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Al today is mostly supervised learning

» Training a machine by showing examples instead of programming it

» When the output is wrong, tweak the parameters of the machine

» Works well for:
» Speech - words

> Image - categories|P SR _

> Portrait— name  EAEECI S BT Sene T T TN

» Photo - caption

» Text - topic




The History of Neural Nets is Inextricable from Hardware

» The McCulloch-Pitts Binar Neuron
» Perceptron: weights are motorized potentiometers
» Adaline: Weights are electrochemical “memistors’
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The Standard Paradigm of Pattern Recognition

» ...and “traditional” Machine Learning
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1969 - 1985: Neural Net Winter

» No learning for multilayer nets, why?
» People used the wrong “neuron”: the McCulloch & Pitts binary neuron

» Binary neurons are easier to implement: No multiplication necessary!

» Binary neurons prevented people from thinking about gradient-based
methods for multi-layer nets

» Early 1980s: The second wave of neural nets
» 1982: Hopfield nets: fully-connected recurrent binary networks

» 1983: Boltzmann Machines: binary stochastic networks with hidden units

» 1985/86: Backprop! Q: Why only then? A: sigmoid neurons!
» Sigmoid neurons were enabled by “fast” floating point (Sun Workstations)



Multilayer Neural Nets and Deep Learning

» Traditional Machine Learning
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Multi-Layer Neural Nets

# Multiple Layers of simple units ReLU (x)=max(x,0)
# Each units computes a weighted sum of its inputs
# Weighted sum is passed through a non-linear function —p-

# The learning algorithm changes the weights /
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Hidden
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Supervised Machine Learning = Function Optimization

Weight space

Function with

adjustable parameters | .
DD D D D Objective h
O, D O_;;W D D Function [

>

traffic light: -1

# It's like walking in the mountains in a fog "
and following the direction of steepest
descent to reach the village in the valley

@l But each sample gives us a noisy
estimate of the direction. So our path is oL(W,X)
a bit random. W.«<«W.— >
TN T e W

@Stochastic Gradient Descent (SGD)



Computing Gradients by Back-Propagation

C(X+Y'®) * A practical Application of Chain Rule
Cost
* * * Backprop for the state gradients:
Whn ::I Er (X1 W * dC/dXi-1 = dC/dXi . dXi/ldXi-1
dC/dWn n(Xn-1,Wn) » dCldXi-1 = dCldXi . dFi(Xi-1,Wi)ldXi-1
dC/dXi § A X
Wi V.  Backprop for the weight gradients:
, Fi(Xi-1,Wi
dC/dWI::l ( I ) - dCI/dWi = dCIdXi . dXildWi
dC/dXi-1€ : Xi-1 « dCIdWi = dCldXi . dFi(Xi-1,Wi)/dWi

::l F1(Xo,W1)

; *X (input) Y (desired output)




1986-1996 Neural Net Hardware at Bell Labs, Holmdel
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> 1986: 12x12 resistor array = .,_htti:.‘htr‘_::i:t: -—
» Fixed resistor values YT TTATTRTT
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» E-beam lithography: 6x6microns e vTITTTTT =
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» 1988: 54x54 neural net o HA
» Programmable ternary weights

» On-chip amplifiers and 1/0O -
> 1991: Net32k: 256x128 net -1

» Programmable ternary weights “§

» 320GOPS, 1-bit convolver. i

> 1992: ANNA: 64x64 net
» ConvNet accelerator: 4GOPS

» 6-bit weights, 3-bit activations
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Convolutional Network Architecture [LeCun et al. NIPS 1989]
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f 7—: P 7~ 54 4
* > J =

e = S e W
Fllter Bank +non-linearity

g é Pooling

Filter Bank +non-linearity

Pooling

e

@inspired by [Hubel & Wiesel 1962] & . [ —
[Fukushima 1982] (Neocognitron): 7

» simple cells detect local features 'H I ,

» complex cells “pool” the outputs of simple
cells within a retinotopic neighborhood.



