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The present paper elucidates a universal property of learning curves, 
which shows how the generalization error, training error, and the com- 
plexity of the underlying stochastic machine are related and how the 
behavior of a stochastic machine is improved as the number of train- 
ing examples increases. The error is measured by the entropic loss. 
It is proved that the generalization error converges to Ho, the entropy 
of the conditional distribution of the true machine, as HO + m*/ (2 t ) ,  
while the training error converges as HO - m'/(2t) ,  where t is the num- 
ber of examples and m' shows the complexity of the network. When 
the model is faithful, implying that the true machine is in the model, 
m* is reduced to m, the number of modifiable parameters. This is a 
universal law because it holds for any regular machine irrespective of 
its structure under the maximum likelihood estimator. Similar rela- 
tions are obtained for the Bayes and Gibbs learning algorithms. These 
learning curves show the relation among the accuracy of learning, the 
complexity of a model, and the number of training examples. 

1 Introduction 

It is an important subject of research of neural networks and machine 
learning to study general characteristics of learning curves, which repre- 
sent how fast the behavior of a learning machine is improved by learn- 
ing from examples. It is also important to evaluate the performance of 
a trained machine in terms of that for the old training examples. This is 
given by the relation between the generalization error and the training er- 
ror, in terms of the complexity of the network. This is an interdisciplinary 
problem related to neural networks, machine learning, algorithms, sta- 
tistical inference, etc. 

There are a number of approaches to learning machines. One is the 
stochastic descent learning algorithm (see, e.g., Widrow 1966; Amari 1967; 
Rumelhart, Hinton, and Williams 1986; White 1989). Even in an old paper 
by Amari (1967) where the stochastic descent method was proposed for 
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Statistical Theory of Learning Curves 141 

general layered neural networks, the asymptotic dynamic behavior of 
learning curves was discussed, and the trade-off between the learning 
speed and the accuracy was studied [see Heskes and Kappen (1991) for 
recent developments]. 

Another approach is a computational one (Valiant 1984) in which the 
learning performance was evaluated stochastically under computational 
complexity constraints on algorithms. This approach was successfully 
applied to neural networks (Baum and Haussler 1989). Haussler et al. 
(1988) studied the convergence rate of general learning curves by re- 
laxing algorithmic constraints. See also Haussler et al. (1991) for recent 
developments. Here, the VC dimension plays a major role. Yamanishi 
(1990,1991) extended the framework to noisy or stochastic machines. 

The third approach is statistical-mechanical. Levin et al. (1990) pre- 
sented a Bayesian statistical-physical approach to study learning curves, 
where behaviors of generalization errors, predictive-entropic errors, and 
stochastic complexity of Rissanen (1986) were discussed. There are also a 
number of papers using a statistical-mechanical approach to this problem 
[see, for example, Hansel and Sompolinsky (1990); Gyorgyi and Tishby 
(1990); Sung et al. (1991); +per and Haussler (1991)l. The statistical- 
mechanical approach can give some deep theory for specific simple mod- 
els such as the simple perceptron, in which the replica method is typically 
used in the "thermodynamic limit" situation. 

The present paper uses the fourth approach of statistical inference to 
elucidate the asymptotic learning behavior of a general stochastic learn- 
ing dichotomy machine. The predictive entropic loss is used for evaluat- 
ing the machine performance, where the maximum likelihood estimator 
of the Bayes and the Gibbs algorithms is used to choose a candidate ma- 
chine based on training examples. The statistical approach is based on 
the asymptotic expansion of estimators [see, e.g., Amari (1985) for the 
higher order asymptotic expansion]. 

Before comparing the results of the present paper with others, we 
state the problems treated here and the main results. We consider a 
stochastic machine or stochastic multilayer neural network parameter- 
ized by a vector parameter w, which, when an input x is given, emits 
a binary ouput y with probability p(y I x, w). Suppose we are given t 
examples <, = { (yl, XI) ,  . . . , (yt, x,)}, where xi is randomly generated from 
a fixed but unknown probability distribution p(x) and yi is a correspond- 
ing output generated by the true machine that has parameter WO. The 
maximum likelihood estimator wf is calculated as a candidate machine 
in the beginning. This machine predicts an output y for given x by the 
predictive distribution p(y I x,wf). There are two different methods of 
evaluating the behavior of a machine. One is the average error rate at 
which the candidate machine predicts an output different from that of 
the true machine. The other is the average predictive entropy evaluated 
by the expectation of -logp(y I x,wf) for an input-output pair (x,y), 
which is zero if the prediction is 100% correct. We use this entropic 
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loss to evaluate the learning behavior of a machine (see also Yamanishi 
1991). 

