
Discovering the Syntax and Strategies of Natural Language
Programming with Generative Language Models

Ellen Jiang Edwin Toh Alejandra Molina
Google Research Google Research Google Research

Cambridge, Massachusetts, USA Mountain View, California, USA New York, New York, USA
ellenj@google.com edwintoh@google.com alemolinata@google.com

Kristen Olson Claire Kayacik Aaron Donsbach
Google Research Google Research Google Research

Seattle, Washington, USA Mountain View, California, USA Seattle, Washington, USA
kristenolson@google.com cbalgemann@google.com donsbach@google.com

Carrie J. Cai
Google Research

Mountain View, California, USA
cjcai@google.com

ABSTRACT

In this paper, we present a natural language code synthesis tool,
GenLine, backed by 1) a large generative language model and 2) a
set of task-specifc prompts that create or change code. To under-
stand the user experience of natural language code synthesis with
these new types of models, we conducted a user study in which par-
ticipants applied GenLine to two programming tasks. Our results
indicate that while natural language code synthesis can sometimes
provide a magical experience, participants still faced challenges. In
particular, participants felt that they needed to learn the model’s
łsyntax,ž despite their input being natural language. Participants
also struggled to form an accurate mental model of the types of
requests the model can reliably translate and developed a set of
strategies to debug model input. From these fndings, we discuss
design implications for future natural language code synthesis tools
built using large generative language models.

CCS CONCEPTS

• Human-centered computing → Human computer interac-
tion (HCI); User studies; • Computing methodologies → Arti-
fcial intelligence; • Software and its engineering → Software
notations and tools.

KEYWORDS

generative language models, prompt programming, code synthesis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3501870

Michael Terry
Google Research

Cambridge, Massachusetts, USA
michaelterry@google.com

ACM Reference Format:
Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik,
Aaron Donsbach, Carrie J. Cai, and Michael Terry. 2022. Discovering the
Syntax and Strategies of Natural Language Programming with Generative
Language Models. In CHI Conference on Human Factors in Computing Systems
(CHI ’22), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY,

USA, 19 pages. https://doi.org/10.1145/3491102.3501870

1 INTRODUCTION

Generative models (e.g., [13, 15, 28]) are designed to create plausible
continuations of their input. For example, given the text, łAfter
work, I went to thež, a language model could then generate sen-
tences or even paragraphs of text that resemble the start of a story
or conversation.

Recent large language models (LLMs), such as GPT-3 [15], have
demonstrated that they can perform a wide range of text-based
tasks by carefully crafting the input to the model. For example,
to produce HTML from a natural language description, one can
prime the model using text containing examples of goals (expressed
in natural language) and their corresponding HTML (see online
example [7]). For instance, one can provide the text shown below:

description: a red button that says stop
html: <button style = 'color: white; background-color: red'>Stop</button>
description: A textfield that says Hello in its placeholder
html: <input type='text' placeholder='Hello'></input>
description: a blue button with white text that says Submit
html:

Given this text as input, the model is likely to produce the HTML
corresponding to ła blue button with white text that says Submitž1.
What is notable about the above example is that it is merely the
text-based input to the model: the model is able to follow the pattern
established by the input, and produce HTML code corresponding
to the natural language description at the end of the input. In efect,
the input enables one to łcustomizež the LLM to perform specifc
tasks, such as code synthesis.

1When providing this input to the model used in this research, it produced the following
code: <button style = ’color: white; background-color: blue’>Submit</button>

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry

Figure 1: GenLine provides a front-end interface to task-
specifc prompts for the generative language model. In this
example, the GenLine tool is using a prompt that converts
a natural language description into HTML. The user input
(A) is demarcated using a double-bracket notation. The user
can choose which prompt to apply in a drop-down menu (B).
The generated content is visible in (D), and is editable before
insertion into the document. The user can request that the
model produce more content by clicking the ellipses on the
bottom left of the dialog box. By default, the model will gen-
erate alternatives, which can be navigated using the buttons
indicated by (E). The degree of variety in the output is vari-
able with a temperature slider (C).

This type of guiding input is often called a prompt [2, 15]. At the
most basic level, a prompt is nothing more than the text inputted
to an LLM. However, a number of compelling GPT-3 demos [15]
demonstrate that prompts can be written to customize a single
model to perform a wide range of tasks, such as transforming
natural language instructions into fction, SVG graphics, or source
code (among many other types of output) [2ś4, 6]. Note that the
model itself does not changeÐonly the input provided to the model
changes to achieve these results. The ability for these models to
perform a wide variety of tasks, without needing to retrain them,
makes them of inherent interest to the HCI community, as they
provide new ways to customize and integrate AI into everyday
tasks.

In this paper, we examine the user experience of using an LLM to
produce code from natural language descriptions. To investigate this
experience, we created GenLine, a tool that provides inline support

for transforming natural language requests into code (Figure 1).
Using GenLine, users can input requests such as łmake an OK
buttonž, or łmake this button blue <button>OK</button>ž. GenLine
transforms these requests into code by incorporating the user’s
input into a task-specifc prompt (e.g., a prompt to create HTML, or
a prompt to produce JavaScript), then feeding the prompt as input to
an LLM. Because users explicitly express a request to the LLM (i.e.,
łmake an OK button"), and choose a specifc prompt for interpreting
that input (e.g., a prompt to produce HTML, or a prompt to produce
JavaScript), using GenLine is more akin to invoking a command, as
opposed to a code completion mechanism.

To understand how this new class of large language models
may afect users’ software development practices, we conducted a
user study in which 14 participants were asked to use GenLine to
create two small web-based applications: a static search page and
an interactive fashcard app. The results of our study provide key
insights into the user experience of producing code with this new
class of generative language model. In particular, we fnd that while
the natural language code synthesis capabilities can be useful for
certain tasks (e.g., creating boilerplate code, or doing the equivalent
of an API lookup), users can still encounter challenges in several
areas: 1) learning the model’s natural language łsyntaxž (i.e., how
to efectively phrase a natural language request), 2) knowing what
they can reliably ask of the model, including how much they can
request, and 3) debugging the model when it doesn’t produce the
desired results.

Collectively, these results suggest a number of implications for
design. In particular, future systems may beneft from techniques
that automatically reformulate user input (similar to what is done in
information retrieval systems [27]) and automatically vary model
temperature to increase the likelihood of producing useful code
(where temperature can roughly be thought of as the łrandomnessž
of the model’s output2). For large and/or ambiguous requests, there
may be an opportunity to leverage these models’ capabilities to
engage in a more structured conversation with the user to help scope
and refne requests. Future systems may also beneft from providing
suggestions for what could be requested, given a particular context.
Finally, both debugging tools (such as interpretability tools) and AI
onboarding [17] (training users on the model’s relative strengths,
weaknesses, and quirks) could be useful to help users debug, better
understand, and predict model behavior.

In sum, the paper’s contributions are as follows:

(1) We present an end-user tool, GenLine, that translates natural
language requests into code, using a 137-billion parameter
LLM and LLM prompts designed to synthesize code.

(2) We report results from a study investigating use of GenLine
for two tasks. Our results highlight:

(a) A sense of needing to learn the system’s łsyntax,ž despite
model input consisting of natural language.

(b) Challenges in forming an accurate mental model of the
types of requests the model can reliably translate to code
(what can be requested and how much can be requested).

2 We make use of temperature sampling to sample tokens from the model. Setting the
temperature parameter to 1 is equivalent to sampling from the natural distribution
of the model. Lowering the temperature results in sampling outputs with higher
probabilities, making the model output more predictable (and thus, less variable).

Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

This uncertainty led to requests ranging in scale and speci- prompts to assist with software development, and examines their
fcity from łcreate a fashcard appž (a large, under-specifed use in a user study.
request) to łcreate a blue button with label fip in white
textž (a very specifc request). 2.2 User Tools for Generative Models

(c) Participants’ model debugging strategies to debug model
input: Removing information, adding information, reword-
ing, varying model temperature, and introducing key-
words like łhello worldž or łtestž.

(3) From the study fndings, we derive a number of implications
for design, including:

(a) Providing automated input reformulation and automated
variation of model temperature.

(b) Leveraging the generative language model to engage in
a more structured conversation with the user to gather a
more precise and more tightly scoped request.

(c) Providing suggestions of natural language requests a user
could make in a given context.

(d) Ofering debugging tools, such as interpretability tools, and
AI onboarding to help users better understand, debug, and
predict model behavior.

For many of our design implications, we show how the model
itself may be able to assist with input rewriting through a set of
łfallback promptsž that transform requests into forms more likely
to yield useful results.

The rest of the paper contextualizes this research in the larger
body of literature, describes the GenLine tool and implementation,
and presents our study and study fndings. We conclude with a
discussion of implications for design.

2 RELATED WORK

Our work builds on recent advances in generative language models,
specifcally their ability to generate or modify code from natural
language instructions through prompt programming. In this section,
we review prior work in generative language models, software
engineering, and end-user and natural language interfaces for AI,
showing how this prior work informs and inspires our research.

2.1 Generative Language Models

Generative language models such as GPT-3 [15] demonstrate the
ability to produce useful or interesting content from high-level
natural language inputs. For example, OpenAI and GPT-3 users have
shown GPT-3’s ability to convert natural language descriptions to
SVG [6], SQL [8], shell scripts [4], and Python [3].