Y. LeCun

LeNet character recognition demo 1992

» Running on an AT&T DSP32C (floating-point DSP, 20 MFLOPS)




Y. LeCun

Convolutional Network (LeNet5, vintage 1990)

d Filters-tanh - pooling - filters-tanh - pooling - filters-tanh
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ConvNets can recognize multiple objects

» All layers are convolutional
» Networks performs simultaneous segmentation and recognition

SANT | LeNet 5
answer: 31

3553563113




Check Reader (AT&T 1995) vecin

» Check amount reader

» ConvNet+Language Model
trained at the sequence level.

» 50% percent correct, 49% reject,
1% error (detectable later in the
process).

» Fielded in 1996, used in many
banks in the US and Europe.
» Processed an estimated 10% to

20% of all the checks written in
the US in the early 2000s.

P> [LeCun, Bottou, Bengio ICASSP1997]
[LeCun, Bottou, Bengio, Haffner 1998]



1996 - 2006: 2™ NN Winter! Few teams could train large NNs

» Hardware was slow for floating point computation
» Training a character recognizer took 2 weeks on a Sun or SGI workstation

» A very small ConvNet by today’s standard (500,000 connections)

» Data was scarce and NN were data hungry
» No large datasets besides character and speech recognition

» Interactive software tools had to be built from scratch
» We wrote a NN simulator with a custom Lisp interpreter/compiler
» SN [Bottou & LeCun 1988] —» SN2 [1992] - Lush (open sourced in 2002).
» Open sourcing wasn’t common in the pre-Iinternet days
» The “black art” of NN training could not be communicated easily

» SN/SN2/Lush gave us superpowers: tools shape research directions



Lessons learned #1

» 1.1: It’s hard to succeed with exotic hardware
» Hardwired analog — programmable hybrid - digital

» 1.2: Hardware limitations influence research directions
» [t constrains what algorithm designers will let themselves imagine

» 1.3: Good software tools shape research and give superpowers
» But require a significant investment

» Common tools for Research and Development facilitates productization

» 1.4: Hardware performance matters
» Fast turn-around is important for R&D

» But high-end production models always take 2-3 weeks to train

» 1.5: When hardware is too slow, software is not readily available, or
experiments are not easily reproducible, good ideas can be abandoned.



A

The 2" Neural Net
Winter (1995-2005)
& Spring (2006-2012)

The Lunatic Fringe and
the Deep Learning Conspircy

Artificial Intelligence Research



Y. LeCun

Semantic Segmentation with ConvNet for off-Road Driving

DARPA LAGR program 2005-2009
[Hadsell et al., J. of Field Robotics 2009]
[Sermanet et al., J. of Field Robotics 2009]




Y. LeCun

LAGR Video
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Y. LeCun

Semantic Segmentation with ConvNets (33 categories)




FPGA ConvNet Accelerator: NewFlow [Farabet 2011]

» NeuFlow: Reconfigurable Dataflow architecture
» Implemented on Xilinx Virtex6 FPGA

» 20 configurable tiles. 150GOPS, 10 Watts
» Semantic Segmentation: 20 frames/sec at 320x240
» Exploits the structure of convolutions
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Y. LeCun

Driving Cars with Convolutional Nets
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A

The Deep Learning Revolution

State of the Art

Artificial Intelligence Research



Deep ConvNets for Object Recognition (on GPU)
sl AexNeL[iKrizhsvsky et al..NIRS 2012], OverFeat [Sermanet et al, 2013] .,

@ 1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 Iayers
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Error Rate on ImageNet

» Depth inflation

28.2
152 layers
,“ - - ww o o
/
/!
16.4 '
/
/
Ensembl f
19 Iayers ] [ 22Iavers l Resnet, Inception
Resnet, Inception

6.7 / ang Wide Resiaual

Network
3.6 g

ILSVRC'10 ILSVRC'11 ILSVRC'12 ILSVRC'13 |ILSVRC'14 ILSVRC'14 ILSVRC'1S ILSVRC'16
AlexNet VGG GoogleNet ResNet Ensemble

ImageNet Classification top-5 error (%) (Figure: Anirudh Koul)



Deep ConvNets (depth inflation)
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VGG
[Simonyan 201 3]
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GOPS vs Accuracy on ImageNet vs #Parameters

