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ABSTRACT 

In this paper, we present a natural language code synthesis tool, 
GenLine, backed by 1) a large generative language model and 2) a 
set of task-specifc prompts that create or change code. To under-
stand the user experience of natural language code synthesis with 
these new types of models, we conducted a user study in which par-
ticipants applied GenLine to two programming tasks. Our results 
indicate that while natural language code synthesis can sometimes 
provide a magical experience, participants still faced challenges. In 
particular, participants felt that they needed to learn the model’s 
łsyntax,ž despite their input being natural language. Participants 
also struggled to form an accurate mental model of the types of 
requests the model can reliably translate and developed a set of 
strategies to debug model input. From these fndings, we discuss 
design implications for future natural language code synthesis tools 
built using large generative language models. 

CCS CONCEPTS 

• Human-centered computing → Human computer interac-
tion (HCI); User studies; • Computing methodologies → Arti-
fcial intelligence; • Software and its engineering → Software 
notations and tools. 
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1 INTRODUCTION 

Generative models (e.g., [13, 15, 28]) are designed to create plausible 
continuations of their input. For example, given the text, łAfter 
work, I went to thež, a language model could then generate sen-
tences or even paragraphs of text that resemble the start of a story 
or conversation. 

Recent large language models (LLMs), such as GPT-3 [15], have 
demonstrated that they can perform a wide range of text-based 
tasks by carefully crafting the input to the model. For example, 
to produce HTML from a natural language description, one can 
prime the model using text containing examples of goals (expressed 
in natural language) and their corresponding HTML (see online 
example [7]). For instance, one can provide the text shown below: 

description: a red button that says stop 
html: <button style = 'color: white; background-color: red'>Stop</button> 
description: A textfield that says Hello in its placeholder 
html: <input type='text' placeholder='Hello'></input> 
description: a blue button with white text that says Submit 
html: 

Given this text as input, the model is likely to produce the HTML 
corresponding to ła blue button with white text that says Submitž1. 
What is notable about the above example is that it is merely the 
text-based input to the model: the model is able to follow the pattern 
established by the input, and produce HTML code corresponding 
to the natural language description at the end of the input. In efect, 
the input enables one to łcustomizež the LLM to perform specifc 
tasks, such as code synthesis. 

1When providing this input to the model used in this research, it produced the following 
code: <button style = ’color: white; background-color: blue’>Submit</button> 
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Figure 1: GenLine provides a front-end interface to task-
specifc prompts for the generative language model. In this 
example, the GenLine tool is using a prompt that converts 
a natural language description into HTML. The user input 
(A) is demarcated using a double-bracket notation. The user 
can choose which prompt to apply in a drop-down menu (B). 
The generated content is visible in (D), and is editable before 
insertion into the document. The user can request that the 
model produce more content by clicking the ellipses on the 
bottom left of the dialog box. By default, the model will gen-
erate alternatives, which can be navigated using the buttons 
indicated by (E). The degree of variety in the output is vari-
able with a temperature slider (C). 

This type of guiding input is often called a prompt [2, 15]. At the 
most basic level, a prompt is nothing more than the text inputted 
to an LLM. However, a number of compelling GPT-3 demos [15] 
demonstrate that prompts can be written to customize a single 
model to perform a wide range of tasks, such as transforming 
natural language instructions into fction, SVG graphics, or source 
code (among many other types of output) [2ś4, 6]. Note that the 
model itself does not changeÐonly the input provided to the model 
changes to achieve these results. The ability for these models to 
perform a wide variety of tasks, without needing to retrain them, 
makes them of inherent interest to the HCI community, as they 
provide new ways to customize and integrate AI into everyday 
tasks. 

In this paper, we examine the user experience of using an LLM to 
produce code from natural language descriptions. To investigate this 
experience, we created GenLine, a tool that provides inline support 

for transforming natural language requests into code (Figure 1). 
Using GenLine, users can input requests such as łmake an OK 
buttonž, or łmake this button blue <button>OK</button>ž. GenLine 
transforms these requests into code by incorporating the user’s 
input into a task-specifc prompt (e.g., a prompt to create HTML, or 
a prompt to produce JavaScript), then feeding the prompt as input to 
an LLM. Because users explicitly express a request to the LLM (i.e., 
łmake an OK button"), and choose a specifc prompt for interpreting 
that input (e.g., a prompt to produce HTML, or a prompt to produce 
JavaScript), using GenLine is more akin to invoking a command, as 
opposed to a code completion mechanism. 

To understand how this new class of large language models 
may afect users’ software development practices, we conducted a 
user study in which 14 participants were asked to use GenLine to 
create two small web-based applications: a static search page and 
an interactive fashcard app. The results of our study provide key 
insights into the user experience of producing code with this new 
class of generative language model. In particular, we fnd that while 
the natural language code synthesis capabilities can be useful for 
certain tasks (e.g., creating boilerplate code, or doing the equivalent 
of an API lookup), users can still encounter challenges in several 
areas: 1) learning the model’s natural language łsyntaxž (i.e., how 
to efectively phrase a natural language request), 2) knowing what 
they can reliably ask of the model, including how much they can 
request, and 3) debugging the model when it doesn’t produce the 
desired results. 

Collectively, these results suggest a number of implications for 
design. In particular, future systems may beneft from techniques 
that automatically reformulate user input (similar to what is done in 
information retrieval systems [27]) and automatically vary model 
temperature to increase the likelihood of producing useful code 
(where temperature can roughly be thought of as the łrandomnessž 
of the model’s output2). For large and/or ambiguous requests, there 
may be an opportunity to leverage these models’ capabilities to 
engage in a more structured conversation with the user to help scope 
and refne requests. Future systems may also beneft from providing 
suggestions for what could be requested, given a particular context. 
Finally, both debugging tools (such as interpretability tools) and AI 
onboarding [17] (training users on the model’s relative strengths, 
weaknesses, and quirks) could be useful to help users debug, better 
understand, and predict model behavior. 

In sum, the paper’s contributions are as follows: 

(1) We present an end-user tool, GenLine, that translates natural 
language requests into code, using a 137-billion parameter 
LLM and LLM prompts designed to synthesize code. 

(2) We report results from a study investigating use of GenLine 
for two tasks. Our results highlight: 

(a) A sense of needing to learn the system’s łsyntax,ž despite 
model input consisting of natural language. 

(b) Challenges in forming an accurate mental model of the 
types of requests the model can reliably translate to code 
(what can be requested and how much can be requested). 

2 We make use of temperature sampling to sample tokens from the model. Setting the 
temperature parameter to 1 is equivalent to sampling from the natural distribution 
of the model. Lowering the temperature results in sampling outputs with higher 
probabilities, making the model output more predictable (and thus, less variable). 
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This uncertainty led to requests ranging in scale and speci- prompts to assist with software development, and examines their 
fcity from łcreate a fashcard appž (a large, under-specifed use in a user study. 
request) to łcreate a blue button with label fip in white 
textž (a very specifc request). 2.2 User Tools for Generative Models 

(c) Participants’ model debugging strategies to debug model 
input: Removing information, adding information, reword-
ing, varying model temperature, and introducing key-
words like łhello worldž or łtestž. 

(3) From the study fndings, we derive a number of implications 
for design, including: 

(a) Providing automated input reformulation and automated 
variation of model temperature. 

(b) Leveraging the generative language model to engage in 
a more structured conversation with the user to gather a 
more precise and more tightly scoped request. 

(c) Providing suggestions of natural language requests a user 
could make in a given context. 

(d) Ofering debugging tools, such as interpretability tools, and 
AI onboarding to help users better understand, debug, and 
predict model behavior. 

For many of our design implications, we show how the model 
itself may be able to assist with input rewriting through a set of 
łfallback promptsž that transform requests into forms more likely 
to yield useful results. 

The rest of the paper contextualizes this research in the larger 
body of literature, describes the GenLine tool and implementation, 
and presents our study and study fndings. We conclude with a 
discussion of implications for design. 

2 RELATED WORK 

Our work builds on recent advances in generative language models, 
specifcally their ability to generate or modify code from natural 
language instructions through prompt programming. In this section, 
we review prior work in generative language models, software 
engineering, and end-user and natural language interfaces for AI, 
showing how this prior work informs and inspires our research. 

2.1 Generative Language Models 

Generative language models such as GPT-3 [15] demonstrate the 
ability to produce useful or interesting content from high-level 
natural language inputs. For example, OpenAI and GPT-3 users have 
shown GPT-3’s ability to convert natural language descriptions to 
SVG [6], SQL [8], shell scripts [4], and Python [3]. 

One of the compelling aspects of these demonstrations is that 
the results are achieved by providing a text-based input, or prompt, 
which infuences the model output, with no model retraining nec-
essary. For example, to generate SVG graphics code, it may be 
sufcient to provide a prompt that employs a pattern like the fol-
lowing: łQ: ńSVG descriptionż A: ńSVG codeż Q: ńDesired SVG 
to generateż A:ž (where text and code replaces content indicated 
by the ńż symbols, as in this demo [6]). This ability to produce 
custom functionality through high-level descriptions has given rise 
to prompt programming (for example, see Gwern.net’s essays on 
prompt programming [2] or OpenAI’s Prompt Library [5]). This 
research builds on this prior work, creates a number of task-specifc 

Research in generative models has produced a number of models 
that produce content good enough to be used in some real-world 
contexts (e.g., generative music models [28]). Given these capabili-
ties, there is additional interest in how to integrate this functionality 
into end-user applications to support co-creation [16]. For example, 
Cococo [33] integrates a generative music model into an end-user 
application. In the realm of software development, GitHub Copilot 
[1] and Codex [18] demonstrate how code synthesis capabilities 
could be exposed to users in an editor or a chat-like interface, re-
spectively. In studying co-creation with AI, a number of design 
recommendations have been developed, such as a suggestion to 
avoid overwhelming the user with AI-generated content [16, 33]. 

