
A Unified Architecture for Accelerating Distributed DNN Training in

Heterogeneous GPU/CPU Clusters

Yimin Jiang⇤†, Yibo Zhu†, Chang Lan‡, Bairen Yi†, Yong Cui⇤, Chuanxiong Guo†

⇤Tsinghua University, †ByteDance, ‡Google

Abstract

Data center clusters that run DNN training jobs are inher-

ently heterogeneous. They have GPUs and CPUs for computa-

tion and network bandwidth for distributed training. However,

existing distributed DNN training architectures, all-reduce

and Parameter Server (PS), cannot fully utilize such heteroge-

neous resources. In this paper, we present a new distributed

DNN training architecture called BytePS. BytePS can lever-

age spare CPU and bandwidth resources in the cluster to

accelerate distributed DNN training tasks running on GPUs.

It provides a communication framework that is both proved

optimal and unified – existing all-reduce and PS become two

special cases of BytePS. To achieve the proved optimality in

practice, BytePS further splits the functionalities of a parame-

ter optimizer. It introduces a Summation Service abstraction

for aggregating gradients, which is common for all the op-

timizers. Summation Service can be accelerated by AVX

instructions and can be efficiently run on CPUs, while DNN

model-related optimizer algorithms are run on GPUs for com-

putation acceleration. BytePS can accelerate DNN training

for major frameworks including TensorFlow, PyTorch and

MXNet. For representative DNN training jobs with up to 256

GPUs, BytePS outperforms the state-of-the-art open source

all-reduce and PS by up to 84% and 245%, respectively.

1 Introduction

In recent years, research on Deep Neural Networks (DNNs)

has experienced a renaissance. DNNs have brought break-

throughs to computer vision [32, 43], speech recognition and

synthesis [33, 69], natural language processing (NLP) [26],

and many other areas. Training these DNN models usually

requires a huge amount of arithmetic computation resources.

Consequently, GPUs are preferred. To run many such tasks

and achieve high resource utilization, large GPU clusters with

thousands or more GPUs are introduced [29, 35, 52, 71].

Such GPU clusters have not only GPUs, but also CPUs and

high speed networks. GPU machines typically also have high-

end CPUs [2, 11]. There may also be CPU-only machines

used for training data pre-processing and generation, e.g.,

in reinforcement learning. These GPU/CPU machines are

connected by high-speed Ethernet or Infiniband network to

facilitate distributed training. Based on our experience in

operating production GPU clusters (§3.1) and recent literature

from others [35], GPUs are usually better utilized while there

are often spare CPU and bandwidth resources.

There are two major families of distributed training archi-

tectures, all-reduce [54] and Parameter Server (PS) [44]. They

are both based on data parallelism (§2). In a task that uses

all-reduce, only GPU machines are involved. In an iteration,

GPUs compute the gradients of the model parameters inde-

pendently, and then aggregate gradients using the all-reduce

primitive. In PS tasks, both GPU machines and CPU machines

can be used. Different from all-reduce, the gradients are sent

to PS, which typically runs on CPU machines and aggregates

the received gradients. PS then runs certain DNN training

optimizer, e.g., SGD [76] or Adam [42] and sends back the

updated model. For both all-reduce and PS, the above happens

in every iteration, until the training finishes.

All-reduce and PS are quite different, in both theory and

practice. Given a set of GPU machines without additional

CPU machines, all-reduce is proved to be bandwidth opti-

mal [54]. However, with additional CPU and bandwidth re-

sources, the optimality of all-reduce no longer holds – we

find that, in theory, PS can offer even better performance by

utilizing additional CPU machines to aid the GPU machines

(§2). It seems to be a good opportunity to accelerate DNN

training because GPU clusters indeed have spare CPU and

bandwidth resources (§3.1). Unfortunately, in practice, all

the existing PS have inferior performance for multiple design

reasons, as we shall see soon in this paper. It is therefore not

a surprise to see that distributed DNN training speed records

are dominated by all-reduce [27, 49, 73].

We are thus motivated to design BytePS 1, an architecture

that is communication-optimal, both in theory and in practice.

Fundamentally, both all-reduce and PS are theoretically op-

timal only in very specific GPU/CPU setups, while are not

1The name BytePS was chosen in the early stage of this project [4]. However,

it is conceptually different from the conventional PS architecture.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 463

the optimal for more generic settings, e.g., there are some fi-

nite additional CPU resources. By carefully allocating traffic

loads, BytePS unifies the cases where PS or all-reduce is the-

oretically optimal, and generalizes the optimality to any given

number of GPU/CPU machines with different PCIe/NVLink

configurations, with analytical proofs.

On top of that, BytePS pushes its real-world performance

close to the theoretical limit, by removing bottlenecks in exist-

ing PS designs. With fast high-speed networks, we found that

CPUs are not fast enough for the full fledged DNN optimiz-

ers. We introduce a new abstraction, Summation Service, to

address this issue. We split an optimizer into gradient aggre-

gation and parameter update. We keep gradient aggregation

in Summation Service running on CPUs and move param-

eter update, which is more computation intensive, to GPUs.

In addition, in implementation, we incorporated the idea of

pipelining and priority-scheduling from prior work [34, 55]

and resolved multiple RDMA-related performance issues.

As a drop-in replacement for all-reduce and PS, BytePS

aims to accelerate distributed training without changing the

DNN algorithm or its accuracy at all. Prior work on top of all-

reduce and PS, like tensor compression [21, 45], can directly

apply to BytePS. Our BytePS implementation supports pop-

ular DNN training frameworks including TensorFlow [20],

PyTorch [53], and MXNet [22] with Horovod-like [60] API

and native APIs.

This paper makes the following contributions:

• We design a new distributed DNN training architecture,

BytePS, for heterogeneous GPU/CPU clusters. With spare

CPU cores and network bandwidth in the cluster, BytePS

can achieve communication optimality 2 for DNN training

acceleration. BytePS provides a unified framework which

includes both all-reduce and PS as two special cases.

• We further optimize the intra-machine communication. We

explain the diverse and complicated topology in GPU ma-

chines and present the optimal strategy and principles.

• We propose Summation Service, which accelerates DNN

optimizers by keeping gradient summation running in

CPUs, and moving parameter update, which is the more

computation intensive, to GPUs. This removes the CPU

bottleneck in the original PS design.

As a major online service provider, we have deployed

BytePS internally and used it extensively for DNN training.

We evaluate BytePS using six DNN models and three training

frameworks in production data centers. The results show that

with 256 GPUs, BytePS consistently outperform existing all-

reduce and PS solutions by up to 84% and 245%, respectively.

We also released an open source version [4], which attracted

interests from thousands in the open source community, sev-

eral top-tier companies and multiple research groups.
2The optimality means to achieve minimized communication time for data-

parallel distributed DNN training, given a fixed number of GPUs.

2 Background

2.1 Distributed DNN Training

A DNN model consists of many parameters. DNN training

involves three major steps: (1) forward propagation (FP),

which takes in a batch of training data, propagates it through

the DNN model, and calculates the loss function; (2) back-

ward propagation (BP), which uses the loss value to compute

the gradients of each parameter; (3) parameter update, which

uses the aggregated gradients to update the parameters with a

certain optimizer (e.g., SGD [76], Adam [42], etc.). Training

a DNN refines the model parameters with the above three

steps iteratively, until the loss function reaches its minimal.

On top of it, users can optionally run distributed train-

ing. The most popular distributed DNN training approach

is data parallelism, which partitions the dataset to multiple

distributed computing devices (typically GPUs) while each

GPU holds the complete DNN model. Since the data input

to each GPU is different, the gradients generated by BP will

also be different. Thus data parallelism demands all GPUs to

synchronize during each training iteration.

In large enterprises or in public clouds, users often run

these DNN training tasks in shared GPU clusters. Such clus-

ters are built with hundreds to thousands of GPU machines

connected by high-speed RDMA networks [35, 52]. Those

GPU machines typically have multiple GPUs, tens of CPU

cores, hundreds of GB of DRAM, and one to several 100Gb/s

NICs. These clusters run many training jobs simultaneously,

with many jobs using GPUs intensively while not using CPUs

heavily. A public dataset on a DNN cluster [35] indicates that

50% of hosts have CPU utilization lower than 30%.

For distributed training, there are two families of data paral-

lelism approaches, i.e., all-reduce and Parameter Server (PS).

In what follows, we introduce all-reduce and PS and analyze

their communication overheads. We assume that we have

n GPU machines for a data-parallel training job. The DNN

model size is M bytes. The network bandwidth is B.

2.2 All-reduce

Originated from the HPC community, all-reduce aggregates

every GPU’s gradients in a collective manner before GPUs

update their own parameters locally. In all-reduce, no addi-

tional CPU machine is involved. Ring is the most popular

all-reduce algorithm. All-reduce has been optimized for many

years, and most state-of-the-art training speed records are

achieved using all-reduce, including classical CNN-based Im-

ageNet tasks [27, 36, 49, 73], RNN-based language modeling

tasks [56], and the pre-training of BERT [26, 74].

Fig. 1 shows an example of ring-based all-reduce for three

nodes. We can dissect an all-reduce operation into a reduce-

scatter and an all-gather. Reduce-scatter (Fig. 1(a)) partitions

the whole M bytes into n parts, and use n rings with different

starting and ending point to reduce the n parts, respectively.

Each node will send (n�1)M/n traffic, because each node

464 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

acts as the last node for just 1 ring and thus sends 0, while for

each of the other n�1 rings, it must send M/n bytes.

Next, all-gather requires each node to broadcast its reduced

part to all other (n�1) nodes using a ring. In the end, all nodes

have identical data that have been all-reduced (Fig. 1(c)).

Similar to reduce-scatter, each node also sends (n�1)M/n

egress traffic during this operation.

Adding the two steps together, in an all-reduce operation,

each node sends (and receives) 2(n� 1)M/n traffic to (and

from) the network. With B network bandwidth, the time re-

quired is 2(n�1)M/nB, which is proved to be the optimal in

topologies with uniformed link bandwidth [54], assuming no

additional resources.

In hierarchical topologies with non-uniformed link band-

width, the optimal hierarchical strategy would require at least

2(n0�1)M/n0B0 communication time, where B0 is the slowest

link bandwidth and n0 is the number of nodes with the slowest

links. In distributed DNN training, n0 is usually the number of

GPU machines and B0 is usually the network bandwidth per

machine. For simplicity and without impacting our analysis,

below we assume each machine has just one GPU and is con-

nected by the same network bandwidth, i.e., n = n0,B = B0.

