
USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 583

Scaling Distributed Machine Learning with the Parameter Server

Mu Li∗‡, David G. Andersen∗, Jun Woo Park∗, Alexander J. Smola∗†, Amr Ahmed†,

Vanja Josifovski†, James Long†, Eugene J. Shekita†, Bor-Yiing Su†

∗Carnegie Mellon University ‡Baidu †Google

{muli, dga, junwoop}@cs.cmu.edu, alex@smola.org, {amra, vanjaj, jamlong, shekita, boryiingsu}@google.com

Abstract

We propose a parameter server framework for distributed

machine learning problems. Both data and workloads

are distributed over worker nodes, while the server nodes

maintain globally shared parameters, represented as dense

or sparse vectors and matrices. The framework manages

asynchronous data communication between nodes, and

supports flexible consistency models, elastic scalability,

and continuous fault tolerance.

To demonstrate the scalability of the proposed frame-

work, we show experimental results on petabytes of real

data with billions of examples and parameters on prob-

lems ranging from Sparse Logistic Regression to Latent

Dirichlet Allocation and Distributed Sketching.

1 Introduction

Distributed optimization and inference is becoming a pre-

requisite for solving large scale machine learning prob-

lems. At scale, no single machine can solve these prob-

lems sufficiently rapidly, due to the growth of data and

the resulting model complexity, often manifesting itself

in an increased number of parameters. Implementing an

efficient distributed algorithm, however, is not easy. Both

intensive computational workloads and the volume of data

communication demand careful system design.

Realistic quantities of training data can range between

1TB and 1PB. This allows one to create powerful and

complex models with 10
9 to 10

12 parameters [9]. These

models are often shared globally by all worker nodes,

which must frequently accesses the shared parameters as

they perform computation to refine it. Sharing imposes

three challenges:

• Accessing the parameters requires an enormous

amount of network bandwidth.

• Many machine learning algorithms are sequential.

The resulting barriers hurt performance when the

≈ #machine × time # of jobs failure rate

100 hours 13,187 7.8%

1, 000 hours 1,366 13.7%

10, 000 hours 77 24.7%

Table 1: Statistics of machine learning jobs for a three

month period in a data center.

cost of synchronization and machine latency is high.

• At scale, fault tolerance is critical. Learning tasks are

often performed in a cloud environment where ma-

chines can be unreliable and jobs can be preempted.

To illustrate the last point, we collected all job logs for

a three month period from one cluster at a large internet

company. We show statistics of batch machine learning

tasks serving a production environment in Table 1. Here,

task failure is mostly due to being preempted or losing

machines without necessary fault tolerance mechanisms.

Unlike in many research settings where jobs run exclu-

sively on a cluster without contention, fault tolerance is a

necessity in real world deployments.

1.1 Contributions

Since its introduction, the parameter server frame-

work [43] has proliferated in academia and industry. This

paper describes a third generation open source implemen-

tation of a parameter server that focuses on the systems

aspects of distributed inference. It confers two advan-

tages to developers: First, by factoring out commonly

required components of machine learning systems, it en-

ables application-specific code to remain concise. At the

same time, as a shared platform to target for systems-

level optimizations, it provides a robust, versatile, and

high-performance implementation capable of handling a

diverse array of algorithms from sparse logistic regression

to topic models and distributed sketching. Our design de-

584 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Shared Data Consistency Fault Tolerance

Graphlab [34] graph eventual checkpoint

Petuum [12] hash table delay bound none

REEF [10] array BSP checkpoint

Naiad [37] (key,value) multiple checkpoint

Mlbase [29] table BSP RDD

Parameter (sparse)
various continuous

Server vector/matrix

Table 2: Attributes of distributed data analysis systems.

cisions were guided by the workloads found in real sys-

tems. Our parameter server provides five key features:

Efficient communication: The asynchronous commu-

nication model does not block computation (unless re-

quested). It is optimized for machine learning tasks to

reduce network traffic and overhead.

Flexible consistency models: Relaxed consistency fur-

ther hides synchronization cost and latency. We allow the

algorithm designer to balance algorithmic convergence

rate and system efficiency. The best trade-off depends on

data, algorithm, and hardware.

Elastic Scalability: New nodes can be added without

restarting the running framework.

Fault Tolerance and Durability: Recovery from and re-

pair of non-catastrophic machine failures within 1s, with-

out interrupting computation. Vector clocks ensure well-

defined behavior after network partition and failure.

Ease of Use: The globally shared parameters are repre-

sented as (potentially sparse) vectors and matrices to facil-

itate development of machine learning applications. The

linear algebra data types come with high-performance

multi-threaded libraries.

The novelty of the proposed system lies in the synergy

achieved by picking the right systems techniques, adapt-

ing them to the machine learning algorithms, and modify-

ing the machine learning algorithms to be more systems-

friendly. In particular, we can relax a number of other-

wise hard systems constraints since the associated ma-

chine learning algorithms are quite tolerant to perturba-

tions. The consequence is the first general purpose ML

system capable of scaling to industrial scale sizes.

1.2 Engineering Challenges

When solving distributed data analysis problems, the is-

sue of reading and updating parameters shared between

different worker nodes is ubiquitous. The parameter

server framework provides an efficient mechanism for ag-

gregating and synchronizing model parameters and statis-

tics between workers. Each parameter server node main-

10
1

10
2

10
3

10
4

10
5

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

number of cores

n
u
m

b
e
r

o
f
s
h
a
re

d
 p

a
ra

m
e
te

rs

Distbelief (DNN)

VW (LR)

YahooLDA (LDA)

Graphlab (LDA)

Naiad (LR)

REEF (LR)

Petuum (Lasso)

MLbase (LR)

Parameter server (Sparse LR)

Parameter server (LDA)

Figure 1: Comparison of the public largest machine learn-

ing experiments each system performed. Problems are

color-coded as follows: Blue circles — sparse logistic re-

gression; red squares — latent variable graphical models;

grey pentagons — deep networks.

tains only a part of the parameters, and each worker node

typically requires only a subset of these parameters when

operating. Two key challenges arise in constructing a high

performance parameter server system:

Communication. While the parameters could be up-

dated as key-value pairs in a conventional datastore, us-

ing this abstraction naively is inefficient: values are typi-

cally small (floats or integers), and the overhead of send-

ing each update as a key value operation is high.

Our insight to improve this situation comes from the

observation that many learning algorithms represent pa-

rameters as structured mathematical objects, such as vec-

tors, matrices, or tensors. At each logical time (or an it-

eration), typically a part of the object is updated. That is,

workers usually send a segment of a vector, or an entire

row of the matrix. This provides an opportunity to auto-

matically batch both the communication of updates and

their processing on the parameter server, and allows the

consistency tracking to be implemented efficiently.

Fault tolerance, as noted earlier, is critical at scale, and

for efficient operation, it must not require a full restart of a

long-running computation. Live replication of parameters

between servers supports hot failover. Failover and self-

repair in turn support dynamic scaling by treating machine

removal or addition as failure or repair respectively.

Figure 1 provides an overview of the scale of the largest

supervised and unsupervised machine learning experi-

ments performed on a number of systems. When possi-

ble, we confirmed the scaling limits with the authors of

each of these systems (data current as of 4/2014). As is

evident, we are able to cover orders of magnitude more

data on orders of magnitude more processors than any

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 585

other published system. Furthermore, Table 2 provides an

overview of the main characteristics of several machine

learning systems. Our parameter server offers the greatest

degree of flexibility in terms of consistency. It is the only

system offering continuous fault tolerance. Its native data

types make it particularly friendly for data analysis.