GenLine’s design builds upon and utilizes this prior research 
in a number of ways. Specifcally, GenLine produces content in 
discrete chunks (to reduce the likelihood of overwhelming users 
with content), provides facilities to navigate alternatives, and allows 
users to edit content before requesting more generated content from 
the model. In contrast to Copilot (which provides an autocomplete-

like interaction) and Codex (which provides a conversational, chat-
like interface), GenLine’s interaction is more akin to invoking a 
command within a text editor. 

2.3 Software Engineering Tools 

In the area of software engineering, there is active research exam-

ining how generative models (and deep learning models in general) 
may be used to assist with software development. Recent papers 
survey the state-of-the-art in this feld [10, 21], which includes tar-
geted work in code synthesis (e.g., from natural language to code, 
and code to natural language), detecting code defects, end-user 
programming, and code translation (from one programming lan-
guage to another). Interpreting natural language specifcations (or 
intent), in particular, has been a long-standing goal in the research 
community, with prior work demonstrating systems that can trans-
form natural language descriptions to spreadsheet macros [26], 
shell scripts [31, 32], SQL queries [36], and data visualizations [34] 
(among many other targets). We take inspiration from this prior 
work, and examine the natural language code synthesis capabilities 
of an LLM from an end-user’s perspective. 

Transforming natural language specifcations to code is con-
sidered a form of inductive specifcation [42]. Programming-by-

example is also a form of inductive specifcation in which users 
defne a function by providing input-output examples (e.g., [19, 39, 
42]). One of the known issues with inductive specifcation is the 
potential for ambiguity in interpreting the user’s input [10, 25, 42]. 
For example, the user’s input to the system may under-specify their 
actual intent, leading to multiple, valid interpretations of their input. 
Thus, these systems often include mechanisms to help refne or 
discover the user’s true intent, such as generating additional exam-

ples for the user to evaluate in programming-by-example systems 
[42]; showing alternative, valid interpretations to the end-user for 
them to choose from [25]; or providing the specifcation with a 
combination of natural language and examples [37]. Outside the 
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realm of software engineering tools, other work examines how to 
recover from, and disambiguate within, conversational breakdowns 
(e.g., [30]). 

Recognizing the potential for ambiguity in interpreting the user’s 
input, the GenLine tool produces multiple outputs for the user to 
choose from. Our study results also reinforce the observation that 
it can be useful to provide mechanisms to discover the user’s true 
intent, particularly when they make ambiguous requests, or when 
they provide a request that the model cannot correctly interpret. 

Research has also examined the user experience of using code 
synthesis capabilities. For example, Weisz et al. [40] ran a design 
scenario study with developers to examine their willingness to 
use generative AI in diferent use cases, and found that developers 
expressed openness to working with AI for tasks like code migra-

tion and translation. Recognizing that errors are inevitable, the 
researchers note that actual adoption likely hinges on łhow many 
errors are present and the nature of those errorsž [40]. Participants 
in our study similarly highlighted concerns over model accuracy, 
and suggested the importance of being able to continually improve 
a model to reduce its errors over time. 

To understand the potential for pair programming with an intelli-
gent agent, Kuttal et al. [29] conducted a Wizard-of-Oz study. Their 
results indicate that agents may serve as useful pair programming 
partners and alleviate barriers to expertise, albeit at the potential 
cost of code creativity. Our study explores this question further 
by examining use of an operational, modern generative language 
model capable of synthesizing code. 

Xu et al. [41] studied developers’ use of their natural language 
code synthesis prototype (NL2Code) for completing a range of pro-
gramming tasks. One fnding from the study was that participants 
were open to a more constrained syntax, if it would yield more 
reliable results. Our study results similarly suggest the potential 
utility in providing clear guidance (or restrictions) on what can be 
requested from a model, and how to formulate those requests. 

Prior research has shown the importance of web search in soft-
ware development, and illustrated the value of more tightly in-
tegrating web search with software development environments. 
For example, Brandt et al. [14] showed how web search can be 
integrated with a development environment to ease the process 
of fnding and applying web-based examples to code. When using 
a generative model trained on a corpus that includes code, it is 
possible to achieve similar results for some information-seeking 
needs. More specifcally, the user can describe their intent using 
natural language, with the generative language model producing 
the relevant code (e.g., as illustrated by GPT-3 demos that convert 
natural language to code, or that continue writing code for the user 
[3, 4]). In this context, the natural language input to the model is 
similar to a search query. However instead of returning related web 
pages, the model generates code. Our study results suggest that 
users fnd this łAPI lookupž use case a compelling scenario for code 
synthesis performed by modern generative models. 

3 GENLINE 

GenLine provides in-editor, inline support for accessing and using 
generative language model prompts that produce code. Figure 1 
provides an overview of GenLine’s user interface components. 

3.1 Interface 

User input to GenLine is a single string of text that can be 1) a 
natural language text, 2) content (code) to modify, or 3) a mixture 
of natural language text and content to modify. Given this input, 
GenLine executes the chosen prompt and produces multiple alter-
natives, which are de-duplicated and presented to the user (users 
can cycle through each unique output). 

Users specify model input by surrounding it with double brack-
ets3. For example, given the following code in an HTML code editor: 

<button>Submit</button> 

The user can wrap the code with the following instruction: 

[[add a border to this <button>Submit</button>]] 

In our implementation, this bracket notation is automatically rec-
ognized by the editor: When the user enters the ending brackets or 
clicks in a double-bracketed region, the GenLine tool automatically 
appears. 

Importantly, GenLine’s design provides an interaction style more 
similar to invoking a command, and less like autocomplete: the 
user must explicitly specify the input to send to the model (sur-
rounding code context is not passed to the model), and they must 
choose which prompt to apply to that input. This interaction de-
sign difers from the interaction styles found in GitHub Copilot 
[1], which provides autocomplete-like functionality, or Codex [18], 
which enables a more conversational style of code creation. While 
each design has its trade-ofs, we focused on the command-like 
interaction because it enables creation of prompts that support very 
specifc, targeted tasks (such as changing the styling of an existing 
HTML element). This interaction style also allows users to both 
create code from scratch and modify existing code in-place, using 
the same tool. However, one limitation of our current implementa-

tion is that users must explicitly provide code context if they wish 
the model to make use of that context in interpreting their request. 

To streamline the process of invoking a specifc prompt, GenLine 
allows the prompt defnition to include a łtagž for invoking the 
prompt. This tag can then be inserted in the double-bracketed 
content, pre-pending the actual input to pass to the prompt (e.g., 
ł[[html: make an OK button]]ž). When a tag is detected, GenLine 
automatically loads the specifed prompt, saving the user the need 
to choose it from a menu. 

Model input can be interactively edited, and model output can 
also be edited before inserting it into the text editor. This ability to 
interactively and iteratively construct output enables interactions 
similar to live programming [22] or exploratory programming [12]. 
For example, the user may frst produce an łOKž button by typing 
łmake an OK buttonž. After producing an output, they can then 
edit the original input to include additional requirements, such as 
styling: łmake a light blue OK button that is 30px tallž. In our study, 
we observed participants making use of this ability to incrementally 
build a request to produce the fnal, desired output. 

Beyond editing the model input, users can adjust the łtempera-

turež using a slider, where a lower temperature indicates the model’s 
higher certainty in its top choices (this can be thought of as varying 

3Depending on the environment, this double bracket notation may confict with a 
language’s syntax (e.g., lists in programming languages are often defned using square 
brackets). For a given environment, a delimiter should be chosen so that it does not 
(or rarely) conficts with actual content. 



Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

the randomness of the output, with higher temperature values more 
likely to lead to greater variety of output). 

For prompts that produce HTML, GenLine renders the model 
output in an HTML iframe, providing a way to validate the output 
at a glance. 

3.2 Model and Prompts 

GenLine is backed by a version [20] of the model described in 
[9], which is a 137-billion parameter generative language model. 
The model’s training data includes code, but the model was not 
specifcally trained to support software development. 

With this model, we created prompts to: produce HTML and 
JavaScript; fx code; style code; and add unique IDs to HTML el-
ements. See the Appendix for example prompts. The majority of 
these prompts were designed using a few-shot prompting pattern 
(see Figure 2). For example, a prompt may set up a pattern of mak-

ing a natural language request for HTML code (e.g., łdescription: 
An OK buttonž), with the response being the corresponding HTML 
(e.g., łhtml: <button>OK</button>ž). 

The few shot prompts we developed that translate natural lan-
guage descriptions to code also allow users to mix natural language 
and code in their input. For example, the user might enter a request 
such as, łMake this button 30 px tall <button>OK</button>ž. We 
call this form of input mixed inputs, to capture the notion that users 
can mix conceptually diferent types of input in their request to the 
model (e.g., mixing code and natural language). Notably, we found 
that the prompts do not need to include examples that mix natural 
language and code in the natural language łdescriptionž felds of 
the examples: Even without examples that mix natural language 
and code in the łdescriptionž feld, the model can often successfully 
interpret these types of mixed inputs and produce only code as 
output. 