All-reduce has no way to utilize additional non-worker

nodes, since it was designed for homogeneous setup. Next,

we will show that the 2(n�1)M/nB communication time is

no longer optimal with additional CPU machines.

2.3 Parameter Server (PS)

The PS architecture [44] contains two roles: workers and PS.

Workers usually run on GPU machines, perform FP and BP,

and push the gradients to PS. PS aggregates the gradients

from different workers and update the parameters. Finally,

workers pull the latest parameters from PS and start the next

iteration. According to our experience in industry, the PS

processes usually run on CPUs because of cost-effectiveness.

Since GPUs (and GPU memory) are much more expensive

than CPUs,3 we want GPUs to focus on the most computation-

intensive tasks instead of storing the model parameters.

There are two placement strategies for PS. One is non-

colocated mode (Fig. 2(a)), in which PS processes are de-

ployed on dedicated CPU machines, separate from the GPU

machines. Suppose that we have k CPU machines,4 the DNN

model will be partitioned into k parts and stored on the k ma-

chines, respectively. In every iteration, each GPU worker must

send M bytes gradients and receives M bytes parameters back.

Each CPU machine must receive in total nM/k gradients from

the GPU workers and send back nM/k parameters.

3AWS price sheet [18] shows that p3.16xlarge (8 NVIDIA V100 GPUs and

64 CPU cores) costs nearly $25 per hour. However, r4.16xlarge, which is

the same as p3.16xlarge minus GPUs, costs only $4.2 per hour.
4In this paper, for simplicity, we assume that a CPU machine has the same

network bandwidth as a GPU machine. If not, all analysis and design will

remain valid as long as the number of CPU machines scales accordingly.

For example, use 4⇥ CPU machines if their bandwidth is 25% of GPU

machines.

A0 B0 C0

A2 B2 C2 A1 B1 C1

(a) Reduce-scatter

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1 Σ

(b) All-gather

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

(c) Result

Figure 1: The communication workflow of all-reduce.

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

(a) Non-colocated mode

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Machine-0 Machine-1 Machine-2

(b) Colocated mode

Figure 2: The communication pattern of PS. A solid arrow line

indicates the network traffic. A dashed arrow line represents the

loop-back (local) traffic.

Assuming k = n, PS would theoretically be faster than

all-reduce, as summarized in Table 1. In fact, PS is com-

munication optimal in such setting, since M is the absolute

lower bound each GPU machine has to send and receive.

However, with fewer CPU machines (smaller k), the commu-

nication time nM/kB on CPU machines would increase and,

if k n/2, become slower than all-reduce. The network band-

width of GPU machines would become under-utilized because

the CPU machines would be the communication bottleneck.

The other strategy is colocated mode (Fig. 2(b)), which

does not use any CPU machines. Instead, it starts a PS process

on every GPU worker and reuses its spare CPU resources. The

PS and GPU worker on the same machine will communicate

through loopback traffic. In this case, it is easy to calculate

that communication time is the same as all-reduce (Table 1).

All-reduce vs. PS. They have different communication pat-

terns. PS uses a bipartite graph. Non-colocated PS can lever-

age additional CPU and bandwidth resources to aid GPU

machines, while may under-utilize the resources of GPU ma-

chines. Colocated PS and all-reduce utilize the GPU worker

resources better, while cannot use additional CPU machines.

Another difference is that PS supports asynchronous train-

ing, which allows GPU workers to run at different speed and

mitigates the impact of stragglers, while all-reduce does not

support it. However, asynchronous training is less popular

because it can slow down model convergence. We will mainly

focus on synchronous training in this paper while briefly ad-

dress asynchronous training in §5.

3 Motivation and BytePS Architecture

3.1 Motivation

Before the deployment of BytePS in our internal GPU clusters,

our users mostly used all-reduce as the distributed training

architecture due to its higher performance than existing PS

designs. The remaining users choose PS for tasks where asyn-

chronous training is acceptable or preferable. With multiple

years of experience and efforts on accelerating DNN tasks

and improving resource utilization, we have the following

observation.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 465

Table 1: The theoretical communication time required by each

training iteration. n is the number of GPU machines. k is the number

of additional CPU machines. M is the model size. B is the network

bandwidth. We will revisit the Optimal? row in §4.1.

All-reduce Non-Colocated PS Colocated PS

Time
2(n�1)M

nB max(M
B , nM

kB)
2(n�1)M

nB

Optimal? Only if k = 0 Only if k = n Only if k = 0

Opportunity: there are spare CPUs and bandwidth in

production GPU clusters. Large-scale GPU clusters simulta-

neously run numerous jobs, many of which do not heavily use

CPUs or network bandwidth. Fig. 3 shows a 3-month trace

collected from one of our GPU clusters that have thousands

of GPUs. The GPUs have been highly utilized in that period

(approaching 96% allocation ratio in peak times). We find

that, 55%-80% GPU machines have been assigned as GPU

workers for at least one distributed training task. This leaves

the network bandwidth of 20%-45% GPU machines unused

because they are running non-distributed jobs.5 The cluster-

wide average CPU utilization is only around 20%-35%. This

aligns with the findings in prior work from Microsoft [35].

This observation, combined with the all-reduce vs. non-

colocated PS analysis in §2.1, inspires us – if we can better

utilize these spare CPUs and bandwidth, it is possible to ac-

celerate distributed training jobs running on given GPUs.

Existing all-reduce and PS architectures are insufficient.

Unfortunately, the analysis in §2.1 also shows that all-reduce

and PS have a common issue: they do not utilize additional

CPU and bandwidth resources well. All-reduce and colocated

PS only use resources on GPU workers, and non-colocated

PS may not fully utilize the CPU cores and NIC bandwidth

on GPU workers. The former is communication optimal only

when k = 0, while the latter is optimal only when k = n. When

the number of CPU machine k is 0 < k < n, neither would be

optimal. We defer further analysis to §4.1. Here, we use an

experiment to show the end-to-end performance of existing

all-reduce and PS.

Fig. 4 shows the training speed of VGG-16 [63] using 32

V100 GPUs (4 GPU machines), with 100GbE RDMA net-

work. The batch size is 32 images for each GPU. We run the

latest MXNet native PS RDMA implementation [1] and (one

of) the most popular all-reduce library NCCL-2.5.7 [13]. We

also tested TensorFlow’s native PS, and got similar results. We

vary the number of additional CPU machines for each setup.

All-reduce plot is flat because additional CPU machines are

of no use, while PS has the worst performance even with

additional CPU machines. Both of them are far from optimal.

Even with ByteScheduler [55], which is a state-of-the-art tech-

nique that can improve the communication performance, both

all-reduce and PS are still far from the linear scaling, i.e., 32⇥

of single-GPU training speed. This is because ByteScheduler

5Our machines have dedicated but slower NIC for data I/O. This is a common

practice in industry [52]. In addition, data I/O traffic is usually much smaller

than the distributed training traffic between GPU machines.

2020-01-01
2020-01-21

2020-02-10
2020-03-01

2020-03-21
0%

50%

100%
% G3U Pachines
foU Gist-tUaining
AveUage C3U
utilization

Figure 3: Daily statistics of our internal DNN training clusters from

2020-01-01 to 2020-03-31.

Figure 4: VGG-16 training performance of different architectures.

We use 4 GPU machines with 32 GPUs in total. Linear Scaling

represents the maximal performance (in theory) of using 32 GPUs.

works on top of PS or all-reduce, and thus has the same limi-

tations. BytePS outperforms all of above at any given number

of CPU machines (more in §7).

Our solution: BytePS. It is a unified architecture for dis-

tributed DNN training that can leverage spare CPU and band-

width resources. It achieves the following goals.

First, BytePS is always communication optimal with any

additional CPU and bandwidth resources, i.e., 0 k  n, al-

located by the cluster scheduler. In practice, the volume of

spare resources can be dynamic (Fig. 3), so BytePS must adapt

well. In addition, the hardware setup of GPU machines can

be diverse, especially the internal PCIe or NVLink topology.

BytePS is also proved optimal in intra-machine communi-

cation. All-reduce and PS, when they are communication

optimal, are two special cases of BytePS (§4).

Second, BytePS can achieve communication time very

close to the theoretical optimal. This is important, as shown

in the existing PS case – PS performance is far from its theo-

retical limit. We found that original PS designs have several

implementation bottlenecks (which we will discuss in §6). But

even after all the bottlenecks are removed, PS performance is

still inferior to optimal. This leads to BytePS’s second design

contribution: Summation Service. We find that running the

full optimizers on CPU can be a bottleneck. We divide the

computation of optimizers and only put summation on CPUs.

We will elaborate the rationale of this design in §5.

All the BytePS designs are generic to DNN training.

BytePS can therefore accelerate various DNN training frame-

works including TensorFlow, PyTorch, and MXNet. We start

from presenting BytePS’s architecture.

3.2 Architecture Overview

Fig. 5 shows the architecture of BytePS. BytePS has two

main modules – Communication Service (CS) and Summa-

tion Service (SS). In BytePS, we aim to leverage any CPU

resources, whether on GPU machines or CPU machines, to

466 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

GPU

Computation Summation

Service

Communication

Service

CPU Machine0

GPU Machine0

…Summation

Service

CPU Machinek-1
Summation

Service

Summation

Service

Communication

Service

GPU Machinen-1

…

GPU

Computation

Figure 5: BytePS architecture. Solid lines: the connection between

CPU machines and GPU machines. Dashed lines: the data flow

inside GPU machines.

achieve the best communication efficiency. This is achieved

by SS, which runs on the CPU of every machine, including

the CPU machines and GPU machines. The CPU machines

may not necessarily be actual CPU-only machines. For exam-

ple, our in-house cluster scheduler can allocate CPUs on the

GPU machines that run non-distributed jobs and have spare

CPU cores and network bandwidth. This improves the overall

cluster resource utilization.

Another important property of SS is that it is much simpler

than common PS server processes, which run full fledged

DNN algorithm optimizers. In contrast, SS is only responsible

for receiving tensors that are sent by CS, summing up the

tensors and sending them back to CS.

The other module, CS, is responsible for internally syn-

chronizing the tensors among multiple (if there are) local

GPUs and externally communicating with SS. Every train-

ing iteration, each CS must send in total M bytes (the DNN

model size) to and receive M bytes from SS. In synchronous

distributed training, the tensors are model gradients.

CS contains several design points of BytePS. First, it de-

cides the traffic volume to each SS (both internal and external).

The load assignment strategy is based on our analysis of the

optimal communication strategy (§4.1). Second, it chooses

the best local tensor aggregation strategy depending on dif-

ferent internal GPU and NIC topology (§4.2) of the GPU

machines. Finally, both CS and SS should be optimized for

RDMA in modern high-speed data centers (§6.2).