The generalization error is the average entropic loss, or average pre- 
dictive entropy, of a trained machine for a new example (yr+1, xt+l). It is 
proved that the average predictive entropy for the generalization error 
(e(t))een converges to the entropy HO of the true machine asymptotically 
as in the following Theorems, where ( ) denotes the expectation and rn is 
the number of parameters in w. This is in agreement with Yamanishi’s 
result (Yamanishi 1991). On the other hand, the training error (e(t))bh 
is the average entropic loss of the candidate machine for the training 
examples (yi, xi), i = 1, . . . , t, which are used to estimate wt. It is proved 
that the training error also converges as in the Theorems. 

Theorem. Universal Convergence Theorem. 

Since HO is unknown, we can obtain (e(f))gen by the relation 

This is in good agreement with the AIC approach (Akaike 1974). 

Instead of using the maximum likelihood estimator wt, we can use the 
Bayes approach. When the behavior of a trained machine is evaluated 
by the Bayes posterior distribution (the Bayes algorithm), the learning 
curves are exactly the same as the previous Theorem. When we choose 
a candidate machine from the posterior distribution [the Gibbs learning 
algorithm (Opper and Haussler 1991)1, we obtain the following result. 

Theorem. Bayesian Convergence Theorem. 

for the generalization error, and 

for the training error. 
The above results hold under the assumption that there exists wo by 

which the true machine is specified. However, in many cases there is no 
wo that specifies the true machine. The model is said to be unfaithful 
in this case. Let w; be the best approximation to the true machine in 
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the sense of Kullback divergence and let H,' be its entropy By using the 
maximum likelihood estimator, we prove the following theorem, where 

m' = tr(K'-'G') 

to be defined later plays a role of the effective dimensions. 
Theorem. Convergence Theorem for Unfaithful Model. 

m* ( e ( t ) ) b h  = H* - - 2t 
Now we compare our methods and results with others. The l / t  con- 

vergence law was first proved by Haussler et al. (1988). However, its co- 
efficients were not exactly known. Their exact values are still unknown 
even for the simple perceptron in the case of the error rate loss (Haussler 
et al. 1991). By using the entropic loss, the Theorem proves the universal 
coefficient of the convergence rate. This is universal in the sense that the 
theorem holds irrespective of the machine architecture. This implies that 
the VC dimension seems to be irrelevant for stochastic machines. 

The statistical-mechanical approach is useful for determining the co- 
efficient for the l / t  convergence. However, it uses the replica method 
which is unjustified. Moreover, it is applicable only to simple models like 
the simple perceptron and only in the case of the thermodynamic limit, 
implying that both t and m tends to infinity with a fixed ratio a: = t /m. 
Our method does not use the statistical-mechanical assumptions such 
as the replica method, annealed approximation, and the thermodynamic 
limit. Instead, we use the standard technique of asymptotic statistical 
infednce, which is valid under the regularity conditions such as the exis- 
tence of the moments of random variables and the existence of the Fisher 
information. The statistical technique is not applicable to deterministic 
machines, because they violate the regularity conditions. Therefore, the 
present paper complements the result by Amari et al. (1992) where learn- 
ing curves are obtained for deterministic machines under the annealed 
approximation. Amari (1992) succeeded in obtaining a similar result for 
deterministic machines without the annealed approximation. 

The present results are closely related to the model selection by AIC 
(Akaike 1974) and its generalization to general nonlinear neural networks 
(Murata et al. 1991; Moody 1992). The first Theorem can be regarded as a 
detailed version of the original AIC, while the third Theorem corresponds 
to its generalization. Moody (1992) proposes a similar generalization of 
AIC under a more general loss criterion in an unfaithful model. This 
approach is more general in the sense that it includes a regularization 
term, but is less general than Murata et al. (1991) in the sense that the latter 
treats a more general nonlinear model including non-additive noises. It 
should be pointed out that these papers give essentially the same effective 
number m* of parameters, although they are different in their expressions. 
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2 Statistical Theory of Stochastic Machines 

Let us consider a machine which receives an n- dimensional input signal 
x E R" and emits a binary output y = 1 or -1. A machine is stochastic 
when y is not a function of x but y takes on 1 and -1 subject to a 
probability p(y I x) specified by x. 