While model performance itself is not the focus of this paper, we 
did observe through our own testing that the model could produce 
reasonable HTML and JavaScript code through natural language 
prompts for simple tasks (see also [11], which examines the model’s 
ability to synthesize Python code). The results of the user study 
provide further insight into how frequently model output was of 
use to study participants. 

4 USER STUDY 

To understand how recent LLMs could afect the software devel-
opment process, we conducted a study in which participants used 
GenLine to complete two tasks. 

4.1 Study Design and Methodology 

The study consisted of a remote pre-interview, two tasks to be 
completed over the course of one week, and a remote post-interview. 
Interviews focused on 1) the diferent strategies used to synthesize 
code and 2) opportunities for writing coding with natural language. 

During the 30 minute pre-interview, participants were shown 
a 4 minute video overview of the GenLine tool that described the 
prompts (how they were written), the GenLine tool, and a demon-

stration of it used to build a todo app. 
After watching the video, participants had an opportunity to 

ask the researcher questions, and participants were asked about 

their initial impressions. Next, participants were given access to a 
slide deck that contained slides detailing the capabilities of GenLine. 
Participants then performed a tutorial task to generate stylized text 
(specifc instructions can be viewed in Appendix C.1). Participants 
were again asked about their impressions of the tool, and whether 
they had any additional questions. Finally, researchers described the 
tasks they would perform over the course of a week. Researchers 
told participants that the GenLine tool was a prototype and that 
they may encounter quirks during usage that they should come 
prepared to discuss in the fnal interview. 

Participants had one week to attempt two tasks. The frst task 
(T1) was to create a static search page with a textbox and a logo. 
The second task (T2) was to create a fashcard app that changed a 
card from front to back with the click of a button. See Appendix 
(section C.2) for task fgures. These tasks were chosen to represent 
a fairly basic programming problem (T1, creating a static web page), 
and a slightly more complex problem that requires participants to 
include multiple interactive elements in the app (T2). 

Participants were asked to record their use of GenLine (i.e., video 
recordings of their screen) whenever they worked on these tasks 
throughout the week. Participants uploaded their recordings to an 
individual online folder shared with the study researchers. During 
the post-study interview, participants evaluated their overall ex-
perience of coding with natural language and their impressions of 
using GenLine. All interviews were conducted remotely and were 
recorded. 

To analyze the data, two researchers transcribed the natural 
language requests from the participant-recorded videos of GenLine 
usage. We used methods from grounded theory [24] to code the 
data and characterize participants’ request strategy, repair strategy, 
the content of the request, and the request complexity. The two 
researchers reviewed each other’s notes in a shared spreadsheet, 
met several times to discuss the codes, and iteratively refned and 
grouped the codes into higher-level themes. 

4.1.1 Participants. To provide a cross-section of user experiences, 
we recruited participants with difering levels of front-end coding 
experience. Participants were recruited through an internal message 
board and completed a screener asking them to identify their front-
end coding profciency. Each participant received a $50 gift card 
(or an option to donate the gift card equivalent to a charity) for 
participating. 

Our participants comprised the following demographics: 

• Role: UX Researcher (2), UX Designer (1), Interaction De-
signer (5), Software Engineer (2), UX Engineer (4) 

• Location: US (13), India (1) 
• Gender: Female (7), Non-binary (1), Male (6) 
• HTML/CSS experience: Somewhat experienced (4), Expe-
rienced (4), Very experienced (3), Extremely experienced 
(3) 

• JavaScript experience: Not at all experienced (4), Some-

what experienced (2), Experienced (3), Very experienced (2), 
Extremely experienced (3) 

In reporting results, we indicate the participant number and 
the letter N, I, or E to indicate whether they self-reported novice, 



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry 

description: make a red button that says stop 
html: <button style = 'color: white; background-color: red'>Stop</button> 

description: give code for an html button with a margin 
html: <button style='margin:10px;'></button> 

description: <<user input>> 
html: 

Figure 2: A few-shot prompt for transforming natural language descriptions to HTML. 

intermediate, or expert knowledge of front-end software develop-
ment. There were a total of 5 novice4, 4 intermediate, and 5 expert 
participants5. 

4.2 Results 

A total of 7 hours and 42 minutes of video was recorded by par-
ticipants. There were 2 hours, 23 minutes of video for T1, and 5 
hours, 19 minutes of video for T2. Participants spent a median of 10 
minutes on T1 and 25 minutes on T2. A total of 227 model requests 
were issued for T1, and 301 for T2. For T1, participants individually 
issued a median number of 12 model requests, and a median of 
22 model requests for T2. Twelve out of 14 participants uploaded 
videos of both tasks, and all completed the interviews. 

Seven out of twelve (7/12) participants were able to fully com-

plete T1, and 6/12 fully completed T2, where łfully completedž 
means that they were able to produce the required interface along 
with the desired styling. Of the remaining, 4/7 and 1/7 were able 
to partially complete T1 and T2, respectively (partial completeness 
was judged as producing the required interface, but without the 
desired styling). All self-reported experts successfully completed 
both tasks. See Table 1 for more details. 

Across both tasks, fewer than half of the model outputs were 
eventually accepted by participants (with our without edits), with 
most being edited or rejected (Figure 4). To help understand the 
types of inputs participants provided, and the code generated by the 
model, Appendices C.3 and C.4 show example requests of novices 
and experts, respectively, and the output produced by the model. 

4.2.1 Characterizing Request Content. The introductory video we 
presented participants at the start of the study demonstrated that 
GenLine could accept both natural language and a mixture of natu-
ral language and code. However, participants used natural language 
by itself as their primary strategy for synthesizing code, with some 
variability observed for diferent experience levels (see Figure 3). 
More specifcally, we observed that novices tended to rely primarily 
on natural-language-only requests, whereas experts were more 
likely to mix natural language and code in their requests. Neither 
natural language alone nor a mixture of language and code6 yielded 

4Self-reported novice participants may have more prior (non-front-end) programming 
experience.
5To derive the novice, intermediate, and expert labels, we map participants’ self-
reported expertise as follows for HTML/CSS and JavaScript: łNot at all experiencedž 
and łSomewhat experiencedž map to the łnovicež label, łExperiencedž to the łinter-
mediatež label, and "Very experienced" and łExtremely experiencedž to the łexpertž 
label. 
6The total number of requests was 528 across tasks, 11 of which contained code only, 
and are not featured in the fnal experience strategy graph. 

Figure 3: Request strategy according to participants’ self-
reported level of coding experience 

Figure 4: Distribution of actions taken in T1 and T2 (N=12) 

higher acceptance rates (where acceptance rate refers to the like-
lihood of a participant clicking the tool’s łAcceptž button after 
invoking the model). 

Among all natural language requests, there was a nearly even 
split between natural language requests and natural language re-
quests that also included domain-specifc keywords, such as łinputž, 
łdivž, and łpaddingž. For some participants, the use of keywords 
was an explicit attempt to add more specifcity to the request: łI 
noticed in the beginning I was very natural, like, ‘make a square 
that’s bigger than it is taller’ and it [GenLine] was getting it wrong 
for me a lot. I pivoted to using CSS and element language, like, 
‘make a div’ and I would get immediate resultsž (P10-E). 

While participants’ inputs sometimes included very precise lan-
guage, there was also a desire for the model to be able to interpret 
more vague requests: łIf I can give a very vague, not very specifc 
instruction... ‘Can you make it a little more warmer? Can you make 
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Table 1: Task Completion. Bolded entries indicate participants who fully completed both tasks. 

Status T1 - Participants T2 - Participants 

Fully completed P13-N, P14-I, P4-E, P6-E, P7-E, P8-I, P4-E, P6-E, P7-E, P10-E, 
P10-E, P12-E P12-E 

Partially completed P1-N, P3-N, P8-I, P9-I P9-I 

Did not complete P5-N P1-N, P5-N, P3-N, P13-N, P14-I 

it a little more dense?’ That comes more naturally, more easily in 
natural language...ž (P11-N). 

Participants used a limited number of verbs to synthesize code, 
including ładdž, łcreatež, łgeneratež, and łmakež. In the fnal in-
terviews, participants expressed that adding constraints or having 
some design afordance to confrm recognition of a word would 
be more helpful compared to having unlimited syntax, consistent 
with other natural language invocation research [41]: łEven just 
having like a reference for the language in another tab that it can 
accept for diferent outcomes. Having a list it uses to do these basic 
things...so a glossary, really.ž (P5-N) 

Some participants’ requests could be considered łcontextless,ž 
where the model would not need to refer to surrounding code or 
recent history to correctly interpret the participants’ input (e.g., 
łgenerate a text input with the label ‘Front:’ and the value ‘Hello’ž). 
Other requests implicitly assumed that the model could access and 
utilize surrounding context (e.g., łAdd a blue borderž, with no indi-
cation of what to add a blue border to). Notably, more than a third 
of the requests fell into this latter category. Participants’ mental 
model, and desire, was that this surrounding context (including re-
cent actions) would be used by the model, consistent with other past 
work [41]. When the model didn’t take this context into account, 
participants were frustrated: łI found that I could ask GenLine for 
specifc things, which is of course awesome, but I couldn’t interact 
with things that I had asked for previously... So for example...let’s 
say I ask GenLine to provide the Google logo. It wouldn’t be a 
problem. But then I couldn’t then say, ‘Please center it’, ‘Please 
make it this percentage size and then place a box underneath itž 
(P3-N). In part, participants’ frustrations are due to our interface 
design not efectively communicating what information is (or is 
not) sent to the model. However, the more important observation 
is that participants desired a style of interaction similar to having 
a conversation with a colleague, where previous context is taken 
into account with each new request. This style of interactively con-
structing code by referencing prior code could be useful in many 
contexts, such as specifying the layout of an interface (e.g., łplace 
the Cancel button to the left of the OK buttonž). 