One of the compelling aspects of these demonstrations is that
the results are achieved by providing a text-based input, or prompt,
which infuences the model output, with no model retraining nec-
essary. For example, to generate SVG graphics code, it may be
sufcient to provide a prompt that employs a pattern like the fol-
lowing: łQ: ńSVG descriptionż A: ńSVG codeż Q: ńDesired SVG
to generateż A:ž (where text and code replaces content indicated
by the ńż symbols, as in this demo [6]). This ability to produce
custom functionality through high-level descriptions has given rise
to prompt programming (for example, see Gwern.net’s essays on
prompt programming [2] or OpenAI’s Prompt Library [5]). This
research builds on this prior work, creates a number of task-specifc

Research in generative models has produced a number of models
that produce content good enough to be used in some real-world
contexts (e.g., generative music models [28]). Given these capabili-
ties, there is additional interest in how to integrate this functionality
into end-user applications to support co-creation [16]. For example,
Cococo [33] integrates a generative music model into an end-user
application. In the realm of software development, GitHub Copilot
[1] and Codex [18] demonstrate how code synthesis capabilities
could be exposed to users in an editor or a chat-like interface, re-
spectively. In studying co-creation with AI, a number of design
recommendations have been developed, such as a suggestion to
avoid overwhelming the user with AI-generated content [16, 33].

GenLine’s design builds upon and utilizes this prior research
in a number of ways. Specifcally, GenLine produces content in
discrete chunks (to reduce the likelihood of overwhelming users
with content), provides facilities to navigate alternatives, and allows
users to edit content before requesting more generated content from
the model. In contrast to Copilot (which provides an autocomplete-

like interaction) and Codex (which provides a conversational, chat-
like interface), GenLine’s interaction is more akin to invoking a
command within a text editor.

2.3 Software Engineering Tools

In the area of software engineering, there is active research exam-

ining how generative models (and deep learning models in general)
may be used to assist with software development. Recent papers
survey the state-of-the-art in this feld [10, 21], which includes tar-
geted work in code synthesis (e.g., from natural language to code,
and code to natural language), detecting code defects, end-user
programming, and code translation (from one programming lan-
guage to another). Interpreting natural language specifcations (or
intent), in particular, has been a long-standing goal in the research
community, with prior work demonstrating systems that can trans-
form natural language descriptions to spreadsheet macros [26],
shell scripts [31, 32], SQL queries [36], and data visualizations [34]
(among many other targets). We take inspiration from this prior
work, and examine the natural language code synthesis capabilities
of an LLM from an end-user’s perspective.

Transforming natural language specifcations to code is con-
sidered a form of inductive specifcation [42]. Programming-by-

example is also a form of inductive specifcation in which users
defne a function by providing input-output examples (e.g., [19, 39,
42]). One of the known issues with inductive specifcation is the
potential for ambiguity in interpreting the user’s input [10, 25, 42].
For example, the user’s input to the system may under-specify their
actual intent, leading to multiple, valid interpretations of their input.
Thus, these systems often include mechanisms to help refne or
discover the user’s true intent, such as generating additional exam-

ples for the user to evaluate in programming-by-example systems
[42]; showing alternative, valid interpretations to the end-user for
them to choose from [25]; or providing the specifcation with a
combination of natural language and examples [37]. Outside the

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry

realm of software engineering tools, other work examines how to
recover from, and disambiguate within, conversational breakdowns
(e.g., [30]).

Recognizing the potential for ambiguity in interpreting the user’s
input, the GenLine tool produces multiple outputs for the user to
choose from. Our study results also reinforce the observation that
it can be useful to provide mechanisms to discover the user’s true
intent, particularly when they make ambiguous requests, or when
they provide a request that the model cannot correctly interpret.

Research has also examined the user experience of using code
synthesis capabilities. For example, Weisz et al. [40] ran a design
scenario study with developers to examine their willingness to
use generative AI in diferent use cases, and found that developers
expressed openness to working with AI for tasks like code migra-

tion and translation. Recognizing that errors are inevitable, the
researchers note that actual adoption likely hinges on łhow many
errors are present and the nature of those errorsž [40]. Participants
in our study similarly highlighted concerns over model accuracy,
and suggested the importance of being able to continually improve
a model to reduce its errors over time.

To understand the potential for pair programming with an intelli-
gent agent, Kuttal et al. [29] conducted a Wizard-of-Oz study. Their
results indicate that agents may serve as useful pair programming
partners and alleviate barriers to expertise, albeit at the potential
cost of code creativity. Our study explores this question further
by examining use of an operational, modern generative language
model capable of synthesizing code.

Xu et al. [41] studied developers’ use of their natural language
code synthesis prototype (NL2Code) for completing a range of pro-
gramming tasks. One fnding from the study was that participants
were open to a more constrained syntax, if it would yield more
reliable results. Our study results similarly suggest the potential
utility in providing clear guidance (or restrictions) on what can be
requested from a model, and how to formulate those requests.

Prior research has shown the importance of web search in soft-
ware development, and illustrated the value of more tightly in-
tegrating web search with software development environments.
For example, Brandt et al. [14] showed how web search can be
integrated with a development environment to ease the process
of fnding and applying web-based examples to code. When using
a generative model trained on a corpus that includes code, it is
possible to achieve similar results for some information-seeking
needs. More specifcally, the user can describe their intent using
natural language, with the generative language model producing
the relevant code (e.g., as illustrated by GPT-3 demos that convert
natural language to code, or that continue writing code for the user
[3, 4]). In this context, the natural language input to the model is
similar to a search query. However instead of returning related web
pages, the model generates code. Our study results suggest that
users fnd this łAPI lookupž use case a compelling scenario for code
synthesis performed by modern generative models.

3 GENLINE

GenLine provides in-editor, inline support for accessing and using
generative language model prompts that produce code. Figure 1
provides an overview of GenLine’s user interface components.

3.1 Interface

User input to GenLine is a single string of text that can be 1) a
natural language text, 2) content (code) to modify, or 3) a mixture
of natural language text and content to modify. Given this input,
GenLine executes the chosen prompt and produces multiple alter-
natives, which are de-duplicated and presented to the user (users
can cycle through each unique output).

Users specify model input by surrounding it with double brack-
ets3. For example, given the following code in an HTML code editor:

<button>Submit</button>

The user can wrap the code with the following instruction:

[[add a border to this <button>Submit</button>]]

In our implementation, this bracket notation is automatically rec-
ognized by the editor: When the user enters the ending brackets or
clicks in a double-bracketed region, the GenLine tool automatically
appears.

Importantly, GenLine’s design provides an interaction style more
similar to invoking a command, and less like autocomplete: the
user must explicitly specify the input to send to the model (sur-
rounding code context is not passed to the model), and they must
choose which prompt to apply to that input. This interaction de-
sign difers from the interaction styles found in GitHub Copilot
[1], which provides autocomplete-like functionality, or Codex [18],
which enables a more conversational style of code creation. While
each design has its trade-ofs, we focused on the command-like
interaction because it enables creation of prompts that support very
specifc, targeted tasks (such as changing the styling of an existing
HTML element). This interaction style also allows users to both
create code from scratch and modify existing code in-place, using
the same tool. However, one limitation of our current implementa-

tion is that users must explicitly provide code context if they wish
the model to make use of that context in interpreting their request.

To streamline the process of invoking a specifc prompt, GenLine
allows the prompt defnition to include a łtagž for invoking the
prompt. This tag can then be inserted in the double-bracketed
content, pre-pending the actual input to pass to the prompt (e.g.,
ł[[html: make an OK button]]ž). When a tag is detected, GenLine
automatically loads the specifed prompt, saving the user the need
to choose it from a menu.

Model input can be interactively edited, and model output can
also be edited before inserting it into the text editor. This ability to
interactively and iteratively construct output enables interactions
similar to live programming [22] or exploratory programming [12].
For example, the user may frst produce an łOKž button by typing
łmake an OK buttonž. After producing an output, they can then
edit the original input to include additional requirements, such as
styling: łmake a light blue OK button that is 30px tallž. In our study,
we observed participants making use of this ability to incrementally
build a request to produce the fnal, desired output.

Beyond editing the model input, users can adjust the łtempera-

turež using a slider, where a lower temperature indicates the model’s
higher certainty in its top choices (this can be thought of as varying

3Depending on the environment, this double bracket notation may confict with a
language’s syntax (e.g., lists in programming languages are often defned using square
brackets). For a given environment, a delimiter should be chosen so that it does not
(or rarely) conficts with actual content.

Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

the randomness of the output, with higher temperature values more
likely to lead to greater variety of output).

For prompts that produce HTML, GenLine renders the model
output in an HTML iframe, providing a way to validate the output
at a glance.

3.2 Model and Prompts

GenLine is backed by a version [20] of the model described in
[9], which is a 137-billion parameter generative language model.
The model’s training data includes code, but the model was not
specifcally trained to support software development.

With this model, we created prompts to: produce HTML and
JavaScript; fx code; style code; and add unique IDs to HTML el-
ements. See the Appendix for example prompts. The majority of
these prompts were designed using a few-shot prompting pattern
(see Figure 2). For example, a prompt may set up a pattern of mak-

ing a natural language request for HTML code (e.g., łdescription:
An OK buttonž), with the response being the corresponding HTML
(e.g., łhtml: <button>OK</button>ž).

