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ABSTRACT

Recent advances in Large Language Models (LLM) have made auto-

matic code generation possible for real-world programming tasks in

general-purpose programming languages such as Python. However,

there are few human studies on the usability of these tools and how

they fit the programming workflow. In this work, we conducted

a within-subjects user study with 24 participants to understand

how programmers use and perceive Copilot, a LLM-based code

generation tool. We found that, while Copilot did not necessarily

improve the task completion time or success rate, most partici-

pants preferred to use Copilot in daily programming tasks, since

Copilot often provided a useful starting point and saved the effort

of searching online. However, participants did face difficulties in

understanding, editing, and debugging code snippets generated

by Copilot, which significantly hindered their task-solving effec-

tiveness. Finally, we highlighted several promising directions for

improving the design of Copilot based on our observations and

participants’ feedback.
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1 INTRODUCTION

Automatic code generation has been a long-term goal for multiple

research communities including Programming Languages (PL), Soft-

ware Engineering (SE), Natural Language Processing (NLP), andMa-

chine Learning (ML). Recent attempts to achieve this have focused

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9156-6/22/04. . . $15.00
https://doi.org/10.1145/3491101.3519665

on two different kinds of approaches: (1) program synthesis algo-

rithms that search over a large program space defined by a domain-

specific language (DSL) [2, 7, 10, 12, 14, 19, 24, 25, 30, 31, 34, 43],

and (2) deep learning models that are trained on a large amount

of existing code and can generate new code given some forms of

specifications such as natural language descriptions or incomplete

code [5, 16, 17, 22, 38, 39, 48, 49]. Both kinds of approaches have

clear drawbacks. On the one hand, existing program synthesis tech-

niques are constrained to pre-defined DSLs and cannot scale to

general-purpose programming languages [15]. On the other hand,

existing generative models have a hard time learning sophisticated

programming patterns from code corpora and often generate code

with syntactic or semantic errors [9, 29, 40]. The recent development

of Large Language Models (LLM) such as GPT-3 [32] has opened up

new opportunities for addressing the limitations of existing code

generation techniques. For example, Codex [50], which contains

12 billion model parameters and is trained on 54 million software

repositories on GitHub, has demonstrated stunning code genera-

tion capabilityÐsolving over 70% of 164 Python programming tasks

with 100 samples [8].

The performance of LLM-based code generation tools has been

extensively studied using benchmarks [8, 33]. However, little is

known about the usability and programmers’ perception of such a

tool in a real-world programming workflow. To bridge the gap, we

conducted a within-subjects comparative studywith 24 participants,

in which participants were asked to complete Python programming

tasks. In the experimental condition, participants wrote programs

with the assistance of Copilot, a Visual Studio Code (VSCode) plugin

powered by Codex [13]. In the control condition, participants wrote

programs with the assistance of Intellisense, the default code com-

pletion plugin in VSCode. We investigated the following research

questions:

• RQ1: How does using Copilot affect the programming expe-

rience?

• RQ2: How do users recognize errors in code generated by

Copilot?

• RQ3:What coping mechanisms do users employ when they

find errors in code generated by Copilot?

• RQ4:What are the obstacles and limitations that can prevent

adoption of Copilot?

Our key findings are: (1) the majority of the participants (19 out

of 24) preferred using Copilot over Intellisense (Control condition);

(2) Copilot provides a useful starting point for participants to kick

start the task and saved them the effort of searching online; (3) There

is a need to identify better ways for participants to understand long

blocks of generated code to help them edit, debug, and repair the

code.
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2 RELATED WORK

2.1 AI-based Code Generation

There is a long history of research on automated code genera-

tion. Some of the earliest work dates back to the 1960s, where

Waldinger and Lee presented a program synthesizer called PROW

that automatically generated LISP programs based on user-provided

specifications in the form of a predicate calculus [41].

There are two main trends in modern automatic code generation:

program synthesis and machine learning. Program Synthesis pri-

marily uses a search-based technique to generate code that fulfills

a given specification. These techniques work on a subset of the

language components relevant to the domain known as Domain-

Specific Languages (DSLs). More recently, program synthesis has

been applied to a variety of domains, e.g., low-level bit-vector im-

plementations [36], data manipulation in excel [14], and regular

expression synthesis [51]. The main limitation is that these tech-

niques are limited to a pre-defined DSL, making it less scalable

to programs written in general-purpose programming languages

such as Java or Python. Because general-purpose programming

languages include much more language features and syntax rules

compared with DSLs and therefore define a much bigger program

space to search from [15].