One concern raised was how inclusive tools like GenLine would 
be for multilingual users: łMy frst language is not English. I actually 
prefer to use the HTML language instead of typing the English 
because I’m worried about, ‘What if I make a grammar mistakeÐ 
will it still generate the code for me?’ž (P4-E). Communicating the 
ability of the model to deal with grammar mistakes, as well as 
ensuring code synthesis tools work with diverse language input, 
will be useful as these tools continue to evolve. 

4.2.2 How Much Code Was Requested. We observed a wide range 
of strategies with respect to the level of abstraction of the code-
generation request, as well as the amount of code efectively being 
requested. Some participants attempted to get as close as possible to 
their overall goal, all within their initial request, as in this example: 
łcreate a rectangle with the word "hello" in the middle and a blue 
button underneath the rectangle with the text "fip" on it. when I 
press the "fip" button, show the text "hola" in the middle instead 
of "hello"ž (P1-N). Another participant similarly requested a lot 
of code to be generated in their frst request, though with less 
detail: łCreate fashcard webappž (P3-N). These strategies could be 
considered łtop-downž strategies, where participants attempt to 
create large units of code all at once. 

However, the majority of participants had more reserved initial 
requests, with many requests being roughly equivalent to a line 
of code, as in these examples: łcreate an input feld with label 
frontž (P13-N) and łmake a div with width 100% and height 100%ž 
(P10-E). These requests can be considered more akin to łbottom-

up" strategies, where the strategy is to create small units that are 
then assembled together. P12, an expert, described their strategy as 
follows: łI approached it like I was ... actually coding line by line... 
So I would just say ... okay, make this line for me, and then from 
there, I’ll move on. But I think it would be nice to ... not have to 
take that step-by-step approachÐto really ... take full advantage of 
the generated codež (P12-E). 

While the granularity and specifcity of requests varied, partic-
ipants were excited when high-level requests were successfully 
interpreted by the model: łAnother thing was just getting an image 
from the internet. All I had to say was ‘insert the Google logo’ here 
and it did the rest of fnding the image and putting the URL into 
HTMLž (P7-E). 

4.2.3 Strategies Observed in Each Task. In Task 1 (create the search 
page), participants only used natural language or natural language 
and keywords (from the programming language) for their requests. 
If participants were unable to generate the logo within their frst 
few requests, they tried to create the word in the logo letter-by-
letter. Once they were able to create the logo, either through an 
image or letter-by-letter, requests focused on creating a search bar, 
before moving onto formatting. 

Task 2 presented more challenges given the need to specify 
interactivity using JavaScript. No novice was able to complete Task 
2. Both intermediate and expert participants were able to fully 
complete Task 2, but expressed that it felt tedious to try to formulate 
requests in natural language: łSometimes it took me a little bit 
longer to fnd the words to describe what I wanted it to do as 
opposed to me just doing it myselfž (P12-E). For participants who 
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were able to complete Task 2, the majority of their time was spent 
editing output from GenLine or leveraging their prior knowledge 
to write code. 

As with Task 1, the majority of requests for Task 2 were natural 
language only, but intermediate and expert participants began to 
include code in their requests. This strategy was often leveraged 
to add more specifcity to styling requests as in this request to add 
a top margin to an existing element: łAdd 50px top margin <div 
style=’width: 300px; height 250px; background-color: white; border: 
1px solid black;’></div>ž. Participants also used a mixture of natural 
language and code to specify JavaScript functionality: łbind the text 
in the 
<input type=’text’> to <div id=’front-word’></div>ž. However, we 
did not observe participants accepting model output at a higher 
rate using this strategy compared to requests consisting only of 
natural language. 

Request complexity increased slightly for Task 2 with more ex-
perienced participants attempting to execute multiple discrete ac-
tions with their requests, as in this example: łgive the value of 
front-input as a text content of card on page loadž or this exam-

ple: łwhen <button id=’fipButton’ style=’background-color:blue; 
color:white;height:30px;margin-top :15px>Flip</button> is clicked, 
hide <div id=’frontWord’></div> if it’s visiblež. 

4.2.4 Coping with Model Failures / Repair Strategies. In our study, 
participants accepted generated results outright or with modifca-

tions less than 50% of the time. When participants did not receive 
the desired results, they employed the set of strategies listed in 
Table 2 to produce the desired results. 

The most frequently employed strategy was rewording a request, 
which consisted of changing, adding, or dropping a word used in the 
initial request (e.g., going from łcreate a div and center all elementsž 
to ładd a div and center all elementsž), or reordering the words 
from the request. 

Participants also attempted to expand the scope of the request in 
an attempt to improve the output (e.g., going from łAdd a buttonž to 
łAdd a button and textboxž). This strategy of adding more informa-

tion to the request was often observed as one of the fnal strategies 
employed to obtain the desired model output. (Participants also 
were observed adding information to an initial request that was 
successful. However this strategy is not intended to fx a request, 
but rather, to iteratively construct a larger request, bit by bit.) 

Participants sometimes reduced the scope of requests, but re-
quests were generally of a relatively small scope to begin with (75% 
of requests were coded to be of low complexity). However, novice 
users often asked for a signifcant amount of code in their frst 
request, before scoping down the request. 

Participants also changed parts of the input to target an outcome 
they felt would be easier for the model, such as common tutorial 
content (e.g., using łhello worldž as a placeholder for a more specifc 
phrase). This strategy can be thought of as an attempt to łreverse 
engineerž what a model was trained on, and craft a request to better 
match what they consider to be in the training data. 

Interestingly, participants would also simply try re-running the 
same input, making no other changes. This is similar to łrolling 
the dice,ž since the same language model can sometimes produce 
diferent output on diferent model runs. 

Finally, participants would sometimes re-run the original request 
using a diferent model temperature, in an attempt to get more 
variety in the responses (higher temperature), or less variety in the 
responses (lower temperature). 

Overall, we did not observe one strategy clearly leading to a 
higher likelihood of participants accepting the generated code. 

4.2.5 Developing Mental Models of the AI and Its Syntax. As partic-
ipants interacted with the model, they seemed to grapple with form-

ing a mental model of what the model can łunderstandž: łMostly it 
just seemed like it didn’t actually pick up on what I was trying to 
communicate to it or what I wanted it to do. So, there was a lot of 
trial and error, or I’ll accept something that’s close and then just 
tweak the result afterwardsž (P9-I). 

Participants also cited challenges in learning the łsyntaxž of the 
AI assistant, despite its input consisting of natural language: łIt 
didn’t feel like natural language, it was more of likeÐwhat’s the 
right magic phrasing to get the model to do what I want it to dož (P6-
E). P8 echoed this sentiment: łI feel it’s kind of like learning a new 
language, except maybe it’s an easier one to learn than JavaScript, 
but it still I think requires learningž (P8-I). 

P10 provides a specifc example of the challenges of precisely 
expressing intent through natural language alone: łEquals is a 
great example: I want a value to ‘equal’ another value, I want to 
replace the value of variable 1 with variable 2. That can also be 
interpreted by this model as ‘does value 1 equal value 2 as a Boolean 
[...] operator. Trying to do that and realizing after the fact that ‘Oh, 
it interpreted this as equal and not this as take on this value’ makes 
you kind of feel like a) we’re not speaking the same language here, 
b) if I don’t know how to interpret something in a way you’re [the 
model] going to understand it, I can’t reliably count on any sort of 
improvement to my workfowž (P10-E). 

In the fnal interviews for the study, participants cited the lack 
of feedback from the system as a primary reason for feeling that 
coding with natural language was unintuitive and unreliable (Figure 
5): łIn the natural language case, I’m always worried if the machine 
is going to understand my language or notž (P8-I). This led to a 
mixture of feelings toward the AI’s capabilities, or as P5 put it, a 
łcombination of fun and frustratingž (P5-N). 

4.2.6 Envisioned Use Cases. Participants saw potential utility in 
the tool for 1) API lookups, 2) minimizing the tedium of boilerplate 
code, 3) as a means for two or more teams to collaborate, and 4) 
as an educational tool. We expand on these envisioned use cases 
below. 

Supporting the equivalent of API look-ups resonated with some 
participants: łIt made things pretty easy, especially for adding event 
listeners and adding listeners that did what I wanted it to do. That 
worked really well and it was easy to implement. I didn’t have to 
go and Google ‘how to do the specifc action’ that I wanted when 
that event happensž (P7-E). 

Others saw the capabilities useful for reducing otherwise tedious 
work: łSaying ‘make sure tests from this package are run, whenever 
this other fle is touched,’ that’s a thing saying out loud is a very 
clear sentence, but to do that in code is very tediousž (P2-I). 

