicates that CoCoNuT is effective

in learning and generating completely different fixes.

Analyzing the Attention Map: CoCoNuT can also fix bugs that

require complex changes. For example, the fix for Lang 26 from
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Figure 9: Attention map for the correct patch of Lang 26

from the Defects4J benchmark generated by CoCoNuT.

the Defects4J dataset shown in Figure 8 requires injecting a new

variable mLocale. This new variable only appears four times in

our training set, and never in a similar context. However, mLocale

contains the token Localewhich co-occurs in our training set with

the buggy statement tokens Gregorian, Time, and Zone.

The attention map in Figure 9 confirms that the token Time is

important for generating the Locale variable. Specifically, the tok-

enized input is shown on the y-axis while the tokenized generated

output is displayed on the x-axis. The token <CAMEL> between m

and Locale indicates that these two tokens form one unique vari-

able. The attention map shows the relationship between the input

tokens (vertical axis) and the generated tokens (horizontal axis).

The color in a cell represents the relationship of corresponding

input and output tokens. The color scale, shown on the right of the

figure, varies from 0 (dark blue) to 0.6 (dark red) and indicates the

contribution of each input token for generating an output token.

This attentionmap helps us understand why the model generates

specific tokens. For example, the second m in the output is generated

because of the token m in the input (part of mTimeZone), showing

that the network can keep the naming convention when generating

new variables (square labeled 2 in Figure 9). The token Locale is

mostly generated because of the token Time, indicating that the

network is confident these tokens should be together (square 3).

Finally, the tokens forming the variable mLocale are all influenced

by the input tokens ) ; and EOS, indicating that this token is often

used right before the end of a statement (i.e., as the last parameter

of the function call, rectangle 4 on Figure 9). This example shows

how the attention map can be used to understand why CoCoNuT

generates a specific patch.

Limitations of Test Suites: Patches that pass the test suite but

are incorrect are an issue that CoCoNuT and other APR techniques

share. CoCoNuT could generate a correct fix for 8 additional bugs if

more time is given; however, for these 8 bugs, CoCoNuT generates

an incorrect patch that passes the test suite (we only validate the

first candidate patch due to time considerations) or timed out before

the correct fix. Using enhanced test suites proposed in previous

work [89] may alleviate this issue.

5.5 Execution Time

Data Extraction: Extracting data from open-source repositories

and training CoCoNuT are one-time costs that can be amortized

across many bugs and should not be counted in the end-to-end time

to fix one bug. For Java, extracting data from 59,237 projects takes

five days using three servers.

Training Time: The median time to train our context-aware NMT

model for 1 epoch during tuning is 8.7 hours. On average, training

a model for 20 epochs takes 175 hours on one GPU. Transformers

and FConv networks are faster to train, taking an average of 2.5

and 2.7 hours per epoch. However, training the LSTM network is

much slower (22 hours per epoch).

This one time cost is to be compared to the decade of research

spent designing and implementing new fix patterns.

Cost to fix one bug:Once the model is trained, the main cost is the

inference (i.e., generating patches) and the validation (i.e., running

the test suite). During inference, generating 20,000 patches for one

bug (CoCoNuT default setup) takes 16.7 min on average using

one GPU. On our hardware, CoCoNuT’s median execution time

to validate a bug is six sec on Codeflaws and 6 min on Defects4J

(benchmark with the largest programs and test suites).

CoCoNuT median end-to-end time to fix a bug varies from

16.7 min on Codeflaws to 22.7 min on Defects4J. In comparison,

on identical hardware, the median time of other tools that we ran

on Codeflaws (Angelix, GenProg, SPR, and Prophet) varies from

30 sec to 4 min. TBar, on the same hardware, has an 8 min median

execution time on Defects4J.

While the end-to-end approach of CoCoNuT is slower than ex-

isting approaches, it is still reasonable. In addition, we can shorten

the execution time by reducing the number of patches generated in

inference. Generating only 1,000 patches (i.e., 50 patches per model)

would reduce CoCoNuT’s end-to-end time to 2 min on Codeflaws

and 7 min on Defects4J while still fixing most of the bugs (e.g., 34

in Defects4J). Parallelism on multiple GPUs and CPUs can also

speed up the inference.