The second trend is using machine learning, especially deep

learning. Advances in deep learning have shown promising re-

sults on automatically generating code for real-world programming

tasks [5, 16, 17, 22, 38, 39, 48, 49]. For instance, Kim et al. [21] de-

veloped a transformer architecture that is aware of code structures

using abstract syntax trees. Alon et al. [1] introduced structural

language models that remove any restriction on the vocabulary or

structureÐ the main limitation of program synthesis techniques.

Karampatsis and Sutton [20] similarly introduced open-vocabulary

models that can generate code with an arbitrary number of tokens.

Though these methods have shown promising results, they still

suffer from low accuracy and are less reliable [9, 29, 40]. For in-

stance, Ciniselli et al. [9] show their RoBERTa-based model can

only produce correct solutions for 7% of the tasks from the Code-

SearchNet benchmark [18].

The recent advances in large languagemodels (LLM) such as GPT-

3 [32] have led to a breakthrough in automated code generation

compared to prior state-of-the-art deep learning methods [4, 6,

42]. For example, Codex [50], a fine-tuned version of GPT-3, can

generate fully correct code for 29% of unseen programming tasks

with only one sample of generated programs and 72% of them with

100 samples, while a widely used code generation tool, TabNine [39]

can only solve 3% and 8%, respectively [8].

While there has been recent work evaluating the accuracy of

LLM-based code generation tools [8, 33], little is known about its

usability. With such increases in accuracy, how will programmers

interact with a tool that generates almost accurate yet not perfect

code? How easy or difficult is it for programmers to recognize

errors in a code snippet that is almost but not quite correct? Will

they simply modify the incorrect part or completely rewrite the

entire code themselves? This motivates us to study programmers’

expectations, coping strategies, and needs for such powerful code

generation tools.

2.2 Coping with Imperfect AI

Prior studies have examined how users interact with imperfect

AI [11, 23, 26ś28, 35, 37, 45]. Dzindolet et al. [11] showed that once

people observed an automated system make errors, their distrust in

the system increased unless an explanation was provided. However,

these explanations may also lead to over-reliance on the system

even when unwarranted, signaling the importance and difficulty

of providing explanations that help people to calibrate trust appro-

priately. Kocielnik et al. [23] examined the effect of giving people

control over the types of errors made by a scheduling assistant,

either by avoiding false positives or false negatives. They found

that even when the system was only 50% accurate, users who ex-

pected a reduction in the false positive rate had a lower perception

of accuracy and lower acceptance of the system than the users who

expected a reduction in the false negative rate. [3, 52] showed that

confidence scores helped calibrate users’ trust, form a good mental

model of the AI, and understand the error boundaries better.

Similar to other AI techniques, AI-based code generation tools

also suffer from inherent uncertainty and imperfection. They may

inevitably generate code with errors or even code that wildly differs

from users’ expectations. However, unlike other domains, code

generation demands a much higher level of correctness: code either

compiles or not, and it is either correct or contains bugs such as

logic errors and security vulnerabilities. Therefore, existing findings

of other types of AI techniques may not generalize to the domain

of code generation.

Currently, there are only a few studies on how programmers

use such imperfect code generation tools [44, 47]. Xu et al. [47] did

a user study with 31 participants to evaluate the usefulness of a

NL-to-code plugin [46]. They found that there was no statistically

significant difference in task completion time or task correctness

scores when using or not using the NL-to-code plugin. Furthermore,

most participants stayed neural or somewhat positive to the NL-

to-code plugin. The main reason for these negative results was the

correctness and quality of generated code as pointed out by many

participants in the post-study survey. However, these findings may

not hold as more recent large language models have significantly

boosted the correctness and quality of generated code. This further

motivates us to conduct the user study with Copilot.

