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Artistic creation has traditionally been thought to be a uniquely human ability. Recent advancements in arti-

ficial intelligence (AI), however, have enabled algorithms to create art that is nearly indistinguishable from

human artwork. Existing research suggests that people have a bias against AI artwork but cannot accurately

identify it in blind comparisons. The current study extends this investigation to examine the aesthetic judg-

ment factors differentiating human and machine art. Results indicate that people are unable to accurately

identify artwork source but prefer human art and experience more positive emotions in response to

human artwork. The aesthetic judgment factors differentiating human- and machine-generated art were

all related to positive emotionality. This finding has several implications for this research area and limitation

and avenues for future research are discussed.
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The originality, creativity, and emotions that are involved in art

are often thought of as uniquely human (Coeckelbergh, 2017;

Collingwood, 1938; Ramachandran & Hirstein, 1999) because

machines cannot yet experience originality, creativity, or emotions

as humans do (Boden, 2007; Llano et al., 2022; Mazzone &

Elgammal, 2019; McCormack et al., 2019; Ren & Bao, 2020). In

a world increasingly run by software, these creative pursuits were

thought to be safe from automation (Bakhshi et al., 2015; Gunkel,

2021). Recent advances in artificial intelligence (AI), however,

have allowed algorithms to generate images, music, and prose that

are indistinguishable from human made artwork (Carnovalini &

Rodà, 2020; Köbis & Mossink, 2021; Ramesh et al., 2021, 2022;

Saharia et al., 2022; cf., Raji et al., 2021). These algorithms have

been criticized for being “stochastic parrots” (Bender et al., 2021,

p. 614) creating “zombie art” (Hassine & Neeman, 2019, p. 29),

but they are also challenging the idea that art is solely a human enter-

prise (Gunkel, 2017).

Little is known about how people perceive and appreciate

machine-generated artwork because this is an emerging area of

research based around new technologies creating new forms of

human–computer interaction (Cetinic & She, 2021; Chamberlain

et al., 2018; Ren & Bao, 2020). So far, empirical work suggests

that when presented with artwork that has not been identified as

human- or machine-generated, people seem to prefer the artwork

created by humans—and this effect persists even when people can-

not identify the art or when they are told that the human art was made

by machines (Chamberlain et al., 2018; Elgammal et al., 2017;

Gangadharbatla, 2022; Hong & Curran, 2019; Ragot et al., 2020).

This is a surprising finding because it means that people may feel dif-

ferently about machine-generated art without knowing what the dif-

ference is. The purpose of the current research was to identify, using

discriminant function analysis, which aesthetic judgment factors dif-

ferentiate human- and machine-generated artwork. All stimuli, data,

and syntax are available on the Open Science Framework (OSF; osf

.io/z4cnj/).

Human Aesthetic Judgment

Human aesthetic judgment involves the psychological processes of

perceiving, judging, and evaluating an aesthetic stimuli—a work of

art, a building’s architecture, or sunsets (Leder et al., 2004; Lindell

& Mueller, 2011; Pelowski et al., 2016).1 The mechanisms underly-

ing our appreciation of aesthetic experiences are studied by empirical

aesthetics. The foundations for empirical aesthetics were set byGustav

Fechner in the 19th century. The field has grown to understand empir-

ical aesthetics as the psychological study of the mechanisms allowing

humans to experience and appreciate a variety of phenomena (i.e.,

objects, design, nature, people, etc.) aesthetically (i.e., beautiful,

ugly, nostalgic, exciting, etc.) (Leder & Nadal, 2014). This empirical

work has established that there are three broad factors influencing aes-

thetic judgments, including objective, personal, and contextual factors

(Nadal & Vartanian, 2021). Objective factors reflect the statistical

properties of art (i.e., spacing, symmetry, color, complexity; see
Andrew Samo https://orcid.org/0000-0003-2225-184X

There are no conflicts of interest regarding the authorship or production of

this article.

All experimental stimuli, data, and syntax are available on the Open

Science Framework: https://osf.io/z4cnj/.

Correspondence concerning this article should be addressed to

Andrew Samo, Department of Psychology, Bowling Green State University,

Bowling Green, OH 43403, United States. Email: asamo@bgsu.edu

1Here, it is worth noting that a work of art and an aesthetic are distinct phe-
nomena, such that all art is aesthetic, but not everything aesthetic is art (see
Skov & Nadal, 2020). Therefore, the distinction between making and appre-
ciating can be reframed as a distinction between making art and appreciating
aesthetic experiences.

Psychology of Aesthetics, Creativity, and the Arts

© 2023 American Psychological Association
ISSN: 1931-3896 https://doi.org/10.1037/aca0000570

1

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al
A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al
u
se

o
f
th
e
in
d
iv
id
u
al
u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.



Graham & Redies, 2010). Personal factors include individual differ-

ences in personality, ability, knowledge that influence perceptions,

emotions, and understanding of the objective factors. Context factors

capture the current discourse and history around an artwork (Jacobsen,

2010; Lindell & Mueller, 2011; Palmer et al., 2013; Pearce et al.,

2016). The way these factors interact have been formalized in process

models of aesthetic judgment.

Process models of aesthetic appreciation and judgment provide

integrative descriptions of the processes involved in the judgment

and appreciation of aesthetic objects—including art (Leder et al.,

2012). The models are integrative because they frame the emotion,

meaning, and evaluative outcomes of aesthetic judgment as the

result of person–situation interactions, or interactions between the

personal, object, and contextual factors (Pearce et al., 2016). One

of the most recent models of aesthetic judgment, The Vienna

Integrated Model of top-down and bottom-up processes in Art

Perception (VIMAP; Pelowski et al., 2017), builds on earlier models

(e.g., Leder et al., 2004; Leder & Nadal, 2014; Pelowski et al., 2016)

to propose that there are a series of stages and processing checks

through which people form aesthetic judgments and experiences.

The stages involve sequential perceptual, affective, and cognitive

processes that integrate the person, object, and contextual features

of empirical aesthetics. The processing checks include schema con-

gruency and self-relevance checks. Schema congruency captures a

process where the audience ensures they have reached a proper

understanding of the artwork by checking their understanding

against existing schemas and the fluency of their judgment.

Self-relevance captures a process where the audience ensures that

the content, meaning, or context of the artwork is personally relevant

to them.

The processing stages and checks dynamically interact to result in

five unique outcomes, ranging from little emotion felt to intense posi-

tive (i.e., flow, chills, being moved), negative (i.e., boredom, confusion,

disgust), and sublimation into transformative experiences (i.e., awe)

(see Pelowski et al., 2017 for more). The experiences at each of these

processing stages have been operationalized in psychometrically vali-

dated measures of aesthetic judgment factors, like the ARS (Hager

et al., 2012) and the Aesthetic Emotions Scale (AESTHEMOS;

Schindler et al., 2017). This has resulted in scales capturing the affec-

tive, cognitive, and semantic factors influencing aesthetic judgments.

Notably, these aesthetic judgment factors have not yet been examined

in relation to machine-generated artwork. The focus of the current

study is on these aesthetic judgment factors because they highlight

how people may differentially process human- and machine-generated

artworks.