The few shot prompts we developed that translate natural lan-
guage descriptions to code also allow users to mix natural language
and code in their input. For example, the user might enter a request
such as, łMake this button 30 px tall <button>OK</button>ž. We
call this form of input mixed inputs, to capture the notion that users
can mix conceptually diferent types of input in their request to the
model (e.g., mixing code and natural language). Notably, we found
that the prompts do not need to include examples that mix natural
language and code in the natural language łdescriptionž felds of
the examples: Even without examples that mix natural language
and code in the łdescriptionž feld, the model can often successfully
interpret these types of mixed inputs and produce only code as
output.

While model performance itself is not the focus of this paper, we
did observe through our own testing that the model could produce
reasonable HTML and JavaScript code through natural language
prompts for simple tasks (see also [11], which examines the model’s
ability to synthesize Python code). The results of the user study
provide further insight into how frequently model output was of
use to study participants.

4 USER STUDY

To understand how recent LLMs could afect the software devel-
opment process, we conducted a study in which participants used
GenLine to complete two tasks.

4.1 Study Design and Methodology

The study consisted of a remote pre-interview, two tasks to be
completed over the course of one week, and a remote post-interview.
Interviews focused on 1) the diferent strategies used to synthesize
code and 2) opportunities for writing coding with natural language.

During the 30 minute pre-interview, participants were shown
a 4 minute video overview of the GenLine tool that described the
prompts (how they were written), the GenLine tool, and a demon-

stration of it used to build a todo app.
After watching the video, participants had an opportunity to

ask the researcher questions, and participants were asked about

their initial impressions. Next, participants were given access to a
slide deck that contained slides detailing the capabilities of GenLine.
Participants then performed a tutorial task to generate stylized text
(specifc instructions can be viewed in Appendix C.1). Participants
were again asked about their impressions of the tool, and whether
they had any additional questions. Finally, researchers described the
tasks they would perform over the course of a week. Researchers
told participants that the GenLine tool was a prototype and that
they may encounter quirks during usage that they should come
prepared to discuss in the fnal interview.

Participants had one week to attempt two tasks. The frst task
(T1) was to create a static search page with a textbox and a logo.
The second task (T2) was to create a fashcard app that changed a
card from front to back with the click of a button. See Appendix
(section C.2) for task fgures. These tasks were chosen to represent
a fairly basic programming problem (T1, creating a static web page),
and a slightly more complex problem that requires participants to
include multiple interactive elements in the app (T2).

Participants were asked to record their use of GenLine (i.e., video
recordings of their screen) whenever they worked on these tasks
throughout the week. Participants uploaded their recordings to an
individual online folder shared with the study researchers. During
the post-study interview, participants evaluated their overall ex-
perience of coding with natural language and their impressions of
using GenLine. All interviews were conducted remotely and were
recorded.

To analyze the data, two researchers transcribed the natural
language requests from the participant-recorded videos of GenLine
usage. We used methods from grounded theory [24] to code the
data and characterize participants’ request strategy, repair strategy,
the content of the request, and the request complexity. The two
researchers reviewed each other’s notes in a shared spreadsheet,
met several times to discuss the codes, and iteratively refned and
grouped the codes into higher-level themes.

4.1.1 Participants. To provide a cross-section of user experiences,
we recruited participants with difering levels of front-end coding
experience. Participants were recruited through an internal message
board and completed a screener asking them to identify their front-
end coding profciency. Each participant received a $50 gift card
(or an option to donate the gift card equivalent to a charity) for
participating.

Our participants comprised the following demographics:

• Role: UX Researcher (2), UX Designer (1), Interaction De-
signer (5), Software Engineer (2), UX Engineer (4)

• Location: US (13), India (1)
• Gender: Female (7), Non-binary (1), Male (6)
• HTML/CSS experience: Somewhat experienced (4), Expe-
rienced (4), Very experienced (3), Extremely experienced
(3)

• JavaScript experience: Not at all experienced (4), Some-

what experienced (2), Experienced (3), Very experienced (2),
Extremely experienced (3)

In reporting results, we indicate the participant number and
the letter N, I, or E to indicate whether they self-reported novice,

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry

description: make a red button that says stop
html: <button style = 'color: white; background-color: red'>Stop</button>

description: give code for an html button with a margin
html: <button style='margin:10px;'></button>

description: <<user input>>
html:

Figure 2: A few-shot prompt for transforming natural language descriptions to HTML.

intermediate, or expert knowledge of front-end software develop-
ment. There were a total of 5 novice4, 4 intermediate, and 5 expert
participants5.

4.2 Results

A total of 7 hours and 42 minutes of video was recorded by par-
ticipants. There were 2 hours, 23 minutes of video for T1, and 5
hours, 19 minutes of video for T2. Participants spent a median of 10
minutes on T1 and 25 minutes on T2. A total of 227 model requests
were issued for T1, and 301 for T2. For T1, participants individually
issued a median number of 12 model requests, and a median of
22 model requests for T2. Twelve out of 14 participants uploaded
videos of both tasks, and all completed the interviews.

Seven out of twelve (7/12) participants were able to fully com-

plete T1, and 6/12 fully completed T2, where łfully completedž
means that they were able to produce the required interface along
with the desired styling. Of the remaining, 4/7 and 1/7 were able
to partially complete T1 and T2, respectively (partial completeness
was judged as producing the required interface, but without the
desired styling). All self-reported experts successfully completed
both tasks. See Table 1 for more details.

Across both tasks, fewer than half of the model outputs were
eventually accepted by participants (with our without edits), with
most being edited or rejected (Figure 4). To help understand the
types of inputs participants provided, and the code generated by the
model, Appendices C.3 and C.4 show example requests of novices
and experts, respectively, and the output produced by the model.

4.2.1 Characterizing Request Content. The introductory video we
presented participants at the start of the study demonstrated that
GenLine could accept both natural language and a mixture of natu-
ral language and code. However, participants used natural language
by itself as their primary strategy for synthesizing code, with some
variability observed for diferent experience levels (see Figure 3).
More specifcally, we observed that novices tended to rely primarily
on natural-language-only requests, whereas experts were more
likely to mix natural language and code in their requests. Neither
natural language alone nor a mixture of language and code6 yielded

4Self-reported novice participants may have more prior (non-front-end) programming
experience.
5To derive the novice, intermediate, and expert labels, we map participants’ self-
reported expertise as follows for HTML/CSS and JavaScript: łNot at all experiencedž
and łSomewhat experiencedž map to the łnovicež label, łExperiencedž to the łinter-
mediatež label, and "Very experienced" and łExtremely experiencedž to the łexpertž
label.
6The total number of requests was 528 across tasks, 11 of which contained code only,
and are not featured in the fnal experience strategy graph.

Figure 3: Request strategy according to participants’ self-
reported level of coding experience

Figure 4: Distribution of actions taken in T1 and T2 (N=12)

higher acceptance rates (where acceptance rate refers to the like-
lihood of a participant clicking the tool’s łAcceptž button after
invoking the model).

Among all natural language requests, there was a nearly even
split between natural language requests and natural language re-
quests that also included domain-specifc keywords, such as łinputž,
łdivž, and łpaddingž. For some participants, the use of keywords
was an explicit attempt to add more specifcity to the request: łI
noticed in the beginning I was very natural, like, ‘make a square
that’s bigger than it is taller’ and it [GenLine] was getting it wrong
for me a lot. I pivoted to using CSS and element language, like,
‘make a div’ and I would get immediate resultsž (P10-E).

While participants’ inputs sometimes included very precise lan-
guage, there was also a desire for the model to be able to interpret
more vague requests: łIf I can give a very vague, not very specifc
instruction... ‘Can you make it a little more warmer? Can you make

Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Table 1: Task Completion. Bolded entries indicate participants who fully completed both tasks.

Status T1 - Participants T2 - Participants

Fully completed P13-N, P14-I, P4-E, P6-E, P7-E, P8-I, P4-E, P6-E, P7-E, P10-E,
P10-E, P12-E P12-E

Partially completed P1-N, P3-N, P8-I, P9-I P9-I

Did not complete P5-N P1-N, P5-N, P3-N, P13-N, P14-I

it a little more dense?’ That comes more naturally, more easily in
natural language...ž (P11-N).