This architecture enables BytePS to flexibly utilize any

number of additional CPU resources and network bandwidth.

When the number of CPU machines is 0, i.e., k = 0, the com-

munication will fallback to only using SSs on GPU machines.

When the number of CPU machines is the same as GPU ma-

chines, BytePS is as communication optimal as non-colocated

PS. In other cases, BytePS can leverage SSs on all machines

together. In fact, our analytical results will reveal the optimal

communication strategy with any number of CPU machines,

while PS and all-reduce are just two specific points in the

whole problem space.

4 BytePS Communication Design

4.1 Inter-machine Communication

In BytePS, all networking communication is between CS and

SS. To prevent a bottleneck node from slowing down the

whole system, we must balance the communication time of

all machines. In what follows, we assume the network has

full bisection bandwidth, which is a common practice in deep

learning clusters [52]. We also assume that the full bisection

bandwidth can be fully utilized due to the newly introduced

RDMA congestion control algorithms, e.g., DCQCN [75].

On each CPU machine, the summation workload of its SS

determines the network traffic. For example, if a SS is re-

sponsible for summing up x% of the DNN model, the CPU

machine would send and receive x%⇥M bytes traffic to every

GPU machine during each training iteration. However, the

network traffic of a GPU machine is determined by the com-

bination of CS and SS running on it. Due to this difference,

BytePS classifies SS into SSCPU and SSGPU based on whether

they run on CPU machines or GPU machines.

To minimize the communication time, BytePS assigns

MSSCPU
bytes summation workload to each SSCPU . MSSCPU

is given in Eq. 1, where k� 1 is the number of CPU machines

and n � 2 is the number of GPU machines, and k  n. Out-

side these constraints, the communication time of BytePS falls

back to trivial solutions like PS (when k > n) and all-reduce

(when k = 0), as §4.1.1 shows.

MSSCPU
=

2(n�1)

n2 + kn�2k
M (1)

Similarly, BytePS assigns MSSGPU
bytes to each SSGPU .

MSSGPU
=

n� k

n2 + kn�2k
M (2)

Eq. 1 and Eq. 2 show the workload assignment strategy

that is optimal for minimizing the communication time. The

analysis is in §4.1.1. In practice, the DNN model consists of

tensors with variable sizes and may not allow us to perfectly

assign workloads. BytePS uses an approximation method. It

partitions the tensors into small parts no larger than 4MB.6

Then, all CSs consistently index each part and hash the indices

into the range of [0,n2 + kn�2k). CSs will send and receive

tensors to SSs based on the hash value and approximate the

probabilities according to Eq. 1 and Eq. 2. Consistent indexing

and hashing guarantee that the same part from all GPUs will

be sent to and processed by the same SS.

4.1.1 Communication Efficiency Analysis

Next, we present the communication time analysis of BytePS.

To simplify the analysis, we assume that the model size M is

much larger than the partition size (4MB in our case). Parti-

tioning enables BytePS not only to better balance the sum-

mation workloads, but also to well utilize the bidirectional

network bandwidth by pipelining sending and receiving, as

shown in [34, 55]. So, we further assume that sending and

receiving the whole M bytes can fully overlap with negligible

overhead. We have the following result.

6While we find that 4MB partition size works reasonably well in our envi-

ronment, BytePS allow users to tune the partition size value.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 467

Theorem 1. The SS workload assignment given by Eq. 1 and

Eq. 2 is optimal for minimizing communication time.

Proof. We first consider the network traffic of a GPU machine.

It runs a CS module and an SS module. CS should send and

receive M bytes in total. However, when it communicates

with the SS on the same GPU machine, the traffic does not

go over the network. So, a CS module will send and receive

M�MSSGPU
bytes. An SS module on a GPU machine must

receive and send MSSGPU
from other n�1 GPU machines, i.e.,

(n�1)MSSGPU
in total. Adding them together, a GPU machine

with network bandwidth B requires communication time tg:

tg =
M+(n�2)MSSGPU

B
(3)

Similarly, if k > 0, we can get that a CPU machine with net-

work bandwidth B requires communication time tc:

tc = MSSCPU
/B (4)

In addition, the sum of all the SS workload should be equal

to the total model size.

M = kMSSCPU
+nMSSGPU

(5)

From Eq. 5, it is clear that the larger MSSCPU
is, the smaller

MSSGPU
is. Consequently, when n � 2, the larger tc is, the

smaller tg is (or tg is unchanged if n = 2). In addition, we

know that the final communication time is max(tc, tg).
To minimize the communication time, tc and tg need to be

equal. If they are not equal, say tc > tg, it means the commu-

nication time can be further reduced by decreasing MSSCPU

and thus bring down tc.

We let tc = tg and combine Eq. 3, Eq. 4, and Eq. 5. Solving

the equations with MSSGPU
and MSSCPU

as variables, we can

get the optimal values as given by Eq. 1 and Eq. 2.

Based on Theorem 1, combine Eq. 3 and Eq. 2, we have

the optimal communication time, which is used in Fig. 12.

topt =
2n(n�1)M

(n2 + kn�2k)B
(6)

From Eq. 2, we can see that when the numbers of CPU

machines and GPU machines are the same, MSSGPU
= 0, which

means that we do not need any SSGPU . This is because the

CPU machines already provide enough aggregate bandwidth.

BytePS falls back to non-colcated PS. Similarly, when the

number of CPU machines is 0, BytePS falls back to all-reduce

and colocated PS.

Of course, the more interesting case is the general case

when 0 < k < n. We use the communication time of the plain

all-reduce and non-colocated PS as the two baselines. We

define the acceleration ratio γa as the communication time

of the plain all-reduce divided by that of the general case.

Similary, γp is defined as the acceleration ratio compared to

the non-colocated PS case. We have

γa =
n2 + kn�2k

n2
,γp =

n2 + kn�2k

2k(n�1)
(7)

0

CPU0

Mem
NIC

P0

1 2 3

P1

4 5 6 7

CPU1

Mem

QPI

(a) PCIe-only topology

0

CPU0

Mem
NIC

P0

1 2 3

P1

CPU1

Mem

4 5 6 7

(b) Outgoing data flow

Figure 6: PCIe-only machine topology and BytePS data flow. Gray

boxes are GPUs. Only the outgoing direction (from GPUs to net-

work) is shown in the data flow figure. Incoming is the opposite.

When k = n and n! ∞, γa = 2. When k is small, γp can

be quite big, as the communication bandwidth is severely

bottlenecked by the CPU machines in non-colocated PS. For

example, when n = 32 and k = 16, we have γa = 1.46 and

γp = 1.52, respectively. It means that BytePS can theoretically

outperform all-reduce and PS by 46% and 52%, respectively.

We note that adding more CPU machines beyond k = n

does not help, since the communication bottleneck will be-

come the NIC bandwidth of the GPU machines.

4.2 Intra-machine Communication

In §4.1, we design the optimal inter-machine communication

strategy. In practice, we find that intra-machine communi-

cation is equally important. There are often multiple GPUs

in a machine. CS must aggregate/broadcast the tensors be-

fore/after communicating with SS. This can create congestion

on the PCIe links and prevent NIC from fully utilizing its

bandwidth B. Moreover, the GPU machine’s internal topol-

ogy can be diverse in data centers. Below, we share the two

most common machine setups in our environment and our

corresponding solution. We present several principles that can

apply to other machine setups in §4.2.3.

4.2.1 PCIe-only Topology

Fig. 6(a) shows a setup in our production environment. A GPU

machine has two NUMA CPUs connected via QPI. The eight

GPUs are split into two groups and connected to two PCIe

switches, respectively. The NIC is 100Gbps and connected

to the PCIe of one of the CPUs. All PCIe links in figure are

3.0 x16 (128Gbps theoretical bandwidth). The CPU memory

and QPI has > 300Gbps bandwidth, which are less likely the

communication bottleneck. We call this PCIe-only topology.

For this machine model, we measure that the throughput of

GPU-to-GPU memory copy is ⇡105Gbps within the same

PCIe switch. The throughput of GPU-to-GPU memory copy

across PCIe switches, however, is only ⇡80Gbps.

Unfortunately, many existing training frameworks ignore

such details of internal topology. For example, TensorFlow

PS, MXNet PS and even the “hierarchical all-reduce” mode of

Horovod use a straightforward reduce or reduce-scatter across

all GPUs on the same machine. This would lead to cross-PCIe

switch memory copy, which is unfortunately slower.

468 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

C0

S0 Sp-1

Cp-1
QPI

N0 Nn-1N1 Npn-1N(p-1)n

...

...

...

Figure 7: Notations of the PCIe-only topology.

In contrast, BytePS lets GPUs under the same PCIe switch

sum the tensors first, then copy to CPU and let CPU do the

global summation, and finally broadcast back the global sum.

We call it CPU-assisted aggregation. Specifically, it consists

of the following steps.

1. Reduce-Scatter: Suppose each PCIe switch has l GPUs.

These l GPUs perform a reduce-scatter which incurs (l�
1)M/l traffic only inside the PCIe switch. When it finishes,

each GPU should hold M/l aggregated data.

2. GPU-CPU Copy: Each GPU copies its M/l data to CPU

memory, which incurs M/l traffic along the route. Every

PCIe switch would generate M aggregated data.

3. CPU-Reduce: CPU reduces the data from all PCIe

switches and generates the aggregated data across all

GPUs. This reduction does not incur any PCIe traffic.

4. Networking: CS sends the data to SS and receives globally

aggregated data from SS.

5. CPU-GPU Copy: Each GPU copies its M/l partition from

CPU memory back to itself. This incurs M/l traffic from

the CPU to each GPU.

6. All-Gather: Each GPU performs an all-gather operation

with those that are under the same PCIe switch. This incurs

(l�1)M/l traffic inside the switch.

Fig. 6(b) shows the traffic of step 1 to 3. Step 4 to 6 use

the same links but the opposite direction. With CPU-assisted

aggregation, the PCIe switch to CPU link would carry only

M traffic in each direction, much lower than doing collective

operation directly on eight GPUs (7M/4 traffic). Meanwhile,

the traffic on each PCIe switch to GPU link would be (2l�

1)M/l. Let l = 4 (each PCIe has four GPUs), this is 7M/4,

remaining the same as the existing approach. Fundamentally,

BytePS leverages the spare CPUs on the GPU machine to

avoid the slow GPU-to-GPU cross-PCIe switch memory copy.