In the context of working with others, one participant indicated 
that it could be useful as a łuniversal translatorž when two teams 
are collaborating: łOne team is using JavaScript and one team is 
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Table 2: Repair Strategies 

Repair

Reword (add, drop, change, or re-
order words) 

make width 250px <input 
type=’text’> → 
change to width 250px <input 
type=’text’> 

131 all 

Expand scope of request write Google in bold blue → write 
Google in bold blue with a search 
box under 

50 P1-N, P5-N, P3-N, P13-N, P8-
I, P9-I, P14-I, P6-E, P10-E 
P12-E 

Retries (reruns request) change the size of the google logo 
to 80% smaller → 
change the size of the google logo 
to 80% smaller → 
change the size of the google logo 
to 200px (moves on to diferent 
strategy) 

31 P5-N, P3-N, P13-N, P8-I, P9-
I, P14-E, P6-E, P7-E, P10-E 

Reduce scope of request add search box to page with search 
button and a button that says ’i’m 
feeling lucky → add search box to 
page with search button 

29 P5-N, P3-N, P13-N, P8-I, P9-
I, P4-E, P6-E, P7-E 

Adjust temperature add a text input and a submit button 
→ 
does not get desired result, in-
creases temperature to 0.5 and re-
runs request 

15 P5-N, P13-N, P7-E 

Recalibrate specifc targets with blue Arial 25px text G → 13 P5-N, P8-I, P9-I, P14-I 
łeasierž targets blue Arial 25px text hello world 

     Strategy Example Count Participants

using React. How could you make sure the teams can collaborate 
together, because both of them are defnitely using natural languagež 
(P4-E). 

Finally, some suggested that these capabilities could be a useful 
tool to educate people on how to program: łI can see it being of 
great use to people who are not that profcient in coding to be ... a 
good sort of introduction, or to really ... lower the barrier to entry 
for codingž (P12-E). 

In addition to these use cases, participants also considered who 
would beneft the most from the ability to code with natural lan-
guage: łI think the best use case, it’s me, which is like, I know code, 
but I haven’t used code in a really long time. I know the mechanics. 
I know how it works, but I don’t remember a lot of the syntax and 
... then that’s great...For ... a complete beginner, it would be a night-
mare. They wouldn’t be able to do it. And I think if you do that with 
someone that codes every day, they might be like, yeah, I’m going 
to be faster just doing it myselfž (P13-I). Thus, an ideal use case for 
natural language coding might be for people who are somewhat 
familiar with coding, but are unfamiliar with the depths of a specifc 
language, rusty on syntax, or rarely use a specifc library or API. 

In spite of the current challenges of learning to code through 
natural language, participants were optimistic about the possibil-
ities of using natural language to reduce barriers to interacting 
with technology (see Figure 5). łLet’s not waste time with these 

specifc kinds of tools that are asking you to think in a certain way 
because they think it’s the right way (and it might be), but I think 
just speaking about what you want is much betterž (P3-N). 

4.3 Limitations 

Participants were instructed they could use GenLine as much or as 
little as they needed to complete the tasks, but the novelty of the 
tool and participation in the study may have led participants to use 
GenLine more than they might in regular practice. Five participants 
encountered a bug in the prototype where they were unable to view 
the preview window/code output for a portion of their usage, and 
some experienced a few instances of a bug where code was cut 
of when it was inserted into the editor window. However, we do 
not believe these bugs afect our overall results. Finally, given the 
early stage of this tool, we were not able to integrate GenLine in 
participants’ daily work, and thus needed to test in an experimental 
context. 

5 DISCUSSION 

In theory, LLMs’ ability to translate natural language to code would 
seem to provide a welcome capability to assist with software devel-
opment, by enabling users to express goals more intuitively through 
natural language. However, the unexpected model responses led to 
study participants feeling like they needed to learn the łsyntaxž of 
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Figure 5: Graph of participant ratings on 1) whether writ-

ing code with natural language is reliable, 2) whether writ-

ing code with natural language is intuitive, 3) whether par-
ticipants wanted to write code using natural language, and 
whether participants believe writing code using natural lan-
guage is useful (where 1 is Strongly Disagree, 3 is Neutral, 
and 5 (or 7) is Strongly Agree). 

the modelÐthe specifc words to say and the specifc phrasings to 
produce the desired output. Similarly, given the expansive scope of 
natural language, participants did not know how much code they 
could reasonably ask for, with requests ranging from the production 
of an entire app (łmake a fashcard appž) to a single line of code. 
Thus, while these models accept any text as input (conceptually 
ofering an łunboundedž syntax), in reality, there is a latent “syntax” 
and latent problem space in which the model can reliably perform, 
and users needed to discover both. 

While participants encountered challenges in achieving their 
desired results with the model, the inherent versatility and fexibility 
of LLMs suggests that the model itself may be able to help end-users 
cope with some of the challenges they experienced. For example, 
users sometimes modifed a request by simplifying it (e.g., removing 
specifc objectives), a fallback strategy that an LLM may be able 
to perform itself. More generally, the ability to rapidly customize 
this new generation of models using prompt programming opens 
up the possibility for end-users to create highly targeted prompts 
to support specifc tasks, including prompts that help the user 
recover when the model does not produce the desired output. Our 
work thus brings to light the dual challenges and opportunities of 
large language models: Although the unbounded syntax of natural 
language can be difcult for users to grapple with, there is also the 

possibility of leveraging the inherent fexibility of LLMs to address 
some of these challenges. 

In this section, we consider the key user challenges arising from 
the expansive nature of natural language programming, and suggest 
implications for future work. For several of these design implica-

tions, we also describe potential LLM-based remedies to aid future 
researchers and designers (example prompts can be viewed in the 
Appendix). We conclude this section by considering how our results 
may generalize beyond the specifc tool we built and tested. 

5.1 Providing Suggestions for an Unbounded 
Syntax 

As we observed, participants often had difculty determining what 
they could ask of the model. To address this issue, it could be useful 
for systems to provide suggestions of the types of natural language 
that could be used in a particular context. For example, the prompts 
we seeded the system with (e.g., to generate HTML, or to gener-
ate JavaScript) provide a sense of what types of tasks the model 
is likely to be able to handle. However, future systems could go 
beyond this one strategy. For example, as part of its documentation 
or onboarding materials [17], a system could provide a variety of 
example requests that are likely to work well, for each prompt 
presented (e.g., for the łGenerate HTMLž prompt, the system could 
surface examples such as łmake a blue buttonž or łmake a text feld 
that alerts ‘hello’ when clickedž). These examples could help give 
users a sense of the level of abstraction and granularity they should 
target in their requests. A system could also surface suggestions 
of common successful requests relevant to the existing code on 
the page. For example, given the code for an HTML element (e.g., 
ł<button>OK</button>ž), the system could present: łTo change the 
color of the button, try: ‘Make this blue <button>OK</button>’ž. 
These types of suggestions may additionally aid novices who are 
new to the problem domain, and thus may not know how to solve 
a problem or how to express their goal in a way likely to produce 
a useful result (i.e., addressing the vocabulary problem [23]). Con-
versely, in onboarding materials, it may be helpful to show diferent 
categories of requests that users may expect to work well, but that 
surprisingly don’t, to help calibrate expectations. 

To test this idea of ofering suggestions, we created a łSuggestionž 
prompt that suggests sub-tasks for the user’s request (see Appendix 
B.1). As can be seen from the examples provided in the Appendix, its 
suggestions could prove to be helpful for people who are unfamiliar 
with the problem space. 

5.2 Automated Input Variation and “Fallback 
Prompts” 

When the model did not produce expected results, participants often 
rephrased the request, added information, reduced information, 
and/or changed the temperature. Notably, many of these strategies 
can be automated. 

For example, the system could invoke a set of fallback prompts 
that transform requests into simpler requests. For example, a prompt 
may transform the user’s input into smaller sub-tasks, as in the 
Suggestion prompt above (see Appendix B.1). 

A prompt could also transform the user’s input into a simpler re-
quest with less information, mimicking the strategy of participants 
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who would sometimes take out information from their request. A 
prompt that demonstrates this concept, along with example out-
put from the model, is shown in Appendix B.2. The sample results 
produced suggest that this technique could be useful in producing 
some basic code that can then be built upon. 

Finally, another potential fallback strategy would be to rephrase 
the user’s input or to produce multiple interpretations of the input. 
The prompt in Appendix B.3 demonstrates these concepts and 
shows sample output from the model. 

While the fallback prompts developed here show promise, a 
larger research need is to determine which strategies, including 
user strategies and the fallback prompts described here, reliably lead 
to improved results. In our study, we did not observe one strategy 
appearing to be more efective than another (and we did not ofer 
fallback prompts to participants during the study). Future research 
would beneft from empirical data establishing which strategies 
and fallback prompts can efectively improve model results for end-
users. These data can then be used to determine which strategies to 
automate on behalf of the user. For example, if a fallback prompt that 
simplifes the request is shown to reliably produce useful output, it 
could automatically be run, with its results included in the set of 
results returned to the user. 

In addition to this empirical data, we also expect that users will 
naturally invoke all of the strategies we observed in our study. 
Efectively communicating which strategies are likely to lead to 
better results, and which aren’t, can help users optimize their time 
and avoid pursuing approaches that are not likely to work. 

5.3 Improving Request Quality Through 
Conversation 

As we found in the study, user requests can range from extremely 
large, under-specifed requests (e.g., łcreate a fashcard appž) to 
highly targeted, tightly scoped requests (e.g., łmake a div with 
width 100% and height 100%ž). For large, ambiguous requests, it can 
be challenging to debug the model when it doesn’t produce useful 
output. 

In these circumstances, a more structured, conversational in-
teraction with the model may be useful. For example, given the 
request łcreate a fashcard app,ž the system could initially respond, 
łDescribe what is in the fashcard app.ž After describing the inter-
face, the model could ask, łDescribe the behavior of each part of the 
interface.ž Since participants naturally tried to interact with the tool 
in a conversational style, this type of interaction in which the model 
helps the user derive specifcations may dovetail nicely with exist-
ing user expectations. Deriving specifcations in this manner may 
also help novices break down a problem into more reasonably-sized 
chunks. 