» [Canziani 2016]

80 -
Inception-v3 °

» ResNet50 and . |ResNet-50
ResNet100 are used

routinely in % 10 ﬂ ResNet-18
production. % GoogLeMet
3 ENEt
S 65 1
» Each of the few P © sBN-NIN
|_

billions photos 60 1 5M
uploaded on

BN-AlexNet
Facebook every day ss AlexNet
goes through a
0

handful of ConvNets ;|

ResNet-101
. ResNet-34

Inception-v4

ResNet-152

VGG-16 VGG-19

35M 65M 95M 125M  155M

within 2 seconds. ? 2 £ A

20 25 30 35 40

Operations |G-Ops]



Progress in Computer Vision
» [He 2017]

ALEXNET | 2012 MSRA_2015 | 2015 MASK R-CNN | 2017 MASK R-CNN| 2017




Mask R-CNN: instance segmentation

» [He, Gkioxari, Dollar, Girshick
arXiv:1703.06870]
» ConvNet produces an object

mask for each region of
interest , | Rolalign| _

» Combined ventral and dorsal |
pathways |

backbone AP AP50 AP75 AP S AP M AP L

MNC [7] ResNet-101-C4 24.6 443 248 | 47 259 436
FCIS [20] +OHEM ResNet-101-C5-dilated | 29.2  49.5 - 7.1 313 500
FCIS+++ [20] +OHEM | ResNet-101-C5-dilated | 33.6  54.5 - - - -
Mask R-CNN ResNet-101-C4 331 549 348 | 121 356 S5l
Mask R-CNN ResNet-101-FPN 357 580 37.8 | 155 381 524
Mask R-CNN ResNeXt-101-FPN 371 60.0 394 | 169 399 535




RetinaNet, feature pyramid network

» One-pass object detection
» [Lin et al. ArXiv:1708.02002]
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Y. LeCun

Mask-RCNN Results on COCO dataset
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Y. LeCun

Mask R-CNN Results on COCO test set




Y. LeCun

Real-Time Pose Estimation on Mobile Devices

» Maks R-CNN
running on
CaffEZGO erson 1.00




Y. LeCun

Detectron: open source vision in PyTorch

https://github.com/facebookresearch/maskrcnn-benchmark




3D ConvNet for Medical Image Analysis

» Segmentation Femur from MR Images

» [Deniz et al. Nature 2018]
F- 3D CNN
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Y. LeCun

3D ConvNet for Medical Image Analysis

Trabecular Bone Probability Map
2D CNN - padded

Coronal View Sagittal View

Segmentation Mask
Ground Truth 2D CNN PP 2D CNN - padded FP




» Medical image analysis

» Self-driving cars

» Accessibility

» Face recognition

P Language translation

P Virtual assistants*

» Content Understanding for:
» Filtering

» Selection/ranking
» Search

» Games

P Security, anomaly detection
» Diagnosis, prediction

» Science!

Y. LeCun
Applications of Deep Learning

- 8§ S s . a '
[Geras 2017] [Esteva 2014]



Lessons learned #2

» 2.1: Good results are not enough
» Making them easily reproducible also makes them credible.

» 2.2: Hardware progress enables new breakthroughs
» General-Purpose GPUs should have come 10 years eatrlier!

» But can we please have hardware that doesn’t require batching?

» 2.3: Open-source software platforms disseminate ideas
» But making platforms that are good for research and production is hard.

» 2.4: Convolutional Nets will soon be everywhere
» Hardware should exploit the properties of convolutions better

» There is a need for low-cost, low-power ConvNet accelerators
» Cars, cameras, vacuum cleaners, lawn mowers, toys, maintenance robots...