1.3 Related Work

Related systems have been implemented at Amazon,

Baidu, Facebook, Google [13], Microsoft, and Yahoo [1].

Open source codes also exist, such as YahooLDA [1] and

Petuum [24]. Furthermore, Graphlab [34] supports pa-

rameter synchronization on a best effort model.

The first generation of such parameter servers, as in-

troduced by [43], lacked flexibility and performance — it

repurposed memcached distributed (key,value) store as

synchronization mechanism. YahooLDA improved this

design by implementing a dedicated server with user-

definable update primitives (set, get, update) and a more

principled load distribution algorithm [1]. This second

generation of application specific parameter servers can

also be found in Distbelief [13] and the synchronization

mechanism of [33]. A first step towards a general platform

was undertaken by Petuum [24]. It improves YahooLDA

with a bounded delay model while placing further con-

straints on the worker threading model. We describe a

third generation system overcoming these limitations.

Finally, it is useful to compare the parameter server

to more general-purpose distributed systems for machine

learning. Several of them mandate synchronous, itera-

tive communication. They scale well to tens of nodes,

but at large scale, this synchrony creates challenges as the

chance of a node operating slowly increases. Mahout [4],

based on Hadoop [18] and MLI [44], based on Spark [50],

both adopt the iterative MapReduce [14] framework. A

key insight of Spark and MLI is preserving state between

iterations, which is a core goal of the parameter server.

Distributed GraphLab [34] instead asynchronously

schedules communication using a graph abstraction. At

present, GraphLab lacks the elastic scalability of the

map/reduce-based frameworks, and it relies on coarse-

grained snapshots for recovery, both of which impede

scalability. Its applicability for certain algorithms is lim-

ited by its lack of global variable synchronization as an

efficient first-class primitive. In a sense, a core goal of the

parameter server framework is to capture the benefits of

GraphLab’s asynchrony without its structural limitations.

Piccolo [39] uses a strategy related to the parameter

server to share and aggregate state between machines. In

it, workres pre-aggregate state locally and transmit the up-

dates to a server keeping the aggregate state. It thus imple-

ments largely a subset of the functionality of our system,

lacking the mechane learning specailized optimizations:

message compression, replication, and variable consis-

tency models expressed via dependency graphs.

2 Machine Learning

Machine learning systems are widely used in Web search,

spam detection, recommendation systems, computational

advertising, and document analysis. These systems au-

tomatically learn models from examples, termed training

data, and typically consist of three components: feature

extraction, the objective function, and learning.

Feature extraction processes the raw training data, such

as documents, images and user query logs, to obtain fea-

ture vectors, where each feature captures an attribute of

the training data. Preprocessing can be executed effi-

ciently by existing frameworks such as MapReduce, and

is therefore outside the scope of this paper.

2.1 Goals

The goal of many machine learning algorithms can be ex-

pressed via an “objective function.” This function cap-

tures the properties of the learned model, such as low er-

ror in the case of classifying e-mails into ham and spam,

how well the data is explained in the context of estimating

topics in documents, or a concise summary of counts in

the context of sketching data.

The learning algorithm typically minimizes this objec-

tive function to obtain the model. In general, there is no

closed-form solution; instead, learning starts from an ini-

tial model. It iteratively refines this model by processing

the training data, possibly multiple times, to approach the

solution. It stops when a (near) optimal solution is found

or the model is considered to be converged.

The training data may be extremely large. For instance,

a large internet company using one year of an ad impres-

sion log [27] to train an ad click predictor would have

trillions of training examples. Each training example is

typically represented as a possibly very high-dimensional

“feature vector” [9]. Therefore, the training data may con-

sist of trillions of trillion-length feature vectors. Itera-

tively processing such large scale data requires enormous

computing and bandwidth resources. Moreover, billions

of new ad impressions may arrive daily. Adding this data

into the system often improves both prediction accuracy

and coverage. But it also requires the learning algorithm

to run daily [35], possibly in real time. Efficient execution

of these algorithms is the main focus of this paper.

586 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

To motivate the design decisions in our system, next

we briefly outline the two widely used machine learning

technologies that we will use to demonstrate the efficacy

of our parameter server. More detailed overviews can be

found in [36, 28, 42, 22, 6].

2.2 Risk Minimization

The most intuitive variant of machine learning problems

is that of risk minimization. The “risk” is, roughly, a mea-

sure of prediction error. For example, if we were to predict

tomorrow’s stock price, the risk might be the deviation be-

tween the prediction and the actual value of the stock.

The training data consists of n examples. xi is the ith

such example, and is often a vector of length d. As noted

earlier, both n and d may be on the order of billions to tril-

lions of examples and dimensions, respectively. In many

cases, each training example xi is associated with a label

yi. In ad click prediction, for example, yi might be 1 for

“clicked” or -1 for “not clicked”.

Risk minimization learns a model that can predict the

value y of a future example x. The model consists of pa-

rameters w. In the simplest example, the model param-

eters might be the “clickiness” of each feature in an ad

impression. To predict whether a new impression would

be clicked, the system might simply sum its “clickiness”

based upon the features present in the impression, namely

x⊤w :=
∑d

j=1 xjwj , and then decide based on the sign.

In any learning algorithm, there is an important re-

lationship between the amount of training data and the

model size. A more detailed model typically improves

accuracy, but only up to a point: If there is too little train-

ing data, a highly-detailed model will overfit and become

merely a system that uniquely memorizes every item in

the training set. On the other hand, a too-small model

will fail to capture interesting and relevant attributes of

the data that are important to making a correct decision.

Regularized risk minimization [48, 19] is a method to

find a model that balances model complexity and training

error. It does so by minimizing the sum of two terms:

a loss ℓ(x, y, w) representing the prediction error on the

training data and a regularizer Ω[w] penalizing the model

complexity. A good model is one with low error and low

complexity. Consequently we strive to minimize

F (w) =
n
∑

i=1

ℓ(xi, yi, w) + Ω(w). (1)

The specific loss and regularizer functions used are impor-

tant to the prediction performance of the machine learning

algorithm, but relatively unimportant for the purpose of

worker 1

�������������

�������������

��������������

��������������

g1 +... +gm

w

��������������
����������
��������������

servers

g1

w1

gm

wm

����������������
���������
���������

worker m

...2. push

training
data

4. pull

4. pull

2. push

3. update

1. compute

1. compute

Figure 2: Steps required in performing distributed subgra-

dient descent, as described e.g. in [46]. Each worker only

caches the working set of w rather than all parameters.

Algorithm 1 Distributed Subgradient Descent

Task Scheduler:

1: issue LoadData() to all workers

2: for iteration t = 0, . . . , T do

3: issue WORKERITERATE(t) to all workers.

4: end for

Worker r = 1, . . . ,m:

1: function LOADDATA()

2: load a part of training data {yik , xik}
nr

k=1

3: pull the working set w
(0)
r from servers

4: end function

5: function WORKERITERATE(t)

6: gradient g
(t)
r ←

∑nr

k=1 ∂ℓ(xik , yik , w
(t)
r)

7: push g
(t)
r to servers

8: pull w
(t+1)
r from servers

9: end function

Servers:

1: function SERVERITERATE(t)

2: aggregate g(t) ←
∑m

r=1 g
(t)
r

3: w(t+1) ← w(t) − η
(

g(t) + ∂Ω(w(t)
)

4: end function

this paper: the algorithms we present can be used with all

of the most popular loss functions and regularizers.

