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W. DANIEL HILLIS. The Connection Machine. Cambridge, 
MA: MIT Press, 1985. Pp. xi + 190. $22.50. 

Reviewed by TERRENCE J. SEJNOWSKI 

W. Daniel Hillis is President of Thinking Machines Corporation, a company that he 
co-founded. He obtained his Ph. D. in Computer Science at MIT in 1985. 

The reviewer, Terrence J. Sejnoski, received a Ph. D. in physics from Princeton University 
in 1978. He is currently an Associate Professor of Biophysics, Biology, and Electrical 
Engineering and Computer Science at the Johns Hopkins University. His primary research 
interest is how information is represented, transformed, and learned, by parallel networks of 
neurons. 

In 1981 the VLSI revolution was already in full swing when graduate student 
W. Daniel Hillis wrote MIT AI Memo No. 646 on the “Connection Machine 
(Computer Architecture for the New Wave).” The memo outlined a new type of 
parallel computer with millions of processing units that was “designed for 
symbol manipulation, not number crunching.” Other computer architects were 
linking together tens to hundreds of off-the-shelf microprocessors; Hillis suggested 
instead building a much liner-grain architecture based on many more custom-built 
processors, each with only a few thousand bits of memory and capable of perform- 
ing only simple logical operations. This design was inspired by parallel architectures 
for artificial intelligence, particularly Scott Fahlman’s NETL (1979), that could 
implement fast set intersection in semantic networks. 

The book under review is Hillis’ doctoral dissertation, published just four years 
after the AI Memo. It describes both the design and implementation of a 65,536 
processor Connection Machine TM, a computer that is now manufactured by Think- 
ing Machines Corporation, a company Hillis co-founded. Curiously, the original 
motivation for the Connection Machine-semantic networks in artificial intelligen- 
ce-remains unimplemented. The Connection Machine has found other uses as a 
general-purpose parallel processor suitable for a wide variety of problems, many 
unanticipated when the Connection Machine was conceived. In particular, the 
recent work on connectionist models in artificial intelligence (Feldman & Ballard, 
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1982) and the parallel distributed processing models in cognitive science 
(Rumelhart & McClelland, 1986) could greatly benefit from the enormous potential 
for computation provided by the extensible hardware design of the Connection 
Machine. 

In this review I will focus on the parts of the book that are most relevant to the 
goal expressed by Hillis in the introduction: “1.1 We Would Like to Make a 
Thinking Machine.” Even the technical parts of the book, however, are highly 
accessible to a general scientific audience and many of the general design features 
are explained in a clear, informal style, perhaps influenced by Disney World where 
the first draft of the book was written. In addition to hardware considerations, the 
book also has chapters on data structures and algorithms, such as sorting, that are 
appropriate for the architecture. 

PARALLEL COMPUTING 

Computation requires getting the right piece of information to the right place at 
the right time, and doing the right thing to it once it gets there. The key to the Con- 
nection Machine is how the information gets there. In a conventional digital com- 
puter, both the program and the data are stored in the memory and single items are 
sent to the central processing unit sequentially. This feature characterizes the von 
Neumann architecture and was fixed in the early days of digital computers when 
memory was slow and expensive. The rate of processing is now sufficiently high in 
the fastest computers that the speed of light limits the amount of information that 
can be transmitted sequentially through the connection between the memory and 
the central processing unit: this is the so-called von Neumann bottleneck. 

Numerous designs have been proposed to open up the bottleneck. For example, 
the Bolt, Beranek, and Newman ButterflyTM and the Intel Cosmic Cuber”’ have 
multiple computers that communicate with each other through a switching 
network. The Connection Machine is more similar in its basic architecture to the 
Massively Parallel Processor (MPP) built by Goodyear for NASA in 1983, inten- 
ded primarily for processing satellite images (Potter, 1985), and the Distributed 
Array Processor (DAP), built even earlier in England, about one-fourth the size of 
the MPP. The MPP has 16,000 paired memories and processors which com- 
municate with their nearest neighbors on a two-dimensional grid. It executes single 
instructions on multiple data (SIMD). 