Machine-Generated Art

The best-in-class algorithms can generate original or edit existing

images, music, poetry, prose, and code at high levels of realism and

accuracy based on text prompts from human users. For example,

OpenAI’s DALL-E 2 is an “AI system that can create realistic

images and art from a description in natural language” (https://

openai.com/product/dall-e-2) and Google’s Imagen is an algorithm

with “an unprecedented degree of photorealism and a deep level of

language understanding” (https://imagen.research.google/). With

these models, users can enter virtually any prompt to receive an

assortment of novel images, including prompts like the ones show-

cased on DALL-E 2’s website, “an astronaut playing basketball with

cats in space in a watercolor style,” or Imagen’s website, “a single

beam of light enters the room from the ceiling illuminating an

easel with a Rembrandt painting of a raccoon.”2 At the time of writ-

ing, these text-to-image models require some degree of human input

to begin the image generation process and some degree of human

decision-making to fine-tune and select the final image (see Frolov

et al., 2021 for a review of text-to-image models).

On a technical level, the art is generated with neural networks

(e.g., Ramesh et al., 2021, 2022; Saharia et al., 2022) which are

machine learning algorithms based on models of the human brain

(James et al., 2021). Brains are composed of billions of interconnec-

ted neurons sending signals to adjacent neurons, forming networks,

and giving rise to higher cognition (Fusi et al., 2016; Yuste, 2015).

Similarly, artificial neural networks use input (i.e., dendrites), pro-

cessing (i.e., cell body), and output (i.e., axon terminal) mechanisms

to learn and perform (James et al., 2021). The information processed

by these networks are vectors of embeddings, which are lists of

numerical values representing features of data. Here, the embed-

dings quantify the text captions or prompts (i.e., text embeddings)

and the related images (i.e., image embeddings). To oversimplify

generating images from text, encoder models create text embeddings

from text prompts and decoder models create images from the text

embeddings. A seminal text-to-image algorithm, the Generative

Adversarial Network (GAN; Goodfellow et al., 2014; Hudson &

Zitnick, 2021), used competing networks, a generator and discrimi-

nator, to generate sample images from the latent space and discrim-

inant against low quality images by playing a minmax game until an

image of passable quality is generated (Hudson & Zitnick, 2021).

Newer algorithms use foundation models, with transformer architec-

ture, to improve flexibility and performance (Bommasani et al.,

2021). Transformers use attentionmechanisms to tag and track infor-

mation as it moves across the network nodes to create a deep sense of

how features relate to each other (Vaswani et al., 2017).

At the time of writing, some of the best-in-class text-to-image algo-

rithms use similar architectures with encoders, decoders, and transform-

ers—although specific implementations may vary (see Crowson et al.,

2022). In practice, these algorithms build on GANs by implementing

models that work together to iteratively generate images based on

text prompts (e.g., Vector Quantized Generative Adversarial Network

[VQGAN]; Esser et al., 2021), evaluate the generated images against

the prompt (e.g., Contrastive Language-Image Pretraining [CLIP];

Radford et al., 2021), and refine the image based on the evaluation

(e.g., VQGAN-CLIP; Crowson et al., 2022). These models require

large amounts of data to train and are computationally intensive.

Fortunately, training data have become readily available as museums

are continually digitizing their collections to improve the accessibility

of their art to the public (Cetinic & She, 2021). While the authors did

not train the models, we ran the models and rented virtual graphics pro-

cessing units to reach the computational power required to generate the

study images. Overall, machine-generated art transforms human text

inputs into original images through complex transformer-basedmodels.

The major criticisms of this approach to machine-generated art

involves the degree of human input from text prompts and the lack

of originality from using existing artwork as training data. More spe-

cifically, critics claim that these algorithms are lacking authorship and

2 For more fun examples of “realistic-looking fake versions of almost any-
thing” see https://thisxdoesnotexist.com/.
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intention because the algorithms are simply responding to human

instruction through the text prompts. They also claim that the algo-

rithms are lacking originality and novelty because the models are

trained on datasets of existing human images (Boden, 2007, 2010;

Coeckelbergh, 2017; Hertzmann, 2018; McCormack et al., 2019).

In other words, art-generating models are “stochastic parrots”

(Bender et al., 2021) using pseudorandom walks across hidden layers

to create derivative, emotionless “zombie art” (Hassine & Neeman,

2019). On the other hand, creating art by sampling from an existing

space with the systematic use of chance has a long history (Dorin,

2013; Todorov, 2019). In 1961, Raymond Queneau published a

book Cent Mille Milliards de Poems which outlined the content and

rules for readers to generate “one hundred thousand million” original

poems. More recently, the action art of Jackson Pollock, the concep-

tual art of Marina Abramovic, and other installation, land, or perfor-

mance arts emphasize chance and randomness in their artistic

process. These examples showcase art as a process, rather than an out-

come, taking advantage of stochastic systems to sample the existing

space. Modern art-generating algorithms also stochastically sample

the existing artworld, using representation learning, to generate new

works of art (Cetinic & She, 2021).

It is difficult to determine if these algorithms are really creating

art, even if the algorithms were not “black box” and uninterpretable

(Arrieta et al., 2019), because there are no widely accepted defini-

tions of art (Hertzmann, 2018) or creativity (Amabile & Pillemer,

2012) to use as benchmarks to compare them against. Instead, recent

work in computational creativity has been emphasizing the appear-

ance of creativity over the existence of real creativity (Coeckelbergh,

2017; Colton & Wiggins, 2012; Natale & Henrickson, 2022). The

Lovelace Test, popularized as Lady Lovelace’s objection by Alan

Turing (1950; see Abramson, 2008), is a behavioral test for compu-

tational creativity that would require an unbiased audience to believe

machine-generated art is human-generated—regardless of how it

was made (Bringsjord et al., 2001; Riedl, 2014). The Lovelace

Effect describes situations where “the behavior of computing sys-

tems is perceived by users as original and creative” (Natale &

Henrickson, 2022, p. 2). At this point, art-generating algorithms

are still demonstrating indeterminacy (i.e., appearing coherent but

lacking spatial narrative; Hertzmann, 2020), although transformer-

based architectures may solve for this. For example, large scale foun-

dation models like Google’s Imagen and OpenAI’s DALL-E 2 claim

(and appear, to the authors) to be highly realistic (Ramesh et al.,

2022; Saharia et al., 2022). The focus on machines being creative

is an interdisciplinary cognitive and computer science problem

where algorithms are design for specific operationalizations of crea-

tivity (Larson, 2021). On the other hand, the focus on machines

appearing creative is a problem of human aesthetic judgment.

This is the focus of the current article.

Previous Work on the Human Aesthetic Judgment of

Machine-Generated Art

There have been relatively few empirical studies examining the

human perceptions of machine-generated artwork. On one hand, it is

surprising that there have only been a handful of empirical studies

examining the human evaluation ofmachine-generated art, considering

the growing accessibility and excitement around the algorithms. For

example, there is work around developing and combining models

(Crowson et al., 2022) and work around developing prompts for

the models (i.e., prompt engineering; Liu & Chilton, 2022). On the

other hand, people are still focused on exploring how to make art

with the models and interest may not have trickled down to explor-

ing how we appreciate the art. Across the five empirical studies,

there are several broad patterns of findings: people cannot accu-

rately identify classify images as human- or machine-generated,

people have more positive aesthetic experiences with human-

generated art, and that the factors driving the positive experiences

are still relatively unknown (Chamberlain et al., 2018; Elgammal et

al., 2017; Gangadharbatla, 2022; Hong & Curran, 2019; Ragot

et al., 2020).