In Section 5.1 we use a high-performance distributed

learning algorithm to evaluate the parameter server. For

the sake of simplicity we describe a much simpler model

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 587

10
0

10
1

10
2

10
3

10
4

0.1

1

10

100

number of workers

p
a

ra
m

e
te

rs
 p

e
r

w
o

rk
e

r
(%

)

Figure 3: Each worker’s set of parameters shrinks as more

workers are used, requiring less memory per machine.

[46] called distributed subgradient descent.1

As shown in Figure 2 and Algorithm 1, the training

data is partitioned among all of the workers, which jointly

learn the parameter vector w. The algorithm operates iter-

atively. In each iteration, every worker independently uses

its own training data to determine what changes should be

made to w in order to get closer to an optimal value. Be-

cause each worker’s updates reflect only its own training

data, the system needs a mechanism to allow these up-

dates to mix. It does so by expressing the updates as a

subgradient—a direction in which the parameter vector w

should be shifted—and aggregates all subgradients before

applying them to w. These gradients are typically scaled

down, with considerable attention paid in algorithm de-

sign to the right learning rate η that should be applied in

order to ensure that the algorithm converges quickly.

The most expensive step in Algorithm 1 is computing

the subgradient to update w. This task is divided among

all of the workers, each of which execute WORKERIT-

ERATE. As part of this, workers compute w
⊤
xik , which

could be infeasible for very high-dimensional w. Fortu-

nately, a worker needs to know a coordinate of w if and

only if some of its training data references that entry.

For instance, in ad-click prediction one of the key fea-

tures are the words in the ad. If only very few advertise-

ments contain the phrase OSDI 2014, then most workers

will not generate any updates to the corresponding entry

in w, and hence do not require this entry. While the total

size of w may exceed the capacity of a single machine,

the working set of entries needed by a particular worker

can be trivially cached locally. To illustrate this, we ran-

1The unfamiliar reader could read this as gradient descent; the sub-

gradient aspect is simply a generalization to loss functions and regular-

izers that need not be continuously differentiable, such as |w| at w = 0.

domly assigned data to workers and then counted the av-

erage working set size per worker on the dataset that is

used in Section 5.1. Figure 3 shows that for 100 work-

ers, each worker only needs 7.8% of the total parameters.

With 10,000 workers this reduces to 0.15%.

2.3 Generative Models

In a second major class of machine learning algorithms,

the label to be applied to training examples is unknown.

Such settings call for unsupervised algorithms (for labeled

training data one can use supervised or semi-supervised

algorithms). They attempt to capture the underlying struc-

ture of the data. For example, a common problem in this

area is topic modeling: Given a collection of documents,

infer the topics contained in each document.

When run on, e.g., the SOSP’13 proceedings, an algo-

rithm might generate topics such as “distributed systems”,

“machine learning”, and “performance.” The algorithms

infer these topics from the content of the documents them-

selves, not an external topic list. In practical settings such

as content personalization for recommendation systems

[2], the scale of these problems is huge: hundreds of mil-

lions of users and billions of documents, making it critical

to parallelize the algorithms across large clusters.

Because of their scale and data volumes, these al-

gorithms only became commercially applicable follow-

ing the introduction of the first-generation parameter

servers [43]. A key challenge in topic models is that the

parameters describing the current estimate of how docu-

ments are supposed to be generated must be shared.

A popular topic modeling approach is Latent Dirichlet

Allocation (LDA) [7]. While the statistical model is quite

different, the resulting algorithm for learning it is very

similar to Algorithm 1.2 The key difference, however,

is that the update step is not a gradient computation, but

an estimate of how well the document can be explained

by the current model. This computation requires access

to auxiliary metadata for each document that is updated

each time a document is accessed. Because of the number

of documents, metadata is typically read from and written

back to disk whenever the document is processed.

This auxiliary data is the set of topics assigned to each

word of a document, and the parameter w being learned

consists of the relative frequency of occurrence of a word.

As before, each worker needs to store only the param-

eters for the words occurring in the documents it pro-

cesses. Hence, distributing documents across workers has

2The specific algorithm we use in the evaluation is a parallelized vari-

ant of a stochastic variational sampler [25] with an update strategy sim-

ilar to that used in YahooLDA [1].

588 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

server group
server

manager
resource

manager

task

scheduler

a worker

node

training data

a server

node

worker group

Figure 4: Architecture of a parameter server communicat-

ing with several groups of workers.

the same effect as in the previous section: we can process

much bigger models than a single worker may hold.

3 Architecture

An instance of the parameter server can run more than

one algorithm simultaneously. Parameter server nodes are

grouped into a server group and several worker groups

as shown in Figure 4. A server node in the server group

maintains a partition of the globally shared parameters.

Server nodes communicate with each other to replicate

and/or to migrate parameters for reliability and scaling. A

server manager node maintains a consistent view of the

metadata of the servers, such as node liveness and the as-

signment of parameter partitions.

Each worker group runs an application. A worker typ-

ically stores locally a portion of the training data to com-

pute local statistics such as gradients. Workers communi-

cate only with the server nodes (not among themselves),

updating and retrieving the shared parameters. There is a

scheduler node for each worker group. It assigns tasks to

workers and monitors their progress. If workers are added

or removed, it reschedules unfinished tasks.

The parameter server supports independent parameter

namespaces. This allows a worker group to isolate its set

of shared parameters from others. Several worker groups

may also share the same namespace: we may use more

than one worker group to solve the same deep learning

application [13] to increase parallelization. Another ex-

ample is that of a model being actively queried by some

nodes, such as online services consuming this model. Si-

multaneously the model is updated by a different group of

worker nodes as new training data arrives.

The parameter server is designed to simplify devel-

oping distributed machine learning applications such as

those discussed in Section 2. The shared parameters are

presented as (key,value) vectors to facilitate linear algebra

operations (Sec. 3.1). They are distributed across a group

of server nodes (Sec. 4.3). Any node can both push out its

local parameters and pull parameters from remote nodes

(Sec. 3.2). By default, workloads, or tasks, are executed

by worker nodes; however, they can also be assigned to

server nodes via user defined functions (Sec. 3.3). Tasks

are asynchronous and run in parallel (Sec. 3.4). The pa-

rameter server provides the algorithm designer with flexi-

bility in choosing a consistency model via the task depen-

dency graph (Sec. 3.5) and predicates to communicate a

subset of parameters (Sec. 3.6).

3.1 (Key,Value) Vectors

The model shared among nodes can be represented as a set

of (key, value) pairs. For example, in a loss minimization

problem, the pair is a feature ID and its weight. For LDA,

the pair is a combination of the word ID and topic ID, and

a count. Each entry of the model can be read and written

locally or remotely by its key. This (key,value) abstraction

is widely adopted by existing approaches [37, 29, 12].

Our parameter server improves upon this basic ap-

proach by acknowledging the underlying meaning of

these key value items: machine learning algorithms typ-

ically treat the model as a linear algebra object. For in-

stance, w is used as a vector for both the objective function

(1) and the optimization in Algorithm 1 by risk minimiza-

tion. By treating these objects as sparse linear algebra

objects, the parameter server can provide the same func-

tionality as the (key,value) abstraction, but admits impor-

tant optimized operations such as vector addition w + u,

multiplication Xw, finding the 2-norm ‖w‖2, and other

more sophisticated operations [16].

To support these optimizations, we assume that the

keys are ordered. This lets us treat the parameters as

(key,value) pairs while endowing them with vector and

matrix semantics, where non-existing keys are associated

with zeros. This helps with linear algebra in machine

learning. It reduces the programming effort to implement

optimization algorithms. Beyond convenience, this inter-

face design leads to efficient code by leveraging CPU-

efficient multithreaded self-tuning linear algebra libraries

such as BLAS [16], LAPACK [3], and ATLAS [49].