Weisz et al. [44] interviewed 11 software engineers at IBM and

solicited their feedback on a neural machine translation (NMT)

model for an adjacent domainÐtranslating code from one program-

ming language to another. They found that the user’s acceptance

of the NMT model was contingent on the number of errors in the

translated code. They also identified several common themes in

participants’ feedback such as acceptance via verification and the

desire to provide guidance to the NMT model. Our study was de-

signed to complement this knowledge but for daily programming

tasks.

3 STUDY DESIGN

To understand how programmers use an LLM-based code genera-

tion tool, we designed and carried out awithin-subjects comparative

study with 24 participants. For the control condition, each partici-

pant was asked to complete a Python programming task in Visual

Studio Code (VSCode) IDE with the default code completion tool
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called Intellisense. Intellisense suggests a drop-down list of valid

tokens in the current code context, ordered by alphabetical order

or relevance. The users can select the token they want and press

the Tab button to accept the suggested token or the Esc button to

reject it.

For the experiment condition, each participant finished another

Python programming task in VSCode with Copilot. Similar to Intel-

lisene, Copilot can automatically suggest code based on the current

code context as a programmer is typing. While Intellisense only

predicts one token at a time, Copilot is capable of generating multi-

ple lines of code. The participants can press Tab to accept the code

suggestion or Esc to reject. Though not required, participants can

give prompts to Copilot by writing comments. Henceforth, when

we mention prompts in the text, we refer to comments written by

the participants in the code specifically to guide Copilot.

3.1 Tasks

We selected three real-world python programming tasks with dif-

ferent levels of difficulty from [47].

• Task 1. Edit CSV (Easy): Write a program to read CSV data

from the ‘data.csv’ file. Delete the first column and the last

column. Save it to the ‘output.csv’ file.

• Task 2. Web Scrapping (Medium): Given the URL of a web

page, write a program that extracts the URLs of all hyperlinks

in the web page and save the URLs to a file named ‘urls.txt’.

• Task 3. Graph Plotting (Hard): Write a program to draw a

scatter plot of the data in ‘shampoo.csv’ and save it to ‘sham-

poo.png’. The plot size should be 10 inches wide and 6 inches

high. The Date column is the x-axis. The date string shown

on the plot should be in the YYYY-MM-DD format. The

Sales column is the y-axis. The graph should have the title

łShampoo Sales Trendž.

3.2 Participants

We recruited 24 participants (4 Female, 19 Male, 1 Non-binary)

through mailing lists of two research universities. Ten participants

were undergraduate students, 5 were master’s student, 8 were

Ph.D. students, and 1 was a software engineer. Regarding their

familiarity with programming, only 1 participant had less than 2

years of programming experience, 14 participants have 2-5 years

of experience, and 9 participants have over 5 years of experience.

Participants received a $20 Amazon gift card as compensation for

their time.

3.3 Protocol

To enable easy access to the code generation tools, we set up two vir-

tual machines (VMs) in Microsoft Azure, one with Copilot installed

and the other with IntelliSense installed. We also pre-installed VS-

Code and several popular Python packages in both VMs. Partici-

pants can easily log into each VM from their laptop to start the user

study. We recorded the audio and the screen-cast with the consent

of each participant. In each study session, a participant completed

one of the three tasks using Copilot (i.e. the experiment condition)

and another task with Intellisense (i.e. the control condition). To

emulate real-world programming experience, the participants were

allowed to use Internet search or refer to any online resources any-

time during the task. To mitigate the learning effect, both the order

of task assignment and the order of tool assignment was counterbal-

anced across participants through random assignment. Therefore,

for each unique combination of 3 tasks and 2 conditions, we have

8 participant data points. Before each task, the participants were

given a quick tutorial of the assigned tool. We set a time limit of 20

minutes for each programming task. A task was considered failed

if participants did not complete it within 20 minutes. After each

task, participants answered a survey to reflect on their experience

using the tool. After finishing both tasks, participants answered a

final survey to directly compare the two conditions. The first au-

thor performed open-coding on participants’ responses to identify

themes and then discussed with co-authors to refine the themes

over multiple sessions. These themes were then used to explain the

results in the following sessions.

4 RESULTS

This section describes both the quantitative and qualitative results

of our study. Quantitative results include the task completion time,

task failure rates, and metrics from survey responses. In the qual-

itative results subsection, we describe the common themes that

emerged through open coding of participant comments and experi-

menter observations made during the study.