A

With different hardware/software requirements:
Memory-Augmented Networks
Dynamic Networks
Graph Convolutional Nets
Networks with Sparse Activations

New DL Architectures

Artificial Intelligence Research



Augmenting Neural Nets with a Memory Module

# Recurrent networks cannot remember things for very long
» The cortex only remember things for 20 seconds

@l We need a “hippocampus” (a separate memory module)
» LSTM [Hochreiter 1997], registers

» Memory networks [Weston et 2014] (FAIR), associative memory

» Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)
» Neural Turing Machine [Graves 2014],

» Differentiable Neural Computer [Graves 2016]

memory ]




Differentiable Associative Memory

» Used very widely in NLP

» MemNN, Transformer Network, ELMO,
GPT, BERT, GPT2, GLoMO

» Essentially a “soft” RAM or hash table
Values Vi

K X

Softmax

C. = e
i KT X
E ; e Keys Ki
J
Dot Products
Y = Z C,V,

Input (Address) X




Learning to synthesize neural programs for visual reasoning

https://research.fb.com/visual-reasoning-and-dialog-towards-natural-language-conversations-about-visual-data/

Quest There is a shiny object that is right of the gray metallic cylinder;
uestion _ .
RNN encoder | does it have the same size as the large rubber sphere?

v

decoder RNN Layout
with attention policy

find p{ find p relocate p filter B compare

Network builder

— yes

Module Network



PyTorch: differentiable programming

» Software 2.0:
» The operations in a program are only partially specified

» They are trainable parameterized modules.

» The precise operations are learned from data, only the general structure
of the program is designed.

» Dynamic computational graph

» Automatic differentiation by recording a “tape” of operations and rolling it
backwards with the Jacobian of each operator.

» Implemented in PyTorchl1.0, Chainer...
» Easy If the front-end language is dynamic and interpreted (e.g Python)
» Not so easy if we want to run without a Python runtime...



ConvNets on Graphs (fixed and data-dependent)

Functional networks

3D shapes

» Graphs can represent: Natural
language, social networks, chemistry,
physics, communication networks...

Graphs/
Networks

P> Review paper: “Geometric deep learning: going
beyond euclidean data”, MM Bronstein, J Bruna, Y
LeCun, A Szlam, P Vandergheynst, IEEE Signal
Processing Magazine 34 (4), 18-42, 2017
[ArXiv:1611.08097]



Spectral ConvNets / Graph ConvNets

» Regular grid graph :
» Standard ConvNet Signal s;: Image
» Fixed irregular graph %

» Spectral ConvNet
» Dynamic irregular graph —_—
> Graph ConvNet Signal sfﬁ: fMRI

T TV T
WA YL ¥
W [

_

Signal s;, on graph G,:
Molecule with atoms

IPAM workshop: I%

Part 1:
(Standard) ’
ConvNets Classification
kit
New data
domain
Part 2:
Spectral g . _i
ConvNets & Classification
Fixed graph G
New data
Part 3: domain
Graph —
ConvNets v Classification

Variables graphs G|

http://lwww.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/



Sparse ConvNets: for sparse voxel-based 3D data

OO Q

(a) Regular sparse convolution.

» ShapeNet competition results ArXiv:1710.06104]
» Winner: Submanifold Sparse ConvNet
» [Graham & van der Maaten arXiv 1706.01307]

» PyTorch: https://github.com/facebookresearch/SparseConvNet

method mean (b) Valid sparse convolution.

! SSCN 86.00

q PdNet 85.49

| DCPN 84.32
PCNN 82.29 -nn
PtAdLoss 77.96
KDTNet 65.80
DeepPool 42.79
NN T3
[19] 54k Tk | §Biodi witia swided, a valid, and a de envolution,




Lessons learned #3

» 3.1: Dynamic networks are gaining in popularity (e.g. for NLP)
» Dynamicity breaks many assumptions of current hardware

» Can’t optimize the compute graph distribution at compile time.
» Can'’t do batching easily!

» 3.2: Large-Scale Memory-Augmented Networks...
» ...Will require efficient associative memory/nearest-neighbor search

» 3.3: Graph ConvNets are very promising for many applications
» Say goodbye to matrix multiplications?

» Say goodbye to tensors?

» 3.4: Large Neural Nets may have sparse activity
» How to exploit sparsity in hardware?



A

What About (Deep)
Reinforcement Learning?

It works great ...
...for games and virtual environments

Artificial Intelligence Research



Reinforcement Learning works fine for games

» RL works well for games

» Playing Atari games [Mnih 2013], Go
[Silver 2016, Tian 2018], Doom [Tian
2017], StarCratft...