First, these articles have largely found that people have trouble cor-

rectly identifying and classifying the images as human- or machine-

generated. Across these studies, classification accuracies range from

42% to 64% or about as good as a coin toss (Chamberlain et al.,

2018; Gangadharbatla, 2022; Ragot et al., 2020). Ragot and col-

leagues (2020) found an overall accuracy of 61% (66% and 56%

for human- and machine-generated, respectively) with slightly higher

classification accuracies for portraits (69%) and lower for landscapes

(53%) compared to the overall score. This may be due to a difficulty

algorithms have generating faces and realistic figures (Hertzmann,

2020) because the distorted figures may activate certain schemas,

biases, or otherwise clue participants in. Along this line, it has also

been suggested that the lower classification accuracies for machine-

generated art may be driven by the expectation and belief that high-

quality art (i.e., the art participants like) could only be made by

humans and, as such, simply appreciating the art biased subsequent

classifications toward human artists (Chamberlain et al., 2018;

Gangadharbatla, 2022). They attributed this to outdated schemas

and stereotypes emerging from “the notoriety of abstract and geomet-

ric computer art created during the 1960s” (Chamberlain et al., 2018,

p. 182).

Second, these articles have found that people still have a preference

for human-generated art (Chamberlain et al., 2018; Gangadharbatla,

2022; Hong, 2018; Hong & Curran, 2019; Ragot et al., 2020) and

that we have a bias against machine-generated art (Elgammal et al.,

2017; Hong & Curran, 2019; Ragot et al., 2020). Notably, several

studies have suggested that preference and classification are related

because people are more likely to classify images they prefer as

human-generated because of schemas, or stereotypes, that typical

machine-generated art is still the fractal, pixelated, neon-colored com-

puter art of the 1980’s (Chamberlain et al., 2018; Gangadharbatla,

2022). However, there have been some inconsistent findings. For

example, Hong and Curran (2019) found that labeling an image as

machine-generated can activate existing algorithm averse biases,

Ragot et al. (2020) found a biasing effect regardless of existing bias

and others reported little to no evidence of bias (Elgammal et al.,

2017; Gangadharbatla, 2022). Chamberlain et al. (2018) found that

anthropomorphizing the algorithm’s artistic process reduced bias

(i.e., embodying it with robot arms, paper, and paintbrush) and sug-

gested that our aversion to machine-generated art may involve percep-

tions of effort (i.e., an effort heuristic; Kruger et al., 2004). Most

recently, Gangadharbatla (2022) suggested that people dislike when

advanced algorithms generate high-quality, representational, realistic

art because it disrupts expectations that machine-generated art is

abstract, indeterminate, geometric, and pixelated (Chamberlain

et al., 2018; Hertzman, 2020).

Although the previous work has largely been focused on ques-

tions of classification and preference, these articles have also
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found that human-generated artworks typically receive more favor-

able aesthetic ratings, yet results remain relatively inconclusive.

For example, Chamberlain et al. (2018) found that human-generated

images had ratings of liking, even after controlling for expertise and

statistical image properties. Gangadharbatla (2022) found an interac-

tion effect, based on beliefs around art, such that human-generated

art received higher ratings of evaluation, liking, and purchase inten-

tions when the art was representational. They also found that

machine-generated art received higher ratings when the images

were abstract. Both Hong and Curran (2019) and Ragot et al.

(2020) found that human-generated images received higher ratings

of composition, emotional expression, novelty, meaning, and overall

aesthetic appreciation—even when the labels were switched (i.e.,

human-generated images were labelled as machine-generated).

Much of the empirical work that has been conducted in this space,

however, has used psychometrically suspect measures that were

not developed with a process model of empirical aesthetics as a the-

oretical reference point.

The Current Project

Machine-generated art is a novel area based on new, large-scale

deep learning models (Bommasani et al., 2021; Cetinic & She,

2021). These foundation models are already causing ethical

(Pistilli, 2022; Weidinger et al., 2021), social (Groh et al., 2019;

Paullada et al., 2021), and legal controversy (Dee, 2018; Rahwan

et al., 2019). They are also challenging our long-held ideas around

the importance of art, creativity, and emotional expression in

humans (Gunkel, 2021). As such, understanding how people per-

ceive, interpret, and appreciate machine-generated art is an increas-

ingly important area of research (Cetinic & She, 2021; Colton &

Wiggins, 2012; Natale & Henrickson, 2022).

Using the process models of aesthetic judgment, this study exam-

ines which aesthetic judgment factors in the model differentiate

human- and machine-generated artwork. The current study builds

on earlier work in several ways. First, we grounded our study in

the aesthetic judgment literature, because the perception of art—

human- or machine-generated—is a question of aesthetic judgment

more so than computational creativity (which may be more closely

aligned to artistic creation; Cetinic & She, 2021). In doing so, we

used process-based models of aesthetic judgment to inform our

design and, particularly, the selection of dependent measures, the

aesthetic judgment factors, that were used. More specifically, pro-

cess models informed the range of cognitive, semantic, and emo-

tional aesthetic judgment factors included, which may be a more

comprehensive sampling of the factors that differentiate human-

and machine-generated art.

Second, due to the importance of image stimuli (Specker et al.,

2020), we used some of the new developments in generative art

models (e.g., Crowson et al., 2022) to develop our image stimuli

and used a stimulus sampling approach (Highhouse, 2009) to stand-

ardize and select our final study stimuli. Third, we designed our

study in such a way as to avoid biasing raters against machine-

generated art, as found in previous work (e.g., Chamberlain et al.,

2018; Hong&Curran, 2019), by only asking participants to consider

the possibility of the art being machine-generated after the ratings

occurred. We also used an analytical method specifically developed

for describing between-group differences for sets of factors (i.e.,

descriptive discriminant analysis [DDA]; Smith et al., 2020). If

people process the human- and machine-generated artwork differ-

ently, these processing differences should be reflected in the aes-

thetic judgment factors. Thus:

Research Question 1: What are the aesthetic judgment factors differen-

tiating between human- and machine-generated art?

Furthermore, this effort also aims to conceptually replicate ear-

lier work, which has found that people have an inconsistent prefer-

ence for human generated artwork (Chamberlain et al., 2018;

Gangadharbatla, 2022) and that they can correctly classify the

art source (human or machine) around 42.5%–63.8% of the

time (Chamberlain et al., 2018; Elgammal et al., 2017;

Gangadharbatla, 2022; Ragot et al., 2020). However, it is worth

revisiting these results around preference and classification for sev-

eral reasons. First, the recent developments in transformer-based

architectures (i.e., VQGAN-CLIP, diffusion models) may not

have been available during earlier research. The transformer-based

models have a distinct style and are thought to be more realistic

than pretransformer models. Second, another notable difference

in our design is that participants were not informed of the possibil-

ity that their image was generated by AI, thereby eliminating any

potential bias in ratings of preference (Hong & Curran, 2019).

Third, the stimuli and measures used in the current project have

been validated. The pilot study used stimulus sampling to identify

standardized image stimuli (i.e., balanced on attractiveness, tech-

nical skill, and familiarity) and the main study uses psychometri-

cally valid measures of aesthetic judgment. As such, this is a

conceptual replication because the phenomena under investigation

are similar but the design, sample, stimuli, and measures are differ-

ent (Derksen & Morawski, 2022). More specifically, with these

newer algorithms and more rigorous stimulus sampling and mea-

surement, we are revisiting whether people have a preference for

human- or machine-generated art and whether or not they are

able to accurately distinguish which image is from which source:

Research Question 2: Do people have a preference for human- or

machine-generated art?

Research Question 3: Can people distinguish between human- and

machine-generated art?