Let us consider a parametric family of machines where a machine is 
specified by an m-dimensional parameter w E R" such that the probabil- 
ity of output y, given an input x, is specified by p(y I x, w). 

A typical form of p(y I x, w)  is as follows. A machine first calculates 
a smooth function f(x,  w) and then specifies the probabilities by 

where 

k ( f )  = 1 
1 + e - A  (2.2) 

When f(x, w) > 0, it is more likely that the output of the machine is y = 1, 
and when f(x, w) < 0, it is more likely that the output is y = -1. The 
parameter l / p  is the so-called "temperature" parameter. When p = 00, 

the machine is deterministic, emitting y = 1 when f(x,  w)  > 0 and y = -1 
when f(x, w) < 0. 

Let us consider the case where the true machine that generates ex- 
amples is specified by WO. More specifically, let p(x) be a nonsingular 
probability distribution of input signals x, and let x l , . .  . , xt be t ran- 
domly and independently chosen input signals subject to p(x). The true 
machine generates answers yl, . . . , yt using the probability distribution 
p(yi I xi,wo), i = I , .  . . , t. 

Let be t pairs of examples thus generated, 

<t = { ( X l , Y l ) ,  . . ., (xt,yt)} (2.3) 

from which we guess the true machine. 
Let wt be the maximum likelihood estimator from the observed data 

It. Since the probability of obtaining & from a machine specified by w is 
t 

~ ( < t  I W) = nP(xi)P(Yi I xi, W) 
i=l 

by taking the logarithm, 

should be maximized by the maximum likelihood estimator wt, where 

l(Y I x, w) = logP(Y I x, w) (2.4) 
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3 Generalization Error and Training Error in Terms of the Predictive 
Distribution 

Given t examples &, we estimate the true parameter with wt. The be- 
havior of the estimated machine is given by the conditional probability 
p(y I x, wt). Given the next example xt+] randomly chosen subject to p(x), 
the next output yt+l is predicted with the probability p(yt+l 1 xt+l,  wt). The 
best prediction in the sense of the minimum expected error is that the 
predicted output y;+] is 1 when 

p ( 1  I xt+r,*t) > p(-l I X t + l , W t )  

and is -1 otherwise. The prediction error is given by ut = 0.51yt+l -y;+]I. 
This is a random variable depending on the t training examples tt and 
Xt+l* 

Its expectation (uJgen with respect to tt and xt+l is called the gener- 
alization error, because it denotes the average error when the machine 
trained with t examples predicts the output of a new example. 

On the other hand, the training error is evaluated by the average 
of ui(i = 1, . . . , t), which are the errors when the machine wt predicts 
the past outputs yi for the training inputs xi retrospectively, using the 
distribution p(yi I xi, wt), that is 

This error never converges to 0 when a machine is stochastic, because 
even when wt converges to the true parameter wo the machine cannot 
be free from stochastic errors. 

The prediction error can also be measured by the logarithm of the 
predictive probability for the new input-output pair (yt+l, xt+l), 

(3.1) 

This is called the entropic loss, log loss or stochastic complexity (Rissanen 
1986; Yamanishi 1991). The generalization entropic error is its expectation 
over the randomly generated training examples tt and new input-output 

(3.2) 

e( t )  = - logp(yt+l I xt+l, f i t )  

pair (xt+~ , YI+I 1, 
(e(t))gen = -(logp(yt+1 I xt+l,wt)) 

Since the expectation of - logp(y I x) is the conditional entropy, 

the generalization entropic loss is the expectation of the conditional en- 
tropy H(Y 1 X;wt) over the estimator wt. The entropic error of the true 
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machine, specified by WO, is given by the conditional entropy, 

Ho = H(Y I XWO) = El- logp(y I X,WO)l (3.3) 

Similarly, the training entropic error is the average of the entropic loss 
over the past examples (yjl Xi) that are used to obtain wt, 

(3.4) 

Obviously, the training error is smaller than the generalization er- 
ror. It is interesting to know the difference between the two errors. The 
following theorem gives the universal behaviors of the training and gen- 
eralization entropic errors in a faithful model, that is, when there is a wo 
specifying the true machine. 

