
GenLine and GenForm: Two Tools for Interacting with 
Generative Language Models in a Code Editor 

Ellen Jiang Edwin Toh Alejandra Molina 
ellenj@google.com edwintoh@google.com alemolinata@google.com 
Google Research Google Research Google Research 

Aaron Donsbach Carrie Cai Michael Terry 
donsbach@google.com cjcai@google.com michaelterry@google.com 

Google Research Google Research Google Research 

ABSTRACT 

A large, generative language model’s output can be infuenced 
through well-designed prompts, or text-based inputs that establish 
textual patterns that the model replicates in its output [6]. These 
capabilities create new opportunities for novel interactions with 
large, generative language models. We present a macro system with 
two tools that allow users to invoke language model prompts as 
macros in a code editor. GenLine allows users to execute macros 
inline as they write code in the editor (e.g., “Make an OK button” 
produces the equivalent HTML). GenForm provides a form-like 
interface where the user provides input that is then transformed 
into multiple pieces of output at the same time (e.g., a description 
of web code is transformed into HTML, CSS, and JavaScript). 

KEYWORDS 

macros; generative models; prompt programming; code synthesis 

ACM Reference Format: 
Ellen Jiang, Edwin Toh, Alejandra Molina, Aaron Donsbach, Carrie Cai, 

and Michael Terry. 2021. GenLine and GenForm: Two Tools for Interacting 
with Generative Language Models in a Code Editor. In The Adjunct Publi-
cation of the 34th Annual ACM Symposium on User Interface Software and 

Technology (UIST ’21 Adjunct), October 10–14, 2021, Virtual Event, USA. ACM, 
New York, NY, USA, 3 pages. https://doi.org/10.1145/3474349.3480209 

1 INTRODUCTION 

Generative models (e.g., [6, 8]) are designed to create plausible 
continuations of their input. For example, given the text, “After 
work, I went to the”, a model could then generate sentences or even 
paragraphs of text that resemble the start of a story. 

A key fnding of larger, more recent models such as GPT-3 [6] is 
that the input can be crafted in a way such that the model can then 
perform specifc tasks. For example, one could prime the model 
to generate HTML given a natural language description, as in this 
modifed example originally posted on Twitter [10]: 

description: a red button that says stop 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 

UIST ’21 Adjunct, October 10–14, 2021, Virtual Event, USA 

© 2021 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-8655-5/21/10. 
https://doi.org/10.1145/3474349.3480209 

Figure 1: GenLine provides a front-end interface to macros 
written using prompt programming of a generative lan-
guage model. The inline user input to the model is demar-

cated using a double-bracket notation (e.g., “[[Make an OK 
button]]”). Users can choose which macro to run in the drop-
down menu. Model output appears at the bottom of the dia-
log box and is editable before insertion into the document. 

html: <button style = 'color: white; 

background -color: red '>Stop </button > 

description: a blue button with white 

text that says Submit 

html: 

The model then follows this pattern and typically produces the 
output “<button style = ’background-color: blue; color: white;’> 
Submit</button>”. 

This type of guiding input (shown above) is often called a prompt 
[5, 6]. At the most basic level, a prompt is nothing more than the in-
put text to the generative model. However, a number of compelling 
GPT-3 demos [6] demonstrate that prompts can be written to cus-
tomize a single model to perform a wide range of tasks, such as 
transforming natural language instructions into fction, source code, 

145



UIST ’21 Adjunct, October 10–14, 2021, Virtual Event, USA Jiang, et al. 

or SVG graphics (among many other types of output) [1, 2, 5, 9]. 
Defning and designing the prompt is referred to as prompt pro-
gramming [5, 6]. Prompt programming creates new opportunities 
for novel end-user interactions with large, generative language 
models. 

The relatively small size of prompt programs brings to mind more 
traditional scripts or macros, such as those written in a scripting 
language or within an application (e.g., a word processor or software 
development environment). Extending this analogy further, it is 
not difcult to imagine parameterizing a prompt in such a way 
that end-users can use it as a macro or a script. For example, a 
macro author could create a prompt that takes natural language 
descriptions as input, and generates HTML as output (as in the 
example above). 

We demonstrate this concept of generative language macros 
(or “genmacros”) in the context of a code editor. Specifcally, we 
introduce a pair of tools, GenLine and GenForm, that provide 
frst-class interface support for transforming natural language re-
quests into code within a code editor. Our tools make use of prompt 
programming with a version of the model [7] described in [3] to 
synthesize code from natural language descriptions. The model was 
not specifcally trained to support software development, though 
its corpus does include both natural language and code, and has 
been evaluated for its code generation capability [4]. 