Optimality Analysis. We now analyze the communication

optimality of the above strategy. Fig. 7 shows a more generic

PCIe-only topology with variable number of GPUs and PCIe

switches. We do not plot the NIC as in Fig. 6(a) because

under that topology, the NIC has dedicated PCIe lanes and

will not compete for the PCIe bandwidth with GPUs. The

system architecture is modeled as a hierarchical graph G =
(V,E). Denote N as the set of leaf nodes (GPUs), S as the

set of intermediate nodes (switches), C as the set of CPU

nodes. V = N[S[C. Each edge e(vx,vy) in E represents the

bandwidth from vertex vx to vy, and we denote t(vx,vy) as the

amount of traffic sent from vx to vy. We further define p as

the number of switches (p� 2), and n as the leaf nodes that

each switch connects (n� 2).

We assume the following features of G: (1) Each edge

in E is duplex and the bandwidth of both directions are

equal. Denote b(vx,vy) as the bandwidth of e(vx,vy), then

b(vx,vy) = b(vy,vx); (2) We assume G is symmetric. The

bandwidth at the same layer of the tree is equivalent. For ex-

ample, b(S j,C j) = b(Sk,Ck) and b(Nx,S j) = b(Ny,S j) hold

for any j,k 2 [0, p�1], x,y 2 [jn,(j+1)n�1]; (3) The mem-

ory and QPI bandwidth is much higher than the PCIe links

and is less likely to be the bottleneck. In the following, we

only focus on the PCIe links.

The GPUs from N0 to Npn�1 need to sum their data. We

can either use CPU-assisted aggregation mentioned before,

or use brute-force copy that needs each GPU to copy its entire

data to C directly. In practice, the optimal solution should

be a combination of these two strategies, depending on the

value of b(S j,C j) and b(Ni,S j). The intuition is that we apply

brute-force copy on x of the data, and CPU-assisted aggrega-

tion on y of the data (x+ y = 1). Under certain x and y, the

job completion time J can be minimized. We calculate the

traffic of two links respectively. On e(S j,C j), the traffic is

composed of n times brute-force copy plus the traffic of CPU-

assisted aggregation. On e(Ni,C j), the traffic is composed of

one brute-force copy and the complete traffic of CPU-assisted

aggregation.

t(S j,C j) = n⇤ xM+
yM

n
⇤n = (nx+ y)M (8)

t(Ni,S j) = xM+(
2(n�1)

n
+

1

n
)yM = (

2n�1

n
y+ x)M (9)

Since J is determined by J = max(
t(Ni,S j)

b(Ni,S j)
,

t(S j ,C j)

b(S j ,C j)
), the

optimal J is highly related to the two bandwidth terms. On our

own PCIe machines (Fig. 6(a)), we measure that both b(Ni,S j)
and b(S j,C j) are 13.1GB/s (105Gbps). Let M=1GB and n= 4,

combining Equation (8), (9) and x+ y = 1, we are trying to

find a x 2 [0,1] such that argminx J(x) = max(3x+1
13.1 ,

7�3x
52.4).

Solve it and we will get the optimal solution is x⇤ = 1/5 and

J⇤ = 0.129s. This means the optimal solution works like this:

each GPU applies brute-force copy on its 1/5 data, and uses

CPU-assisted aggregation for the rest 4/5 data. Therefore, we

have the following key conclusions:

CPU-assisted aggregation is near-optimal. When x = 0, the

solution is our CPU-assisted aggregation, and the job comple-

tion time is J(0) = 0.141s. As calculated, the optimal time is

0.129s. Thus, our strategy closely approximates the optimal

solution, with 9% difference on performance. However, in

practice, brute-force copy heavily stresses the CPU memory

– any tensor that uses brute-force copy would consume 4⇥

CPU memory bandwidth compared with CPU-assisted aggre-

gation. CPU memory does not really have 4⇥ bandwidth of

PCIe links, especially for FP16 summation (Fig. 9(b). Conse-

quently, we choose not to use brute-force copy at all and stick

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 469

to CPU-assisted aggregation.

CPU-assisted aggregation is better than ring-based all-

reduce. We have the job completion time for ring-based

all-reduce as Jar =
2(np�1)M

np⇤bbottleneck
. Similarly, for CPU-assisted

aggregation we have Jca = M
b(S j ,C j)

⇤ max(1, 2n�1
kn

), where

k =
b(Ni,S j)

b(S j ,C j)
. In our case, k = 1 and bbottleneck < b(S j,C j), so it

is easy prove that Jca < Jar always holds for any n, p� 2. For

example, using the value from our PCIe machines, let p = 2,

n = 4, bbottleneck = 80Gbps (bandwidth of memory copy that

crosses PCIe switches) and b(S j,C j) = 105Gbps we get that

Jca is 23.7% smaller than Jar.

4.2.2 NVLink-based Topology

Fig. 8(a) shows the other machine model in our data center –

a GPU machine with NVLinks. There are four PCIe switches,

each connecting two GPU cards. The GPUs are also con-

nected via NVLinks. The NVLinks give every GPU in total

1.2Tbps GPU-GPU bandwidth, much higher than the PCIe

link. The NIC is connected to one of the PCIe switches.

With NVLink, GPU-to-GPU communication can com-

pletely avoid consuming PCIe bandwidth. So, we no longer

need CPU-assisted aggregation. However, we find that exist-

ing framework, including the most popular GPU all-reduce im-

plementation NCCL (used by TensorFlow, PyTorch, MXNet

and Horovod), is again sub-optimal.

The problem is that the topology is not symmetric consid-

ering the NIC, which is connected to only one (out of four)

PCIe switch. The NIC and the two GPUs under the same PCIe

switch have to compete for the PCIe bandwidth of P0�CPU0.

Remember that not only CS uses this PCIe bandwidth, but also

the SS runs on this same GPU machine uses it! P0�CPU0

again becomes the bottleneck in the whole communication.

Based on the analysis, we should leave as much P0�CPU0

PCIe bandwidth as possible to the NIC during local aggre-

gation. For this topology, BytePS uses reduce and broadcast

instead of reduce-scatter and all-gather – tensors from all

GPUs are first reduced to GPU2 and the result is then copied

to CPU0 memory from GPU2. Fig. 8(b) shows those steps.

Later, when CS gets the aggregated results from SS, GPU2

would copy the data into GPU memory and broadcast them

to other GPUs. This way, we completely prevent GPUs from

using the P0�CPU0 bandwidth for communication, so the

NIC can run to full 100Gbps bandwidth.

This approach seems to create traffic hotspots on GPU2.

However, NVLinks has much larger bandwidth than PCIe

links, so inter-GPU communication is never the bottleneck

even on the hotspots. Meanwhile, the P1 �CPU0 PCIe

link used for GPU-CPU copy has approximately the same

100Gbps bandwidth as the NIC, so it is not a bottleneck either.

BytePS has achieved the optimal result – there is no intra-

machine bandwidth bottleneck. Existing solutions like NCCL,

unfortunately, tends to let GPUs use the P0�CPU0 bottleneck

link because of the proximity between GPU0 and the NIC.

0 2

1 3

4 6

5 7

NIC

QPI

P0 P1 P2 P3

CPU0

Mem

CPU1

Mem

(a) NVLink-based topology

0 2

1 3

4 6

5 7

NIC

P0 P1 P2 P3

CPU0

Mem

CPU1

Mem

(b) Outgoing data flow

Figure 8: NVLink-based machine topology and BytePS data flow.

Only the outgoing direction is shown in the data flow figure.

Consequently, its communication performance is lower than

our solution in the NVLink-based machines.

4.2.3 Discussion

The solutions for PCIe-only and NVLink-based topology are

quite different. This shows that there is no one-fit-all optimal

solution. The intra-matchine communication must adapt to

different internal topologies. Admittedly, there are certainly

more topologies than the above two used in our environment.

However, we believe that the above two are representative,

since they are similar to the reference design recommended

by server vendors [15] and NVIDIA [11], respectively.

Despite the difference, we summarize two principles – 1)

always avoid direct GPU-to-GPU memory copy when the two

GPUs are not under the same PCIe switch because it is slow

in practice. 2) Always minimize traffic on the PCIe switch to

CPU link that is shared by GPUs and NIC. We propose the

following best practice procedure. Let Sn be the number of

PCIe switches with GPUs and NIC, and Sg be the number of

PCIe switches with only GPUs.

1. If Sn > 0 and Sg > 0, the topology is asymmetric like

our NVLink-based topology. CS should use reduce and

broadcast, with GPUs that are not competing with NICs

as reduce or broadcast roots.

2. If Sn = 0 or Sg = 0, the topology is symmetric like our

PCIe-only case. CS should use reduce-scatter and all-

gather to balance traffic on all PCIe switches. CPU-assisted

aggregation (§4.2.1) should be used if no NVLink.

Multi-NIC topology. Although the two specific topologies

we discussed have only one NIC, the above principles can

directly extend to multi-NIC topology – it only changes the

value of Sn and Sg.

GPU-direct RDMA (GDR). GDR can potentially reduce the

PCIe traffic. However, GDR requires the GPU and the RDMA

NIC to be on the same PCIe switch, otherwise the throughput

can be less than 50Gbps even with 100GbE NIC [12], which

is also confirmed by our own measurements. Consequently,

GDR does not benefit our settings – PCIe-only topology does

not satisfy the requirement, and we already avoided any PCIe

bottlenecks for NVLink-based topology. In addition, most

clouds like AWS do not support GDR. Therefore, BytePS

does not use GDR for now.

470 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Parameter update on different de-

vices. (Mtum: Momentum [65])

(b) Throughput of CPU summation

on different floating point tensors.

Figure 9: CPU is slow for optimizers but not for summation.

We can see that the optimal intra-machine communication

strategy is tightly coupled with the internal topology. Build-

ing a profiler to automatically detect the topology, probe the

bandwidth, and generate the best strategy is interesting future

work.

5 Summation Service
To get the optimal inter-machine communication time (§4.1),

BytePS needs a module that can run on the CPU of every

machine and communicate with CS. The question is, what is

its role in the training algorithm? Our initial attempt was to

follow the previous PS design [44], in which the PS processes

are responsible for running the optimizer. The optimizer ag-

gregates the gradients from all GPUs and updates the DNN

model parameters using various optimizers.

The CPU bottleneck. Unfortunately, soon we found that the

CPUs became a bottleneck in the system. We use an exper-

iment to demonstrate this. We train the VGG16 DNN [63]

using a typical non-colocated PS setting: using one Tesla

V100 GPU machine and one CPU machine (Intel Xeon Plat-

inum CPU, 32 cores with hyper-threading and Intel MKL [7])

connected by 100GbE Ethernet. The GPU machine runs the

forward and backward propagation, and the CPU machine

runs the optimizer using all the 32 CPU cores.