Participants used a limited number of verbs to synthesize code,
including ładdž, łcreatež, łgeneratež, and łmakež. In the fnal in-
terviews, participants expressed that adding constraints or having
some design afordance to confrm recognition of a word would
be more helpful compared to having unlimited syntax, consistent
with other natural language invocation research [41]: łEven just
having like a reference for the language in another tab that it can
accept for diferent outcomes. Having a list it uses to do these basic
things...so a glossary, really.ž (P5-N)

Some participants’ requests could be considered łcontextless,ž
where the model would not need to refer to surrounding code or
recent history to correctly interpret the participants’ input (e.g.,
łgenerate a text input with the label ‘Front:’ and the value ‘Hello’ž).
Other requests implicitly assumed that the model could access and
utilize surrounding context (e.g., łAdd a blue borderž, with no indi-
cation of what to add a blue border to). Notably, more than a third
of the requests fell into this latter category. Participants’ mental
model, and desire, was that this surrounding context (including re-
cent actions) would be used by the model, consistent with other past
work [41]. When the model didn’t take this context into account,
participants were frustrated: łI found that I could ask GenLine for
specifc things, which is of course awesome, but I couldn’t interact
with things that I had asked for previously... So for example...let’s
say I ask GenLine to provide the Google logo. It wouldn’t be a
problem. But then I couldn’t then say, ‘Please center it’, ‘Please
make it this percentage size and then place a box underneath itž
(P3-N). In part, participants’ frustrations are due to our interface
design not efectively communicating what information is (or is
not) sent to the model. However, the more important observation
is that participants desired a style of interaction similar to having
a conversation with a colleague, where previous context is taken
into account with each new request. This style of interactively con-
structing code by referencing prior code could be useful in many
contexts, such as specifying the layout of an interface (e.g., łplace
the Cancel button to the left of the OK buttonž).

One concern raised was how inclusive tools like GenLine would
be for multilingual users: łMy frst language is not English. I actually
prefer to use the HTML language instead of typing the English
because I’m worried about, ‘What if I make a grammar mistakeÐ
will it still generate the code for me?’ž (P4-E). Communicating the
ability of the model to deal with grammar mistakes, as well as
ensuring code synthesis tools work with diverse language input,
will be useful as these tools continue to evolve.

4.2.2 How Much Code Was Requested. We observed a wide range
of strategies with respect to the level of abstraction of the code-
generation request, as well as the amount of code efectively being
requested. Some participants attempted to get as close as possible to
their overall goal, all within their initial request, as in this example:
łcreate a rectangle with the word "hello" in the middle and a blue
button underneath the rectangle with the text "fip" on it. when I
press the "fip" button, show the text "hola" in the middle instead
of "hello"ž (P1-N). Another participant similarly requested a lot
of code to be generated in their frst request, though with less
detail: łCreate fashcard webappž (P3-N). These strategies could be
considered łtop-downž strategies, where participants attempt to
create large units of code all at once.

However, the majority of participants had more reserved initial
requests, with many requests being roughly equivalent to a line
of code, as in these examples: łcreate an input feld with label
frontž (P13-N) and łmake a div with width 100% and height 100%ž
(P10-E). These requests can be considered more akin to łbottom-

up" strategies, where the strategy is to create small units that are
then assembled together. P12, an expert, described their strategy as
follows: łI approached it like I was ... actually coding line by line...
So I would just say ... okay, make this line for me, and then from
there, I’ll move on. But I think it would be nice to ... not have to
take that step-by-step approachÐto really ... take full advantage of
the generated codež (P12-E).

While the granularity and specifcity of requests varied, partic-
ipants were excited when high-level requests were successfully
interpreted by the model: łAnother thing was just getting an image
from the internet. All I had to say was ‘insert the Google logo’ here
and it did the rest of fnding the image and putting the URL into
HTMLž (P7-E).

4.2.3 Strategies Observed in Each Task. In Task 1 (create the search
page), participants only used natural language or natural language
and keywords (from the programming language) for their requests.
If participants were unable to generate the logo within their frst
few requests, they tried to create the word in the logo letter-by-
letter. Once they were able to create the logo, either through an
image or letter-by-letter, requests focused on creating a search bar,
before moving onto formatting.

Task 2 presented more challenges given the need to specify
interactivity using JavaScript. No novice was able to complete Task
2. Both intermediate and expert participants were able to fully
complete Task 2, but expressed that it felt tedious to try to formulate
requests in natural language: łSometimes it took me a little bit
longer to fnd the words to describe what I wanted it to do as
opposed to me just doing it myselfž (P12-E). For participants who

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry

were able to complete Task 2, the majority of their time was spent
editing output from GenLine or leveraging their prior knowledge
to write code.

As with Task 1, the majority of requests for Task 2 were natural
language only, but intermediate and expert participants began to
include code in their requests. This strategy was often leveraged
to add more specifcity to styling requests as in this request to add
a top margin to an existing element: łAdd 50px top margin <div
style=’width: 300px; height 250px; background-color: white; border:
1px solid black;’></div>ž. Participants also used a mixture of natural
language and code to specify JavaScript functionality: łbind the text
in the
<input type=’text’> to <div id=’front-word’></div>ž. However, we
did not observe participants accepting model output at a higher
rate using this strategy compared to requests consisting only of
natural language.

Request complexity increased slightly for Task 2 with more ex-
perienced participants attempting to execute multiple discrete ac-
tions with their requests, as in this example: łgive the value of
front-input as a text content of card on page loadž or this exam-

ple: łwhen <button id=’fipButton’ style=’background-color:blue;
color:white;height:30px;margin-top :15px>Flip</button> is clicked,
hide <div id=’frontWord’></div> if it’s visiblež.

4.2.4 Coping with Model Failures / Repair Strategies. In our study,
participants accepted generated results outright or with modifca-

tions less than 50% of the time. When participants did not receive
the desired results, they employed the set of strategies listed in
Table 2 to produce the desired results.

The most frequently employed strategy was rewording a request,
which consisted of changing, adding, or dropping a word used in the
initial request (e.g., going from łcreate a div and center all elementsž
to ładd a div and center all elementsž), or reordering the words
from the request.

Participants also attempted to expand the scope of the request in
an attempt to improve the output (e.g., going from łAdd a buttonž to
łAdd a button and textboxž). This strategy of adding more informa-

tion to the request was often observed as one of the fnal strategies
employed to obtain the desired model output. (Participants also
were observed adding information to an initial request that was
successful. However this strategy is not intended to fx a request,
but rather, to iteratively construct a larger request, bit by bit.)

Participants sometimes reduced the scope of requests, but re-
quests were generally of a relatively small scope to begin with (75%
of requests were coded to be of low complexity). However, novice
users often asked for a signifcant amount of code in their frst
request, before scoping down the request.

Participants also changed parts of the input to target an outcome
they felt would be easier for the model, such as common tutorial
content (e.g., using łhello worldž as a placeholder for a more specifc
phrase). This strategy can be thought of as an attempt to łreverse
engineerž what a model was trained on, and craft a request to better
match what they consider to be in the training data.

Interestingly, participants would also simply try re-running the
same input, making no other changes. This is similar to łrolling
the dice,ž since the same language model can sometimes produce
diferent output on diferent model runs.

Finally, participants would sometimes re-run the original request
using a diferent model temperature, in an attempt to get more
variety in the responses (higher temperature), or less variety in the
responses (lower temperature).

Overall, we did not observe one strategy clearly leading to a
higher likelihood of participants accepting the generated code.

4.2.5 Developing Mental Models of the AI and Its Syntax. As partic-
ipants interacted with the model, they seemed to grapple with form-

ing a mental model of what the model can łunderstandž: łMostly it
just seemed like it didn’t actually pick up on what I was trying to
communicate to it or what I wanted it to do. So, there was a lot of
trial and error, or I’ll accept something that’s close and then just
tweak the result afterwardsž (P9-I).

Participants also cited challenges in learning the łsyntaxž of the
AI assistant, despite its input consisting of natural language: łIt
didn’t feel like natural language, it was more of likeÐwhat’s the
right magic phrasing to get the model to do what I want it to dož (P6-
E). P8 echoed this sentiment: łI feel it’s kind of like learning a new
language, except maybe it’s an easier one to learn than JavaScript,
but it still I think requires learningž (P8-I).

P10 provides a specifc example of the challenges of precisely
expressing intent through natural language alone: łEquals is a
great example: I want a value to ‘equal’ another value, I want to
replace the value of variable 1 with variable 2. That can also be
interpreted by this model as ‘does value 1 equal value 2 as a Boolean
[...] operator. Trying to do that and realizing after the fact that ‘Oh,
it interpreted this as equal and not this as take on this value’ makes
you kind of feel like a) we’re not speaking the same language here,
b) if I don’t know how to interpret something in a way you’re [the
model] going to understand it, I can’t reliably count on any sort of
improvement to my workfowž (P10-E).

In the fnal interviews for the study, participants cited the lack
of feedback from the system as a primary reason for feeling that
coding with natural language was unintuitive and unreliable (Figure
5): łIn the natural language case, I’m always worried if the machine
is going to understand my language or notž (P8-I). This led to a
mixture of feelings toward the AI’s capabilities, or as P5 put it, a
łcombination of fun and frustratingž (P5-N).

4.2.6 Envisioned Use Cases. Participants saw potential utility in
the tool for 1) API lookups, 2) minimizing the tedium of boilerplate
code, 3) as a means for two or more teams to collaborate, and 4)
as an educational tool. We expand on these envisioned use cases
below.

Supporting the equivalent of API look-ups resonated with some
participants: łIt made things pretty easy, especially for adding event
listeners and adding listeners that did what I wanted it to do. That
worked really well and it was easy to implement. I didn’t have to
go and Google ‘how to do the specifc action’ that I wanted when
that event happensž (P7-E).

Others saw the capabilities useful for reducing otherwise tedious
work: łSaying ‘make sure tests from this package are run, whenever
this other fle is touched,’ that’s a thing saying out loud is a very
clear sentence, but to do that in code is very tediousž (P2-I).