Each of these research questions can be explored in fairly simple

ways, following previous work. For example, preference can be cap-

tured simply by asking people how much they liked the image they

were given (Chamberlain et al., 2018; Ragot &Martin, 2020). While

aesthetic liking is one indicator of preference, another more behav-

iorally based indicator is a person’s willingness to want to hang

the image in their home or office. Image classification can be cap-

tured by introducing people to the idea that images are being gener-

ated by machines and asking whether they think their image was

generated by a human or machine artist. Therefore, the current pro-

ject explores research questions around classification, preference,

and the aesthetic judgment factors differentiating human- and

machine-generated art. Overall, these efforts taken to ground the cur-

rent design within the theoretical framework of process models of

aesthetic judgment, to use new transformer-based text-to-image

algorithms, and the use of well validated image stimuli and measures

should improve the validity and generalizability of our results

(Fabrigar et al., 2020; Yarkoni, 2022).
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Method

Participants

Participants were recruited from MTurk through CloudResearch.

Participants were required to be at least 18 years old, based in North

America, have intermediate English ability, and have an approval

rating of 70%+ with 1,000+ approved HITs. The survey was pro-

grammed on Qualtrics. To ensure data quality, there were survey

requirements (above), filters (i.e., reCAPTCHA, age, regional emer-

gency phone number identification, and language checks), and

instructed attention checks. Participants who did not meet require-

ments were unable to launch the survey. Participants who failed

the filters were sent to the end of the survey. Participant who failed

two of three attention checks were filtered out of the dataset during

data cleaning (below). The sample size was determined with an a

priori power analysis, using G*Power (V.3.1.9.2; Faul et al.,

2007), which indicated that the minimum sample required to detect

a small to medium effect ( f2= .10) with power= .95 for a multivar-

iate analysis of variance(MANOVA) analysis was n= 132. A rela-

tively small effect size was used to conservatively establish the

minimum sample size to detect a baseline effect (e.g., Hwang et

al., 2002) and a MANOVA F test was specified because it is math-

ematically similar to discriminant analysis (Smith et al., 2020). Out

of 200 initial respondents, the final sample was N= 190 with an

average age of 39 (SD= 10 years), 73% white, 58% male, and

55% having a Bachelor’s, Master’s, or PhD. They also had an aver-

age level of self-reported artistic interest (M= 3.12, SD= 1.09).

Participation was voluntary and participants were compensated

1.50 USD (7.50 USD hourly rate).

Procedure

Participants self-selected into the study and were automatically

randomized into an “AI” or “Human” condition where they were

shown only one image and asked to complete all of the measures

based on that single image. In the AI condition, participants were

randomly shown one of the three machine-generated images. In

the Human condition, participants were randomly shown one of

the three human-generated images. Participants were randomly

assigned to conditions and randomization was balanced to make

sure there was an equal number of participants in each condition

and for each image. Notably, there was no mention of AI art and par-

ticipants were not informed that some of the images were machine-

generated until the final section of the survey when participants were

asked to identify the images as human- or machine-generated.

The procedure was the same for both conditions. First, each par-

ticipant read and completed a consent form. Next, they were

shown their image and instructed to click on the picture to confirm

that they had seen it. Afterward, the image was kept at the top of

each survey page, for reference, and the participants were asked to

rate the image on measures of the aesthetic judgment factors.

Specifically, they were asked to, “please take a look at the following

painting. This survey will ask you a series of questions on how you

think and feel about this particular image. For your reference, it will

stay at the top of each page!.” The aesthetic judgment factor surveys

and items were randomized across Participants to avoid order effects

(see “Measures” section). After rating the respective images on the

aesthetic factors, participants were asked to identify the source of

the image (i.e., human- or machine-generated), how confident they

were in their estimate, and complete a measure of their artistic inter-

est. At the end of the study, participants were told which condition

(AI or Human) they were in and what the source of their image was.

Materials and Measures

Image Materials

The image stimuli used in this study were identified with a stim-

ulus sampling pilot study. Stimulus sampling involves ensuring that

our image stimuli are high quality representations of their respective

domains with minimal noise (Highhouse, 2009; Judd et al., 2012;

Yarkoni, 2022). Image selection is important because the image fea-

tures determine aesthetic judgments (Dalege et al., 2016; Pelowski et

al., 2017)—particularly as our images are presented without context

(Krauss et al., 2021; Mullennix et al., 2020). This image sampling

process should increase the validity and generalizability of our sub-

sequent results (Fabrigar et al., 2020; Flake et al., 2022; Shadish et

al., 2002). The images stimuli were developed in three stages. For a

more detailed description of the pilot study, see the OSF.

First, the human-generated images were identified through open-

source online museum collections (i.e., Art Institute of Chicago, The

Metropolitan Museum of Art, the National Gallery of Art, Artvee).

The machine-generated images were created using five different algo-

rithms (i.e., Ryan Murdock’s Aleph2Image [A2I] and The Big Sleep,

Katherine Crowson’s Diffusion Model [DD; Crowson et al., 2022],

Justin Bennington’s S2ML, and DALL-E mini [Dem] hosted on

HuggingFace) with text prompts based on the titles of the human

images (i.e., “moonlight on the beach” and “lakeshore with reeds”).

To reduce the total set of images to 20 (10 human and 10 machine)

for the pilot study, the authors used a priori decision rules to standard-

ize the image selection process. Finally, the 20 images were formatted

for similar sizing (i.e., 512 px along the smallest dimension).

For the pilot study, 100 Mturk participants were recruited through

CloudResearch to rate 20 images (10 human- and 10 machine-

generated) on attractiveness, technical skill, familiarity, and willing-

ness to hang the image in their home with single items (i.e., “this

painting is attractive [i.e., aesthetically pleasing],” “this painting

shows talent [i.e., technical skill],” “I feel like I have seen this paint-

ing before,” and “I would hang this painting in my home”). Single

items have been shown to reduce participant burden and maintain

validity (Allen et al., 2022; Matthews et al., 2022). The final sample

size was 89 after data cleaning. Overall, three human- and three

machine-generated images, that were balanced for attractiveness

and technical skill with low ratings of familiarity, were selected

for the study (see Figure 1). Three images were used for each condi-

tion to avoid idiosyncratic image effects.

Measures

Aesthetic Judgment. The aesthetic judgment process was cap-

tured with the Art Reception Survey (ARS; Hager et al., 2012). The

ARS is a measure of aesthetic judgment and appreciation that was

developed based on process models of aesthetic judgment (e.g.,

Leder et al., 2004; Leder & Nadal, 2014). It has six dimensions

with four to five items per dimension rated on a 5-point Likert

scale (1= strongly disagree to 5= strongly agree). The dimensions

are cognitive stimulation (“intellectual engagement of the viewer

with an artwork”), negative emotionality (“the arousal of unpleasant

affective responses towards the artwork”), expertise (“the extent of
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explicit knowledge the person has about artist and painting, as well

as a sense of understanding of the artist’s intention or idea that was

meant to be expressed”), self-reference (“describes whether the

recipient is feeling a person connection to the painting, evoking

past memories or emotions”), artistic quality (“the level of creativity

and artistic skillfulness that is attributed to the painting and painter”),

and positive attraction (“subsumes items describing a positive recep-

tion of the artwork”). Estimates of internal reliability are shown in

Table 1. Example items include, “this painting makes me curious”

and “personal memories of mine are linked to this painting” for cog-

nitive stimulation and self-reference.