Fig. 9(a) shows that, even with 32 cores and MKL-enabled,

running the optimizer on the CPU machine can slow down the

end-to-end training speed. It means the CPU cannot match

the network bandwidth and becomes a bottleneck (§6). As

the optimizer algorithm gets more complicated (from sim-

pler SGD to the more complicated RMSProp), the bottleneck

effect becomes more severe.

The root cause. The CPU bottleneck is caused by the lim-

ited memory bandwidth. Popular optimizers such as Adam

can easily exhaust the memory bandwidth of modern CPUs.

For example, the peak transfer rate of a 6-channel DDR4-

2666 memory setup is up to 1024 Gbps combining read

and write [8]. It is easy to estimate that, for example, the

Adam optimizer [42] requires more than 10x memory ac-

cess (read+write) for applying every gradient update. Adding

that 100Gbps NIC consumes 200 Gbps memory bandwidth

(read+write), the 1024 Gbps memory bandwidth is simply not

sufficient for Adam to process 100 Gbps gradient stream.

CPU is good at summation. The above experiment leads us

to rethink the tasks placed on CPUs.The computation of an

fp

bp

update

sum

GPU

optimizer

CPU

(a) PS

fp

bp

update

sum

GPU

optimizer

CPU

(b) All-reduce

fp

bp

update

sum

GPU

optimizer

CPU

(c) BytePS

Figure 10: Component placement comparison between all-reduce,

PS and BytePS.

optimizer can be divided into two steps, gradient summation

and parameter update, as Fig. 10 shows.

Fortunately, modern x86 CPUs are good at summation

thanks to the highly optimized AVX instructions [47]. In

Fig. 9(b), we show the summation throughput on the same

CPUs as above, using synthetic floating point tensors. The

throughput is more than 200Gbps for both FP16 and FP32 pre-

cision, higher than the 100Gbps NIC bandwidth. Therefore,

summation on CPU will not be a bottleneck.

BytePS’s solution. Based on these observations, BytePS de-

couples the two steps of optimizer. We move the computation-

intensive parameter update to GPUs and places only sum-

mation on CPUs – this is why we name the CPU module

Summation Service (SS). SS not only prevents the CPU from

being the bottleneck, but also largely reduces the CPU over-

head. With carefully implementation using AVX and OpenMP,

SS only consumes fewer than 3 CPU cores when it runs at

100Gbps throughput. Fig. 10 gives a high-level comparison

over PS, all-reduce and BytePS on how they place different

components in DNN training onto GPU and CPU resources.

Since Summation Service moves parameter update to GPU

machines, all the GPU machines need to perform the same pa-

rameter update calculation, whereas parameter update needs

to be done only once in traditional PS. BytePS hence uses

more computation cycles for parameter update than PS. This

is a tradeoff we made willingly, to accelerate end-to-end train-

ing speed. We define SS overhead ratio as the FLOPs for

parameter update over the sum of FP and BP FLOPS. The ra-

tio is 138 MFLOPs / 32 GFLOPs, 26 MFLOPs / 7.8 GFLOPs,

387 MFLOPs / 494 GFLOPs for VGG-16, ResNet-50, BERT-

large using SGD as the optimizer, all are less than 0.5%. The

introduced overhead is negligible, compared to the training

speedup (Fig. 9(a)). The above ratio definition assumes batch

size of 1. DNN training typically uses batch size of tens or

hundreds. Parameter update is done once per batch, hence the

additional overhead is even smaller in practice.

We note that Horovod [60] has the option to move gradient

aggregation to CPUs by first copying the tensors to CPU mem-

ory and then performing CPU-only all-reduce. Since it still

only relies on the CPUs and bandwidth on GPU machines, it

does not provide communication-wise advantages compared

with directly all-reduce on GPUs. BytePS is different: it lever-

ages additional CPU machines for gradient summation, while

keeps parameter update on GPUs.

Support asynchronous training. Although separating the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 471

summation and update brings us performance benefits, it

breaks an important feature of the original PS: the support of

asynchronous training like Asynchronous Parallel [25]. Asyn-

chronous Parallel relies on the PS processes keeping the most

updated model parameters, which is not directly compatible

with the design of SS. To bridge this gap, we re-design a new

workflow that can enable asynchronous training with SS, as

shown in Fig. 11(b). In short, GPU updates parameters and

computes the delta parameters first. CS sends them and re-

ceives latest parameters. SS keeps adding delta parameters to

the latest parameters. Next, we prove that this new training

workflow is equivalent to Asynchronous Parallel in terms of

algorithm convergence.

Theorem 2. The asynchronous algorithm for BytePS is equiv-

alent to Asynchronous Parallel [25].

Proof. Consider one SS connected with n CSs. We say a

CS stores the local model parameters, and a SS holds the

latest version of parameters. The high level idea of our proof

is to show that our algorithm generates identical state (i.e.,

same parameter for the SS module and n CS modules) with

Asynchronous Parallel, given the same communication order

(push and pull order). We use f as a general representation

of the optimizer. The optimizations thus can be represented

as w w+ f (gi,t), where gi,t represents the gradients of CSi

(i2 [0,n�1]) at iteration t (t 2 [1,T]). Denote wps and wbyteps

as the parameter in PS and BytePS, respectively. And denote

wi,t as the parameter on each workeri (for PS) or CS (for

BytePS) at iteration t. The parameter is initiated to w0 for all

CSs and the SS. After T iterations, we can obtain the updated

parameter as:

wps = w0 +
T

∑
t=1

n�1

∑
i=0

f (gi,t) (10)

wbyteps = w0 +
T

∑
t=1

n�1

∑
i=0

∆wi,t (11)

Next, we use induction to prove that ∆wi,t = f (gi,t) holds

for any i and t. (1) Base case t = 1: Given initial param-

eter w0, we obtain the gradient gi,1 from w0. In Parameter

Server, workeri pushes gi,1 to the server and get updated as

wps,1 = w0 + f (gi,1). In BytePS, CSi pushes f (gi,1) to SS

and get updated as wbyteps,1 = w0 + f (gi,1). So ∆wi,t = f (gi,t)
holds for t = 1. Meanwhile, the parameter on workeri or CSi

is the same on both architectures after receiving the response

from the server or SS. (2) Inductive step: If the lemma we

want to prove holds for t = k(k � 1), the gradient gi,k+1 is

computed from the same wk. Similar to the base case, we ob-

tain wps,k+1 =wk+ f (gi,k+1) and wbyteps,k+1 =wk+ f (gi,k+1).
So ∆wi,t = f (gi,t) holds for t = k+1. By the principle of in-

duction, ∆wi,t = f (gi,t) holds for all t 2 N.

Return to (10) and (11). Since ∆wi,t = f (gi,t) holds for

any i and t, we get wps = wbyteps. This completes the proof

fpbp

updatesum

GPU

CPU

gt

!t+1

(a) PS-async

fpbp

update

sum
!"t= "'t+1- "t

GPU

CPU
"t+1

overwrite

"'t+1

(b) BytePS-async

Figure 11: Asynchronous training workflow comparison between

PS and BytePS. g is the gradients. ω is the parameters.

because the parameter of our algorithm and Asynchronous

Parallel are equivalent after any T batches.

6 Implementation
While the core of BytePS is generic for any training frame-

work, BytePS also implements plugins for TensorFlow, Py-

Torch and MXNet, for user-friendliness. The core is imple-

mented in C++, while the framework plugins contain both

C++ and Python. In total, BytePS consists of about 7.8K lines

of Python code, and 10K lines of C++ code. As a major online

service provider, we have deployed BytePS internally. BytePS

has also been open-sourced [4] and attracted thousands of

users.

6.1 Multi-Stage Pipeline
A common way to speed up a multi-step procedure is to build

a multi-stage pipeline that overlaps the processing time of

each step. We incorporated the idea of tensor partition and

pipelining from prior work [34, 55]. For example, for PCIe-

only topology, CS has six steps. It maps to a 6-stage pipeline

in BytePS runtime. We implement BytePS to be flexible in

constructing the pipeline without recompiling. Each stage in

the pipeline is implemented as an independent thread with

a priority queue of tensors. The priority is assigned similar

to [34,55]. As analyzed in §4.1.1, large tensors are partitioned

to multiple smaller tensors no more than 4MB. Next, each

small tensor is enqueued to the first queue and moves towards

the next queue once a stage finishes processing it, until it is

dequeued from the last one.

6.2 Address RDMA Performance Issues
For inter-machine communication, we use RDMA RoCEv2.

Each machine has one 100GbE NIC, and the RDMA network

provides full bisection bandwidth. To get the full benefit of

RDMA, we have gone through a full design and debug journey

which we share as follows.

RDMA Memory Management. To improve the perfor-

mance, we aim to avoid unnecessary memory copies [72]

and achieve zero-copy on CPU memory. BytePS is based

on RDMA WRITE because it is the most performant among

common RDMA verbs [39]. Conventional one-sided RDMA

operations (WRITE and READ) require at least two round-

trips: getting the remote address, and writing (reading) the

value to (from) that address [39, 40, 50, 70]. We optimize

the process by leveraging the fact that DNN training always

sends the same set of tensors in every iteration. Only at the

472 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: BytePS throughput with a pair of CPU machine and GPU

machine running microbenchmark.

Solution baseline +shm
+shm

+aligned
all

Throughput

in Gbps
41

52

(1.27x)

76

(1.85x)

89

(2.17x)

first iteration, BytePS initializes all the required tensors, reg-

ister the buffer with RDMA NIC and exchange all the remote

addresses. Then BytePS stores the remote buffer information

and reuse it directly in the rest iterations.

Address Slow Receiver Symptom. We also run into the slow

receiver symptom as reported in [30] – the NICs are send-

ing out many PFCs into the network. Those excessive PFCs

slow down tensor transmission can cause collateral damage

to other traffic. Here we report several additional causes of

such symptom and how we address them.

Our first finding is that internal RDMA loopback traffic

can cause internal incast, and push the NIC to generate PFC.

BytePS runs both CS and SS on each GPU machine. The

traffic between them, which we call loopback traffic, does

not consume NIC’s external Ethernet bandwidth, but does

consume internal CPU-NIC PCIe bandwidth. Initially, we did

not add any special design – we stuck to RDMA verbs [9]

for loopback traffic and thought the NIC DMA can handle it.

However, we realize that it creates a 2:1 incast on the NIC,

with RX and loopback as two ingress ports and the DMA to

memory engine as one egress port!