In the context of working with others, one participant indicated
that it could be useful as a łuniversal translatorž when two teams
are collaborating: łOne team is using JavaScript and one team is

Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Table 2: Repair Strategies

Repair

Reword (add, drop, change, or re-
order words)

make width 250px <input
type=’text’> →
change to width 250px <input
type=’text’>

131 all

Expand scope of request write Google in bold blue → write
Google in bold blue with a search
box under

50 P1-N, P5-N, P3-N, P13-N, P8-
I, P9-I, P14-I, P6-E, P10-E
P12-E

Retries (reruns request) change the size of the google logo
to 80% smaller →
change the size of the google logo
to 80% smaller →
change the size of the google logo
to 200px (moves on to diferent
strategy)

31 P5-N, P3-N, P13-N, P8-I, P9-
I, P14-E, P6-E, P7-E, P10-E

Reduce scope of request add search box to page with search
button and a button that says ’i’m
feeling lucky → add search box to
page with search button

29 P5-N, P3-N, P13-N, P8-I, P9-
I, P4-E, P6-E, P7-E

Adjust temperature add a text input and a submit button
→
does not get desired result, in-
creases temperature to 0.5 and re-
runs request

15 P5-N, P13-N, P7-E

Recalibrate specifc targets with blue Arial 25px text G → 13 P5-N, P8-I, P9-I, P14-I
łeasierž targets blue Arial 25px text hello world

 Strategy Example Count Participants

using React. How could you make sure the teams can collaborate
together, because both of them are defnitely using natural languagež
(P4-E).

Finally, some suggested that these capabilities could be a useful
tool to educate people on how to program: łI can see it being of
great use to people who are not that profcient in coding to be ... a
good sort of introduction, or to really ... lower the barrier to entry
for codingž (P12-E).

In addition to these use cases, participants also considered who
would beneft the most from the ability to code with natural lan-
guage: łI think the best use case, it’s me, which is like, I know code,
but I haven’t used code in a really long time. I know the mechanics.
I know how it works, but I don’t remember a lot of the syntax and
... then that’s great...For ... a complete beginner, it would be a night-
mare. They wouldn’t be able to do it. And I think if you do that with
someone that codes every day, they might be like, yeah, I’m going
to be faster just doing it myselfž (P13-I). Thus, an ideal use case for
natural language coding might be for people who are somewhat
familiar with coding, but are unfamiliar with the depths of a specifc
language, rusty on syntax, or rarely use a specifc library or API.

In spite of the current challenges of learning to code through
natural language, participants were optimistic about the possibil-
ities of using natural language to reduce barriers to interacting
with technology (see Figure 5). łLet’s not waste time with these

specifc kinds of tools that are asking you to think in a certain way
because they think it’s the right way (and it might be), but I think
just speaking about what you want is much betterž (P3-N).

4.3 Limitations

Participants were instructed they could use GenLine as much or as
little as they needed to complete the tasks, but the novelty of the
tool and participation in the study may have led participants to use
GenLine more than they might in regular practice. Five participants
encountered a bug in the prototype where they were unable to view
the preview window/code output for a portion of their usage, and
some experienced a few instances of a bug where code was cut
of when it was inserted into the editor window. However, we do
not believe these bugs afect our overall results. Finally, given the
early stage of this tool, we were not able to integrate GenLine in
participants’ daily work, and thus needed to test in an experimental
context.

5 DISCUSSION

In theory, LLMs’ ability to translate natural language to code would
seem to provide a welcome capability to assist with software devel-
opment, by enabling users to express goals more intuitively through
natural language. However, the unexpected model responses led to
study participants feeling like they needed to learn the łsyntaxž of

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry

Figure 5: Graph of participant ratings on 1) whether writ-

ing code with natural language is reliable, 2) whether writ-

ing code with natural language is intuitive, 3) whether par-
ticipants wanted to write code using natural language, and
whether participants believe writing code using natural lan-
guage is useful (where 1 is Strongly Disagree, 3 is Neutral,
and 5 (or 7) is Strongly Agree).

the modelÐthe specifc words to say and the specifc phrasings to
produce the desired output. Similarly, given the expansive scope of
natural language, participants did not know how much code they
could reasonably ask for, with requests ranging from the production
of an entire app (łmake a fashcard appž) to a single line of code.
Thus, while these models accept any text as input (conceptually
ofering an łunboundedž syntax), in reality, there is a latent “syntax”
and latent problem space in which the model can reliably perform,
and users needed to discover both.

While participants encountered challenges in achieving their
desired results with the model, the inherent versatility and fexibility
of LLMs suggests that the model itself may be able to help end-users
cope with some of the challenges they experienced. For example,
users sometimes modifed a request by simplifying it (e.g., removing
specifc objectives), a fallback strategy that an LLM may be able
to perform itself. More generally, the ability to rapidly customize
this new generation of models using prompt programming opens
up the possibility for end-users to create highly targeted prompts
to support specifc tasks, including prompts that help the user
recover when the model does not produce the desired output. Our
work thus brings to light the dual challenges and opportunities of
large language models: Although the unbounded syntax of natural
language can be difcult for users to grapple with, there is also the

possibility of leveraging the inherent fexibility of LLMs to address
some of these challenges.

In this section, we consider the key user challenges arising from
the expansive nature of natural language programming, and suggest
implications for future work. For several of these design implica-

tions, we also describe potential LLM-based remedies to aid future
researchers and designers (example prompts can be viewed in the
Appendix). We conclude this section by considering how our results
may generalize beyond the specifc tool we built and tested.

5.1 Providing Suggestions for an Unbounded
Syntax

As we observed, participants often had difculty determining what
they could ask of the model. To address this issue, it could be useful
for systems to provide suggestions of the types of natural language
that could be used in a particular context. For example, the prompts
we seeded the system with (e.g., to generate HTML, or to gener-
ate JavaScript) provide a sense of what types of tasks the model
is likely to be able to handle. However, future systems could go
beyond this one strategy. For example, as part of its documentation
or onboarding materials [17], a system could provide a variety of
example requests that are likely to work well, for each prompt
presented (e.g., for the łGenerate HTMLž prompt, the system could
surface examples such as łmake a blue buttonž or łmake a text feld
that alerts ‘hello’ when clickedž). These examples could help give
users a sense of the level of abstraction and granularity they should
target in their requests. A system could also surface suggestions
of common successful requests relevant to the existing code on
the page. For example, given the code for an HTML element (e.g.,
ł<button>OK</button>ž), the system could present: łTo change the
color of the button, try: ‘Make this blue <button>OK</button>’ž.
These types of suggestions may additionally aid novices who are
new to the problem domain, and thus may not know how to solve
a problem or how to express their goal in a way likely to produce
a useful result (i.e., addressing the vocabulary problem [23]). Con-
versely, in onboarding materials, it may be helpful to show diferent
categories of requests that users may expect to work well, but that
surprisingly don’t, to help calibrate expectations.

To test this idea of ofering suggestions, we created a łSuggestionž
prompt that suggests sub-tasks for the user’s request (see Appendix
B.1). As can be seen from the examples provided in the Appendix, its
suggestions could prove to be helpful for people who are unfamiliar
with the problem space.

5.2 Automated Input Variation and “Fallback
Prompts”

When the model did not produce expected results, participants often
rephrased the request, added information, reduced information,
and/or changed the temperature. Notably, many of these strategies
can be automated.

For example, the system could invoke a set of fallback prompts
that transform requests into simpler requests. For example, a prompt
may transform the user’s input into smaller sub-tasks, as in the
Suggestion prompt above (see Appendix B.1).

A prompt could also transform the user’s input into a simpler re-
quest with less information, mimicking the strategy of participants

Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

who would sometimes take out information from their request. A
prompt that demonstrates this concept, along with example out-
put from the model, is shown in Appendix B.2. The sample results
produced suggest that this technique could be useful in producing
some basic code that can then be built upon.

Finally, another potential fallback strategy would be to rephrase
the user’s input or to produce multiple interpretations of the input.
The prompt in Appendix B.3 demonstrates these concepts and
shows sample output from the model.

While the fallback prompts developed here show promise, a
larger research need is to determine which strategies, including
user strategies and the fallback prompts described here, reliably lead
to improved results. In our study, we did not observe one strategy
appearing to be more efective than another (and we did not ofer
fallback prompts to participants during the study). Future research
would beneft from empirical data establishing which strategies
and fallback prompts can efectively improve model results for end-
users. These data can then be used to determine which strategies to
automate on behalf of the user. For example, if a fallback prompt that
simplifes the request is shown to reliably produce useful output, it
could automatically be run, with its results included in the set of
results returned to the user.

In addition to this empirical data, we also expect that users will
naturally invoke all of the strategies we observed in our study.
Efectively communicating which strategies are likely to lead to
better results, and which aren’t, can help users optimize their time
and avoid pursuing approaches that are not likely to work.

5.3 Improving Request Quality Through
Conversation

As we found in the study, user requests can range from extremely
large, under-specifed requests (e.g., łcreate a fashcard appž) to
highly targeted, tightly scoped requests (e.g., łmake a div with
width 100% and height 100%ž). For large, ambiguous requests, it can
be challenging to debug the model when it doesn’t produce useful
output.