Theorem 1. Universal Convergence Theorem for Training and Generaliza- 
tion Errors. Theasymptotic learning curve for the entropic training error is given 
by 

and for the entropic generalization error by 

where m is the number of parameters in w. 
The result of l / t  convergence is in good agreement with the results 

obtained for another model by the statistical-mechanical approach (e.g., 
Seung et al. 1991). It is possible to compare our result with Yamanishi 
(19911, where the cumulative log loss, 

is used. Here wj is the maximum likelihood estimator based on the i 
observations ti. From (3.61, we easily have 

in agreement with Yamanishi (19911, because of 

I 1  c 7 = log t + o(l0g t) 
i=l 

The proof of Theorem 1 uses the standard techniques of asymptotic 
statistics and is given in the Appendix. 
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4 Learning Curves for Unfaithful Model 

It has so far been assumed that there exists wo such that the true distri- 
bution p(y I x) is written as 

(4.1) 
This implies that the model M = {p(y I x, w)} of the distribution param- 
eterized by w is faithful. When the true distribution is not in M, that is, 
there exisits no wo satisfying (4.11, the model M is said to be unfaithful. 

We can obtain learning curves in the case of unfaithful models, in 
a quite similar manner as in the faithful case. Let p(y I x,w:) be the 
best approximation of the true distribution p(y I x) in the sense that w; 
minimizes the Kullback-Leibler divergence 

P(Y I 4 = P(Y I %WO) 

where the expectation E is taken with respect to the true distribution 
p(x)p(y 1 x). We define the following quantities: 

H,' = E[- logp(y I x, will (4.2) 
G* = E[{Vl(Y I x,w,')l{vr(y I X,Wi)}T1 (4.3) 
K* = -E[VVl(y I X, w:)] (4.4) 

where V is the gradient operator, V implying the column vector 

vl= (&) 
the suffix T denotes the transposition of a vector, and VVl is the Hessian 
matrix. In the faithful case, w: = wo, H,' = Ho, and G' = K' = G is the 
Fisher information matrix. However, in general, 

in the unfaithful case. 

The asymptotic learning cume for the entropic training error is given by 

G' # K* 

Theorem 2. Convergence Theorem for Learning Curves : Lhfiithful Case. 

m* (e(t))@& = H,' - - 2t 
and for the entropic generalization error by 

m* (e(t))@& = H,' + - 2t 

(4.5) 

(4.6) 

where 

is the trace ofK*-'G'. 
See the Appendix for the proof. It is easy to see that m* = m in the 

faithful case, because of K' = G*. The above relations can be used for 
selecting an adequate model (see Murata et al. 1991; Moody 1992). 

m' = tr(K*-'G') 
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5 Bayesian Approach 

The Bayesian approach uses a prior distribution 9(w), and then calculates 
the posterior probability distribution Q(w I 5') based on t observations 
(training examples). The predictive distribution based on Ct is defined by 

(5.1) 

One idea is to use this predictive distribution for predicting the output. 
Another idea is to choose one candidate parameter w; from the posterior 
distribution Q(w I &) and to use p(y I x; w;) for predicting the output. 
The former one is called the Bayes algorithm and the latter is called the 
Gibbs algorithm (Opper and Haussler 1991). 

The entropic generalization loss is evaluated by the expectation of 
- log p(y I x; &) for a new example (y, x) in the Bayes algorithm case and 
the expectation of - log p(y I x; w;) in the Gibbs algorithm case. The 
entropic training loss is given, correspondingly, by 

P(Y I x;ttt) = JP(Y I x,w)Q(w I W w  

We first study the case of using the predictive distribution p(y I x; 4). By 
putting 

(5.2) 

the predictive distribution is written as 

p(yt+1 I X'+1, 5') = Zt+l/Z' (5.3) 
[Amari et al. (1992); see also the statistical-mechanical approach, for ex- 
ample, Levin et al. (1990); Sung et al. (1991); Opper and Haussler 1991)l. 
Therefore, 

(5.4) 

We can evaluate these quantities by statistical techniques (see the Ap- 
pendix). 

Theorem 3. The learning curves for the Bayesian predictive distribution are 
the same as those for the maximum likelihood estimation. 