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 589

3.2 Range Push and Pull

Data is sent between nodes using push and pull oper-

ations. In Algorithm 1 each worker pushes its entire lo-

cal gradient into the servers, and then pulls the updated

weight back. The more advanced algorithm described

in Algorithm 3 uses the same pattern, except that only a

range of keys is communicated each time.

The parameter server optimizes these updates for

programmer convenience as well as computational and

network bandwidth efficiency by supporting range-

based push and pull. If R is a key range, then

w.push(R,dest) sends all existing entries of w in key

range R to the destination, which can be either a particular

node, or a node group such as the server group. Similarly,

w.pull(R,dest) reads all existing entries of w in key

range R from the destination. If we set R to be the whole

key range, then the whole vector w will be communicated.

If we set R to include a single key, then only an individual

entry will be sent.

This interface can be extended to communicate any lo-

cal data structures that share the same keys as w. For ex-

ample, in Algorithm 1, a worker pushes its temporary lo-

cal gradient g to the parameter server for aggregation. One

option is to make g globally shared. However, note that g

shares the keys of the worker’s working set w. Hence the

programmer can use w.push(R,g,dest) for the local

gradients to save memory and also enjoy the optimization

discussed in the following sections.

3.3 User-Defined Functions on the Server

Beyond aggregating data from workers, server nodes can

execute user-defined functions. It is beneficial because the

server nodes often have more complete or up-to-date in-

formation about the shared parameters. In Algorithm 1,

server nodes evaluate subgradients of the regularizer Ω
in order to update w. At the same time a more compli-

cated proximal operator is solved by the servers to update

the model in Algorithm 3. In the context of sketching

(Sec. 5.3), almost all operations occur on the server side.

3.4 Asynchronous Tasks and Dependency

A tasks is issued by a remote procedure call. It can be a

push or a pull that a worker issues to servers. It can

also be a user-defined function that the scheduler issues

to any node. Tasks may include any number of subtasks.

For example, the task WorkerIterate in Algorithm 1

contains one push and one pull.

Tasks are executed asynchronously: the caller can per-

form further computation immediately after issuing a task.

iter 10:

iter 11:

iter 12:

gradient

gradient

gradient

push & pull

push & pull

pu

Figure 5: Iteration 12 depends on 11, while 10 and 11 are

independent, thus allowing asynchronous processing.

The caller marks a task as finished only once it receives

the callee’s reply. A reply could be the function return

of a user-defined function, the (key,value) pairs requested

by the pull, or an empty acknowledgement. The callee

marks a task as finished only if the call of the task is re-

turned and all subtasks issued by this call are finished.

By default, callees execute tasks in parallel, for best

performance. A caller that wishes to serialize task exe-

cution can place an execute-after-finished dependency be-

tween tasks. Figure 5 depicts three example iterations of

WorkerIterate. Iterations 10 and 11 are independent,

but 12 depends on 11. The callee therefore begins itera-

tion 11 immediately after the local gradients are computed

in iteration 10. Iteration 12, however, is postponed until

the pull of 11 finishes.

Task dependencies help implement algorithm logic.

For example, the aggregation logic in ServerIterate

of Algorithm 1 updates the weight w only after all worker

gradients have been aggregated. This can be implemented

by having the updating task depend on the push tasks of

all workers. The second important use of dependencies is

to support the flexible consistency models described next.

3.5 Flexible Consistency

Independent tasks improve system efficiency via paral-

lelizing the use of CPU, disk and network bandwidth.

However, this may lead to data inconsistency between

nodes. In the diagram above, the worker r starts iteration

11 before w
(11) has been pulled back, so it uses the old

w
(10)
r in this iteration and thus obtains the same gradient

as in iteration 10, namely g
(11)
r = g

(10)
r . This inconsis-

tency potentially slows down the convergence progress of

Algorithm 1. However, some algorithms may be less sen-

sitive to this type of inconsistency. For example, only a

segment of w is updated each time in Algorithm 3. Hence,

starting iteration 11 without waiting for 10 causes only a

part of w to be inconsistent.

The best trade-off between system efficiency and algo-

rithm convergence rate usually depends on a variety of

factors, including the algorithm’s sensitivity to data incon-

sistency, feature correlation in training data, and capacity

590 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0 1 2 0 1 2 0 1 2 3

(a) Sequential (b) Eventual (c) 1 Bounded delay

4

Figure 6: Directed acyclic graphs for different consistency

models. The size of the DAG increases with the delay.

difference of hardware components. Instead of forcing the

user to adopt one particular dependency that may be ill-

suited to the problem, the parameter server gives the algo-

rithm designer flexibility in defining consistency models.

This is a substantial difference to other machine learning

systems.

We show three different models that can be imple-

mented by task dependency. Their associated directed

acyclic graphs are given in Figure 6.

Sequential In sequential consistency, all tasks are exe-

cuted one by one. The next task can be started only

if the previous one has finished. It produces results

identical to the single-thread implementation, and

also named Bulk Synchronous Processing.

Eventual Eventual consistency is the opposite: all tasks

may be started simultaneously. For instance, [43]

describes such a system. However, this is only rec-

ommendable if the underlying algorithms are robust

with regard to delays.

Bounded Delay When a maximal delay time τ is set, a

new task will be blocked until all previous tasks τ

times ago have been finished. Algorithm 3 uses such

a model. This model provides more flexible controls

than the previous two: τ = 0 is the sequential consis-

tency model, and an infinite delay τ = ∞ becomes

the eventual consistency model.

Note that the dependency graphs may be dynamic. For

instance the scheduler may increase or decrease the max-

imal delay according to the runtime progress to balance

system efficiency and convergence of the underlying op-

timization algorithm. In this case the caller traverses the

DAG. If the graph is static, the caller can send all tasks

with the DAG to the callee to reduce synchronization cost.

3.6 User-defined Filters

Complementary to a scheduler-based flow control, the

parameter server supports user-defined filters to selec-

tively synchronize individual (key,value) pairs, allowing

fine-grained control of data consistency within a task.

The insight is that the optimization algorithm itself usu-

ally possesses information on which parameters are most

Algorithm 2 Set vector clock to t for range R and node i

1: for S ∈ {Si : Si ∩R �= ∅, i = 1, . . . , n} do

2: if S ⊆ R then vci(S) ← t else

3: a ← max(Sb,Rb) and b ← min(Se,Re)
4: split range S into [Sb, a), [a, b), [b,Se)
5: vci([a, b)) ← t

6: end if

7: end for

useful for synchronization. One example is the signifi-

cantly modified filter, which only pushes entries that have

changed by more than a threshold since their last synchro-

nization. In Section 5.1, we discuss another filter named

KKT which takes advantage of the optimality condition of

the optimization problem: a worker only pushes gradients

that are likely to affect the weights on the servers.

4 Implementation

The servers store the parameters (key-value pairs) using

consistent hashing [45] (Sec. 4.3). For fault tolerance, en-

tries are replicated using chain replication [47] (Sec. 4.4).

Different from prior (key,value) systems, the parameter

server is optimized for range based communication with

compression on both data (Sec. 4.2) and range based vec-

tor clocks (Sec. 4.1).

4.1 Vector Clock

Given the potentially complex task dependency graph and

the need for fast recovery, each (key,value) pair is associ-

ated with a vector clock [30, 15], which records the time

of each individual node on this (key,value) pair. Vector

clocks are convenient, e.g., for tracking aggregation sta-

tus or rejecting doubly sent data. However, a naive im-

plementation of the vector clock requires O(nm) space

to handle n nodes and m parameters. With thousands of

nodes and billions of parameters, this is infeasible in terms

of memory and bandwidth.