In these circumstances, a more structured, conversational in-
teraction with the model may be useful. For example, given the
request łcreate a fashcard app,ž the system could initially respond,
łDescribe what is in the fashcard app.ž After describing the inter-
face, the model could ask, łDescribe the behavior of each part of the
interface.ž Since participants naturally tried to interact with the tool
in a conversational style, this type of interaction in which the model
helps the user derive specifcations may dovetail nicely with exist-
ing user expectations. Deriving specifcations in this manner may
also help novices break down a problem into more reasonably-sized
chunks.

The Suggestion and Simplify prompts (Appendix B.1, B.2) explore
these ideas. The example outputs from these prompts suggest that
the model could be used to help the user re-scope requests into
smaller sub-tasks.

5.4 Debugging Tools and AI Onboarding

Given the model’s variability in translating natural language re-
quests to code, it may reside in somewhat of an łuncanny valleyž for
users since it can sometimes correctly translate natural language

requests into code (much like a human counterpart could), and
other times not. Mechanisms that help to illuminate the model’s
understanding of its input may enable users to climb out of this
uncanny valley and form a more accurate mental model of how to
optimally interact with the model.

To help build a more robust understanding of the model and
its capabilities, model attribution or interpretability techniques
like those found in the Language Interpretability Tool [38] could
be useful. For example, showing how each input infuenced each
output could provide insight into the model’s behavior. Providing
some transparency into model behavior may also help users better
reason about the model and why it produces the output that it does.

AI onboarding [17], which describes a model’s capabilities viz-a-
viz a typical person, could also be useful. In particular, describing
scenarios where it is known to work well, and situations in which
it may produce unexpected behavior, are likely to be welcome to
end-users.

5.5 Looking Beyond GenLine

Research has shown that large generative language models can
translate natural language requests into code (e.g., [4, 7, 11, 18]),
continue code (e.g., Copilot [1]), produce code through a conver-
sation [11, 18], and (as this research shows) modify code through
a mixture of natural language and existing code (e.g., łMake this
button blue: <button>OK</button>ž). These examples highlight
the fexibility of this new generation of models, and their ability
to support a wide range of qualitatively diferent modes of interac-
tionÐautocomplete-like functionality, conversational styles of code
construction, command-like tools (as with GenLine)Ðall by using
the same underlying model, customized through prompt program-

ming.
While it is tempting to ask which of these interaction styles is

the łbest,ž each design has its own unique set of afordances. For
example, the user interface aforded by GenLine allows users to
invoke very targeted operations (such as changing the styling of an
existing HTML element) more easily, by selecting the markup of
the HTML element to apply the GenLine prompt to. Additionally,
the ability to author new GenLine prompts enables users to extend
the tool to support specifc use cases and needs. However, despite
diferences across tool designs, what these tools all share in common
is that they all ofer the potential to further bridge the Gulf of
Execution [35] (e.g., by translating natural language requests to
code) and to streamline existing practices (e.g., by performing the
equivalent of looking up an API call and inserting it into code).

This research has explicitly examined the user experience of
working with a large generative language model to assist in produc-
ing front-end web code (HTML, JS, CSS). While some of our study
results clearly are 1) a function of GenLine’s design (e.g., partici-
pants expected that the tool would take into account surrounding
code or recent requests) or 2) a function of the capabilities of cur-
rent models (e.g., the variability in code correctness, as also seen
in empirical studies [11, 18]), other fndings and their implications
generalize across tool designs, and are thus more broadly applicable
to the larger HCI research community. For example, the challenges
in łdebuggingž interactions with the model, or the uncertainty par-
ticipants faced in how to best phrase requests, will almost certainly

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry

apply to any tool that makes use of these new models. Furthermore,
these issues will likely remain relevant, even as these models con-
tinue to improve in their ability to synthesize code (e.g., there will
always likely be model failures that users wish to debug). Devel-
oping tools that help people leverage these new models’ unique
capabilities (e.g., the ability to rapidly customize them through
prompt programming), while ofering reliable means to cope with
common challenges, thus represents a rich problem space requiring
active HCI research. Our study results, design implications, and
examples showing how LLMs may be able to help address these
issues, collectively provide a foundation for this future research.

6 CONCLUSION

This paper introduces GenLine, a tool for accessing and applying
large generative language model prompts within a code editor. Our
user study examines how people interact with a natural language
code synthesis tool backed by a 137 billion parameter LLM, and
highlights challenges and opportunities this kind of tool introduces.
In particular, participants felt they needed to learn the łsyntaxž
of the model (despite its input being natural language), as well as
which specifc tasks could be reliably performed (and how).

When model output was not what was desired, participants em-

ployed a range of strategies to coax the model to produce the desired
output. These strategies included reducing the scope of the request,
increasing the scope of the request, rewording or rephrasing the
request, and even introducing keywords such as łtestž or łhello
worldž.

The challenges participants encountered suggest a number of
implications for design, as well as future research. In particular,
an important, open research need is to develop (and demonstrate)
reliable łerror recoveryž techniques for natural language code syn-
thesis. We propose a number of possibilities that make use of the
LLM itself, such as the use of łfallback prompts.ž The black box
nature of the model also suggests that interpretability tools may be
useful in helping users understand and debug the model.

ACKNOWLEDGMENTS

We thank all our participants for their thoughtful feedback and Dr.
Julie Anne Séguin for data analysis support.

REFERENCES
[1] [n.d.]. GitHub Copilot. https://copilot.github.com/. Accessed: 2021-09-02.
[2] [n.d.]. GPT-3 Creative Fiction. https://www.gwern.net/GPT-3. Accessed: 2021-

03-30.
[3] [n.d.]. OpenAI API: Code Completion. https://beta.openai.com/?app=

productivity&example=4_4_0. Accessed: 2021-03-30.
[4] [n.d.]. OpenAI API: Natural Language Shell. https://beta.openai.com/?app=

productivity&example=4_2_0. Accessed: 2021-03-30.
[5] [n.d.]. OpenAI Prompt Library. https://openai.com/blog/gpt-3-apps/. Accessed:

2021-03-30.
[6] [n.d.]. Tweet: ’First work with #GPT3 , I asked it to draw an image. I gave it

seed SVG code and asked it to generate an SVG code by itself. Turns out it drew
something resembling a Floppy Disk.’. https://twitter.com/fabinrasheed/status/
1284052438392004608. Accessed: 2021-03-30.

[7] [n.d.]. Tweet: ’I only had to write 2 samples to give GPT-3 context for what
I wanted it to do. It then properly formatted all of the other samples. There
were a few exceptions, like the JSX code for tables being larger than the 512
token limit.’. https://twitter.com/sharifshameem/status/1282692481608331265.
Accessed: 2021-04-07.

[8] [n.d.]. Tweet: ’Meet Marz. Like @ProjectJupyter, but closer to Earth. No-code
data notebook to go from ’natural language’ question to SQL to insight, powered
by @OpenAI’s GPT3. Built with @barrnanas @idavidgoldberg @imfanjin as

part of @beondeck’s Build Weekend!’. https://twitter.com/albertgozzi/status/
1320526310729539584. Accessed: 2021-03-30.

[9] Daniel Adiwardana, Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel,
Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng
Lu, and Quoc V. Le. 2020. Towards a Human-like Open-Domain Chatbot.
arXiv:2001.09977 [cs.CL] Accessed: 2021-08-12.

[10] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv.
51, 4, Article 81 (July 2018), 37 pages. https://doi.org/10.1145/3212695

[11] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models.
arXiv:2108.07732 [cs.PL]

[12] M. Beth Kery and B. A. Myers. 2017. Exploring exploratory programming. In 2017
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
25ś29. https://doi.org/10.1109/VLHCC.2017.8103446

[13] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie S. Chen, Kathleen Creel, Jared Quincy Davis, Dorottya
Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon,
John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geof Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S.
Krass, Ranjay Krishna, Rohith Kuditipudi, and et al. 2021. On the Opportunities
and Risks of Foundation Models. CoRR abs/2108.07258 (2021). arXiv:2108.07258
https://arxiv.org/abs/2108.07258

[14] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010.
Example-Centric Programming: Integrating Web Search into the Development Envi-
ronment. Association for Computing Machinery, New York, NY, USA, 513ś522.
https://doi.org/10.1145/1753326.1753402

[15] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jefrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural In-
formation Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877ś1901. https://proceedings.
neurips.cc/paper/2020/fle/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[16] Daniel Buschek, Lukas Mecke, Florian Lehmann, and Hai Dang. 2021. Nine
Potential Pitfalls when Designing Human-AI Co-Creative Systems. arXiv preprint
arXiv:2104.00358 (2021).

[17] Carrie J. Cai, Samantha Winter, David Steiner, Lauren Wilcox, and Michael Terry.
2019. "Hello AI": Uncovering the Onboarding Needs of Medical Practitioners for
Human-AI Collaborative Decision-Making. Proc. ACM Hum.-Comput. Interact. 3,
CSCW, Article 104 (Nov. 2019), 24 pages. https://doi.org/10.1145/3359206

[18] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[19] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-
Modal Synthesis of Regular Expressions. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (London, UK)
(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 487ś502.
https://doi.org/10.1145/3385412.3385988

[20] Eli Collins and Zoubin Ghahramani. 2021. LaMDA: our breakthrough conversa-
tion technology. https://blog.google/technology/ai/lamda/ Accessed: 2021-07-14.