4.1 Quantitative

Participants using Copilot failed to complete tasks more often than

participants using Intellisense. Table 1 shows individual and average

task completion times. Table cells in the orange background indicate

sessions in which participants did not solve the task within 20

minutes. When using Copilot, all 8 participants working on the

easiest task completed it, 6 out of 8 participants working on the

medium-difficulty task completed it, and 5 out of 8 participants

working on the hardest task completed it within the allotted time.

In contrast, when using Intellisense, all 8 participants in both the

easiest and medium-difficulty task conditions completed their tasks,

and only 2 participants failed to complete the hardest task. Overall

task difficulties, Intellisense users failed twice while Copilot users

failed 5 times. This difference is not statistically significant.

We analyzed the session recordings to identify the root cause of

these task failures. Out of the 5 task failures when using Copilot, 3

were caused by incorrect code generated by Copilot, which led par-

ticipants into a time-consuming debugging rabbit hole (discussed

in Section 4.2.4). The other two were caused by the participants’

inexperience with the relevant Python libraries (graph plotting and

HTML parsing libraries) and the debugging features of the IDE. In

contrast, participants using Intellisense failed to finish the 2 tasks

due to their inexperience with a graph plotting library.

While Copilot users completed fewer tasks than Intellisense

users, the tasks completed with Copilot were done more quickly on

average (see the last row of Table 1). The overall mean difference of

task completion time using Copilot vs. Intellisense is about 1 min.

Yet the mean difference is not statistically significant (student t-test,

p = 0.53).
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Task 1 - Easy Task 2 - Medium Task 3 - Hard

Intellisense Copilot Intellisense Copilot Intellisense Copilot

9:35 1:46 7:48 12:53 13:41 11:08

3:50 3:57 15:52 16:45 13:43 11:05

4:49 4:55 16:28 7:26 22:42 4:04

9:04 6:18 14:16 15:05 13:06 DNF

5:18 1:18 7:35 13:24 23:13 19:54

15:54 7:52 12:39 DNF 4:48 DNF

5:27 3:12 10:47 6:02 DNF DNF

2:09 20:12 8:30 DNF DNF 9:19

Average Time 7:01 6:11 11:44 11:56 13:36 11:06

Overall average time for all tasks combined 10:23 9:18

Table 1: Individual and average task completion times. Cells with an orange cell background indicate that the participant never

succeeded because they were stopped after approximately 20 minutes of trying. DNF implies the participant did not finish on

time.

In the post-study survey, 19 of 24 participants answered that

they preferred Copilot over Intellisense. Furthermore, 23 of 24 par-

ticipants answered that Copilot was more helpful than Intellisense.

We also asked participants to rate the helpfulness of code gen-

erated by both tools on a scale of 1 (not at all helpful) to 7 (very

helpful). Participants found code generated by Copilot more helpful

than code generated by Intellisense (6.16 vs. 4.45 on average). This

difference is statistically significant (student t-test: p < 0.001). How-

ever, only 10 participants self-reported that they felt more confident

about the code generated by Copilot than the code suggested by

IntelliSense.

4.2 Qualitative

4.2.1 User Perception. Participants found Copilot helpful as it pro-

vided a starting point for the task instead of a blank canvas they

usually have. Even if the code generated by Copilot is incorrect, it

always points them towards a direction they can get started from.

P1 said łCopilot’s function/line generation is a helpful reference; even

if the generated code is not correct, it can point me in the right direc-

tion for completing the task.ž This is primarily useful for the kind of

tasks in which the user has no experience. P7 said, łthe generation

of fully formed functions that completed a task that I wasn’t sure

how to approach/start was very cool.ž For four of the participants,

Copilot auto-completed the code for almost the whole tasks, and

participants did very little to no fixes to the generated code. Though

we did not see any significant difference in task completion time,

seven participants explicitly mentioned that Copilot can save time

in completing the task compared to Intellisense. P4 said ł[Copilot]

will likely save me much more time during the coding process.ž Partic-

ipants also considered writing comments to guide Copilot as a way

of communicating with the AI. P24 said łCopilot behaves just like a

TA and can tell me exactly what I want by reading the comments.ž

However, participants pointed out several concerns about adopt-

ing Copilot in practice. First, twelve participants said they found

it hard to understand and change the code generated by Copilot.