The Suggestion and Simplify prompts (Appendix B.1, B.2) explore 
these ideas. The example outputs from these prompts suggest that 
the model could be used to help the user re-scope requests into 
smaller sub-tasks. 

5.4 Debugging Tools and AI Onboarding 

Given the model’s variability in translating natural language re-
quests to code, it may reside in somewhat of an łuncanny valleyž for 
users since it can sometimes correctly translate natural language 

requests into code (much like a human counterpart could), and 
other times not. Mechanisms that help to illuminate the model’s 
understanding of its input may enable users to climb out of this 
uncanny valley and form a more accurate mental model of how to 
optimally interact with the model. 

To help build a more robust understanding of the model and 
its capabilities, model attribution or interpretability techniques 
like those found in the Language Interpretability Tool [38] could 
be useful. For example, showing how each input infuenced each 
output could provide insight into the model’s behavior. Providing 
some transparency into model behavior may also help users better 
reason about the model and why it produces the output that it does. 

AI onboarding [17], which describes a model’s capabilities viz-a-
viz a typical person, could also be useful. In particular, describing 
scenarios where it is known to work well, and situations in which 
it may produce unexpected behavior, are likely to be welcome to 
end-users. 

5.5 Looking Beyond GenLine 

Research has shown that large generative language models can 
translate natural language requests into code (e.g., [4, 7, 11, 18]), 
continue code (e.g., Copilot [1]), produce code through a conver-
sation [11, 18], and (as this research shows) modify code through 
a mixture of natural language and existing code (e.g., łMake this 
button blue: <button>OK</button>ž). These examples highlight 
the fexibility of this new generation of models, and their ability 
to support a wide range of qualitatively diferent modes of interac-
tionÐautocomplete-like functionality, conversational styles of code 
construction, command-like tools (as with GenLine)Ðall by using 
the same underlying model, customized through prompt program-

ming. 
While it is tempting to ask which of these interaction styles is 

the łbest,ž each design has its own unique set of afordances. For 
example, the user interface aforded by GenLine allows users to 
invoke very targeted operations (such as changing the styling of an 
existing HTML element) more easily, by selecting the markup of 
the HTML element to apply the GenLine prompt to. Additionally, 
the ability to author new GenLine prompts enables users to extend 
the tool to support specifc use cases and needs. However, despite 
diferences across tool designs, what these tools all share in common 
is that they all ofer the potential to further bridge the Gulf of 
Execution [35] (e.g., by translating natural language requests to 
code) and to streamline existing practices (e.g., by performing the 
equivalent of looking up an API call and inserting it into code). 

This research has explicitly examined the user experience of 
working with a large generative language model to assist in produc-
ing front-end web code (HTML, JS, CSS). While some of our study 
results clearly are 1) a function of GenLine’s design (e.g., partici-
pants expected that the tool would take into account surrounding 
code or recent requests) or 2) a function of the capabilities of cur-
rent models (e.g., the variability in code correctness, as also seen 
in empirical studies [11, 18]), other fndings and their implications 
generalize across tool designs, and are thus more broadly applicable 
to the larger HCI research community. For example, the challenges 
in łdebuggingž interactions with the model, or the uncertainty par-
ticipants faced in how to best phrase requests, will almost certainly 
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apply to any tool that makes use of these new models. Furthermore, 
these issues will likely remain relevant, even as these models con-
tinue to improve in their ability to synthesize code (e.g., there will 
always likely be model failures that users wish to debug). Devel-
oping tools that help people leverage these new models’ unique 
capabilities (e.g., the ability to rapidly customize them through 
prompt programming), while ofering reliable means to cope with 
common challenges, thus represents a rich problem space requiring 
active HCI research. Our study results, design implications, and 
examples showing how LLMs may be able to help address these 
issues, collectively provide a foundation for this future research. 

6 CONCLUSION 

This paper introduces GenLine, a tool for accessing and applying 
large generative language model prompts within a code editor. Our 
user study examines how people interact with a natural language 
code synthesis tool backed by a 137 billion parameter LLM, and 
highlights challenges and opportunities this kind of tool introduces. 
In particular, participants felt they needed to learn the łsyntaxž 
of the model (despite its input being natural language), as well as 
which specifc tasks could be reliably performed (and how). 

When model output was not what was desired, participants em-

ployed a range of strategies to coax the model to produce the desired 
output. These strategies included reducing the scope of the request, 
increasing the scope of the request, rewording or rephrasing the 
request, and even introducing keywords such as łtestž or łhello 
worldž. 

The challenges participants encountered suggest a number of 
implications for design, as well as future research. In particular, 
an important, open research need is to develop (and demonstrate) 
reliable łerror recoveryž techniques for natural language code syn-
thesis. We propose a number of possibilities that make use of the 
LLM itself, such as the use of łfallback prompts.ž The black box 
nature of the model also suggests that interpretability tools may be 
useful in helping users understand and debug the model. 

ACKNOWLEDGMENTS 

We thank all our participants for their thoughtful feedback and Dr. 
Julie Anne Séguin for data analysis support. 

REFERENCES 
[1] [n.d.]. GitHub Copilot. https://copilot.github.com/. Accessed: 2021-09-02. 
[2] [n.d.]. GPT-3 Creative Fiction. https://www.gwern.net/GPT-3. Accessed: 2021-

03-30. 
[3] [n.d.]. OpenAI API: Code Completion. https://beta.openai.com/?app= 

productivity&example=4_4_0. Accessed: 2021-03-30. 
[4] [n.d.]. OpenAI API: Natural Language Shell. https://beta.openai.com/?app= 

productivity&example=4_2_0. Accessed: 2021-03-30. 
[5] [n.d.]. OpenAI Prompt Library. https://openai.com/blog/gpt-3-apps/. Accessed: 

2021-03-30. 
[6] [n.d.]. Tweet: ’First work with #GPT3 , I asked it to draw an image. I gave it 

seed SVG code and asked it to generate an SVG code by itself. Turns out it drew 
something resembling a Floppy Disk.’. https://twitter.com/fabinrasheed/status/ 
1284052438392004608. Accessed: 2021-03-30. 

[7] [n.d.]. Tweet: ’I only had to write 2 samples to give GPT-3 context for what 
I wanted it to do. It then properly formatted all of the other samples. There 
were a few exceptions, like the JSX code for tables being larger than the 512 
token limit.’. https://twitter.com/sharifshameem/status/1282692481608331265. 
Accessed: 2021-04-07. 

[8] [n.d.]. Tweet: ’Meet Marz. Like @ProjectJupyter, but closer to Earth. No-code 
data notebook to go from ’natural language’ question to SQL to insight, powered 
by @OpenAI’s GPT3. Built with @barrnanas @idavidgoldberg @imfanjin as 

part of @beondeck’s Build Weekend!’. https://twitter.com/albertgozzi/status/ 
1320526310729539584. Accessed: 2021-03-30. 

[9] Daniel Adiwardana, Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel, 
Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng 
Lu, and Quoc V. Le. 2020. Towards a Human-like Open-Domain Chatbot. 
arXiv:2001.09977 [cs.CL] Accessed: 2021-08-12. 

[10] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018. 
A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv. 
51, 4, Article 81 (July 2018), 37 pages. https://doi.org/10.1145/3212695 

[11] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk 
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, 
and Charles Sutton. 2021. Program Synthesis with Large Language Models. 
arXiv:2108.07732 [cs.PL] 

[12] M. Beth Kery and B. A. Myers. 2017. Exploring exploratory programming. In 2017 
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 
25ś29. https://doi.org/10.1109/VLHCC.2017.8103446 

[13] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, 
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma 
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, 
Niladri Chatterji, Annie S. Chen, Kathleen Creel, Jared Quincy Davis, Dorottya 
Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, 
John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren 
Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori 
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, 
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth 
Karamcheti, Geof Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. 
Krass, Ranjay Krishna, Rohith Kuditipudi, and et al. 2021. On the Opportunities 
and Risks of Foundation Models. CoRR abs/2108.07258 (2021). arXiv:2108.07258 
https://arxiv.org/abs/2108.07258 

[14] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010. 
Example-Centric Programming: Integrating Web Search into the Development Envi-
ronment. Association for Computing Machinery, New York, NY, USA, 513ś522. 
https://doi.org/10.1145/1753326.1753402 

[15] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, 
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon 
Child, Aditya Ramesh, Daniel Ziegler, Jefrey Wu, Clemens Winter, Chris Hesse, 
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, 
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario 
Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural In-
formation Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, 
and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877ś1901. https://proceedings. 
neurips.cc/paper/2020/fle/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf 

[16] Daniel Buschek, Lukas Mecke, Florian Lehmann, and Hai Dang. 2021. Nine 
Potential Pitfalls when Designing Human-AI Co-Creative Systems. arXiv preprint 
arXiv:2104.00358 (2021). 