To solve it, we implement a shared memory (shm) data

path. When CS detects that SS is on the same machine as

itself, CS simply notifies SS that the data is in shared memory.

After SS finishes summation, SS copies the results from its

own buffer back to CS’s shared memory. Consequently, the

loopback RDMA traffic is eliminated.

Our Second finding is that we need to use page-aligned

memory for RDMA. Otherwise PFCs may be triggered. Our

hypothesis is that hardware DMA aligns the transfer unit

to the page size (e.g., 4096 bytes). Therefore, using a page-

aligned address is more friendly to DMA engine as it reduces

the number of pages needed to be written.

Our third finding is that the RDMA NIC RX performance

can be impacted by how the concurrent send is implemented!

In the end, we not only use page-aligned memory, but also en-

force only one scatter-gather entry (sge) per RDMA WRITE

on the sender side.7

After all the optimization, BytePS implementation can run

as expected. Table 2 shows the performance improvement

after each of the above three optimizations is applied. The

NIC generates negligible PFCs.

As we have discussed in §4.1, BytePS creates many many-

to-one communication patterns in the network. Many-to-one

7In the whole process, we contacted with the NIC vendor and had lengthy

discussion with their software and hardware experts. As of writing, we have

not got the official root cause of the last two problems.

is well-known for creating incast and packet loss in TCP/IP

network [66]. But BytePS uses RDMA/RoCEv2 which de-

pends on a lossless fabric and DCQCN [75] for congestion

control. We do not observe incast issue in BytePS.

6.3 BytePS Usage

BytePS [4] is easy to use. We provide Python interfaces that

are almost identical to Horovod, PyTorch native API and

TensorFlow native API. Users can choose either of them and

migrate to BytePS with minimal efforts. For example, for

a Horovod-MNIST example [19], we only need to change

one line of Python code, from "import horovod" to "import

byteps". In fact, we are able to convert most of our internal

Horovod-based training tasks to BytePS automatically.

7 Evaluation
In this section, we show that BytePS not only achieves opti-

mal communication performance in microbenchmarks, but

also significantly accelerate training jobs in production envi-

ronment. We list a few highlights regarding the high fidelity

of the results.

• All resources used are allocated by the scheduler of produc-

tion clusters. The scheduler uses non-preemptive resource

scheduling – once a training job is scheduled, it will have a

fixed number of CPU machines that will not change. Even

the most large-scale tasks we show use < 5% GPUs of a

cluster that runs many production tasks.

• We use large training batch sizes. Smaller batch sizes mean

less GPU memory consumption but more communication,

so the end-to-end improvement will be more evident. How-

ever, all our tasks use almost full GPU memory, so the

speedup numbers against all-reduce and PS are the lower

bound of BytePS.

• Although we cannot disclose any specific models that are

used internally, the tasks and DNN model structures shown

are highly representative of production workloads. The

code is also available publicly for reproducibility [5].

• We compare BytePS with the state-of-the-art PS and all-

reduce implementation without modification. For example,

we do not apply the RDMA optimizations mentioned in

§6.2 on native-PS and all-reduce.

The cluster we use has a RoCEv2 network with full bisec-

tion bandwidth. All the machines have one 100GbE NIC. We

note that TensorFlow, PyTorch and MXNet can overlap the

DNN computation and communication [34, 55], thus even a

small improvement in end-to-end performance can indicate a

large improvement in communication.

7.1 Inter-machine Microbenchmarks
First, we use microbenchmarks to show the pure inter-

machine communication performance of different architec-

tures. We allocate eight 1-GPU machines from the cluster

scheduler. We run a dummy task in which all GPU workers

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 473

Figure 12: Communication goodput of 8⇥ 1-GPU machines with

varying number of additional CPU machines. The point-to-point

RDMA goodput is⇡ 90Gbps in our network, so we plot the “optimal”

line based on B = 90Gbps and the analysis in §4.1.

(a) PCIe-only GPU machines

(b) NVLink-based GPU machines

Figure 13: End-to-end performance with different number of CPU

machines. The training is run with PyTorch on 8 GPU machines

each with 8 GPUs. Each CPU machine uses < 4 cores.

just keep reducing large tensors on GPU and record the com-

munication goodput. We verify that no other distributed job

is placed on the same physical machines.

Fig. 12 shows that BytePS performance is very close to

the theoretical optimum (§4.1), with 1-9% difference for dif-

ferent number of CPU machines. All-reduce, as expected, is

close to the optimal only if there is no additional CPU ma-

chine, while remain the same even if there are CPU machines.

The (MXNet) PS does not run optimizer in this case, but is

mainly bottlenecked by issues described in §6.2. In practice,

if PS runs DNN optimizer algorithms, the performance will be

worse than all-reduce even with k = n CPU machines (Fig. 4).

In contrast, because of the Summation Service design, BytePS

would not be affected in real training tasks shown below.

7.2 Leverage CPU Machines
Next, we show that BytePS can indeed leverage different num-

bers of CPU machines to speed up training. In Fig. 13, we use

8 GPU machines, each with 8 Tesla V100 32GB GPUs, and

is either PCIe-only or NVLink-based topology. We vary the

number of CPU machines from 0 to 8. We compare BytePS

end-to-end training performance against state-of-the-art all-

reduce implementation (Horovod 0.19 and NCCL 2.5.7) as

the baseline. We test two DNN models, UGATIT GAN [41]

(one of the most popular models for image generation) and

GPT-2 [57] (one of the most popular NLP models for text gen-

eration), both implemented in PyTorch. The per GPU batch

(a) PCIe-only GPU machines (b) NVLink-based GPU machines

Figure 14: Topology-aware intra-machine communication. The

training is run with PyTorch on 8 GPU machines each with 8 GPUs

and no additional CPU machine.

size is 2 images for UGATIT, and 80 tokens for GPT-2. We

will evaluate more models, frameworks and machines in §7.4.

Fig. 13 shows that, with more CPU machines, BytePS can

run faster – up to 20% than without CPU machines. The SS

on each CPU machine only consumes no more than 4 CPU

cores. It is usually easy for our scheduler to find sufficient

CPUs that are on machines running non-distributed jobs. It is

free (or << 10% costs compared with the expensive GPUs)

speedup for the cluster. Compared with all-reduce, BytePS is

consistently faster in any cases and can be up to 45% faster in

the best case. On NVLink-based GPU machines, the speedup

is higher because the communication bottleneck is more on

the network instead of PCIe links. Finally, models have differ-

ent speedup due to different model sizes and FLOPs. In the

examples we show, GAN is more communication intensive,

so the end-to-end gain of BytePS is larger.

7.3 Adapt to Intra-machine Topology

Next, we show the benefits of BytePS intra-machine commu-

nication strategy. The software and hardware configurations

are the same as in §7.2. To better compare with the all-reduce

baseline, we run the jobs without any CPU machines. Thus,

BytePS does not take any advantages explained in §7.2. For

PCIe-only GPU machines (Fig. 14(a)), we run BytePS with

1) strawman strategy, the same as common all-reduce or PS

and 2) the optimal solution in §5. We see that the optimal

intra-machine solution has up to 20% gain as well.

For NVLink-based GPU machines (Fig. 14(b)), we use

different sets of GPUs as the local reduce roots. BytePS’s op-

timal solution, as explained in §4.2.2, is root = 2. root = 2,3
means CS chooses GPU 2 and 3 as the reduce root in a

round robin manner. It has almost the same performance

because GPU 3 is not competing for PCIe bandwidth with the

NIC, either. It is an alternatively optimal solution. However,

root = all has poorer performance. Communication-wise, it

is equivalent to Horovod’s hierarchical mode. root = 0 is

the worst because it competes hardest with the NIC. Unfor-

tunately, it is equivalent to Horovod’s normal mode (plain

NCCL all-reduce).

One thing to note is that even without any optimization,

BytePS still outperforms all-reduce. We discuss this in §8.

474 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) TensorFlow, ResNet-50, batch=256 images (b) MXNet, VGG-16, batch=96 images (c) PyTorch, UGATIT, batch=2 images

Figure 15: Computer Vision models. The batch sizes are per GPU.

(a) TensorFlow, Transformer, batch=3072 tokens (b) MXNet, BERT-Large, batch=8192 tokens (c) PyTorch, GPT-2, batch=80 tokens

Figure 16: NLP models. The batch sizes are per GPU.

7.4 Scalability

To demonstrate BytePS’s performance at different scales, we

run six different training jobs using 8 to 256 Tesla V100 32GB

GPUs, i.e., 1 GPU machine to 32 GPU machines. Due to the

constraint of free resources, we only use NVLink-based GPU

machines. The six different jobs cover three frameworks, Ten-

sorFlow, PyTorch and MXNet. We have introduced two of the

models, UGATIT and GPT-2 in §7.2. The rest four models are

ResNet-50 [32], VGG-16 [63] (two of the most popular mod-

els for image classification and extraction), Transformer [67]

(one of the most popular models for machine translation) and

BERT [26] (one of the most popular models for natural lan-

guage understanding). We take the official implementation

of these models and slightly modify them (no more than 20

lines of code) to use PS, all-reduce and BytePS, respectively.

For BytePS, we evaluate its performance with and without

CPU machines. When there are CPU machines, the num-

ber of CPU machines is equal to GPU machines. For all-

reduce, we use Horovod with NCCL for all cases. For PS, we

show the native implementation from TensorFlow and MXNet

with RDMA support enabled. PS uses the same resources as

BytePS with CPU machines. PyTorch does not have official

PS implementation, so it does not have PS results. We also

provide the speed of linear scaling as the upper bound. We use

trained images per second as the speed metric for computer

vision models, and tokens per second for NLP models.

Fig. 15 and Fig. 16 show very consistent results – BytePS

with CPU machines is always the best and BytePS without

CPU machines is the second. The native PS of both Ten-

sorFlow or MXNet are always the poorest. All-reduce al-

ways has a clear advantage over PS, but is inferior to BytePS.

When training with 256 GPUs, the speedup of BytePS over

all-reduce is 10% to 84% with CPU machines, and 9% to

53% without CPU machines. From 8 GPUs to 256 GPUs,

the speedup becomes larger. We expect that with even more

GPUs, BytePS will have even larger advantage.

We see that models have different system scalability,8

which is determined by the model sizes and FLOPs. The most

scalable model is ResNet-50. BytePS achieves 97.5% scal-

ing efficiency with 256 GPUs. All-reduce also performs well,

achieving 88% scaling efficiency. It is not surprising that prior

work is fond of training ResNet at large scale [49, 73] with

all-reduce. Nevertheless, other models are more challenging,

with UGATIT as the least scalable one. Even BytePS only

achieves 74% scaling efficiency. For such communication

intensive models, BytePS has the most gain over all-reduce

(84% with 256 GPUs). Despite UGATIT, BytePS has at least

91.6% scaling factor for the rest five 256-GPU training jobs.