» RL requires too many trials.

» 100 hours to reach the performance that
a human can reach in 15 minutes on
Atari games [Hessel ArXiv:1710.02298]

» RL often doesn’t really work in the real
world

» FAIR open Source go player: OpenGo
https://github.com/pytorch/elf




Pure RL is hard to use In the real world

» Pure RL requires too many
trials to learn anything
» it's OK in a game
» it's not OK in the real world

» RL works in simple virtual
world that you can run faster
than real-time on many
machines in parallel.

NJdBLORNSS

» Anything you do in the real world can kill you

» You can’t run the real world faster than real time



What are we missing to get to “real” Al?

» What we can have » What we cannot have (yet)
» Safer cars, autonomous cars » Machines with common sense
» Better medical image analysis » Intelligent personal assistants
» Personalized medicine » “Smart” chatbots”
» Adequate language translation » Household robots
» Useful but stupid chatbots » Agile and dexterous robots

» Information search, retrieval, filtering » Artificial General Intelligence

» Numerous applications in energy, (AGI)

flnance, manufacturing,
environmental protection, commerce,
law, artistic creation, games,.....



A

How do Humans
and Animal Learn?

So quickly

Artificial Intelligence Research



Babies learn how the world works by observation

» Largely by observation, with remarkably little interaction.

Photos courtesy of
Emmanuel Dupoux




Y. LeCun

Early Conceptual Acquisition in Infants [from Emmanuel Dupoux]
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M1/M2=3.6; e=0.4




A

The Future:
Self-Supervised Learning

With massive amounts of data
and very large networks

Artificial Intelligence Research



Self-Supervised Learning

vy

Predict any part of the input from any
other part.

Predict the future from the past.

Predict the future from the recent past.

Predict the past from the present.
Predict the top from the bottom.

Predict the occluded from the visible

Pretend there is a part of the input you
don’t know and predict that.

~ Past

Present

Future —




Y. LeCun

How Much Information is the Machine Given during Learning?

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

» A few bits for some samples

P> Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

P Predicting human-supplied data
» 10 - 10,000 bits per sample

P> Self-Supervised Learning (cake génoise)

» The machine predicts any part of its input for any
observed part.

» Predicts future frames in videos
» Millions of bits per sample




Y. LeCun

Self-Supervised Learning: Filling in the Blanks
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Self-Supervised Learning works well for text

Use the output of the _ 013 Lhardvark
> Wordzvec masked word’s position i?l)sélwtcjl?sﬁfosr%sg 10% Il.rlﬂprovisation
> [MikOlOV 2013] to predict the masked word
0% | Zyzzyva
;1;
FFNN + Softmax
» FastText T
. 3 ver 512
» [Joulin 2016] s ~
> BERT SerT
» Bidirectional Encoder L )
Representations fronr Randomly mask ‘ii T ? ? ? T T Ji; T_
Transformers 15% oftokens sl il B, 18 G
» [Devlin 2018] | |
Input rtT 111t 111

[CLS] Let” stick to improvisation in this kit

Figure credit: Jay Alammar http://jalammar.github.io/illustrated-bert/




Y. LeCun

But it doesn’t really work for high-dim continuous signals

» Video prediction:
» Multiple futures are possible.

» Training a system to make a single
prediction results in “blurry” results

» the average of all the possible futures

1o B A
#- EJL |1_-_-;_1

¥



Y. LeCun

The Next Al Revolution
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A

Learning Predictive Models
of the World

Learning to predict, reason, and plan,
Learning Common Sense.

Artificial Intelligence Research



Planning Requires Prediction

» To plan ahead, we simulate the world

— World <

Agent :
> World g Percepts Actions/
Simulator Outputs
Predicted Inferred .
Action
> Agent
Percepts World State Proposals g
— Actor
lAgent State
*Actor State
— Critic |, Predicted | Objective |}
Cost Cost




Training the Actor with Optimized Action Sequences

» 1. Find action sequence through optimization

» 2. Use sequence as target to train the actor
» Over time we get a compact policy that requires no run-time optimization

Agent
World World World World

Simulator Simulator Simulator Simulator

Perception /. /. /. /’.