[21] Prem Devanbu, Matthew Dwyer, Sebastian Elbaum, Michael Lowry, Kevin Moran,
Denys Poshyvanyk, Baishakhi Ray, Rishabh Singh, and Xiangyu Zhang. 2020.
Deep Learning & Software Engineering: State of Research and Future Directions.
arXiv:2009.08525 [cs.SE]

[22] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia
Polikarpova. 2020. Small-Step Live Programming by Example. Association for
Computing Machinery, New York, NY, USA, 614ś626. https://doi.org/10.1145/
3379337.3415869

Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[23] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. 1987. The Vocabulary
Problem in Human-System Communication. Commun. ACM 30, 11 (Nov. 1987),
964ś971. https://doi.org/10.1145/32206.32212

[24] Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine de Gruyter, New York, NY.

[25] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-
Output Examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL
’11). Association for Computing Machinery, New York, NY, USA, 317ś330. https:
//doi.org/10.1145/1926385.1926423

[26] Sumit Gulwani and Mark Marron. 2014. NLyze: Interactive Programming by
Natural Language for Spreadsheet Data Analysis and Manipulation. In Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of Data
(Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery,
New York, NY, USA, 803ś814. https://doi.org/10.1145/2588555.2612177

[27] Marti A. Hearst. 2009. Search User Interfaces (1st ed.). Cambridge University
Press, USA.

[28] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis
Hawthorne, Noam Shazeer, Andrew M. Dai, Matthew D. Hofman, Monica Din-
culescu, and Douglas Eck. 2019. Music Transformer. In International Conference
on Learning Representations. https://openreview.net/forum?id=rJe4ShAcF7

[29] Sandeep Kaur Kuttal, Bali Ong, Kate Kwasny, and Peter Robe. 2021. Trade-
Ofs for Substituting a Human with an Agent in a Pair Programming Context:
The Good, the Bad, and the Ugly. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association
for Computing Machinery, New York, NY, USA, Article 243, 20 pages. https:
//doi.org/10.1145/3411764.3445659

[30] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M. Mitchell, and Brad A. Myers.
2020. Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented
Dialogs. In Proceedings of the 33rd Annual ACM Symposium on User Interface Soft-
ware and Technology (Virtual Event, USA) (UIST ’20). Association for Computing
Machinery, New York, NY, USA, 1094ś1107. https://doi.org/10.1145/3379337.
3415820

[31] Xi Victoria Lin. 2017. Program Synthesis from Natural Language Using Recurrent
Neural Networks. http://victorialin.net/pubs/tellina_tr_2017.pdf Accessed: 2021-
04-06.

[32] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. 2018.
NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the
Linux Operating System. In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018). European Language Resources
Association (ELRA), Miyazaki, Japan. https://www.aclweb.org/anthology/L18-

1491
[33] Ryan Louie, Andy Coenen, Cheng Zhi Huang, Michael Terry, and Carrie J. Cai.

2020. Novice-AI Music Co-Creation via AI-Steering Tools for Deep Generative
Models. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1ś13. https://doi.org/10.1145/3313831.3376739

[34] A. Narechania, A. Srinivasan, and J. Stasko. 2021. NL4DV: A Toolkit for Gen-
erating Analytic Specifcations for Data Visualization from Natural Language
Queries. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2021),
369ś379. https://doi.org/10.1109/TVCG.2020.3030378

[35] Donald A. Norman. 2002. The Design of Everyday Things. Basic Books, Inc., USA.
[36] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a The-

ory of Natural Language Interfaces to Databases. In Proceedings of the 8th
International Conference on Intelligent User Interfaces (Miami, Florida, USA)
(IUI ’03). Association for Computing Machinery, New York, NY, USA, 149ś157.
https://doi.org/10.1145/604045.604070

[37] Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Dan Morris, Arjun Rad-
hakrishna, Gustavo Soares, and Ashish Tiwari. 2021. Multi-modal Program Infer-
ence: a Marriage of Pre-trained Language Models and Component-based Synthe-
sis. In OOPSLA. https://www.microsoft.com/en-us/research/publication/multi-
modal-program-inference-a-marriage-of-pre-trained-language-models-and-
component-based-synthesis/

[38] Ian Tenney, James Wexler, Jasmijn Bastings, Tolga Bolukbasi, Andy Coenen, Se-
bastian Gehrmann, Ellen Jiang, Mahima Pushkarna, Carey Radebaugh, Emily Reif,
and Ann Yuan. 2020. The Language Interpretability Tool: Extensible, Interactive
Visualizations and Analysis for NLP Models. arXiv:2008.05122 [cs.CL]

[39] Gust Verbruggen, Vu Le, and Sumit Gulwani. 2021. Semantic program-
ming by example with pre-trained models. In OOPSLA. ACM. https:
//www.microsoft.com/en-us/research/publication/semantic-programming-by-
example-with-pre-trained-models/

[40] Justin D. Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I. Ross,
Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. 2021. Perfection
Not Required? Human-AI Partnerships in Code Translation. 26th International
Conference on Intelligent User Interfaces (Apr 2021). https://doi.org/10.1145/
3397481.3450656

[41] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2021. In-IDE Code Genera-
tion from Natural Language: Promise and Challenges. arXiv:2101.11149 [cs.SE]

[42] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman.
2020. Interactive Program Synthesis by Augmented Examples. Association for
Computing Machinery, New York, NY, USA, 627ś648. https://doi.org/10.1145/
3379337.3415900

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry

A PROMPT PROGRAM CODE LISTINGS

Note: The following examples are formatted to be easier to read; when input to the model, newlines are removed. Also note that prompts
include a ł[code]ž string. While the model was not explicitly trained to perform translation from natural language to code, the training data
did prepend a ł[code]ž string to training data from a source that included source code.

A.1 Prompt: Generate HTML code (general)

Description: Generates HTML code given a natural language description. Note: This prompt derives from a demo posted on Twitter [7].
Prompt template:

[code] description: make a red button that says stop
html: <button style = 'color: white; background-color: red'>Stop</button>

description: a blue box that contains 3 yellow circles with red borders
html: <div style = 'background-color: blue; width: 150px; height: 150px;'>

<div style = 'background-color: yellow; border-radius: 50\%; border: 5px solid red;
width: 30px; height: 30px;'></div>

description: create two buttons that are centered in a div
html: <div style='text-align:center;'> <button>1</button> <button>2</button> </div>

description: give code for an html button with a margin
html: <button style='margin:10px;'></button>

description: make a pink button that says type and a textarea
html: <button style='background-color: pink;'>Type</button> <textarea></textarea>

description: <<user input>>
html:

A.2 Prompt: Generate JavaScript code (general)

Description: Generates JavaScript code (general). Note the lack of space between the keys (łdescriptionž and łjavascriptž). This was a typo,
was not an issue for the model.

Prompt template:

[code] descriptionadd the variable el to the div with id 'hi'
javascriptdocument.getElementById('hi').appendChild(el);
descriptionmake a button with text 'hi'
javascriptvar button = document.createElement('button'); button.innerHTML = 'hi';

description <<user input>>
javascript

A.3 Prompt: HTML (zero shot)

Description: Generates HTML and JavaScript from a zero-shot prompt.
Prompt template:

description of web code: <<user input>> generated html and inline javascript: [code] <!DOCTYPE html>

A.4 Prompt: Refactor code

Description: Refactors inline CSS styles.
Prompt template:

description: <div style='background-color: green; width: 100px; height: 100px;'></div>
refactored:

html: <div class='green-square'></div>
css: .green-square { background-color: green; width: 100px; height: 100px; }

description: <<user input>>
refactored:

Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

html:

A.5 Prompt: Fix Code

Description: Fixes small errors in existing code.
Prompt template:

[code] original: <button>hi
fixed: <button>hi</button>

original: <div style = 'background-color: green; width: 150px; height: 150;
fixed: <div style='background-color: green; width: 150px; height: 150px;'></div>

original: Coffee Tea Milk</li
fixed: CoffeeTeaMilk

original: <<user input>>
fixed:

A.6 Prompt: Generate HTML and JavaScript

Description: Generates HTML and JavaScript code together. Note the typo (łwith andž) was not an issue for the model.
Prompt template:

[code] input: make a button in html with and add a clickhandler in javascript to alert hello world
output: html: <button id='hi'>hello</button>
javascript: document.getElementById('hi').onclick = (e) => {alert('hello world');}

input: <<user input>>
output:

Prompt template:

Here's a stack overflow response on how to <<task you want>>: <<copy and paste stack overflow response>>

Use this previous example to <<task you want>> in <<your existing code>>, and return the <<type of code>> code:

B FALLBACK PROMPTS

This section presents a set of fallback prompts intended to address commonly occurring issues when synthesizing code using a large
generative language model. These prompts’ strategies include suggesting sub-tasks to consider solving instead of the original request,
breaking down the task into simpler tasks, and helping the user clarify vague input. We provide example model output for the prompts using
inputs collected from the user study. The sample outputs provide an indication of the potential value of these fallback prompts, but research
in this space would beneft from further study on the overall efectiveness of these strategies. (Note that these fallback prompts were not
available to participants during the studyÐthese prompts were developed after the study to explore how the model could be used to improve
outcomes.)