P1 said, łCopilot generated a complete function to fulfill the full task,

but part of the function did not work as desired. Because I did not

understand several parts of the function generated by Copilot, I did

not know how to debug the function. This caused me to get rid of the

whole function generated by copilot and start over.ž. Due to a lack

of understanding, five participants perceived a loss of control over

their code. P13 said, łI would go with Intellisense for now since it

gives me more control over the code I am writingž. Second, seven

participants expressed concerns over code reliability. P7 said łAt

this time I probably prefer Intellisense just because I trust my own

googling and understanding code examples online rather than opaque

suggestions from copilot.ž P18 felt very frustrated after observing

Copilot continuously generate code with errors. They said, łYes, I

got rid of the whole snippet as I didn’t want to conform to the code

generated by AI as it may have unwanted bugs.ž Third, eight partici-

pants said they only trusted participants for simple tasks. This is

due to multiple reasons, e.g., the difficulty to understand generated

code, fear of unknown bugs, failure to match the coding style, etc.

4.2.2 User Interaction Patterns. While prior code completion tools

such as Intellisense only suggest one token at a time, Copilot is ca-

pable of generating even multiple lines of code at a time. While such

a code generation capability is often interpreted as a powerful fea-

ture, it causes significant cognitive overload in practice, especially

when the generated code has errors. A long piece of generated code

forces the user to switch back and forth between program reading

and writing. When the generated code has errors, the user needs

to further enter into the debugging mode. This constant context

switching puts significant mental demand on the users.

Another common interaction pattern is to use Copilot as a sub-

stitute for Internet search. P3 said, łfor certain tasks that follow

very routine structures, and which I always have to look up on Stack

Overflow, a tool like Copilot eliminates a lot of the tedious searching

on Googlež. However, we have to note that unlike code examples

from Stack Overflow, which are vetted by human programmers, the

code generated by Copilot may contain errors. P10 wrote, łI’m not

fully confident that Copilot will suggest the best solution. By reading

Stack Overflow, the helpful thing is that there will always be someone

who would just post a better solution, and people will discuss and

compare. I feel like that is missing from Copilot.ž Since Copilot only

generates one solution at a time and does not provide any explana-

tions, programmers cannot compare multiple alternative solutions

and assess their quality as they often do in an online search.

Furthermore, we observed eight instances of over-reliance on

Copilot. For example, P8 simply accepted the generated code and

said, łI guess I will take its word.ž This over-reliance also makes
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participants defer code validation. P20 said łNot exactly sure what

this does. I’ll figure it out laterž. Some participants later spot errors

in the accepted code. They had to go back and spend a lot of time

debugging the previous code.

4.2.3 Coping Strategies. There are two main ways participants

cope with incorrect code generated by Copilot. The first way is to

accept the incorrect suggestion and attempt to repair it. Twelve

participants attempted to repair the code when there was an error.

However, the participants always found it difficult to repair the

code since the code was not written by themselves. Of these twelve

participants open to repair the code, five participants were only

willing to repair the code if the code generated by Copilot is easy

to read and understand. P7 said, łit made debugging the code more

difficult as I hadn’t written the code directly and didn’t have an initial

intuition about where the bugs might be. Especially with a final bug

in my program I really had no idea why it was happening and had to

refactor the code.ž

In cases where the participant is unable or unwilling to repair

the code, they will simply get rid of the entire generated code and

search for solutions online. Seven participants mentioned they will

rewrite the whole code by themselves without any attempt to repair

if there is an error in the code generated by Copilot. P13 said, łI

think getting rid of the whole code is easier than reading the code

and making the changes.ž P1 also said, łbecause I did not understand

several parts of the function generated by Copilot, I did not know how

to debug the function. This caused me to get rid of the whole function

generated by Copilot and start over.ž

4.2.4 Obstacles and Limitations. During the user study, we ob-

served three major obstacles to using Copilot in practice. First, par-

ticipants often failed to understand and assess the correctness of the

generated code. Since Copilot often generates a big chunk of code

at a time, participants found it hard to understand and debug the

code. This is already discussed in Section 4.2.1. The second obstacle

is the underestimation of the effort required to fix a bug in the code

generated by Copilot. Among the five task failures by participants

using Copilot, three were due to incorrect suggestions by Copilot.