2 GENLINE 

The GenLine tool (Figure 1) allows users to pass inline requests 
to a genmacro using a double-bracket notion (e.g., “[[html: Make 
an OK button]]”). When GenLine is invoked, a dialog box appears 
with the model’s output together with a rendered preview. We have 
produced genmacros for converting natural language requests to 
HTML, JavaScript, and CSS. To choose which genmacro to invoke, 
the user can prepend a keyword for the macro to their request (e.g., 
“html:”, “css:”), or choose the desired genmacro from a drop-down 
menu in the GenLine dialog box (Figure 1). 

GenLine is conceptually similar to a traditional autocomplete 
mechanism, but because it is backed by a generative language model, 
it can accommodate relatively fexible input. For example, a macro 
user can mix natural language instructions with code, allowing the 
user to specify in natural language how they want to modify the 
code (e.g., to change a button’s height: “[[css: Make this 30 px tall 
<button>OK</button>]]”). We call this interaction pattern mixed 
inputs to capture the notion that the model enables the user to mix 
conceptually diferent types of input in their request (e.g., mixing 
code and natural language). 

GenLine provides explicit functionality to address common is-
sues found in the output of generative language models, such as the 
potential for it to generate unneeded content, content with small 
errors, or unusable content. Specifcally, GenLine provides controls 
that allow end-users to 1) navigate multiple alternatives produced 
by the model, 2) edit model output prior to inserting it into the 
editor, and 3) transition to external resources when the model does 
not produce the desired output (by performing a web search based 
on the user’s input). 

Figure 2: GenForm provides a structured interface for gener-
ative language macros that can produce multiple outputs. In 
this example, the user provides a natural language descrip-
tion of the desired web code and the model flls in the corre-
sponding HTML, JavaScript, and CSS. 

3 GENFORM 

While GenLine produces a single type of content (e.g., HTML code), 
GenForm (Figure 2) takes advantage of a model’s ability to pro-
duce multiple types of content simultaneously. As an example, 
Figure 2 shows how the user can describe the desired web content 
and functionality (“a blue button that changes opacity to 0.5 on 
hover”). When the genmacro is run, GenForm will fll in the HTML, 
JavaScript, and CSS felds. We term this interaction pattern mixed 
outputs, as a generative model enables the user to specify a high-
level goal that is transformed into multiple, interrelated outputs, 
where these outputs may be of diferent forms (e.g., a description of 
a user interface component that is transformed into the necessary 
HTML, JavaScript, and CSS for that component). 

GenLine and GenForm use few-shot examples for their prompts 
[5]. GenForm’s prompts include multiple named felds to generate 
the form’s content (e.g., “web code description: <natural language 
request> html: <html> css: <css> javascript: <js>”). 

REFERENCES 
[1] 2021. OpenAI API: Code Completion. https://beta.openai.com/?app= 

productivity&example=4_4_0. Accessed: 2021-03-30. 
[2] 2021. OpenAI API: Natural Language Shell. https://beta.openai.com/?app= 

productivity&example=4_2_0. Accessed: 2021-03-30. 
[3] Daniel Adiwardana, Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel, 

Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng 
Lu, and Quoc V. Le. 2020. Towards a Human-like Open-Domain Chatbot. 
arXiv:2001.09977 [cs.CL] Accessed: 2021-08-12. 

146



GenLine and GenForm: Two Tools for Interacting with Generative Language Models in a Code Editor UIST ’21 Adjunct, October 10–14, 2021, Virtual Event, USA 

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk 
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, 
and Charles Sutton. 2021. Program Synthesis with Large Language Models. 
arXiv:2108.07732 [cs.CL] Accessed: 2021-08-13. 

[5] Gwern Branwen. 2020. GPT-3 Creative Fiction. https://www.gwern.net/GPT-3. 
Accessed: 2021-03-30. 

[6] Tom Brown et al. 2020. Language Models are Few-Shot Learners. In Advances 
in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, 
M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877–1901. 

[7] Eli Collins and Zoubin Ghahramani. 2021. LaMDA: our breakthrough conversa-
tion technology. https://blog.google/technology/ai/lamda/ Accessed: 2021-07-14. 

[8] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis 
Hawthorne, Noam Shazeer, Andrew M. Dai, Matthew D. Hofman, Monica Din-
culescu, and Douglas Eck. 2019. Music Transformer. In International Conference 
on Learning Representations. https://openreview.net/forum?id=rJe4ShAcF7 

[9] Fabin Rasheed. 2020. Tweet. https://twitter.com/fabinrasheed/status/ 
1284052438392004608. Accessed: 2021-03-30. 

[10] Sharif Shameem. 2020. Tweet. https://twitter.com/sharifshameem/status/ 
1282692481608331265. Accessed: 2021-04-07. 

147


	Abstract
	1 Introduction
	2 GenLine
	3 GenForm
	References