B.1 Prompt: Suggest sub-tasks

Description: Attempts to suggest sub-tasks for a main task.
Prompt template:

Task: making todo app
Suggestion: 1) an input for todo items
2) todo items using an unordered list
3) checkboxes for the items
Task: build a mortgage calculator
Suggestion: 1) an input for the interest rate, years and amout
2) a div to display the monthly payment
3) write mortgage calculator function with tests
Task: <<user input>>
Suggestion:

Example 1 For the input, ‘a fashcard app’, this prompt generated the following suggestions:

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry

1) an input for the question and answer
2) a div to display the question
3) a div to display the answer
4) a button to flip the card
5) a button to shuffle the cards
6) a button to show the answers

Example 2 For the input, ‘a search page’, this prompt generated the following suggestions:

1) an input for the search term
2) a div to display the search results
3) write a search function with tests

These model-generated suggestions could serve as a jumping of point for new users.

B.2 Prompt: Simplify request

Description: Attempts to transform a user’s input into a simpler task.
Prompt template:

Instruction: create a div with a search bar centered
Broken down instructions: create a div with a search bar
create a div
Instruction: create a search box and a google logo above it
Broken down instructions: create a search box
create a google logo
Instruction: create a search box and make it blue
Broken down instructions: create a search box
make the search box blue
Instruction: large field with id 'dunno' and a black border, with vertically centered text

'what the card says'
Broken down instructions: create a large field with id 'dunno'
add a black border to field with id 'dunno'
create vertically centered text that says 'what the card says'
Instruction: <<user instruction>>
Broken down instructions:

Example 1: The user input łcreate a fashcard appž yields the following outputs from this prompt:

create a div with text 'flashcard'
create a div with a button that says 'create flashcard'
create a div with a button that says 'delete flashcard'
create a div with a button that says 'display flashcard'

If these individual lines are passed onto an HTML prompt, they yield the following code:

• <div>fashcard</div>
• <div><button>Create Flashcard</button></div>
• <div><button>Delete Flashcard</button></div>
• <div><button>Display Flashcard</button></div>

Example 2: The user input łgenerate a text input with a blue border and center align itž yields:

create a text input
add a blue border to text input
center align text input

Passing these outputs into an HTML prompt yields:

• <input type=’text’>
• <input style=’border: 2px solid blue;’>
• <div style=’text-align:center;’> <input type=’text’></div>

Example 3: The user input łcreate a rectangular text input centered under the google logo with a blue border 1px widež yields:

create a rectangular text input
center the text input under the google logo
add a blue border to the text input

These outputs passed to an HTML prompt yield:

Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

• <input type="text" style=’border: 3px solid blue; border-radius: 10px;’>
• <div style=’text-align:center;’><input type=’text’> </div>
• <input type=’text’ style=’border: 3px solid blue;’>

B.3 Prompt: Clarify Input

Description: Attempts to clarify ambiguous user input by inserting a placeholder or providing multiple options that clarify points of
ambiguity.

Prompt template:

Instruction: create a div with a search bar centered
Broken down instructions: create a div with a search bar centered within the div with id [outer div's id]
Instruction: create a search box and a google logo above it
Broken down instructions: create a search box and a google logo in rainbow text above it
create a search box and a google logo with an image tag above it
Instruction: <<user input>>
Broken down instructions:

Example 1
For the input łShow containers one at a timež, this prompt produced the following output:

When clicking on the [container's id] div, hide all other divs except for this div

Example 2 For the input łtext box centered blue outlinež, this prompt modifed the request to be:

create a text box with a blue outline and centered within the div with id [outer div's id]

Example 3 For the input, łmake this centered at the page <input type=’text’ id=’input’ style=’height: 200px; width 200px;’>ž, the prompt
returned:

create a search box with a height of 200px and a width of 200px and center it at the page

C USER STUDY DETAILS

C.1 Onboarding for Study

To help study participants learn how to use the tool, we showed them a narrated video demonstrating GenLine in action, then asked them to
use GenLine to render ‘Lorem ipsum dolor sit amet’ in purple, italic font. We also provided the following tutorial text for using the tool:

To get started with GenLine:

• Use [[double brackets]] to type your goal
• Select your language
• (Optional) Increase the temperature slider to get diferent results
• Evaluate the results
• View additional results as needed
• Ctrl + h will ‘auto format selection’
• Use GenLine to generate code via natural language and evaluate the outcome.
• We’re looking for people to challenge GenLine with diferent use cases to better understand where it can be most useful.
• GenLine is not a fully functional code editor (e.g. Sublime) - it is currently in a prototype stage to learn more about the utility of natural
language programming.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry

C.2 Tasks in User Study

Figure 6: Task 1 in User Study

Figure 7: Task 2 in User Study

Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

C.3 User Study Examples (Novice)

User Input Generated Output (using HTML prompt)

create a fashcard app

create an input text box named "front:" and another input text box
named "back:"

<div style=’text-align:center;’> <button></button> <button></button>

<input type="text" name="front"> <input type="text" name="back">

create a text input box with "hello" inside and create another text input
box that will show "hola" when I press enter for "hello"

create a rectangle with the word "hello" in the middle and a blue button
underneath the rectangle with the text "fip" on it. when I press the
"fip" button, show the text "hola" in the middle instead of "hello"

<input type=’text’ value=’hello’> <input type=’text’ onkey-

down=’if(event.keyCode == 13)this.value="hola";’>

<div style=’width: 100px; height: 100px; background-color: red;’> <div
style=’width: 50px; height: 50px

create a white rectangle with the word "hello" in the middle no result

create a white rectangle with the word "hello" in the middle no result

create a white rectangle with the text "hello" in the middle <div style=’width: 100px; height: 100px; background-color: white;’>.
<div style=’text-alight:center;’>

create a rectangle with the text "hello" in the middle <div style=’width: 100px; height: 100px; background-color:
black;color:white;font-size:30px;’>Hello</div> description

when this button is clicked, make the rectangle say the text "hola"
instead of "hello"

<button onclick="document.getElementByID(’rect’)
.innerHTML=’hola’">Click Me</button><button
onclick="document.getElementById

onclick=change the text "hello" to "hola" ‘<button onclick=’document.getElementById("hello") .inner-

HTML="hola"’></button>"

C.4 User Study Examples (Expert)

User Input Generated Output (using HTML prompt)

html: generate a text input with the label ‘Front:’ and the value ‘Hello’

html: generate a text input with the label with the text ‘Front:’ and the
value ‘Hello’

<input type=’text name=‘front’ value=‘Hello’> <label
for=’front’>Front:</label> description

<input type=’text’ name=‘front’ value=‘Hello’> <label style=‘color:
white; background-color: pink’>Front:</label>

html: generate at text input with the label that reads ‘Front:’ <input type=‘text’ name=‘front’>

html: make a box [no result]

html: draw a box that is 200px <div style=‘width: 200px; height: 200px; background-color:
blue;’></div>

html: center align content and add 60px padding to the top

html: make a white box that is 200px and has a solid black border

html: make a white box that is 200px and has a solid black border of
1px

html, body {width:100%; height: 100%; margin-top: 60px;}

<div style=‘width: 200px; height: 200px; border: 5px solid black;
background-color: white;’></div>

<div style=‘width: 200px; height: 200px; border: 1px solid black;
background-color: white;’></div>

js: add a click handler to the button button.onclick = function() {alert(‘hi’); }

js: create a varable with my button var myButton = document.createElement(‘button’);

js: on a click event add the value from inputFront to the box var el = document.getElementById(‘hi’);
el.appendChild(document.createTextNode(docu-

ment.getElementById(‘inputFront’).value));

js: set isEnglish to it’s opposite value var isEnglish = !isEnglish;

js: create a function that toggles the text of the box function toggleText(divId, newText){var div = docu-

ment.getElementById(divId); div.innerHTML = newText;}

	Abstract
	1 Introduction
	2 Related Work
	2.1 Generative Language Models
	2.2 User Tools for Generative Models
	2.3 Software Engineering Tools

	3 GenLine
	3.1 Interface
	3.2 Model and Prompts

	4 User Study
	4.1 Study Design and Methodology
	4.2 Results
	4.3 Limitations

	5 Discussion
	5.1 Providing Suggestions for an Unbounded Syntax
	5.2 Automated Input Variation and ``Fallback Prompts''
	5.3 Improving Request Quality Through Conversation
	5.4 Debugging Tools and AI Onboarding
	5.5 Looking Beyond GenLine

	6 Conclusion
	Acknowledgments
	References
	A Prompt Program Code Listings
	A.1 Prompt: Generate HTML code (general)
	A.2 Prompt: Generate JavaScript code (general)
	A.3 Prompt: HTML (zero shot)
	A.4 Prompt: Refactor code
	A.5 Prompt: Fix Code
	A.6 Prompt: Generate HTML and JavaScript

	B Fallback Prompts
	B.1 Prompt: Suggest sub-tasks
	B.2 Prompt: Simplify request
	B.3 Prompt: Clarify Input

	C User Study Details
	C.1 Onboarding for Study
	C.2 Tasks in User Study
	C.3 User Study Examples (Novice)
	C.4 User Study Examples (Expert)