We analyze the breakdown of performance improvement

by comparing native-PS and BytePS, since they both use

the same number of additional CPU machines. For example,

BytePS outperforms native-PS by 52% with 256 GPUs on

VGG-16 (Fig. 15(b)). Among the 52% improvement, we find

that 19% comes from optimal communication design (intra-

server), 18% comes from Summation Service, and the rest

15% comes from better implementation mentioned in §6.

8 Observations and Discussion
In this section, we share several of our observations and dis-

cussions, with the aim to inspire future research.

BytePS outperforms all-reduce even without extra CPU

machines. Theoretically, the communication time is the same

for all-reduce and BytePS when no additional CPU machines

are available (§4.1). In practice, we observe that BytePS still

outperforms all-reduce significantly in this case. One reason

is that BytePS has a better intra-machine communication

strategy than all-reduce. However, even without intra-machine

optimization, BytePS still outperforms all-reduce (see Fig. 14

in §7). We hypothesize that BytePS has the advantage of

8We focus on system scalability and do not discuss algorithm scalability, i.e.

the hyperparameter tuning and convergence speed with more GPUs.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 475

allowing more “asynchronicity” than all-reduce. All-reduce

usually requires additional out-of-band synchronization to

ensure the consistent order across nodes, while BytePS does

not have this overhead. However, to analyze it, we need a

distributed profiler that can build the complete timeline of the

execution and communication across all nodes in distributed

training.

GPU cluster scheduler should consider dynamic CPU re-

sources. By leveraging additional CPU machines, BytePS

can speedup DNN training. Since BytePS can adapt to any

number of CPU machines, it enables elasticity – the cluster

scheduler can scale in or out CPU machines for existing jobs

based on real time conditions. Most existing schedulers keep

the number of GPUs of a job static because of convergence

problems [16, 74]. Fortunately, the number of CPU machines

in BytePS only impacts system performance but not model

convergence. We plan to add elasticity support to BytePS,

which will enable BytePS to dynamically schedule CPU re-

sources during the training process.

Model-parallelism support. BytePS can accelerate the com-

munication when reducing tensors across GPUs. Some model

parallelism methods, such as Megatron-LM [62] and Mesh-

TensorFlow [61], also rely on the all-reduce primitive for

communication. Therefore, BytePS can also accelerate them

by replacing the all-reduce operations.

9 Related Work

Acceleration of computation: To accelerate the forward

propagation and backward propagation, the community has

worked out many advanced compilers and libraries, includ-

ing cuDNN [10], MKL [7], TVM [23], XLA [17], Astra [64]

and other computation graph optimization, e.g., Tensor Fu-

sion [14] and graph substitution [37]. They focus on speeding

up DNN computation. They are complementary to and can

be used with BytePS.

Acceleration of communication: There are several direc-

tions for accelerating communication: (1) Gradient compres-

sion [21, 45] is proposed to reduce the communication traf-

fic, i.e., using half precision for gradient transmission, at the

cost of potential degradation of accuracy. (2) Communica-

tion scheduling and pipelining: Recent work explores to bet-

ter overlap the computation and communication by priority-

based scheduling and tensor partition [31, 34, 55]. The ideas

are that tensor partition enables simultaneous bidirectional

communication, and that during communication, the former

layers have higher priority because they are needed sooner

for FP of the next iteration. Those ideas are complementary

to BytePS, and they have been integrated into our implemen-

tation. Pipedream [51] adds parallelism between multiple

batches. BytePS can also potentially accelerate its data paral-

lel stages.

Hierarchical all-reduce: Some work proposes to leverage

the hierarchical topology [24, 49] during all-reduce, in order

to minimize the traffic at bottleneck links. However, they still

rely on the assumption that resources are homogeneous while

overlooking CPU resources. BytePS can outperform them

by leveraging the heterogeneous resources. In fact, the lat-

est NCCL includes hierarchical, tree-based all-reduce, which

does not differ much from the results in §7.

Intra-machine optimization: Blink [68] also optimizes mul-

tiple GPU communication inside a single machine, by lever-

aging hybrid transfers on NVLinks and PCIe links. How-

ever, Blink does not optimize the distributed training cases,

where the main communication bottleneck is the NIC and its

PCIe connection instead of the much faster NVLinks. BytePS

carefully schedules the intra-machine traffic to utilize the

bottleneck bandwidth better – the NIC bandwidth. Our intra-

machine design also considers the PCIe bandwidth consumed

by the NIC, while Blink is only focused on GPU’s PCIe con-

nections.

New hardware chips or architecture for accelerating

DNN training: Recently, there are many new chips, like

TPU [38] and Habana [6], that are specifically designed

for DNN training. In fact, the design of BytePS is not

GPU-specific, and should apply to them as long as they

are also PCIe devices. Some also propose using Infini-

Band switch ASIC [28] to accelerate all-reduce, or using P4

switches [58, 59] to accelerate PS. E3 [46] leverages Smart-

NICs to accelerate network applications, and can potentially

benefit BytePS by offloading the gradient summation from

CPUs to SmartNICs. PHub [48] proposes a rack-scale hard-

ware architecture with customized network configurations,

e.g., 10 NICs on one server. BytePS focuses on using gen-

erally available CPU and GPU servers in commodity data

centers.

10 Conclusion
BytePS is a unified distributed DNN training acceleration sys-

tem that achieves optimal communication efficiency in hetero-

geneous GPU/CPU clusters. BytePS handles cases with vary-

ing number of CPU machines and makes traditional all-reduce

and PS as two special cases of its framework. To further accel-

erate DNN training, BytePS proposes Summation Service and

splits a DNN optimizer into two parts: gradient summation

and parameter update. It keeps the CPU-friendly part, gradi-

ent summation, in CPUs, and moves parameter update, which

is more computation heavy, to GPUs. We have implemented

BytePS and addressed numerous implementation issues, in-

cluding those that affect RDMA performance. BytePS has

been deployed, extensively used and open sourced [4]. Mul-

tiple external projects have been developed based on it. The

Artifact Appendix to reproduce the evaluation is at [3].

11 Acknowledgement
We thank our shepherd Rachit Agarwal and the anony-

mous reviewers for their valuable comments and sugges-

tions. Yimin Jiang and Yong Cui are supported by NSFC

(No. 61872211), National Key RD Program of China (No.

2018YFB1800303).

476 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] A Light-weight Parameter Server Interface. https:

//github.com/dmlc/ps-lite.

[2] Amazon EC2 P3 Instances. https://aws.amazon.c

om/ec2/instance-types/p3/.

[3] Artifact Appendix. https://github.com/byteps/

examples/blob/master/osdi20ae.pdf.

[4] BytePS. https://github.com/bytedance/byteps.

[5] Evaluation Code. https://github.com/byteps/ex

amples.

[6] Habana. https://habana.ai/.

[7] Intel MKL. https://software.intel.com/en-us

/mkl.

[8] Intel Xeon Platinum 8168 Processor. https://ark.in

tel.com/content/www/us/en/ark/products/120

504/intel-xeon-platinum-8168-processor-33m

-cache-2-70-ghz.html.

[9] Libibverbs. https://www.rdmamojo.com/2012/05

/18/libibverbs/.

[10] NVIDIA cuDNN. https://developer.nvidia.com

/cudnn.

[11] NVIDIA DGX-1. https://www.nvidia.com/data-

center/dgx-1/.

[12] NVIDIA GPU Direct RDMA Benchmark. https://

devblogs.nvidia.com/benchmarking-gpudirect

-rdma-on-modern-server-platforms/.

[13] NVIDIA NCCL. https://developer.nvidia.com

/nccl.

[14] NVIDIA TensorRT Inference Library. https://devb

logs.nvidia.com/deploying-deep-learning-nv

idia-tensorrt/.

[15] Supermicro PCIe Root Architectures for GPU Systems.

https://www.supermicro.org.cn/products/sys

tem/4U/4029/PCIe-Root-Architecture.cfm.

[16] Train ImageNet in 18 Minutes. https://www.fast.a

i/2018/08/10/fastai-diu-imagenet/.

[17] XLA. https://www.tensorflow.org/xla.

[18] Amazon EC2 Pricing on demand. https://aws.amaz

on.com/ec2/pricing/on-demand/, 2019.

[19] TensorFlow MNIST Example with Horovod. https:

//github.com/horovod/horovod/blob/master/e

xamples/tensorflow_mnist.py, 2020.

[20] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: A System for Large-Scale Machine Learn-

ing. In OSDI 2016.

[21] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur

Agrawal, Wei Zhang, and Kailash Gopalakrishnan. Ada-

comp: Adaptive Residual Gradient Compression for

Data-parallel Distributed Training. In AAAI 2018.

[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,

Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,

and Zheng Zhang. MXNet: A Flexible and Efficient Ma-

chine Learning Library for Heterogeneous Distributed

Systems. In LearningSys 2015.

[23] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin

Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,

Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An

Automated End-to-End Optimizing Compiler for Deep

Learning. In OSDI 2018.

[24] Minsik Cho, Ulrich Finkler, and David Kung. Blue-

Connect: Novel Hierarchical All-Reduce on Multi-tired

Network for Deep Learning. In SysML 2019.

[25] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,

Matthieu Devin, Mark Mao, Andrew Senior, Paul

Tucker, Ke Yang, Quoc V Le, et al. Large Scale Dis-

tributed Deep Networks. In NIPS 2012.

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. BERT: Pre-training of Deep Bidi-

rectional Transformers for Language Understanding.

arXiv preprint arXiv:1810.04805, 2018.

[27] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-

loch, Yangqing Jia, and Kaiming He. Accurate, Large

Minibatch SGD: Training Imagenet in 1 Hour. arXiv

preprint arXiv:1706.02677, 2017.

[28] Richard L Graham, Devendar Bureddy, Pak Lui, Hal

Rosenstock, Gilad Shainer, Gil Bloch, Dror Goldenerg,

Mike Dubman, Sasha Kotchubievsky, Vladimir Koush-

nir, et al. Scalable Hierarchical Aggregation Protocol

(SHArP): A Hardware Architecture for Efficient Data

Reduction. In COMHPC 2016.

[29] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,

Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu,

and Chuanxiong Guo. Tiresias: A GPU Cluster Manager

for Distributed Deep Learning. In NSDI 2019.