Fortunately, many parameters hare the same timestamp

as a result of the range-based communication pattern of

the parameter server: If a node pushes the parameters in

a range, then the timestamps of the parameters associated

with the node are likely the same. Therefore, they can be

compressed into a single range vector clock. More specif-

ically, assume that vci(k) is the time of key k for node i.

Given a key range R, the ranged vector clock vci(R) = t

means for any key k ∈ R, vci(k) = t.

Initially, there is only one range vector clock for each

node i. It covers the entire parameter key space as its

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 591

range with 0 as its initial timestamp. Each range set may

split the range and create at most 3 new vector clocks (see

Algorithm 2). Let k be the total number of unique ranges

communicated by the algorithm, then there are at most

O(mk) vector clocks, where m is the number of nodes.

k is typically much smaller than the total number of pa-

rameters. This significantly reduces the space required for

range vector clocks.3

4.2 Messages

Nodes may send messages to individual nodes or node

groups. A message consists of a list of (key,value) pairs

in the key range R and the associated range vector clock:

[vc(R), (k1, v1), . . . , (kp, vp)] kj ∈ R and j ∈ {1, . . . p}

This is the basic communication format of the parameter

server not only for shared parameters but also for tasks.

For the latter, a (key,value) pair might assume the form

(task ID, arguments or return results).

Messages may carry a subset of all available keys

within range R. The missing keys are assigned the same

timestamp without changing their values. A message can

be split by the key range. This happens when a worker

sends a message to the whole server group, or when the

key assignment of the receiver node has changed. By do-

ing so, we partition the (key,value) lists and split the range

vector clock similar to Algorithm 2.

Because machine learning problems typically require

high bandwidth, message compression is desirable. Train-

ing data often remains unchanged between iterations. A

worker might send the same key lists again. Hence it is de-

sirable for the receiving node to cache the key lists. Later,

the sender only needs to send a hash of the list rather than

the list itself. Values, in turn, may contain many zero

entries. For example, a large portion of parameters re-

main unchanged in sparse logistic regression, as evalu-

ated in Section 5.1. Likewise, a user-defined filter may

also zero out a large fraction of the values (see Figure 12).

Hence we need only send nonzero (key,value) pairs. We

use the fast Snappy compression library [21] to compress

messages, effectively removing the zeros. Note that key-

caching and value-compression can be used jointly.

4.3 Consistent Hashing

The parameter server partitions keys much as a conven-

tional distributed hash table does [8, 41]: keys and server

3Ranges can be also merged to reduce the number of fragments.

However, in practice both m and k are small enough to be easily han-

dled. We leave merging for future work.

node IDs are both inserted into the hash ring (Figure 7).

Each server node manages the key range starting with its

insertion point to the next point by other nodes in the

counter-clockwise direction. This node is called the mas-

ter of this key range. A physical server is often repre-

sented in the ring via multiple “virtual” servers to improve

load balancing and recovery.

We simplify the management by using a direct-mapped

DHT design. The server manager handles the ring man-

agement. All other nodes cache the key partition locally.

This way they can determine directly which server is re-

sponsible for a key range, and are notified of any changes.

4.4 Replication and Consistency

Each server node stores a replica of the k counterclock-

wise neighbor key ranges relative to the one it owns. We

refer to nodes holding copies as slaves of the appropriate

key range. The above diagram shows an example with

k = 2, where server 1 replicates the key ranges owned by

server 2 and server 3.

Worker nodes communicate with the master of a key

range for both push and pull. Any modification on the

master is copied with its timestamp to the slaves. Mod-

ifications to data are pushed synchronously to the slaves.

Figure 8 shows a case where worker 1 pushes x into server

1, which invokes a user defined function f to modify the

shared data. The push task is completed only once the

data modification f(x) is copied to the slave.

Naive replication potentially increases the network traf-

fic by k times. This is undesirable for many machine

learning applications that depend on high network band-

width. The parameter server framework permits an impor-

tant optimization for many algorithms: replication after

aggregation. Server nodes often aggregate data from the

worker nodes, such as summing local gradients. Servers

may therefore postpone replication until aggregation is

complete. In the righthand side of the diagram, two work-

ers push x and y to the server, respectively. The server first

aggregates the push by x + y, then applies the modifica-

tion f(x+y), and finally performs the replication. With n
workers, replication uses only k/n bandwidth. Often k is

a small constant, while n is hundreds to thousands. While

aggregation increases the delay of the task reply, it can be

hidden by relaxed consistency conditions.

4.5 Server Management

To achieve fault tolerance and dynamic scaling we must

support addition and removal of nodes. For convenience

we refer to virtual servers below. The following steps hap-

pen when a server joins.

592 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

owned

by S1

replicated

by S1

key ring

S
1

S
3

S
1

'

S
2

S
3

'

S
2

'

S
4

S
4

'

Figure 7: Server node layout.

2: f(x+y)W
1

S
2

push: ack:

1a: x

3: f(x+y)

4

1b: y

5b

5a

W
2

S
1

2: f(x)

S
2

S
1

W
1 1: x 3: f(x)

45

Figure 8: Replica generation. Left: single worker. Right: multiple workers updating

values simultaneously.

1. The server manager assigns the new node a key range

to serve as master. This may cause another key range

to split or be removed from a terminated node.

2. The node fetches the range of data to maintains as

master and k additional ranges to keep as slave.

3. The server manager broadcasts the node changes.

The recipients of the message may shrink their own

data based on key ranges they no longer hold and to

resubmit unfinished tasks to the new node.

Fetching the data in the range R from some node S

proceeds in two stages, similar to the Ouroboros proto-

col [38]. First S pre-copies all (key,value) pairs in the

range together with the associated vector clocks. This

may cause a range vector clock to split similar to Algo-

rithm 2. If the new node fails at this stage, S remains

unchanged. At the second stage S no longer accepts mes-

sages affecting the key range R by dropping the messages

without executing and replying. At the same time, S sends

the new node all changes that occurred in R during the

pre-copy stage.

On receiving the node change message a node N first

checks if it also maintains the key range R. If true and

if this key range is no longer to be maintained by N , it

deletes all associated (key,value) pairs and vector clocks

in R. Next, N scans all outgoing messages that have not

received replies yet. If a key range intersects with R, then

the message will be split and resent.

Due to delays, failures, and lost acknowledgements N

may send messages twice. Due to the use of vector clocks

both the original recipient and the new node are able to

reject this message and it does not affect correctness.

The departure of a server node (voluntary or due to fail-

ure) is similar to a join. The server manager tasks a new

node with taking the key range of the leaving node. The

server manager detects node failure by a heartbeat sig-

nal. Integration with a cluster resource manager such as

Yarn [17] or Mesos [23] is left for future work.

4.6 Worker Management

Adding a new worker node W is similar but simpler than

adding a new server node:

1. The task scheduler assigns W a range of data.

2. This node loads the range of training data from a net-

work file system or existing workers. Training data is

often read-only, so there is no two-phase fetch. Next,

W pulls the shared parameters from servers.

3. The task scheduler broadcasts the change, possibly

causing other workers to free some training data.

When a worker departs, the task scheduler may start a

replacement. We give the algorithm designer the option

to control recovery for two reasons: If the training data

is huge, recovering a worker node be may more expen-

sive than recovering a server node. Second, losing a small

amount of training data during optimization typically af-

fects the model only a little. Hence the algorithm designer

may prefer to continue without replacing a failed worker.

It may even be desirable to terminate the slowest workers.