[17] Carrie J. Cai, Samantha Winter, David Steiner, Lauren Wilcox, and Michael Terry. 
2019. "Hello AI": Uncovering the Onboarding Needs of Medical Practitioners for 
Human-AI Collaborative Decision-Making. Proc. ACM Hum.-Comput. Interact. 3, 
CSCW, Article 104 (Nov. 2019), 24 pages. https://doi.org/10.1145/3359206 

[18] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de 
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, 
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail 
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, 
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex 
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh 
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles 
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, 
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large 
Language Models Trained on Code. arXiv:2107.03374 [cs.LG] 

[19] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-
Modal Synthesis of Regular Expressions. In Proceedings of the 41st ACM SIGPLAN 
Conference on Programming Language Design and Implementation (London, UK) 
(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 487ś502. 
https://doi.org/10.1145/3385412.3385988 

[20] Eli Collins and Zoubin Ghahramani. 2021. LaMDA: our breakthrough conversa-
tion technology. https://blog.google/technology/ai/lamda/ Accessed: 2021-07-14. 

[21] Prem Devanbu, Matthew Dwyer, Sebastian Elbaum, Michael Lowry, Kevin Moran, 
Denys Poshyvanyk, Baishakhi Ray, Rishabh Singh, and Xiangyu Zhang. 2020. 
Deep Learning & Software Engineering: State of Research and Future Directions. 
arXiv:2009.08525 [cs.SE] 

[22] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia 
Polikarpova. 2020. Small-Step Live Programming by Example. Association for 
Computing Machinery, New York, NY, USA, 614ś626. https://doi.org/10.1145/ 
3379337.3415869 



Discovering the Syntax and Strategies of Natural Language Programming with Generative Language Models CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

[23] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. 1987. The Vocabulary 
Problem in Human-System Communication. Commun. ACM 30, 11 (Nov. 1987), 
964ś971. https://doi.org/10.1145/32206.32212 

[24] Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory: 
Strategies for Qualitative Research. Aldine de Gruyter, New York, NY. 

[25] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-
Output Examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT 
Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL 
’11). Association for Computing Machinery, New York, NY, USA, 317ś330. https: 
//doi.org/10.1145/1926385.1926423 

[26] Sumit Gulwani and Mark Marron. 2014. NLyze: Interactive Programming by 
Natural Language for Spreadsheet Data Analysis and Manipulation. In Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of Data 
(Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery, 
New York, NY, USA, 803ś814. https://doi.org/10.1145/2588555.2612177 

[27] Marti A. Hearst. 2009. Search User Interfaces (1st ed.). Cambridge University 
Press, USA. 

[28] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis 
Hawthorne, Noam Shazeer, Andrew M. Dai, Matthew D. Hofman, Monica Din-
culescu, and Douglas Eck. 2019. Music Transformer. In International Conference 
on Learning Representations. https://openreview.net/forum?id=rJe4ShAcF7 

[29] Sandeep Kaur Kuttal, Bali Ong, Kate Kwasny, and Peter Robe. 2021. Trade-
Ofs for Substituting a Human with an Agent in a Pair Programming Context: 
The Good, the Bad, and the Ugly. In Proceedings of the 2021 CHI Conference on 
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association 
for Computing Machinery, New York, NY, USA, Article 243, 20 pages. https: 
//doi.org/10.1145/3411764.3445659 

[30] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M. Mitchell, and Brad A. Myers. 
2020. Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented 
Dialogs. In Proceedings of the 33rd Annual ACM Symposium on User Interface Soft-
ware and Technology (Virtual Event, USA) (UIST ’20). Association for Computing 
Machinery, New York, NY, USA, 1094ś1107. https://doi.org/10.1145/3379337. 
3415820 

[31] Xi Victoria Lin. 2017. Program Synthesis from Natural Language Using Recurrent 
Neural Networks. http://victorialin.net/pubs/tellina_tr_2017.pdf Accessed: 2021-
04-06. 

[32] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. 2018. 
NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the 
Linux Operating System. In Proceedings of the Eleventh International Conference on 
Language Resources and Evaluation (LREC 2018). European Language Resources 
Association (ELRA), Miyazaki, Japan. https://www.aclweb.org/anthology/L18-

1491 
[33] Ryan Louie, Andy Coenen, Cheng Zhi Huang, Michael Terry, and Carrie J. Cai. 

2020. Novice-AI Music Co-Creation via AI-Steering Tools for Deep Generative 
Models. In Proceedings of the 2020 CHI Conference on Human Factors in Computing 
Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, 
New York, NY, USA, 1ś13. https://doi.org/10.1145/3313831.3376739 

[34] A. Narechania, A. Srinivasan, and J. Stasko. 2021. NL4DV: A Toolkit for Gen-
erating Analytic Specifcations for Data Visualization from Natural Language 
Queries. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2021), 
369ś379. https://doi.org/10.1109/TVCG.2020.3030378 

[35] Donald A. Norman. 2002. The Design of Everyday Things. Basic Books, Inc., USA. 
[36] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a The-

ory of Natural Language Interfaces to Databases. In Proceedings of the 8th 
International Conference on Intelligent User Interfaces (Miami, Florida, USA) 
(IUI ’03). Association for Computing Machinery, New York, NY, USA, 149ś157. 
https://doi.org/10.1145/604045.604070 

[37] Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Dan Morris, Arjun Rad-
hakrishna, Gustavo Soares, and Ashish Tiwari. 2021. Multi-modal Program Infer-
ence: a Marriage of Pre-trained Language Models and Component-based Synthe-
sis. In OOPSLA. https://www.microsoft.com/en-us/research/publication/multi-
modal-program-inference-a-marriage-of-pre-trained-language-models-and-
component-based-synthesis/ 

[38] Ian Tenney, James Wexler, Jasmijn Bastings, Tolga Bolukbasi, Andy Coenen, Se-
bastian Gehrmann, Ellen Jiang, Mahima Pushkarna, Carey Radebaugh, Emily Reif, 
and Ann Yuan. 2020. The Language Interpretability Tool: Extensible, Interactive 
Visualizations and Analysis for NLP Models. arXiv:2008.05122 [cs.CL] 

[39] Gust Verbruggen, Vu Le, and Sumit Gulwani. 2021. Semantic program-
ming by example with pre-trained models. In OOPSLA. ACM. https: 
//www.microsoft.com/en-us/research/publication/semantic-programming-by-
example-with-pre-trained-models/ 

[40] Justin D. Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I. Ross, 
Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. 2021. Perfection 
Not Required? Human-AI Partnerships in Code Translation. 26th International 
Conference on Intelligent User Interfaces (Apr 2021). https://doi.org/10.1145/ 
3397481.3450656 

[41] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2021. In-IDE Code Genera-
tion from Natural Language: Promise and Challenges. arXiv:2101.11149 [cs.SE] 

[42] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 
2020. Interactive Program Synthesis by Augmented Examples. Association for 
Computing Machinery, New York, NY, USA, 627ś648. https://doi.org/10.1145/ 
3379337.3415900 



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and M. Terry 

A PROMPT PROGRAM CODE LISTINGS 

Note: The following examples are formatted to be easier to read; when input to the model, newlines are removed. Also note that prompts 
include a ł[code]ž string. While the model was not explicitly trained to perform translation from natural language to code, the training data 
did prepend a ł[code]ž string to training data from a source that included source code. 

A.1 Prompt: Generate HTML code (general) 

Description: Generates HTML code given a natural language description. Note: This prompt derives from a demo posted on Twitter [7]. 
Prompt template: 

[code] description: make a red button that says stop 
html: <button style = 'color: white; background-color: red'>Stop</button> 

description: a blue box that contains 3 yellow circles with red borders 
html: <div style = 'background-color: blue; width: 150px; height: 150px;'> 

<div style = 'background-color: yellow; border-radius: 50\%; border: 5px solid red; 
width: 30px; height: 30px;'></div> 

description: create two buttons that are centered in a div 
html: <div style='text-align:center;'> <button>1</button> <button>2</button> </div> 

description: give code for an html button with a margin 
html: <button style='margin:10px;'></button> 

description: make a pink button that says type and a textarea 
html: <button style='background-color: pink;'>Type</button> <textarea></textarea> 

description: <<user input>> 
html: 

A.2 Prompt: Generate JavaScript code (general) 

Description: Generates JavaScript code (general). Note the lack of space between the keys (łdescriptionž and łjavascriptž). This was a typo, 
was not an issue for the model. 

Prompt template: 

[code] descriptionadd the variable el to the div with id 'hi' 
javascriptdocument.getElementById('hi').appendChild(el); 
descriptionmake a button with text 'hi' 
javascriptvar button = document.createElement('button'); button.innerHTML = 'hi'; 

description <<user input>> 
javascript 

A.3 Prompt: HTML (zero shot) 

Description: Generates HTML and JavaScript from a zero-shot prompt. 
Prompt template: 

description of web code: <<user input>> generated html and inline javascript: [code] <!DOCTYPE html> 

A.4 Prompt: Refactor code 

Description: Refactors inline CSS styles. 
Prompt template: 

description: <div style='background-color: green; width: 100px; height: 100px;'></div> 
refactored: 

html: <div class='green-square'></div> 
css: .green-square { background-color: green; width: 100px; height: 100px; } 

description: <<user input>> 
refactored: 
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html: 

A.5 Prompt: Fix Code 

Description: Fixes small errors in existing code. 
Prompt template: 

[code] original: <button>hi 
fixed: <button>hi</button> 

original: <div style = 'background-color: green; width: 150px; height: 150; 
fixed: <div style='background-color: green; width: 150px; height: 150px;'></div> 

original: <ol> <li>Coffee</li> <li>Tea</li> <li>Milk</li 
fixed: <ol><li>Coffee</li><li>Tea</li><li>Milk</li></ol> 

original: <<user input>> 
fixed: 

A.6 Prompt: Generate HTML and JavaScript 

Description: Generates HTML and JavaScript code together. Note the typo (łwith andž) was not an issue for the model. 
Prompt template: 

[code] input: make a button in html with and add a clickhandler in javascript to alert hello world 
output: html: <button id='hi'>hello</button> 
javascript: document.getElementById('hi').onclick = (e) => {alert('hello world');} 

input: <<user input>> 
output: 

Prompt template: 

Here's a stack overflow response on how to <<task you want>>: <<copy and paste stack overflow response>> 

Use this previous example to <<task you want>> in <<your existing code>>, and return the <<type of code>> code: 

B FALLBACK PROMPTS 

This section presents a set of fallback prompts intended to address commonly occurring issues when synthesizing code using a large 
generative language model. These prompts’ strategies include suggesting sub-tasks to consider solving instead of the original request, 
breaking down the task into simpler tasks, and helping the user clarify vague input. We provide example model output for the prompts using 
inputs collected from the user study. The sample outputs provide an indication of the potential value of these fallback prompts, but research 
in this space would beneft from further study on the overall efectiveness of these strategies. (Note that these fallback prompts were not 
available to participants during the studyÐthese prompts were developed after the study to explore how the model could be used to improve 
outcomes.) 