While participants recognized these errors, they underestimated

how much effort it took to fix the bug and got stuck in a debugging

rabbit hole they could not get out of. For instance, for P20, Copilot

generated a regular expression based code for extracting URLs from

HTML. It is extremely hard to get the regular expression right for

this task and a better solution is to parse the HTML and extract

attributes instead. Since Copilot suggested the regular expression,

P20 decided to stick with it and overlooked the better solution. Yet

P20 failed to fix the regular expression after 20 minutes, leading to

a task failure. The third obstacle is the brittleness and ambiguity

of using comments (or prompts) as a specification for Copilot. As

discussed in the previous sections, participants used comments to

describe the desired code that should be generated by Copilot. How-

ever, Copilot is very sensitive to these comments. A little tweak in

a comment can cause Copilot to generate a significantly different

code snippet. P24 said, łit is ambiguous to use comments to hint at

Copilot what I want.ž

5 DISCUSSION

The majority of participants (19 out of 24) expressed a strong prefer-

ence to use Copilot for their day-to-day programming tasks for sev-

eral reasons. In many cases, Copilot accurately generated the code

from the prompts provided by the participants. In four instances, it

even generated the correct code for almost the whole task in one

shot. Generating a whole block of code improves developer produc-

tivity significantly. However, we did not see a big difference in the

time saved by Copilot during the study. Our observations point to a

plausible explanation for this non-significanceÐthough it is faster

to generate code through Copilot compared to acquiring code from

the internet, the code generated by Copilot can be buggy, leading

to more time spent in debugging. Whereas, code from the internet

is generally bug-free, comes with explanations and discussion, and

can be composed suitably for the current task by just doing some

minor edits like changing the variable names. Moreover, Copilot

also provides a useful starting point for the users to get started,

even if the generated code was incorrect. This is especially useful

for users who are stuck in a problem or who do not know how to

approach the task. Several participants request to see multiple code

suggestions so they can compare and compose code from different

snippets to suit their needs. Furthermore, we found participants

used Copilot as a replacement for internet search. However, they

missed out on comparing multiple sources and community discus-

sions. Hence, it is worthwhile integrating online search with code

generation to help users compare AI-generated code with online

code examples and identify the best possible solution for a task.

This can also prevent users from getting trapped in a debugging

rabbit hole whenever Copilot suggests an incorrect or inefficient

solution.

Another observation that is worth investigating is that partici-

pants had a hard time understanding the code generated by Copilot.

One way to help users understand the generated code is to provide

explanations using inline comments. We can highlight different

parts of the code based on model confidence similar to the ap-

proach suggested by [44]. We can also help users debug code by

automatically generating test cases and test data for users to val-

idate generated code and identify corner cases. We would like to

study this in-depth and come up with ways to make the code more

understandable and help users to debug and repair generated code.

Moreover, we observed that Copilot led to more task failures in

medium and hard tasks since it was hard for Copilot to generate

correct code in one shot. Three participants who finished the hard

task approached the problem by decomposing the complex task

into simpler sub-tasks and wrote prompts for each sub-task for

Copilot to solve. Such a task decomposition strategy led to higher

task-solving efficiency and a better user experience. Therefore, it

is worth working on interaction mechanisms that facilitate task

decomposition in the future.

6 CONCLUSION

This paper presents a user study with 24 participants on the us-

ability of GitHub Copilot, a groundbreaking code generation tool

empowered by an ultra-large language model. In particular, we

investigated users’ perception of Copilot, their interaction patterns,

and their coping strategies when the generated code is not correct.
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We found that, despite all the promising results on benchmarks [8],

Copilot did not necessarily reduce the task completion time or in-

crease the success rate of solving programming tasks in a real-world

setting. On the other hand, participants overwhelmingly preferred

using Copilot in their programming workflow since Copilot often

provided a good starting point to approach the programming task.

Furthermore, our study shed light on several promising future di-

rections for improving the design of Copilot. For example, instead

of simply using Copilot as a one-shot code generation tool, there

should be more support for understanding and validating the gen-

erated code, exploring multiple solutions, and task decomposition.
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