5 Evaluation

We evaluate our parameter server based on the use cases

of Section 2 — Sparse Logistic Regression and Latent

Dirichlet Allocation. We also show results of sketching

to illustrate the generality of our framework. The experi-

ments were run on clusters in two (different) large inter-

net companies and a university research cluster to demon-

strate the versatility of our approach.

5.1 Sparse Logistic Regression

Problem and Data: Sparse logistic regression is one

of the most popular algorithms for large scale risk min-

imization [9]. It combines the logistic loss4 with the ℓ1

4ℓ(xi, yi, w) = log(1 + exp(−yi〈xi, w〉))

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 593

Algorithm 3 Delayed Block Proximal Gradient [31]

Scheduler:

1: Partition features into b ranges R1, . . . ,Rb

2: for t = 0 to T do

3: Pick random range Rit
and issue task to workers

4: end for

Worker r at iteration t

1: Wait until all iterations before t− τ are finished

2: Compute first-order gradient g
(t)
r and diagonal

second-order gradient u
(t)
r on range Rit

3: Push g
(t)
r and u

(t)
r to servers with the KKT filter

4: Pull w
(t+1)
r from servers

Servers at iteration t

1: Aggregate gradients to obtain g(t) and u(t)

2: Solve the proximal operator

w(t+1) ← argmin
u

Ω(u) +
1

2η
‖w(t) − ηg(t) + u‖2

H
,

where H = diag(h(t)) and ‖x‖2
H

= xTHx

Method Consistency LOC

System A L-BFGS Sequential 10,000

System B Block PG Sequential 30,000

Parameter
Block PG

Bounded Delay
300

Server KKT Filter

Table 3: Systems evaluated.

regularizer5 of Section 2.2. The latter biases a compact

solution with a large portion of 0 value entries. The non-

smoothness of this regularizer, however, makes learning

more difficult.

We collected an ad click prediction dataset with 170 bil-

lion examples and 65 billion unique features. This dataset

is 636 TB uncompressed (141 TB compressed). We ran

the parameter server on 1000 machines, each with 16

physical cores, 192GB DRAM, and connected by 10 Gb

Ethernet. 800 machines acted as workers, and 200 were

parameter servers. The cluster was in concurrent use by

other (unrelated) tasks during operation.

Algorithm: We used a state-of-the-art distributed re-

gression algorithm (Algorithm 3, [31, 32]). It differs from

the simpler variant described earlier in four ways: First,

only a block of parameters is updated in an iteration. Sec-

ond, the workers compute both gradients and the diagonal

part of the second derivative on this block. Third, the pa-

rameter servers themselves must perform complex com-

5Ω(w) =
∑

n

i=1
|wi|

10
−1

10
0

10
1

10
10.6

10
10.7

time (hours)

o
b

je
c
ti
v
e

 v
a

lu
e

System−A
System−B
Parameter Server

Figure 9: Convergence of sparse logistic regression. The

goal is to minimize the objective rapidly.

System−A System−B Parameter Server
0

1

2

3

4

5

ti
m

e
 (

h
o

u
rs

)

computing
waiting

Figure 10: Time per worker spent on computation and

waiting during sparse logistic regression.

putation: the servers update the model by solving a prox-

imal operator based on the aggregated local gradients.

Fourth, we use a bounded-delay model over iterations and

use a “KKT” filter to suppress transmission of parts of the

generated gradient update that are small enough that their

effect is likely to be negligible.6

To the best of our knowledge, no open source system

can scale sparse logistic regression to the scale described

in this paper.7 We compare the parameter server with two

special-purpose systems, named System A and B, devel-

6A user-defined Karush-Kuhn-Tucker (KKT) filter [26]. Feature k is

filtered if wk = 0 and |ĝk| ≤ ∆. Here ĝk is an estimate of the global

gradient based on the worker’s local information and ∆ > 0 is a user-

defined parameter.
7Graphlab provides only a multi-threaded, single machine imple-

mentation, while Petuum, Mlbase and REEF do not support sparse lo-

gistic regression. We confirmed this with the authors as per 4/2014.

594 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

oped by a large internet company.

Notably, both Systems A and B consist of more than

10K lines of code. The parameter server only requires

300 lines of code for the same functionality as System

B.8 The parameter server successfully moves most of the

system complexity from the algorithmic implementation

into a reusable generalized component.

Results: We first compare these three systems by run-

ning them to reach the same objective value. A better

system achieves a lower objective in less time. Figure 9

shows the results: System B outperforms system A be-

cause it uses a better algorithm. The parameter server, in

turn, outperforms System B while using the same algo-

rithm. It does so because of the efficacy of reducing the

network traffic and the relaxed consistency model.

Figure 10 shows that the relaxed consistency model

substantially increases worker node utilization. Workers

can begin processing the next block without waiting for

the previous one to finish, hiding the delay otherwise im-

posed by barrier synchronization. Workers in System A

are 32% idle, and in system B, they are 53% idle, while

waiting for the barrier in each block. The parameter server

reduces this cost to under 2%. This is not entirely free:

the parameter server uses slightly more CPU than System

B for two reasons. First, and less fundamentally, System

B optimizes its gradient calculations by careful data pre-

processing. Second, asynchronous updates with the pa-

rameter server require more iterations to achieve the same

objective value. Due to the significantly reduced commu-

nication cost, the parameter server halves the total time.

Next we evaluate the reduction of network traffic by

each system components. Figure 11 shows the results for

servers and workers. As can be seen, allowing the senders

and receivers to cache the keys can save near 50% traffic.

This is because both key (int64) and value (double)

are of the same size, and the key set is not changed during

optimization. In addition, data compression is effective

for compressing the values for both servers (>20x) and

workers when applying the KKT filter (>6x). The reason

is twofold. First, the ℓ1 regularizer encourages a sparse

model (w), so that most of values pulled from servers are

0. Second, the KKT filter forces a large portion of gra-

dients sending to servers to be 0. This can be seen more

clearly in Figure 12, which shows that more than 93%

unique features are filtered by the KKT filter.

Finally, we analyze the bounded delay consistency

model. The time decomposition of workers to achieve

the same convergence criteria under different maximum

allowed delay (τ) is shown in Figure 13. As expected, the

8System B was developed by an author of this paper.

waiting time decreases when the allowed delay increases.

Workers are 50% idle when using the sequential consis-

tency model (τ = 0), while the idle rate is reduced to

1.7% when τ is set to be 16. However, the computing time

increases nearly linearly with τ . Because the data incon-

sistency slows convergence, more iterations are needed to

achieve the same convergence criteria. As a result, τ = 8

is the best trade-off between algorithm convergence and

system performance.

5.2 Latent Dirichlet Allocation

Problem and Data: To demonstrate the versatility of

our approach, we applied the same parameter server ar-

chitecture to the problem of modeling user interests based

upon which domains appear in the URLs they click on in

search results. We collected search log data containing 5

billion unique user identifiers and evaluated the model for

the 5 million most frequently clicked domains in the re-

sult set. We ran the algorithm using 800 workers and 200

servers and 5000 workers and 1000 servers respectively.

The machines had 10 physical cores, 128GB DRAM, and

at least 10 Gb/s of network connectivity. We again shared

the cluster with production jobs running concurrently.

Algorithm: We performed LDA using a combination

of Stochastic Variational Methods [25], Collapsed Gibbs

sampling [20] and distributed gradient descent. Here, gra-

dients are aggregated asynchronously as they arrive from

workers, along the lines of [1].

We divided the parameters in the model into local

and global parameters. The local parameters (i.e. auxil-

iary metadata) are pertinent to a given user and they are

streamed the from disk whenever we access a given user.