B.1 Prompt: Suggest sub-tasks 

Description: Attempts to suggest sub-tasks for a main task. 
Prompt template: 

Task: making todo app 
Suggestion: 1) an input for todo items 
2) todo items using an unordered list 
3) checkboxes for the items 
Task: build a mortgage calculator 
Suggestion: 1) an input for the interest rate, years and amout 
2) a div to display the monthly payment 
3) write mortgage calculator function with tests 
Task: <<user input>> 
Suggestion: 

Example 1 For the input, ‘a fashcard app’, this prompt generated the following suggestions: 
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1) an input for the question and answer 
2) a div to display the question 
3) a div to display the answer 
4) a button to flip the card 
5) a button to shuffle the cards 
6) a button to show the answers 

Example 2 For the input, ‘a search page’, this prompt generated the following suggestions: 

1) an input for the search term 
2) a div to display the search results 
3) write a search function with tests 

These model-generated suggestions could serve as a jumping of point for new users. 

B.2 Prompt: Simplify request 

Description: Attempts to transform a user’s input into a simpler task. 
Prompt template: 

Instruction: create a div with a search bar centered 
Broken down instructions: create a div with a search bar 
create a div 
Instruction: create a search box and a google logo above it 
Broken down instructions: create a search box 
create a google logo 
Instruction: create a search box and make it blue 
Broken down instructions: create a search box 
make the search box blue 
Instruction: large field with id 'dunno' and a black border, with vertically centered text 

'what the card says' 
Broken down instructions: create a large field with id 'dunno' 
add a black border to field with id 'dunno' 
create vertically centered text that says 'what the card says' 
Instruction: <<user instruction>> 
Broken down instructions: 

Example 1: The user input łcreate a fashcard appž yields the following outputs from this prompt: 

create a div with text 'flashcard' 
create a div with a button that says 'create flashcard' 
create a div with a button that says 'delete flashcard' 
create a div with a button that says 'display flashcard' 

If these individual lines are passed onto an HTML prompt, they yield the following code: 

• <div>fashcard</div> 
• <div><button>Create Flashcard</button></div> 
• <div><button>Delete Flashcard</button></div> 
• <div><button>Display Flashcard</button></div> 

Example 2: The user input łgenerate a text input with a blue border and center align itž yields: 

create a text input 
add a blue border to text input 
center align text input 

Passing these outputs into an HTML prompt yields: 

• <input type=’text’> 
• <input style=’border: 2px solid blue;’> 
• <div style=’text-align:center;’> <input type=’text’></div> 

Example 3: The user input łcreate a rectangular text input centered under the google logo with a blue border 1px widež yields: 

create a rectangular text input 
center the text input under the google logo 
add a blue border to the text input 

These outputs passed to an HTML prompt yield: 
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• <input type="text" style=’border: 3px solid blue; border-radius: 10px;’> 
• <div style=’text-align:center;’><input type=’text’> </div> 
• <input type=’text’ style=’border: 3px solid blue;’> 

B.3 Prompt: Clarify Input 

Description: Attempts to clarify ambiguous user input by inserting a placeholder or providing multiple options that clarify points of 
ambiguity. 

Prompt template: 

Instruction: create a div with a search bar centered 
Broken down instructions: create a div with a search bar centered within the div with id [outer div's id] 
Instruction: create a search box and a google logo above it 
Broken down instructions: create a search box and a google logo in rainbow text above it 
create a search box and a google logo with an image tag above it 
Instruction: <<user input>> 
Broken down instructions: 

Example 1 
For the input łShow containers one at a timež, this prompt produced the following output: 

When clicking on the [container's id] div, hide all other divs except for this div 

Example 2 For the input łtext box centered blue outlinež, this prompt modifed the request to be: 

create a text box with a blue outline and centered within the div with id [outer div's id] 

Example 3 For the input, łmake this centered at the page <input type=’text’ id=’input’ style=’height: 200px; width 200px;’>ž, the prompt 
returned: 

create a search box with a height of 200px and a width of 200px and center it at the page 

C USER STUDY DETAILS 

C.1 Onboarding for Study 

To help study participants learn how to use the tool, we showed them a narrated video demonstrating GenLine in action, then asked them to 
use GenLine to render ‘Lorem ipsum dolor sit amet’ in purple, italic font. We also provided the following tutorial text for using the tool: 

To get started with GenLine: 

• Use [[double brackets]] to type your goal 
• Select your language 
• (Optional) Increase the temperature slider to get diferent results 
• Evaluate the results 
• View additional results as needed 
• Ctrl + h will ‘auto format selection’ 
• Use GenLine to generate code via natural language and evaluate the outcome. 
• We’re looking for people to challenge GenLine with diferent use cases to better understand where it can be most useful. 
• GenLine is not a fully functional code editor (e.g. Sublime) - it is currently in a prototype stage to learn more about the utility of natural 
language programming. 
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C.2 Tasks in User Study 

Figure 6: Task 1 in User Study 

Figure 7: Task 2 in User Study 
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C.3 User Study Examples (Novice) 

User Input Generated Output (using HTML prompt) 

create a fashcard app 

create an input text box named "front:" and another input text box 
named "back:" 

<div style=’text-align:center;’> <button></button> <button></button> 

<input type="text" name="front"> <input type="text" name="back"> 

create a text input box with "hello" inside and create another text input 
box that will show "hola" when I press enter for "hello" 

create a rectangle with the word "hello" in the middle and a blue button 
underneath the rectangle with the text "fip" on it. when I press the 
"fip" button, show the text "hola" in the middle instead of "hello" 

<input type=’text’ value=’hello’> <input type=’text’ onkey-

down=’if(event.keyCode == 13)this.value="hola";’> 

<div style=’width: 100px; height: 100px; background-color: red;’> <div 
style=’width: 50px; height: 50px 

create a white rectangle with the word "hello" in the middle no result 

create a white rectangle with the word "hello" in the middle no result 

create a white rectangle with the text "hello" in the middle <div style=’width: 100px; height: 100px; background-color: white;’>. 
<div style=’text-alight:center;’> 

create a rectangle with the text "hello" in the middle <div style=’width: 100px; height: 100px; background-color: 
black;color:white;font-size:30px;’>Hello</div> description 

when this button is clicked, make the rectangle say the text "hola" 
instead of "hello" 

<button onclick="document.getElementByID(’rect’) 
.innerHTML=’hola’">Click Me</button><button 
onclick="document.getElementById 

onclick=change the text "hello" to "hola" ‘<button onclick=’document.getElementById("hello") .inner-

HTML="hola"’></button>" 

C.4 User Study Examples (Expert) 

User Input Generated Output (using HTML prompt) 

html: generate a text input with the label ‘Front:’ and the value ‘Hello’ 

html: generate a text input with the label with the text ‘Front:’ and the 
value ‘Hello’ 

<input type=’text name=‘front’ value=‘Hello’> <label 
for=’front’>Front:</label> description 

<input type=’text’ name=‘front’ value=‘Hello’> <label style=‘color: 
white; background-color: pink’>Front:</label> 

html: generate at text input with the label that reads ‘Front:’ <input type=‘text’ name=‘front’> 

html: make a box [no result] 

html: draw a box that is 200px <div style=‘width: 200px; height: 200px; background-color: 
blue;’></div> 

html: center align content and add 60px padding to the top 

html: make a white box that is 200px and has a solid black border 

html: make a white box that is 200px and has a solid black border of 
1px 

html, body {width:100%; height: 100%; margin-top: 60px;} 

<div style=‘width: 200px; height: 200px; border: 5px solid black; 
background-color: white;’></div> 

<div style=‘width: 200px; height: 200px; border: 1px solid black; 
background-color: white;’></div> 

js: add a click handler to the button button.onclick = function() {alert(‘hi’); } 

js: create a varable with my button var myButton = document.createElement(‘button’); 

js: on a click event add the value from inputFront to the box var el = document.getElementById(‘hi’); 
el.appendChild(document.createTextNode( docu-

ment.getElementById(‘inputFront’).value)); 

js: set isEnglish to it’s opposite value var isEnglish = !isEnglish; 

js: create a function that toggles the text of the box function toggleText(divId, newText){var div = docu-

ment.getElementById(divId); div.innerHTML = newText;} 
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