The Connection Machine is also a SIMD architecture but differs from the MPP 
in two respects: First, the processors in the Connection Machine are at the corners 
of an n-dimensional hypercube (so that each has a direct connection to n 
neighbors). Only three pages are devoted to a “Tour of the Topology Zoo,” an 
important topic that deserved more discussion. Second, the processors can send 
packets of information to any other processor by paths that are automatically 
routed through other processors. Routing is much slower than a direct connection, 
but allows more flexibility for some applications. The design of the router, based on 
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probabilistic algorithms (Valiant, 1982), is probably the most impressive technical 
achievement in the Connection Machine and the details remain a trade secret of the 
Thinking Machines Corporation. 

In principle, a conventional digital computer could simulate any parallel design, 
given world enough and time. In practice, the motivation for research into 
algorithms is highly architecture dependent, because the only way to fully test an 
algorithm is to implement it and measure its performance. Applications that have 
been successfully implemented on the Connection Machine include stereo and 
motion algorithms in computer vision, VLSI circuit design using simulated 
annealing, hydrodynamic simulations using cellular automata, and document 
retrieval based on key words. New parallel algorithms are being discovered for 
problems, such as the inversion of sparse matrices, that were previously overlooked, 
in part because they are inefficient on the von Neumann architecture. Even rule- 
based expert systems can be implemented in parallel (Blelloch, 1986). 

Debugging programs on a parallel machine can be a nightmare unless good 
programming tools are available. Fortunately, the Connection Machine can be 
programmed in *Lisp, a version of Common Lisp to which parallel instructions 
have been added. It is possible in this environment for a moderately skilled 
programmer to bring up new applications in a few days. CmLisp, a more powerful 
version that “defines the Connection Machine” (p. 47) is not yet released. 

Many of the knowledge representations and search algorithms that are com- 
monly used in artificial intelligence have been optimized for the von Neumann 
architecture. Similarly, the model of computation based on logic that led to the 
von Neumann architecture has served as a model for human reasoning in cognitive 
science (Pylyshyn, 1984). The recent availability of parallel hardware makes 
apparent the extent to which cognitive science and artificial intelligence have been 
shaped by hardware that is based on sequential symbol processing. If it is no longer 
necessary to make a virtue of the von Neumann bottleneck, how should symbols be 
distributed over a million processors to take best advantage of the increased 
processing power of a parallel architecture? Tinkering with fundamental 
assumptions like this one may lead to new computational models for artificial 
intelligence, cognitive science, and neuroscience (Churchland, 1986). 

BRAINS 

Parallel machines may also have significance for the exploration of the human 
brain, by far the most sophisticated parallel computer in existence. In the brain 
there are over 100 billion neurons and 100 trillion synaptic connections between 
neurons, but more than 90% of the brain’s volume is composed of axons and den- 
drites; that is, the brain is mostly connections. These biological wires are poor con- 
ductors compared with copper wire. Axons transmit information at a maximum 
rate of a few hundred bits per second and at speeds of at most a few hundred 
meters per second. Moreover, neurons are relatively simple processing units com- 
pared with digital computers, capable only of adding and multiplying analog 
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signals with low precision. How is the brain, using processors with a cycle time 
measured in milliseconds, able to retrieve information in less than a second? Even 
more impressive is our ability in an equally short time to recognize objects in 
images and plan limb movements. The brain can perform in a few hundred cycles 
what digital machines cannot now perform in many millions of cycles. 