The global parameters are shared among users and they

are represented as (key,value) pairs to be stored using the

parameter server. User data is sharded over workers. Each

of them runs a set of computation threads to perform in-

ference over its assigned users. We synchronize asyn-

chronously to send and receive local updates to the server

and receive new values of the global parameters.

To our knowledge, no other system (e.g., YahooLDA,

Graphlab or Petuum) can handle this amount of data and

model complexity for LDA, using up to 10 billion (5

million tokens and 2000 topics) shared parameters. The

largest previously reported experiments [2] had under 100

million users active at any time, less than 100,000 tokens

and under 1000 topics (2% the data, 1% the parameters).

Results: To evaluate the quality of the inference algo-

rithm we monitor how rapidly the training log-likelihood

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 595

baseline +caching keys +KKT filter
0

20

40

60

80

100

re
la

ti
v
e
 n

e
tw

o
rk

 t
ra

ff
ic

 (
%

)

2x 2x2x

40.8x 40.3x

non−compressed

compressed

baseline +caching keys +KKT filter
0

20

40

60

80

100

re
la

ti
v
e
 n

e
tw

o
rk

 t
ra

ff
ic

 (
%

)

1.9x 1.9x

1.1x

2.5x

12.3x

non−compressed

compressed

Figure 11: The savings of outgoing network traffic by different components. Left: per server. Right: per worker.

0 0.5 1
94.5

95

95.5

96

96.5

97

97.5

time (hours)

fi
lt
e

re
d

 (
%

)

Figure 12: Unique features (keys) filtered by the

KKT filter as optimization proceeds.

0 1 2 4 8 16
0

0.5

1

1.5

2

ti
m

e
 (

h
o

u
rs

)

maximal delays

computing

waiting

Figure 13: Time a worker spent to achieve the same

convergence criteria by different maximal delays.

(measuring goodness of fit) converges. As can be seen

in Figure 14, we observe an approximately 4x speedup

in convergence when increasing the number of machines

from 1000 to 6000. The stragglers observed in Figure 14

(leftmost) also illustrate the importance of having an ar-

chitecture that can cope with performance variation across

workers.

Topic name # Top urls

Programming
stackoverflow.com w3schools.com cplusplus.com github.com tutorials-

point.com jquery.com codeproject.com oracle.com qt-project.org bytes.com

android.com mysql.com

Music
ultimate-guitar.com guitaretab.com 911tabs.com e-chords.com song-

sterr.com chordify.net musicnotes.com ukulele-tabs.com

Baby Related
babycenter.com whattoexpect.com babycentre.co.uk circleofmoms.com

thebump.com parents.com momtastic.com parenting.com americanpreg-

nancy.org kidshealth.org

Strength Train-
ing

bodybuilding.com muscleandfitness.com mensfitness.com menshealth.com

t-nation.com livestrong.com muscleandstrength.com myfitnesspal.com elit-

efitness.com crossfit.com steroid.com gnc.com askmen.com

Table 4: Example topics learned using LDA over the .5

billion dataset. Each topic represents a user interest

5.3 Sketches

Problem and Data: We include sketches as part of our

evaluation as a test of generality, because they operate

very differently from machine learning algorithms. They

typically observe a large number of writes of events com-

ing from a streaming data source [11, 5].

We evaluate the time required to insert a streaming log

of pageviews into an approximate structure that can effi-

ciently track pageview counts for a large collection of web

pages. We use the Wikipedia (and other Wiki projects)

page view statistics as benchmark. Each entry is an unique

key of a webpage with the corresponding number of re-

quests served in a hour. From 12/2007 to 1/2014, there

are 300 billion entries for more than 100 million unique

keys. We run the parameter server with 90 virtual server

nodes on 15 machines of a research cluster [40] (each has

596 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 14: Left: Distribution over worker log-likelihoods as a function of time for 1000 machines and 5 billion users.

Some of the low values are due to stragglers synchronizing slowly initially. Middle: the same distribution, stratified

by the number of iterations. Right: convergence (time in 1000s) using 1000 and 6000 machines on 500M users.

Algorithm 4 CountMin Sketch

Init: M [i, j] = 0 for i ∈ {1, . . . n} and j ∈ {1, . . . k}.

Insert(x)

1: for i = 1 to k do

2: M [i, hash(i, x)] ← M [i, hash(i, x)] + 1

Query(x)

1: return min {M [i, hash(i, x)] for 1 ≤ i ≤ k}

64 cores and is connected by a 40Gb Ethernet).

Algorithm: Sketching algorithms efficiently store sum-

maries of huge volumes of data so that approximate

queries can be quickly answered. These algorithms are

particularly important in streaming applications where

data and queries arrive in real-time. Some of the highest-

volume applications involve examples such as Cloud-

flare’s DDoS-prevention service, which must analyze

page requests across its entire content delivery service ar-

chitecture to identify likely DDoS targets and attackers.

The volume of data logged in such applications consid-

erably exceeds the capacity of a single machine. While

a conventional approach might be to shard a workload

across a key-value cluster such as Redis, these systems

typically do not allow the user-defined aggregation se-

mantics needed to implement approximate aggregation.

Algorithm 4 gives a brief overview of the CountMin

sketch [11]. By design, the result of a query is an up-

per bound on the number of observed keys x. Splitting

keys into ranges automatically allows us to parallelize the

sketch. Unlike the two previous applications, the workers

simply dispatch updates to the appropriate servers.

Results: The system achieves very high insert rates,

which are shown in Table 5. It performs well for two rea-

sons: First, bulk communication reduces the communica-

tion cost. Second, message compression reduces the aver-

Peak inserts per second 1.3 billion

Average inserts per second 1.1 billion

Peak net bandwidth per machine 4.37 GBit/s

Time to recover a failed node 0.8 second

Table 5: Results of distributed CountMin

age (key,value) size to around 50 bits. Importantly, when

we terminated a server node during the insertion, the pa-

rameter server was able to recover the failed node within

1 second, making our system well equipped for realtime.

6 Summary and Discussion

We described a parameter server framework to solve dis-

tributed machine learning problems. This framework is

easy to use: Globally shared parameters can be used as

local sparse vectors or matrices to perform linear algebra

operations with local training data. It is efficient: All com-

munication is asynchronous. Flexible consistentcy mod-

els are supported to balance the trade-off between system

efficiency and fast algorithm convergence rate. Further-

more, it provides elastic scalability and fault tolerance,

aiming for stable long term deployment. Finally, we show

experiments for several challenging tasks on real datasets

with billions of variables to demonstrate its efficiency. We

believe that this third generation parameter server is an

important building block for scalable machine learning.

The codes are available at parameterserver.org.

Acknowledgments: This work was supported in part by

gifts and/or machine time from Google, Amazon, Baidu,

PRObE, and Microsoft; by NSF award 1409802; and by

the Intel Science and Technology Center for Cloud Com-

puting. We are grateful to our reviewers and colleagues

for their comments on earlier versions of this paper.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 597

References

[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and

A. J. Smola. Scalable inference in latent variable models.

In Proceedings of The 5th ACM International Conference

on Web Search and Data Mining (WSDM), 2012.

[2] A. Ahmed, Y. Low, M. Aly, V. Josifovski, and A. J.

Smola. Scalable inference of dynamic user interests for

behavioural targeting. In Knowledge Discovery and Data

Mining, 2011.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,

S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.

SIAM, Philadelphia, second edition, 1995.

[4] Apache Foundation. Mahout project, 2012. http://

mahout.apache.org.