Aesthetic Emotions. Aesthetic emotions were captured with

the AESTHEMOS (Schindler et al., 2017). The AESTHEMOS is

a measure with 21 subdimensions that can be grouped into seven

broad dimensions representing the broader emotional orientation

of the subdimensions. The dimensions are negative emotions

(with ugliness, confusion, anger, boredom, and uneasiness subdi-

mensions), prototypical aesthetic emotions (with being moved, sur-

prise, fascination, feeling of beauty/liking, and awe subdimensions),

epistemic emotions (with intellectual challenge, interest, and insight

subdimensions), animation (with energy, vitality, and enchantment

subdimensions), nostalgia (with nostalgia and relaxation subdimen-

sions), sadness (unidimensional), and amusement (with humor

and joy subdimensions). Items were rated on a 5-point Likert scale

(1= strongly disagree to 5= strongly agree). Estimates of internal

reliability are shown in Table 1. Example items include, “felt deeply

Figure 1

Final Images Used

Image Type Images and Shorthand Titles

Human

Poplars Lakeside Road Banks of Medan

AI

A2I lakeshore DEm lakeshore DD paris

Note. For the human artwork, Poplars= Paul Klee’s Landscape with Poplars (1929; sourced from Artvee,

in the public domain). Lakeside Road=Richard Gerstl’s Lakeside Road Near Gmunden (1907; sourced

from Artvee, in the public domain). Banks of Medan= Paul Cézanne’s Banks of the Siene at Médan (c.

1885/1890; sourced from the National Gallery of Art, in the public domain). For the AI artwork, A2I lake-

shore=Ryan Murdock’s Aleph2Image model (author prompt: “a lakeshore with flower reeds in the style of

expressionism”). DEm lakeshore=DALL-Emini model (author prompt: “a lakeshore with reeds in the style

of post-impressionism”). DD=Katherine Crawson’s Disco Diffusion model (author prompt: “a landscape

of Paris in the style of post-impressionism”). AI= artificial intelligence. See the online article for the color

version of this figure.

Table 1

Means, SDs, and Cohen’s d Effect Size for Aesthetic Judgment

Variables by Image Type and Internal Reliability Estimates

Variables

Image type

d a

Human (n= 91),
M (SD)

AI (n= 97),
M (SD)

(ARS) Cog Stim 3.03 (1.18) 3.05 (1.08) −.02 .91
(ARS) Neg Emo 1.45 (0.74) 1.44 (0.63) .01 .84
(ARS) Expertise 2.10 (0.78) 2.05 (0.67) .06 .64
(ARS) Self Reflect 2.20 (1.13) 1.88 (1.02) .30 .90
(ARS) Art Quality 3.37 (1.06) 3.27 (0.96) .10 .87
(ARS) Attraction 2.95 (1.02) 2.60 (0.97) .35 .87
(AES) Neg Emo 1.64 (0.69) 1.70 (0.67) −.10 .83
(AES) Aesthetic Emo 2.81 (0.96) 2.66 (0.89) .16 .89
(AES) Epistemic Emo 2.79 (1.02) 2.70 (1.09) .09 .81
(AES) Animation 2.44 (1.1) 2.27 (1.03) .16 .92
(AES) Nostalgia 3.09 (1.12) 2.68 (1.06) .38 .85
(AES) Sadness 1.81 (1.05) 1.66 (0.83) .16 .73
(AES) Amusement 2.57 (0.99) 2.35 (0.87) .24 .75

Note. ARS = Aesthetic Response Survey; AES=Aesthetic Emotions
Scale; AI= artificial intelligence.
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moved,” “was unsettling to me,” and “energized me” for prototypical

aesthetic emotions, negative emotions, and animation, respectively.

Artistic Interest. Artistic interest was self-reported with the

Vienna Art Interest & Art Knowledge Questionnaire (VAIAK;

Specker et al., 2020). Artistic interest was measured across two

scales, with seven items capturing self-reported interest rated on a

5-point Likert scale (1= not at all, 5= very much) and four behav-

ioral items rated on a 5-point frequency scale (1= less than once per

year; 5= once per week or more often). The reliability estimates

were α= .92 and .77, respectively. Example items included, “I am

interested in art” and “I enjoy talking about art with others” for

the self-report items and “how often do you visit museums or art gal-

leries on average” and “how often do you view images of artworks

(picture, internet, books, etc.)?” for the behavioral items. Notably,

the VAIAK rating scale was changed from a 7- to 5-point rating

scale. While it is recommended to keep a 7-point scale (Specker,

2021), we wanted to use a standardized 5-point scale across mea-

sures and reduce participant burden as much as possible and research

suggests that there is often minimal impact to validity when moving

from a 7- to 5-point scale (Dawes, 2008; Krosnick & Presser, 2010).

Image Classification. The classification of images as human-

or machine-generated was captured with a single item: “some artists

have started using computer algorithms (like artificial intelligence

[AI] and machine learning) to make artwork. Do you think this

image was made by a Human or a Machine (AI) artist?.” There

were two response options (“Human Artist” or “Machine [AI]

Artist”). Classification confidence was also assessed with a sliding

scale from 0% to 100% asking, “You think this painting/image

was made by [insert previous selection]. How confident are you in

that choice?.” There was also an optional open-ended response

box with the caption, “in a few words, how did you decide if this

work was from a [insert previous selection]?”

Image Preference. Image preference was captured with two

items that were used in the pilot study. Following previous work

(Chamberlain et al., 2018; Ragot et al., 2020), perceptions of the

images overall attractiveness was assessed with a single item, “this

painting is attractive (i.e., aesthetically pleasing),” rated on a

5-point Likert scale (1= strongly disagree to 5= strongly agree).

Additionally, a behavioral indicator of preference, willingness to

hang the image in their home, was captured with, “I would hang

this painting in my home,” rated on a 5-point Likert scale (1=

strongly disagree to 5= strongly agree).

Analysis

For data cleaning, three data quality checks were conducted fol-

lowing best practices outline by Curran (2016) and Niessen et al.

(2016). First, ocular analysis indicated some cases with straight lin-

ing response tendencies so long strings (.2 SD) were flagged. Next,

negative person-total correlations were flagged (Curran, 2016).

Finally, cases with a significant distant Mahalanobi’s Distance

were flagged at cut-off of p= .01, which is stricter than the typical

p= .001. Respondents with two flags or more were filtered out of

the data set. This procedure resulted in dropping 10 cases.

For research question one, DDA (Smith et al., 2020), a variant on

linear discriminant analysis (LDA; Fisher, 1936; see Boedeker &

Kearns, 2019 for a discussion of LDAvariants), was used. DDA is pri-

marily used to describe group differences, based on sets of variables,

by estimating the linear combinations maximizing between-group dif-

ferences (Smith et al., 2020). It allowed us to descriptively explore the

aesthetic judgment factors differentiating human- and machine-

generated art. The analysis was conducted in RStudio V.4.1.2 with

the candisc (Friendly & Fox, 2020) and MASS (Venables & Ripley,

2002) packages following best practices outlined in Smith et al.

(2020). Research question two was investigated with descriptive anal-

yses and research question three was investigated with a group means

comparison with base R.

Results

Descriptive Statistics and Assumption Testing

The descriptive statistics, effect sizes, and reliability estimates for

the aesthetic judgment factors are shown in Table 1 and more

detailed descriptive statistics are available in supplemental tables

found in the OSF. As shown there, several of the variables (i.e., neg-

ative emotion, self-reference, expertise, and sadness) demonstrated

high skew and/or kurtosis which may be indicative of departures

from normality. To further investigate multivariate normality, an

assumption underlying DDA, we used Q–Q plots and a Shapiro–

Wilks test. Both tests indicated that the data deviated from multivar-

iate normality. To address this, data transformations were carried out

(i.e., log, square root, inverse) based on the 95% confidence intervals

around lambda values estimated with a Box–Cox test (Osborne,

2020). However, subsequent analyses were conducted with the

raw data because, while the transformations improved the descrip-

tive statistics, Q–Q plots and Shapiro–Wilks test indicated that the

transformed data still violated the assumption of normality. A

Box’s M test indicated heterogeneity of covariance, but the test is

sensitive to multivariate outliers and the ratio of log determinants

was in a normal range (Smith et al., 2020). More information on

our assumption testing, data transformation, and discussion around

using the raw data is included in the OSF.