Hillis compares digital computers with brains on p. 3. It is difficult to compare 
their processing powers because we do not yet understand the principles of com- 
putation in the brain. Hillis compares the maximum switching rate of gates in a 
computer (a billion transistors switching a billion times per second) and the 
maximum rate of firing of all the neurons in the brain (100 billion neurons firing at 
a thousand times a second). However, this is not the right measure since switching 
events by themselves are only one part of performing a computation, and both the 
brain and the digital computer would burn out if all their components were to start 
switching at their maximum rates for even a short time. Two more realistic 
measures of performance are the average processing power, measured in operations 
per second, and useful communications bandwidth, measured in bits per second. 

The processing units in the current generation Connection Machine are bit-sliced 
processors with a one microsecond cycle time and 4,000 bits of memory each. A 
processor can add two numbers with 8 bits of accuracy in 8 cycles, and can mul- 
tiply two numbers with the same accuracy in 64 cycles. Thus, the 65,536 processor 
Connection Machine can perform a maximum of about one billion 8-bit mul- 
tiplications per second. The total communications bandwidth between processing 
units in a Connection Machine is about 10 billion bits per second, but the I/O 
bandwidth for communicating between the Connection Machine and its host 
computer is only 500 million bits per second. Only a fraction of the maximum 
processing power of the Connection Machine may be achieved on a particular 
problem unless a highly efficient algorithm is found that maps well onto the 
architecture of the Connection Machine and all of the information needed to solve 
the problem is resident. Thus, if the data exceeds 32 MB (the total memory capacity 
of a 65,536 Connection Machine) then the I/O bandwidth may be rate-limiting. 

Firing at a maximum rate of a few hundred spikes per second, a neuron can con- 
vey only a few bits per second via its average rate of firing, but it can communicate 
by direct connections with thousands of other neurons. Hence, the average com- 
munications bandwidth used by the brain in moment to moment computation is 
about 

(10” neurons)(5 x lo3 connections/neuron)(2 bits/connection/set) z 1015 bits/set. 

This is about a lo5 times greater bandwidth than the current generation Connec- 
tion Machine. It is significant that the brain can make effective use of this 
bandwidth; each synapse between neurons can perform a low-precision addition or 
multiplication (depending on the type of synapse). Hence, the average processing 
rate in the brain is at least 10” operations per second. This estimate represents the 
minimal amount of digital computation that must be done to simulate neural 
operations in real time. It is a lower bound since we have not taken fully into 
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FIG. 1. Graph of computing power, measured in operations per second, for the largest general 
pupose digital computers as a function of time. Operations vary from simple boolean evaluations to 64 
bit floating point arithmetic and vary in their execution times. Different problems require different 
mixtures of operations, so the error bars indicate the approximate range of the effective computing 
power. The Connection Machine (CM) is described in the review. The GF-11 is an experimental 
machine under development at IBM. A lower bound for the equivalent computational power needed to 
simulate the synaptic activity in the human brain is given in the text and drawn as a horizontal dashed 
region at the top of the graph. In primates, the visual system uses about ZtHO% of the total processing 
power. 

account the analog operations that occur in dendritic trees. Many of the operations 
in the brain are analog and could be simulated much more efficiently with analog 
technology (Mead, 1987). 

The cost of computing has decreased by a factor of about 10 every 5 years over 
the last 35 years (Fig. 1). If this continues, then it will only take about 25 more 
years (2015) before processing power comparable to that in the brain can be 
purchased for $3 Million, approximately the current cost of the Connection 
Machine. David Waltz (personal communication) independently arrived at a 
similar conclusion taking into account the cost of memory, communications, and 
processing. It is very unlikely, however, that this goal can be achieved with the 
current technology: new technologies, perhaps based on optical computing, are 
needed. 

CONNECTIONEST MODELS 

At about the same time that Hillis was designing massively parallel hardware, 
massively parallel algorithms were being explored by others who were inspired by 
the massively parallel architecture of the brain. At a meeting held in 1979 at 
San Diego, researchers from artificial intelligence, electrical engineering, cognitive 
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psychology, and neuroscience met to explore parallel models of associative memory 
(Hinton and Anderson, 1981). The common assumption was that many relatively 
simple processing units, similar to neurons, could be connected together to solve 
complex computational problems. This approach could be called computing with 
connections, or connectionist computing (Feldman & Ballard, 1982) and it shows 
promise as a link between cognitive science (Rumelhart & McClelland, 1986) and 
neuroscience (Hopfield & Tank, 1986; Sejnowski & Churchland, 1987). 