[5] R. Berinde, G. Cormode, P. Indyk, and M.J. Strauss.

Space-optimal heavy hitters with strong error bounds. In

J. Paredaens and J. Su, editors, Proceedings of the Twenty-

Eigth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, PODS, pages 157–166.

ACM, 2009.

[6] C. Bishop. Pattern Recognition and Machine Learning.

Springer, 2006.

[7] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet alloca-

tion. Journal of Machine Learning Research, 3:993–1022,

January 2003.

[8] J. Byers, J. Considine, and M. Mitzenmacher. Simple load

balancing for distributed hash tables. In Peer-to-peer sys-

tems II, pages 80–87. Springer, 2003.

[9] K. Canini. Sibyl: A system for large scale supervised ma-

chine learning. Technical Talk, 2012.

[10] B.-G. Chun, T. Condie, C. Curino, C. Douglas, S. Matu-

sevych, B. Myers, S. Narayanamurthy, R. Ramakrishnan,

S. Rao, J. Rosen, R. Sears, and M. Weimer. Reef: Retain-

able evaluator execution framework. Proceedings of the

VLDB Endowment, 6(12):1370–1373, 2013.

[11] G. Cormode and S. Muthukrishnan. Summarizing and

mining skewed data streams. In SDM, 2005.

[12] W. Dai, J. Wei, X. Zheng, J. K. Kim, S. Lee, J. Yin,

Q. Ho, and E. P. Xing. Petuum: A framework

for iterative-convergent distributed ml. arXiv preprint

arXiv:1312.7651, 2013.

[13] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,

M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and

A. Ng. Large scale distributed deep networks. In Neural

Information Processing Systems, 2012.

[14] J. Dean and S. Ghemawat. MapReduce: simplified data

processing on large clusters. CACM, 51(1):107–113, 2008.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: Amazon’s highly available key-

value store. In T. C. Bressoud and M. F. Kaashoek, editors,

Symposium on Operating Systems Principles, pages 205–

220. ACM, 2007.

[16] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Han-

son. An extended set of fortran basic linear algebra sub-

programs. ACM Transactions on Mathematical Software,

14:18–32, 1988.

[17] The Apache Software Foundation. Apache hadoop

nextgen mapreduce (yarn). http://hadoop.

apache.org/.

[18] The Apache Software Foundation. Apache hadoop, 2009.

http://hadoop.apache.org/core/.

[19] F. Girosi, M. Jones, and T. Poggio. Priors, stabilizers and

basis functions: From regularization to radial, tensor and

additive splines. A.I. Memo 1430, Artificial Intelligence

Laboratory, Massachusetts Institute of Technology, 1993.

[20] T.L. Griffiths and M. Steyvers. Finding scientific top-

ics. Proceedings of the National Academy of Sciences,

101:5228–5235, 2004.

[21] S. H. Gunderson. Snappy: A fast compressor/decompres-

sor. https://code.google.com/p/snappy/.

[22] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of

Statistical Learning. Springer, New York, 2 edition, 2009.

[23] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,

A. D. Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A

platform for fine-grained resource sharing in the data cen-

ter. In Proceedings of the 8th USENIX conference on Net-

worked systems design and implementation, pages 22–22,

2011.

[24] Q. Ho, J. Cipar, H. Cui, S. Lee, J. Kim, P. Gibbons, G. Gib-

son, G. Ganger, and E. Xing. More effective distributed ml

via a stale synchronous parallel parameter server. In NIPS,

2013.

[25] M. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochas-

tic variational inference. In International Conference on

Machine Learning, 2012.

[26] W. Karush. Minima of functions of several variables with

inequalities as side constraints. Master’s thesis, Dept. of

Mathematics, Univ. of Chicago, 1939.

[27] L. Kim. How many ads does Google serve in a day?, 2012.

http://goo.gl/oIidXO.

[28] D. Koller and N. Friedman. Probabilistic Graphical Mod-

els: Principles and Techniques. MIT Press, 2009.

[29] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith,

M. J. Franklin, and M. I. Jordan. Mlbase: A distributed

machine-learning system. In CIDR, 2013.

[30] L. Lamport. Paxos made simple. ACM Sigact News,

32(4):18–25, 2001.

[31] M. Li, D. G. Andersen, and A. J. Smola. Distributed de-

layed proximal gradient methods. In NIPS Workshop on

Optimization for Machine Learning, 2013.

598 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[32] M. Li, D. G. Andersen, and A. J. Smola. Communication

Efficient Distributed Machine Learning with the Parameter

Server. In Neural Information Processing Systems, 2014.

[33] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D.G. Andersen,

and A. J. Smola. Parameter server for distributed machine

learning. In Big Learning NIPS Workshop, 2013.

[34] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,

and J. M. Hellerstein. Distributed Graphlab: A frame-

work for machine learning and data mining in the cloud.

In PVLDB, 2012.

[35] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner,

J. Grady, L. Nie, T. Phillips, E. Davydov, and D. Golovin.

Ad click prediction: a view from the trenches. In KDD,

2013.

[36] K. P. Murphy. Machine learning: a probabilistic perspec-

tive. MIT Press, 2012.

[37] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,

and M. Abadi. Naiad: a timely dataflow system. In Pro-

ceedings of the Twenty-Fourth ACM Symposium on Oper-

ating Systems Principles, pages 439–455. ACM, 2013.

[38] A. Phanishayee, D. G. Andersen, H. Pucha, A. Povzner,

and W. Belluomini. Flex-KV: Enabling high-performance

and flexible KV systems. In Proceedings of the 2012 work-

shop on Management of big data systems, pages 19–24.

ACM, 2012.

[39] R. Power and J. Li. Piccolo: Building fast, distributed pro-

grams with partitioned tables. In R. H. Arpaci-Dusseau and

B. Chen, editors, Operating Systems Design and Imple-

mentation, OSDI, pages 293–306. USENIX Association,

2010.

[40] PRObE Project. Parallel Reconfigurable Observational En-

vironment. https://www.nmc-probe.org/wiki/

Machines:Susitna,

[41] A. Rowstron and P. Druschel. Pastry: Scalable, decen-

tralized object location and routing for large-scale peer-to-

peer systems. In IFIP/ACM International Conference on

Distributed Systems Platforms (Middleware), pages 329–

350, Heidelberg, Germany, November 2001.

[42] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT

Press, Cambridge, MA, 2002.

[43] A. J. Smola and S. Narayanamurthy. An architecture for

parallel topic models. In Very Large Databases (VLDB),

2010.

[44] E. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan,

J. Gonzalez, M. J. Franklin, M. I. Jordan, and T. Kraska.

Mli: An api for distributed machine learning. 2013.

[45] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup

service for internet applications. ACM SIGCOMM Com-

puter Communication Review, 31(4):149–160, 2001.

[46] C.H. Teo, Q. Le, A. J. Smola, and S. V. N. Vishwanathan.

A scalable modular convex solver for regularized risk min-

imization. In Proc. ACM Conf. Knowledge Discovery and

Data Mining (KDD). ACM, 2007.

[47] R. van Renesse and F. B. Schneider. Chain replication for

supporting high throughput and availability. In OSDI, vol-

ume 4, pages 91–104, 2004.

[48] V. Vapnik. The Nature of Statistical Learning Theory.

Springer, New York, 1995.

[49] R.C. Whaley, A. Petitet, and J.J. Dongarra. Automated

empirical optimization of software and the ATLAS project.

Parallel Computing, 27(1–2):3–35, 2001.

[50] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. M. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.

Fast and interactive analytics over Hadoop data with Spark.

USENIX ;login:, 37(4):45–51, August 2012.