Aesthetic Judgment Factors

For research question one, exploring the aesthetic judgment fac-

tors differentiating human- and machine-generated art, the results

are presented in Table 2. There were several variables contributing

to the estimation of the linear discriminant function, including

attraction (B= 1.78), cognitive stimulation (B=−1.42), animation

(B=−.55), expertise (B=−.44), and negative emotionality (B=

0.40). These standard discriminant function coefficient weights rep-

resent how strongly the aesthetic judgment factors contributed to the

estimation of the overall discriminant function. For example, attrac-

tion, looking at Table 2, had the greatest contribution with a stan-

dardized coefficient of 1.78, followed by cognitive stimulation

with a coefficient of −.142, whereas aesthetic emotion had a negli-

gible contribution at −.03.3

Before interpreting the discriminant function, it is important to con-

sider the structure coefficients (i.e., rs column in Table 2). Furthermore,

3 This pattern of results, shown in Table 2, suggests that Cognitive
Stimulation may be a suppressor variable. Further exploration and discussion
are available in the OSF.
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four of the 13 variables included in the equation explained meaningful

variance in the discriminant function (i.e., rs. .30), including self-

reflection (rs= .40) and attraction (rs= .49) from the ARS and nostal-

gia (rs= .51) and amusement (rs= .34) from the AESTHEMOS. The

structure coefficients (rs) represent the bivariate correlations between

the aesthetic judgment factors and latent discriminant function,

where larger coefficients indicate stronger associations between the

aesthetic judgment factors and the discriminant function. Larger struc-

ture coefficients suggest that the associated variables contribute to the

distinction between groups. Together, these four variables collectively

explained 78%of the variance in the discriminant function distinguish-

ing human- and machine-generated art. It is notable that these four sig-

nificant factors are all emotionally based and characterized by positive

valence at varying degrees of arousal (cf., Russell, 1980; van Tilburg et

al., 2018).

As shown in Figure 2, the group centroid for the human condition

(.40) is substantially higher than the machine condition (−.38).

Interpreting this with the structure matrix (Table 2), human-generated

art is differentiated from machine-generated art by ratings of self-

reference (rs= .38), attraction (rs= .49), nostalgia (rs= .52), and

amusement (rs= .39) such that the human art was rated higher on

these aesthetic judgment factors compared to machine-generated art.

In other words, participants reported experiencing more self-

reflection, attraction, nostalgia, and amusement in the human-

generated art condition.

Preference

For research question 2, whether people prefer human- or

machine-generated art, we found a preference for human-generated

art over machine-generated art. First, participants had more positive

aesthetic experiences, on almost all of the aesthetic judgment factors,

in the human-generated art condition, as shown by the discriminant

function (see Figure 2). Second, participants also had significantly

higher levels of attraction to human-generated images (M= 3.74)

compared to machine-generated images (M= 3.34); t(184.75)=

−2.26, p, .05; d= .33. Participants were also more likely to

want to hang human-generated images (M= 3.19) in their homes

compared to machine-generated images (M= 2.70); t(183.53)=

−2.32, p, .05; d= .34.

Classification Accuracy

For research question 3, exploring whether people can distinguish

between human- and machine-generated art, we found that the over-

all classification accuracy for the images was 60% (see Table 3). This

means that participants were able to successfully classify the images

as human- or machine-generated art 60% of the time. The classifica-

tion accuracy was higher for human images at 85% and lower for

machine images at 35%, which may reflect a schema or assumption

that art is typically human made (Chamberlain et al., 2018).

Discussion

General Discussion

The purpose of this project was to explore the aesthetic judgment

factors differentiating human- and machine-generated art. With

recent advancements in AI and generative art, there has been as

surge of ground-breaking research investigating how people experi-

ence machine-generated artwork. Most of this work has focused on

preferences (Chamberlain et al., 2018; Elgammal et al., 2017),

biases (Gangadharbatla, 2022; Hong & Curran, 2019; Ragot et al.,

2020), and ability to identify and classify the image source (i.e.,

Turing or Lovelace Test; Chamberlain et al., 2018; Elgammal et

al., 2017; Gangadharbatla, 2022; Ragot et al., 2020) with a smaller

Table 2

Standardized Discriminant Function Coefficients, Structure

Coefficients, and Group Centroids

Variable Standard coefficients rs rs
2

(ARS) Cog Stim −1.42 −0.04 0.00
(ARS) Neg Emo −0.30 −0.05 0.00
(ARS) Expertise −0.44 0.08 0.00
(ARS) Self Reflect 0.05 0.38 0.14
(ARS) Art Quality −0.14 0.11 0.01
(ARS) Attraction 1.78 0.49 0.24
(AES) Neg Emo 0.40 −0.20 0.04
(AES) Aesthetic Emo −0.03 0.26 0.07
(AES) Epistemic Emo 0.30 0.08 0.00
(AES) Animation −0.55 0.25 0.06
(AES) Nostalgia 0.30 0.52 0.27
(AES) Sadness 0.21 0.14 0.02
(AES) Amusement 0.39 0.39 0.15

Group Centroids Cohen’s d

AI −0.38 0.79 [0.47–1.09]
Human 0.40

Note. Statistically meaningful (rs. 0.30) aesthetic judgment factors are in
bold. Standard coefficients are contributions to the discriminant functions
equation; rs= structure coefficients, are the bivariate correlations between
observed variables and the discriminant function; rs

2
= squared structure

coefficients, are the proportion of explained variance. ARS = Aesthetic
Response Survey; AES=Aesthetic Emotions Scale; AI= artificial
intelligence.

Figure 2

Image Source (AI or Human) Plot of Composite Centroids With

95% Confidence Intervals (n= 100 and 94 for AI and Human

Groups, Respectively)

Note. AI= artificial intelligence. See the online article for the color ver-

sion of this figure.
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focus on the audience’s subjective, aesthetic judgments of the art-

work itself.

There are three primary contributions with this work. First, as a

theoretical and methodological contribution, our framing of the

study as human perception of machine-generated art allowed us to

ground it in current theoretical models of aesthetic judgment and

measure the aesthetic judgment factors with psychometrically

valid measures. Second, our pilot study used a stimulus sampling

procedure to validate our image stimuli and, hopefully, improve

the ecological validity and generalizability of our results

(Highhouse, 2009; Wells & Windschitl, 1999). The pilot study pro-

cedure and resulting images are available on the OSF and can be

freely used in future research (https://osf.io/z4cnj/). Finally, this

effort answers calls for more research around the human appreciation

of machine-generated art (Gangadharbatla, 2022; Hong & Curran,

2019; Ragot et al., 2020), calls for continued research grounded in

empirical aesthetics (Nadal & Vartanian, 2021), and calls to study

AI from the human judgment perspective (i.e., The Lovelace Test;

Gunkel, 2021; Natale & Henrickson, 2022; Ren & Bao, 2020). To

our reading, this is one of the first studies to investigate human per-

ceptions of machine-generated art with established theories and

measures of aesthetic judgment. Overall, we found that aesthetic

judgment factors characterizing positive emotions were higher for

human-generated artwork—even when people had trouble identify-

ing the art source.