We can perform similar calculations in the case of the Gibbs algorithm. 
Theorem 4. The learning curves for the Gibbs algorithm is for the training 

error 
(e(f1)tIain = Ho (5.5) 

and for the generalization error 

(5.6) 
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Conclusions 

We have presented a statistical theory of learning curves. The character- 
istics of learning curves for stochastic machines can easily be analyzed by 
the ordinary asymptotic method of statistics. We have shown a univer- 
sal l / t  convergence rule for the faithful and unfaithful statistical models. 
The difference between the training error and the generalization error is 
also given in detail. These results are in terms of the entropic loss, which 
fits very well with the maximum likelihood estimator. The present the- 
ory is closely related with the AIC approach (Akaike 1974; Murata et al. 
1991; Moody 1992) and the MDL approach (Rissanen 1986). 

Our statistical method cannot be applied to deterministic machines, 
because the statistical model is nonregular in this case, where the Fisher 
information diverges to infinity. However, we can prove 

for the entropic loss without using the annealed approximation (Amari 
1992). But this does not hold for the expected error ut. 

Appendix: Mathematical Proofs 

In order to prove Theorem 1, we use the following fundamental lemma 
in statistics. 

Lemma. The maximum likelihood estimator wt based on t observa- 
tions tt is asymptotically normally distributed with mean wo and covari- 
ance matrix (tG)-', 

W , N N  wo,-G-' (A1 1 

where wo is the true parameter and G = (gij) is the Fisher information 
matrix defined by 

C )  

where E denotes the expectation with respect to the distribution p(x)p(y I 

When the probability distribution is of the form (Z.l), the Fisher in- 
x, wo). 

formation matrix can be calculated to be 

(see Amari 1991). This shows that G diverges to 00 as the temperature 
tends to 0, the estimator wt becoming more and more accurate. 
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Proof of Theorem 1. In order to calculate 

( W g e n  = -E[logp(y I x,Wt)l 

I(y I x, W:) = logp(y I x, Wt)  

we expand 

at WO, giving 

I(y I x,Wt) = qy I x,wo) + Vl(y I x,wo)(Wt - wo) 
(A3) 

where VI is the gradient with respect to w, VVI = ($l/aW&j) is the Hes- 
sian matrix, and the superscript T denotes the transposition of a column 
vector. By taking the expectation with respect to the new input-output 
pair (y,x), we have 

1 
+i(Wt - wo)TVVl(y I x, wo)(W, - wo) + * * * 

because of the identity 

-W"I(y  I x,wo)l = E[(Vl)(VOT1 

Taking the expectation with respect to Wt, we have 

E[Wt - WO] = O(l/t) 
1 
t E[(Wt - WO)(W: - W O ) ~ ]  = -G-' -I- O(l/$) 

and hence 
m 
t 

E[(Wt - W O ) ~ G ( W ~  - WO)] = - + O(l/P) 
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and substituting this in (A9), and then summing over i, we have 

t 

C l(yi I X, f i t )  
i=l 

= C l(yi I xi, wo) 

because the maximum likelihood estimator wt satisfies 
t 

Since the xis are independently generated, by the law of large numbers, 
we have 

N -H0 

I 
- C VVl(yi 1 Xi, wo) 
t i=l 

N E[VVl(y I X, WO)] = -G 

Since (wt - WO)/& is normally distributed with mean 0 and covariance 
matrix G-I, 

(Wf - WO)~G(W' - WO) 

can be expressed as a sum of squares of m independent normal random 
variables with mean 0 and variance 1, implying that it is subject to the 
X2-distribution of degree m. Therefore, we have 

where xi is a random variable subject to the Xz-distribution of degree m. 
Since its expectation is m, 

This proves Theorem 1. 

In order to prove Theorem 2, we use the following lemma. 
Lemma. The maximum likelihood estimator wt under an unfaithful 

model is asymptotically normally distributed with mean w; and covari- 
ance matrix t-'K*-'GK'-', 
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We do not give the proof of the lemma, because it is too technical. 
Refer to Murata et al. (1991). The proof of the theorem is almost parallel to 
the faithful case, if we replace wo by wC; and taking account that K' # G*. 

The Bayesian case can be proved by using the relations 
t 

p(w I 6 )  N q(w)tm/21G1'/2exp{--(w 2 - WJTG(w - W t ) }  

However, the proof is much more complicated and we omit it. One can 
complete it by using the asymptotic statistical techniques. 
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