Connectionist models are highly nonlinear and highly difficult to analyze, except 
in special cases (Ackley, Hinton, & Sejnowski, 1985; Cohen & Grossberg, 1983; 
Hoplield, 1982). As a consequence, much of the recent research has been empirical. 
Conventional computers can be used to simulate a connectionist network model 
with a time penalty that scales with the number of connections in the network. A 
parallel implementation of a network model would greatly speed up the design and 
exploration of these models. However, the increase in speed is generally accom- 
panied by a decrease in the flexibility of the hardware. In the extreme case, a VLSI 
device can be designed with a fixed set of weights that can run a particular network, 
but no other network, a million times a second. A special purpose network 
simulator that could handle a wider range of network architectures would be 
preferred (Bailey & Hammerstrom, 1986; Hecht-Nielsen & Smith, 1986). 

All of the currently available general-purpose parallel machines, including the 
Connection Machine, can be adapted to run connectionist network models even 
though they were not designed with network models in mind. For coarse-grain 
architectures, such as the BBN Butterfly and the Intel Cosmic Cube, the processing 
units can handle many units in the network. The line-grain architecture of the Con- 
nection Machine maps better onto connectionist networks if the processing units 
are used to represent the connections themselves (Blelloch & Rosenberg, 1987). 
Which of these parallel machines is the most useful for developing connectionist 
models will depend as much on the ease with which they can be programmed as on 
the details of the hardware designs. 

PHYSICS OF COMPUTATION 

The last chapter of the book is entitled “New Computer Architectures and Their 
Relationship of Physics, or Why Computer Science is No Good.” Theory in com- 
puter science tends to be based on existing hardware, and most existing computers 
use the von Neumann architecture. The chapter begins appropriately with a quote 
from von Neumann, who was well aware of the need for a broader science of com- 
putation. Von Neumann himself contributed not just to the development of the 
sequential architecture named after him, but as well to the foundations of cellular 
automata (von Neumann, 1963), an early parallel architecture that has only 
recently been exploited (Wolfram, 1983). 

Hillis turns to physics in search of models on which to base a new science of 
parallel computation: “If the universe is a computing machine, then we know of at 
least some computing machines that have elegant laws.” Are there other models of 
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computation that are closer to physics than current theory in computer science? As 
Hillis points out, the physics of macroscopic systems depends on the law of large 
numbers, and he speculates that a similar “law of large systems” may someday be 
found for computing systems based on many simple processing units. The brain is 
another obvious model of computation in nature, one whose principles we do not 
yet understand, but whose existence makes it more plausible that Hillis is thinking 
in the right direction. 

CONCLUSION 

The Connection Machine is available today for use by scientists who want to 
study problems that are amenable to a massively parallel fine-grain computer 
architecture. New fields of computational science may grow out of the early 
explorations that the Connection Machine and other parallel computers are making 
possible. There are already computational branches of physics that depend on 
supercomputers as much as high-energy experimentalists depend on particle 
accelerators. Someday there may be branches of psychology and neuroscience that 
depend on massively parallel computers. 

Hillis has produced a lively book as well as a lively machine (with a little help 
from his friends). It is hoped that the entrepreneurial spirit that built the Connec- 
tion Machine does not interfere with the scientific spirit that guided its design. The 
fate of the Connection Machine depends as much on the vagaries of the market- 
place, where it now must complete with many other parallel designs, as on the vir- 
tues of the architecture itself. The next generation Connection Machine, already in 
production, will have more memory and more processing power. Parallel com- 
puting has an exciting future. 
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