Our findings indicated that positively valenced emotions collec-

tively explained 78% of the variance in the function discriminating

between human- and machine-generated art. In other words, it was

the emotional, instead of cognitive or semantic, factors that differen-

tiated. The specific factors were self-reflection (i.e., feeling a per-

sonal connection to the image), attraction (i.e., feeling a general

positive attitude toward the image), nostalgia (i.e., feelings of relax-

ation, melancholy, or peace of mind), and amusement (i.e., feelings

of joy and humor). Overall, these results suggest that people prefer

and have more positive emotional experiences with human art,

over machine art, even though they may not always identify which

is which. Our findings are aligned with previous work suggesting

that emotions are central to aesthetic processing (Leder et al.,

2012; Menninghaus et al., 2019; Skov & Nadal, 2020). This prefer-

ence for human-generated images is aligned with previous research

but is particularly notable because participants in our study were not

aware of which condition (human or AI) they were in before viewing

and rating the images. They likely had the assumption that the

images came from the same stereotypical source of art—humans

—and were unbiased by schemas or stereotypes about artists

(Hong & Curran, 2019; Ragot et al., 2020) when rating the images.

We also found that people have difficulty accurately identifying

and classifying images as human- or machine-generated. More spe-

cifically, peoplewere able to classify the images correctly 60% of the

time—or slightly better than a coin toss. These results are in linewith

previous work that found overall accuracies ranging from 44% to

61%, human-generated image accuracies ranging from 60% to

84%, and machine-generated image accuracies ranging from 25%

to 56%. The accuracy we found for machine-generated images

(35%) was at the low end of the range established by previous

research—only higher than the finding of 25% by Elgammal et al.

(2017) when they introduced the Creative Adversarial Network

model. Interestingly, successfully identifying machine-generated

images as machine-generated 35% of the time means that the gener-

ative art algorithms were “tricking” participants into believing their

work was made by humans 65% of the time. Based on these results,

these algorithms would pass a Turing or Lady Lovelace Test as col-

loquially formed (i.e., greater than chance; French, 2000; Riedl,

2014).4

A Tentative Interpretation of the Results

Although this research was exploratory, we offer a tentative expla-

nation for our findings based on aesthetic judgment fluency. Again,

we found that, while people seem to prefer and experience more pos-

itive emotions with human-generated art, they cannot easily identify

which image is human- and which image is machine-generated. In

other words, people may feel better without knowing better. This pat-

tern of results is consistent with a dual-processing account of judg-

ment and decision making (Kahneman & Frederick, 2002;

Stanovich, 1999), where people automatically use fast, intuitive,

emotionally based System 1 or engage deliberate, controlled, cogni-

tively based System 2 processes to make judgments (see Evans &

Stanovich, 2013). In the artworld, these processes—aesthetic judg-

ments—are determined by the fluency, or discrepancy, of an aes-

thetic experience. Fluency refers to how easily a work of art can

be perceived, processed, and understood and has been related to pos-

itive aesthetic experiences (Graf & Landwehr, 2015, 2017; Reber et

al., 2004; Winkielman et al., 2003).

There are two major models of aesthetic processing that consider

fluency. The Pleasure-Interest model of Aesthetic liking (PIA; Graf

& Landwehr, 2015, 2017) proposes that positive aesthetic experi-

ences emerge from System 1 as pleasure (i.e., positive emotion)

and from System 2 as interest (i.e., cognitive engagement). An audi-

ence will automatically engage their System 1 processes to deter-

mine their affective reactions based on perceptual fluency (i.e.,

how easily one can identify image characteristics; Reber et al.,

2004). In contrast, System 2 processing is cognitively based, leading

to impressions of interest, confusion, or boredom, and is deliberately

engaged when a viewer is motived to take a closer look at an artwork

(i.e., on their own volition, at the request of a date, or even by exper-

imental demand). System 2 processing may be related to conceptual

fluency (i.e., how easily one understands and relates to the art; Reber

Table 3

Overall Classification Accuracy

Participant
classification

True source

Classification
accuracy (%)

Machine
generated

Human
generated

Machine 34 13 35
Human 63 78 85
Total 97 91 60

Note. Participant classification reflects participant rating (i.e., “Do you
think this image was made by a human or machine [AI] artist?); True
Source reflects the experimental condition participants were randomly
assigned to (i.e., the real image source). Classification accuracy was found
by dividing the condition’s participant classification by the true source
total (e.g., 34/97= 0.35). AI= artificial intelligence.

4 In fact, images generated by the more advanced algorithms (i.e., trans-
former based VQGAN and CLIP models) were classified as human-
generated, or “tricking” participants, around 87% of the time.
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et al., 2004). Similarly, the VIMAP (Pelowski et al., 2016, 2017)

outlines a process where people can have positive, negative, or neu-

tral aesthetic experiences emerging from different levels of stimuli

discrepancy and self-relevance. More specifically, positive aesthetic

experiences emerge from low discrepancy or from discrepancy

reducing mechanisms (i.e., self-reflection; Pelowski et al., 2017).5

Discrepancy occurs when there is a belief that an artwork has a sub-

jective meaning that is not immediately accessible (Parsons, 1987).

Both of these models, the PIA andVIMAP, suggest that positive aes-

thetic experiences may emerge from fluent, low discrepancy, auto-

matic processing.

Interpreting our findings through this lens, it may be the case that

human-generated images typically have greater levels of perceptual

fluency, or fewer discrepancies, and that machine-generated images

are harder to process because they are perceptually disfluent, or have

more discrepancies. Perceptual fluency (i.e., how easily a viewer can

make sense of an image) is generally a function of the statistical

image characteristics (i.e., color, contrast, symmetry) while concep-

tual fluency is processed by more complex cognitive and semantic

processes (Graf & Landwehr, 2017; Reber et al., 2004).

Machine-generated images are often characterized by visual indeter-

minacy (i.e., appearing coherent and meaningful, but missing defini-

tion or spatial interpretation on closer inspection; Hertzmann, 2020)

and are often criticized for lacking intentionality, composition, and

narrative (Cetinic & She, 2021; Coeckelbergh, 2017; McCormack

et al., 2019). It may be the case that the disfluent characteristics of

machine-generated images (i.e., visual indeterminacy) are adversely

influencing participant’s System 1 processing and resulting in less

positive aesthetic experiences. When participants were instructed

to identify the image source, however, they may have engaged in

System 2 processing and were unable to identify the source, through

controlled reflection, because the discrepancy was at the System 1

level. Overall, there appears to be some psychological differences

between human- and machine-generated art, but this is only a tenta-

tive interpretation and there are several limitations and future direc-

tions worth discussing.

Limitations and Future Directions

There are several limitations with the current study and directions

for future research. First, one limitation of the current study was sam-

pling. The sample of participants, image stimuli, and context was lim-

ited. In terms of participants, a sample of MTurk participants was

used. Future samples could include students, art students, or even

members of an art community to capture varying levels of exposure,

expertise, and interest in art. In terms of image stimuli, the stimuli used

were sampled to make sure they were good representations of their

content domains. However, the style (i.e., impressionist, postimpres-

sionist, and expressionist) and content (i.e., landscapes) was limited

to control for extraneous effects. Domain representativeness means

that the images are good examples of high-quality human- and

machine-generated art. Minimal noise means that the images include

as little irrelevant or idiosyncratic information as possible to help iden-

tify a “true” effect (Podsakoff et al., 2003). Despite stimulus sampling

efforts, another limitation is that the human-generated images were

chosen from open-source museum collections, meaning that they

had been already identified as high quality and curated by expert

museum curators. In contrast, the machine-generated art was selected

from a variety of algorithm image outputs, by the project authors

based on our a priori criteria. Although psychological differences

may exist between museum curated human art and researcher chosen

AI art, practically, we wanted to identify images balanced on attrac-

tiveness, technical skill, and fame otherwise an unbalanced image

may not be representative of a typical painting for that group and dis-

tract from the true effect. For example, comparing van Goh’s The

Starry Night against a pixelated, fractal, indeterminate computer

piece would not be a fair comparison because the image source

would be obvious.