6 LIMITATIONS

The dataset used to train our approach is different from the ones

used by other work (e.g., SequenceR and DLFix), which could im-

pact our comparison results. However, the choice of datasets and

how to extract and represent data are a key component of a tech-

nique. In addition, we compare our approach with LSTM, FConv,

and Transformer architectures using the same training data and

hardware, which shows that CoCoNuT outperforms all other three.

Finally, both DLFix and SequenceR use data that was unavailable at

the time of the bug fix (i.e., their models are trained using instances

committed after the bugs in Defects4J were fixed), which could

produce false good results as shown by prior work [75].

A challenge of deep learning is to explain the output of a neural

network. Fortunately, for developers, the repaired program that

compiles and passes test cases should be self-explanatory. For users

who build and improve CoCoNuT models, we leverage the recent

multi-step attention mechanism [20] to explain why a fix was gen-

erated or not.

There is a threat that our approach might not be generalizable to

fixing bugs outside of the tested benchmarks. We use six different
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benchmarks in four different programming languages to address

this issue. In the future, it is possible to evaluate our approach in

additional benchmarks [24, 57, 70].

There is randomness in the training process of deep-learning

models. We perform multiple runs and find that the randomness

in training has little impact on the performances of the trained

models.

7 RELATED WORK

Deep Learning for APR: SequenceR [13], DLFix [42], and Tufano

et al. [77] are the closest work related to CoCoNuT. The main

differences with CoCoNuT are that these approaches use RNN

(a single LSTM-based NMT model for SequenceR and Tufano et

al., and a TreeRNN architecture for DLFix) and represent both

the buggy line and its context as one input. These approaches

have trouble extracting long term relations between tokens and do

not capture the diversity of bug fixes. We showed in Section 5.3

that CoCoNuT outperforms both DLFix and SequenceR. Tufano

et al. [77] generates templates instead of complete patches and

thus cannot be directly compared. Deep learning has also been

used to detect and repair small syntax [73] and compilation [23, 60]

issues (e.g., missing parenthesis). These models show promising

results for fixing compilation issues but only learn the syntax of

the programming language.

G&V Program Repair: Many APR techniques have been pro-

posed [8, 12, 27, 29, 37, 38, 50, 52, 54, 58, 64, 69, 82, 86ś88]. We use

a different approach compared to these techniques, and as shown

in Section 5, our approach fixes bugs that existing techniques have

not fixed. In addition, these techniques require significant domain

knowledge and manually crafted rules that are language-dependent,

while thanks to our context-aware ensemble NMT approach, Co-

CoNuT automatically learns such patterns and is generalizable to

several programming languages with minimal effort.

Grammatical Error Correction (GEC): Recent work uses ma-

chine translation to fix grammar errors [14, 15, 18, 19, 30, 32, 51, 63,

72, 74, 90]. Among them, [15] applied an attention-based convolu-

tional encoder-decodermodel to correct sentence-level grammatical

errors. CoCoNuT is a new application of NMT models on source

code and programming languages, addressing unique challenges.

Studying whether our new context-aware NMT architecture im-

proves GEC remains future work.

Deep Learning in Software Engineering: The software engi-

neering community had applied deep learning to perform various

tasks such as defects prediction [40, 79, 81], source code represen-

tation [6, 7, 66, 80], source code summarization [4, 22] source code

modeling [5, 11, 26, 83], code clone detection [41, 84], and pro-

gram synthesis [3, 44, 61, 62]. Our work uses a new deep learning

approach for APR.

8 CONCLUSION

We propose CoCoNuT, a new end-to-end approach using NMT

and ensemble learning to automatically repair bugs in multiple

languages. We evaluate CoCoNuT on six benchmarks in four dif-

ferent programming languages and find that CoCoNuT can repair

509 bugs including 309 that have not been fixed before by existing

techniques. In the future, we plan to improve our approach to work

on multi-hunk bugs.
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