[30] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,

Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA

Over Commodity Ethernet at Scale. In SIGCOMM 2016.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 477

https://github.com/dmlc/ps-lite
https://github.com/dmlc/ps-lite
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://github.com/byteps/examples/blob/master/osdi20ae.pdf
https://github.com/byteps/examples/blob/master/osdi20ae.pdf
https://github.com/bytedance/byteps
https://github.com/byteps/examples
https://github.com/byteps/examples
https://habana.ai/
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://www.rdmamojo.com/2012/05/18/libibverbs/
https://www.rdmamojo.com/2012/05/18/libibverbs/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://www.nvidia.com/data-center/dgx-1/
https://www.nvidia.com/data-center/dgx-1/
https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://devblogs.nvidia.com/deploying-deep-learning-nvidia-tensorrt/
https://devblogs.nvidia.com/deploying-deep-learning-nvidia-tensorrt/
https://devblogs.nvidia.com/deploying-deep-learning-nvidia-tensorrt/
https://www.supermicro.org.cn/products/system/4U/4029/PCIe-Root-Architecture.cfm
https://www.supermicro.org.cn/products/system/4U/4029/PCIe-Root-Architecture.cfm
https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
https://www.tensorflow.org/xla
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/horovod/horovod/blob/master/examples/tensorflow_mnist.py
https://github.com/horovod/horovod/blob/master/examples/tensorflow_mnist.py
https://github.com/horovod/horovod/blob/master/examples/tensorflow_mnist.py

[31] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and

Roy H Campbell. TicTac: Accelerating Distributed

Deep Learning with Communication Scheduling. In

SysML 2019.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep Residual Learning for Image Recognition.

In CVPR 2016.

[33] Geoffrey Hinton, li Deng, Dong Yu, George Dahl, Abdel-

rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vin-

cent Vanhoucke, Phuongtrang Nguyen, Tara Sainath,

and Brian Kingsbury. Deep Neural Networks for Acous-

tic Modeling in Speech Recognition: The Shared Views

of Four Research Groups. Signal Processing Magazine,

IEEE, 2012.

[34] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra

Fedorova, and Gennady Pekhimenko. Priority-based

Parameter Propagation for Distributed DNN Training.

In SysML 2019.

[35] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-

ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.

Analysis of Large-Scale Multi-Tenant GPU Clusters

for DNN Training Workloads. In ATC 2019.

[36] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang,

Haidong Rong, Feihu Zhou, Liqiang Xie, Zhenyu Guo,

Yuanzhou Yang, Liwei Yu, et al. Highly Scalable

Deep Learning Training System with Mixed-precision:

Training Imagenet in Four Minutes. arXiv preprint

arXiv:1807.11205, 2018.

[37] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-

wski, Matei Zaharia, and Alex Aiken. TASO: Opti-

mizing Deep Learning Computation with Automatic

Generation of Graph Substitutions. In SOSP 2019.

[38] Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-

terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,

Suresh Bhatia, Nan Boden, Al Borchers, et al. In-

datacenter performance analysis of a tensor processing

unit. In ISCA 2017.

[39] Anuj Kalia, Michael Kaminsky, and David G. Andersen.

FaSST: Fast, Scalable and Simple Distributed Transac-

tions with Two-Sided (RDMA) Datagram RPCs. In

OSDI 2016.

[40] Anuj Kalia, Michael Kaminsky, and David G Andersen.

Using RDMA efficiently for Key-value Services. In

SIGCOMM 2014.

[41] Junho Kim, Minjae Kim, Hyeonwoo Kang, and

Kwanghee Lee. U-GAT-IT: Unsupervised Genera-

tive Attentional Networks with Adaptive Layer-Instance

Normalization for Image-to-Image Translation. arXiv

preprint arXiv:1907.10830, 2019.

[42] Diederik P. Kingma and Jimmy Ba. Adam: A Method

for Stochastic Optimization. In ICLR, 2015.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-

ton. ImageNet Classification with Deep Convolutional

Neural Networks. In NIPS 2012.

[44] Mu Li, David G Andersen, Jun Woo Park, Alexander J

Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-

gene J Shekita, and Bor-Yiing Su. Scaling Distributed

Machine Learning with the Parameter Server. In OSDI

2014.

[45] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and

William J Dally. Deep Gradient Compression: Reducing

the Communication Bandwidth for Distributed Training.

arXiv preprint arXiv:1712.01887, 2017.

[46] Ming Liu, Simon Peter, Arvind Krishnamurthy, and

Phitchaya Mangpo Phothilimthana. E3: Energy-

Efficient Microservices on SmartNIC-Accelerated

Servers. In ATC 2019.

[47] Chris Lomont. Introduction to Intel Advanced Vector

Extensions. Intel white paper, 23, 2011.

[48] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee,

and Arvind Krishnamurthy. Parameter Hub: A Rack-

scale Parameter Server for Distributed Deep Neural Net-

work Training. In SoCC 2018.

[49] Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka,

and Yuichi Kageyama. Massively Distributed SGD:

ImageNet/ResNet-50 Training in a Flash. arXiv preprint

arXiv:1811.05233, 2018.

[50] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-

ing One-Sided RDMA Reads to Build a Fast, CPU-

Efficient Key-Value Store. In ATC 2013.

[51] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,

Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,

Phillip B Gibbons, and Matei Zaharia. PipeDream: Gen-

eralized Pipeline Parallelism for DNN Training. In

SOSP 2019.

[52] Tony Paikeday. Steel for the AI Age: DGX SuperPOD

Reaches New Heights with NVIDIA DGX A100. http

s://blogs.nvidia.com/blog/2020/05/14/dgx-s

uperpod-a100/, May 2020.

[53] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-

ban Desmaison, Andreas Kopf, Edward Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-

amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. PyTorch: An Imperative Style, High-

Performance Deep Learning Library. In NIPS 2019.

478 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://blogs.nvidia.com/blog/2020/05/14/dgx-superpod-a100/
https://blogs.nvidia.com/blog/2020/05/14/dgx-superpod-a100/
https://blogs.nvidia.com/blog/2020/05/14/dgx-superpod-a100/

[54] Pitch Patarasuk and Xin Yuan. Bandwidth Optimal All-

reduce Algorithms for Clusters of Workstations. Journal

of Parallel and Distributed Computing, 2009.

[55] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,

Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.

A Generic Communication Scheduler for Distributed

DNN Training Acceleration. In SOSP 2019.

[56] Raul Puri, Robert Kirby, Nikolai Yakovenko, and Bryan

Catanzaro. Large Scale Language Modeling: Converg-

ing on 40GB of Text in Four Hours. In SBAC-PAD

2018.

[57] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario

Amodei, and Ilya Sutskever. Language Models are Un-

supervised Multitask Learners. OpenAI Blog, 2019.

[58] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,

Marco Canini, and Panos Kalnis. In-network Compu-

tation Is A Dumb Idea Whose Time Has Come. In

HotNets 2017.

[59] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob

Nelson, Panos Kalnis, Changhoon Kim, Arvind Krish-

namurthy, Masoud Moshref, Dan RK Ports, and Pe-

ter Richtárik. Scaling Distributed Machine Learn-

ing with In-network Aggregation. arXiv preprint

arXiv:1903.06701, 2019.

[60] Alexander Sergeev and Mike Del Balso. Horovod: Fast

and Easy Distributed Deep Learning in TensorFlow.

CoRR, 2018.

[61] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin

Tran, Ashish Vaswani, Penporn Koanantakool, Peter

Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff

Young, Ryan Sepassi, and Blake Hechtman. Mesh-

TensorFlow: Deep Learning for Supercomputers. arXiv

preprint arXiv:1811.02084, 2018.

[62] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,

Patrick LeGresley, Jared Casper, and Bryan Catanzaro.

Megatron-LM: Training Multi-Billion Parameter Lan-

guage Models Using Model Parallelism. arXiv preprint

arXiv: 1909.08053, 2019.

[63] Karen Simonyan and Andrew Zisserman. Very Deep

Convolutional Networks for Large-scale Image Recog-

nition. arXiv preprint arXiv:1409.1556, 2014.

[64] Muthian Sivathanu, Tapan Chugh, Sanjay S Singapuram,

and Lidong Zhou. Astra: Exploiting Predictability to

Optimize Deep Learning. In ASPLOS 2019.

[65] Ilya Sutskever, James Martens, George Dahl, and Ge-

offrey Hinton. On the Importance of Initialization and

Momentum in Deep Learning. In ICML 2013.

[66] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie

Krevat, David G. Andersen, Gregory R. Ganger, Garth A.

Gibson, and Brian Mueller. Safe and Effective Fine-

grained TCP Retransmissions for Datacenter Communi-

cation. In SIGCOMM 2009.

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,

and Illia Polosukhin. Attention is All You Need. In

NIPS 2017.

[68] Guanhua Wang, Shivaram Venkataraman, Amar Phan-

ishayee, Jorgen Thelin, Nikhil Devanur, and Ion Stoica.

Blink: Fast and Generic Collectives for Distributed ML.

In MLSys 2020.

[69] Yuxuan Wang, R. J. Skerry-Ryan, Daisy Stanton,

Yonghui Wu, Ron J. Weiss, Navdeep Jaitly, Zongheng

Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc V.

Le, Yannis Agiomyrgiannakis, Rob Clark, and Rif A.

Saurous. Tacotron: A Fully End-to-End Text-To-Speech

Synthesis Model. CoRR, abs/1703.10135, 2017.

[70] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo

Chen. Deconstructing RDMA-enabled Distributed

Transactions: Hybrid is Better! In OSDI 2018.

[71] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-

jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,

Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,

et al. Gandiva: Introspective Cluster Scheduling for

Deep Learning. In OSDI 2018.

[72] Bairen Yi, Jiacheng Xia, Li Chen, and Kai Chen. To-

wards Zero Copy Dataflows Using RDMA. In SIG-

COMM 2017 Posters and Demos.

[73] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and

Youlong Cheng. Image Classification at Supercomputer

Scale. arXiv preprint arXiv:1811.06992, 2018.

[74] Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James

Demmel, and Cho-Jui Hsieh. Reducing BERT Pre-

Training Time from 3 Days to 76 Minutes. arXiv

preprint arXiv:1904.00962, 2019.

[75] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong

Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-

hye, Shachar Raindel, Mohamad Haj Yahia, and Ming

Zhang. Congestion Control for Large-Scale RDMA

Deployments. In SIGCOMM 2015.

[76] Martin Zinkevich, Markus Weimer, Lihong Li, and

Alex J Smola. Parallelized Stochastic Gradient Descent.

In NIPS 2010.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 479