Future research should continue to use broader sets of image stim-

uli, including different styles (i.e., abstract, classical, modern) and

content (i.e., people, animals, objects) as algorithms continue

advance and avoid the uncanny valley (Gangadharbatla, 2022). In

fact, at the time of writing the results, OpenAI has launched

DALL-E 2 (Ramesh et al., 2022), Google has launched Imagen

(Saharia et al., 2022), Midjourney has entered open-beta, and

Stability AI has launched Stable Diffusion. These projects all

seem to generate landscapes, objects, and animals at high degrees

of realism. With these increasingly realistic machine-generated art-

works, future work should consider how people curate the AI art

and identify which aesthetic judgment factors or image characteris-

tics influence the decision to select the final AI image. Finally, in

terms of context, contextual features play a large role in aesthetic

judgment (Pelowski et al., 2017). Laboratory and survey research

remove contextual variability which, as discussed by Carbon

(2020), “[a]ccording to Brunswik (1956), we will not get ‘fully rep-

resentative’ (p. 67) research with laboratory-oriented research that

ignores such typical viewing and inspection behavior” (p. 3).

Future work should continue to explore the influence of context

on evaluations of machine-generated artwork.

Second, the current work was both a conceptual replication and

exploratory. It was a conceptual replication (Derksen & Morawski,

2022) of earlier findings around preference for human art and classi-

fication of image source (i.e., research questions two and three).

However, it took more of an inductive approach (Woo et al., 2017)

to answering the primary research question around identifying the aes-

thetic judgment factors differentiating human- andmachine-generated

art. Future research could take a confirmatory approach to replicate

and expand on the current findings. Future research should also con-

tinue to consider moderators of the aesthetic judgment process.

Previous work has considered the effect of bias (Hong & Curran,

2019; Ragot et al., 2020) and effort heuristics (Chamberlain et al.,

2018), however other individual differences could include artistic

expertise (e.g., Hawley-Dolan & Winner, 2011, Moffat & Kelly,

2006), personality (e.g., Cleridou & Furnham, 2014; Swami &

Furnham, 2012), decision-making style (Scott & Bruce, 1995), and

expand on the effects of bias by considering algorithm aversion

(Dietvorst et al., 2015; Logg et al., 2019). Finally, future work should

continue examining the aesthetic judgment factors—particularly the

aesthetic emotions. Aesthetic emotions appear to be involved in dif-

ferences between human- and machine-generated art. Confirmatory

research should aim to establish directionality (e.g., are emotions driv-

ing classifications or are classifications driving emotions) and

5 It is worth noting that participants in the machine-generated image con-
dition did not necessarily have negative aesthetic experiences, but rather they
had less positive experiences compared to the human-generated image
condition.
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exploratory research should continue exploring the dimensionality of

aesthetic emotions. As it stands, the AESTHEMOS captures the con-

tent of aesthetic emotions but does not have a simple factor structure

(Schindler et al., 2017).

A final direction for future research is to consider the machine side

of the human judgment of machine-generated art. More specifically,

future work should continue exploring how the algorithms work,

how text prompts influences output, and how changing the model

parameters changes the output. In doing so, future research can con-

tinue to refine the algorithms by identifying the mechanisms underly-

ing “discrepancies” and “disfluencies,” like visual indeterminacy

(Hertzmann, 2020), and other characteristics that may be driving dif-

ferences in the perception of human- and machine-generated art.

Futurework couldmanipulate image characteristics with prompt engi-

neering (i.e., Liu&Chilton, 2022; Zhou et al., 2022) tomanipulate the

experimental stimuli and create experimental conditions. For example,

as nostalgia was found to be an important aesthetic judgment factor,

future work could manipulate the degree of positive emotionality or

nostalgia in the image outputs by including simple prompt additions

like, “a happy…,” “a sad…,” “a nostalgic painting of…,” or “a care-

free painting of….” Similarly, perhaps different degrees of positivity

or nostalgia can be induced by prompting the algorithms to manipu-

late image characteristics, like the vividness of colors, by including

words like “bright” or “dull” (see Graham & Redies, 2010 for more

on image characteristics). In addition to prompt engineering, parame-

ter tuning gives researchers even more control over the output of the

algorithms. The combination of prompt engineering and parameter

tuning gives has implications for experimental design, more generally,

as algorithms are able to create novel stimuli with high degrees of

experimenter control (see Utz & DiPaola, 2021).

As the fields of aesthetic philosophy and computation creativity

converge around these novel text-to-image algorithms, develop-

ments in algorithmic image generation can inform our understanding

of art, aesthetics, and creativity. Similarly, our understanding of aes-

thetic perception and judgment can continue to inform the tuning of

existing transformer models and the development of new models.

There are interesting parallels between AI art and the development

of earlier art technologies, such as cameras and digital editing. In

the 1840s, after seeing a collection of photographs, the French pain-

ter Paul Delaroche is alleged to have exclaimed, “from today paint-

ing is dead!.” Like a paintbrush, camera, or editing software, these

new foundational text-to-image models are still tools that human art-

ists can use to enhance their own artistic creations. As it stands,

humans still have control over the input, the algorithm parameters,

and the final decision around what image is most impactful and

meaningful. And as the current findings show, people still feel better

about human-generated art. However, after asking ChatGPT,6 a cou-

sin of the algorithms used in this project, what it thought of the

results, it wrote: “as an AI, I would say that the study’s findings

are interesting, but I would also caution against drawing broad con-

clusions about the relative merits of human versus AI-generated art-

work based on a single study. It’s important to remember that AI is a

tool that can be used in many different ways, and its capabilities can

vary greatly depending on how it is designed and trained. Therefore,

it’s possible that in some cases, AI-generated artwork may be just as

attractive, exciting, and nostalgic as human-generated artwork.

Ultimately, the value of any artwork should be judged on its own

merits, rather than on the basis of who or what created it” (see the

OSF for the full conversation transcript: https://osf.io/5kqdh).

Conclusion

Creative, artistic pursuits have long been thought to be safe from

machines (Bakhshi et al., 2015; Boden, 2010) in a world where

upward of 50% of employment is at risk of automation (Manyika

et al., 2017). Algorithms are now able to perform these deeply

human pursuits (Rahwan et al., 2019) and this has prompted

researchers to study how people perceive machine-generated art

(e.g., Chamberlain et al., 2018; Gangadharbatla, 2022; Hong &

Curran, 2019; Ragot et al., 2020). In an emerging area of research,

our study also built on the earlier work by integrating theoretical

frameworks of aesthetic processing and using psychometric mea-

sures of aesthetic judgment to explore which aesthetic judgment fac-

tors differentiate human and machine art. Overall, we found that

people cannot distinguish between human- and machine-generated

art but that they prefer the human artwork and experience more pos-

itive emotions when shown human-generated art. In other words,

while people may perceive human- and machine-generated art in

the same way, the way they feel about the art is different. People

have more positive emotions with human-generated art.
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