——p! Actor |—» Actor ADI Actor —»| Actor —»

Y y y y

— (Critic —{ Critic F—»{ Critic — Critic —>
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The Hard Part: Prediction Under Uncertainty

» Invariant prediction: The training samples are merely representatives of a
whole set of possible outputs (e.g. a manifold of outputs).

X — C-’(Y/ Z) >
Percepts ?

Hidden State T

~,
-




Y. LeCun

Faces “invented” by a GAN (Generative Adversarial Network)

» Random vector - Generator Network - output image [Goodfellow NIPS 2014]
[Karras et al. ICLR 2018] (from NVIDIA)




Generative Adversarial Networks for Creation

» [Sbai 2017]
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Self-supervised Adversarial Learning for Video Prediction

» Our brains are “prediction machines”
» Can we train machines to predict the future?
» Some success with “adversarial training”

» [Mathieu, Couprie, LeCun arXiv:1511:05440]

» But we are far from a complete solutlon




Predicting Instance Segmentation Maps

» [Luc, Couprie, LeCun, Verbeek ECCV 2018]

» Mask R-CNN Feature Pyramid Network backbone
» Trained for instance segmentation on COCO

» Separate predictors for each feature level

Instance segmentation Prediction in feature space for

Mask R-CNN backbone future instance segmentation FaF
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/ Py I
¥ T 256 x 128 % 256 FaF 2
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Predictions




Y. LeCun

Long-term predictions (10 frames, 1.8 seconds)
- - -
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Using Forward Models to Plan (and to learn to drive)

» Overhead camera on
highway.
» Vehicles are tracked

» A “state” is a pixel
representation of a
rectangular window
centered around each
car.

Forward model is
trained to predict how
every car moves relative
to the central car.

» steering and acceleration |
are computed '




Forward Model Architecture

» Architecture: Encoder Decoder
= G =
= 2 layer MLP = Llaver MLP

Si41

‘ expander ‘

Latent variable predictor
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Predictions




Learning to Drive by Simulating it in your Head

Feed initial state

Sample latent variable
sequences of length 20

Run the forward model

with these sequences
Backpropagate gradient o
cost to train a policy 2.

vV VvV VYV

network.
Iterate

\4

Stochastic policy
network (optimized)

» No need for planning at
run time.



Adding an Uncertainty Cost (doesn’t work without it)

» Estimates epistemic
uncertainty

» Samples multiple drop- >ien dopow

Total Cost

puts in forward model  forwardmodel Epistemic Lane + proximity
> Computes variance Of ....... @ ..... Uncertainty cost cost

predictions - |

(differentiably) V@ :: ke,
» Train the policy network = © —* 'T o R

N T ': T -
to minimize the L L . T
lane&proximity cost plus I

the uncertainty cost.

» Avoids unpredictable
outcomes

Stochastic policy
network (optimized)




Y. LeCun

Driving an Invisible Car in “Real” Traffic




Lessons learned #4

» 4.1: Self-Supervised learning is the future
» Networks will be much larger than today, perhaps sparse

» 4.2: Reasoning/inference through minimization
» 4.3: DL hardware use cases

» A. DL R&D: 32-bit FP, high parallelism, fast inter-node communication,
flexible hardware and software.

» B. Routine training. 16-bit FP, some parallelism, moderate cost.

» C. inference In data centers: 8 or 16-bit FP, low latency, low power
consumption, standard interface.

» D. inference on embedded devices: low cost, low power, exotic number
systems?

» AR/VR, consumer items, household robots, toys, manufacturing, monitoring,...



Speculations

» Spiking Neural Nets, and neuromorphic architectures?
» I'm skeptical.....

» No spike-based NN comes close to state of the art on practical tasks
» Why build chips for algorithms that don’t work?

» Exotic technologies?
» Resistor/Memristor matrices, and other analog implementations?

» Conversion to and from digital kills us.
» No possibility of hardware multiplexing

» Spintronics?
» Optical implementations?



A

Thank you

Artificial Intelligence Research
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