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Ultrafast machine vision with 2D material 
neural network image sensors

Lukas Mennel1 ✉, Joanna Symonowicz1, Stefan Wachter1, Dmitry K. Polyushkin1,  

Aday J. Molina-Mendoza1 & Thomas Mueller1 ✉

Machine vision technology has taken huge leaps in recent years, and is now becoming 

an integral part of various intelligent systems, including autonomous vehicles and 

robotics. Usually, visual information is captured by a frame-based camera, converted 

into a digital format and processed afterwards using a machine-learning algorithm 

such as an artificial neural network (ANN)1. The large amount of (mostly redundant) 

data passed through the entire signal chain, however, results in low frame rates and 

high power consumption. Various visual data preprocessing techniques have thus 

been developed2–7 to increase the efficiency of the subsequent signal processing in an 

ANN. Here we demonstrate that an image sensor can itself constitute an ANN that can 

simultaneously sense and process optical images without latency. Our device is based 

on a reconfigurable two-dimensional (2D) semiconductor8,9 photodiode10–12 array, and 

the synaptic weights of the network are stored in a continuously tunable 

photoresponsivity matrix. We demonstrate both supervised and unsupervised 

learning and train the sensor to classify and encode images that are optically 

projected onto the chip with a throughput of 20 million bins per second.

ANNs have achieved huge success as machine-learning algorithms in 

a wide variety of fields1. The computational resources required to per-

form machine-learning tasks are very demanding. Accordingly, dedi-

cated hardware solutions that provide better performance and energy 

efficiency than conventional computer architectures have become a 

major research focus. However, although much progress has been made 

in efficient neuromorphic processing of electrical13–16 or optical17–20 

signals, the conversion of optical images into the electrical domain 

remains a bottleneck, particularly in time-critical applications. Imag-

ing systems that mimic neuro-biological architectures may allow us to 

overcome these disadvantages. Much work has therefore been devoted 

to develop systems that emulate certain functions of the human eye21, 

including hemispherically shaped image sensors22,23 and preprocessing 

of visual data2–7, for example, for image-contrast enhancement, noise 

reduction or event-driven data acquisition.

Here, we present a photodiode array that itself constitutes an ANN 

that simultaneously senses and processes images projected onto the 

chip. The sensor performs a real-time multiplication of the projected 

image with a photoresponsivity matrix. Training of the network requires 

setting the photoresponsivity value of each pixel individually. Con-

ventional photodiodes that are based, for example, on silicon exhibit 

a fixed responsivity that is defined by the inner structure (chemical 

doping profile) of the device, and are thus not suitable for the pro-

posed application. Other technologies such as photonic mixing24 and 

metal–semiconductor–metal detectors25 may, in principle, be suitable, 

but these device concepts bear additional challenges, such as nonlin-

ear tunability of the photoresponse and bias-dependent (and hence 

weight-dependent) dark current. We have therefore chosen WSe2—a 2D 

semiconductor—as the photoactive material. 2D semiconductors not 

only show strong light–matter interaction and excellent optoelectronic 

properties8,9 but also offer the possibility of external tunability of the 

potential profile in a device—and hence its photosensitivity—by electro-

static doping using multi-gate electrodes10–12. In addition, 2D materials 

technology has by now achieved a sufficiently high level of maturity 

to be employed in complex systems26 and provides ease of integration 

with silicon readout/control electronics27.

Figure 1a schematically illustrates the basic layout of the image sensor. 

It consists of N photoactive pixels arranged in a 2D array, with each pixel 

divided into M subpixels. Each subpixel is composed of a photodiode, 

which is operated under short-circuit conditions and under optical 

illumination delivers a photocurrent of Imn = RmnEnA = RmnPn, where Rmn is 

the photoresponsivity of the subpixel, En and Pn denote the local irradi-

ance and optical power at the nth pixel, respectively, and A is the detec-

tor area. n = 1, 2, …, N and m = 1, 2, …, M denote the pixel and subpixel 

indices, correspondingly. An integrated neural network and imaging 

array can now be formed by interconnecting the subpixels. Summing 

all photocurrents produced by the mth detector element of each pixel

∑ ∑I I R P= = (1)m
n

N

mn
n

N

mn n
=1 =1

performs the matrix–vector product operation I = RP, with R = (Rmn) 

being the photoresponsivity matrix, P = (P1, P2, …, PN)T being a vector 

that represents the optical image projected onto the chip and I = (I1, 

I2, …, IM)T being the output vector. Provided that the Rmn value of each 

detector element can be set to a specific positive or negative value, 

various types of ANNs for image processing can be implemented (see 

Fig. 1c, d), with the synaptic weights being encoded in the photore-

sponsivity matrix. The expression ‘negative photoresponsivity’ is to be 

understood in this context as referring to the sign of the photocurrent.
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Fig. 1 | Imaging ANN photodiode array. a, Illustration of the ANN photodiode 

array. All subpixels with the same colour are connected in parallel to generate M 

output currents. b, Circuit diagram of a single pixel in the photodiode array. c, 

d, Schematics of the classifier (c) and the autoencoder (d). Below the 

illustration of the autoencoder, shown is an example of encoding/decoding of a 

28 × 28 pixel letter from the MNIST handwritten digit database. The original 

image is encoded to 9 code-layer neurons and then decoded back into an 

image.
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Fig. 2 | Implementation of the ANN photodiode array. a, Schematic of a single 

WSe2 photodiode. The device is operated under short-circuit conditions and 

the photoresponsivity is set by supplying a voltage pair VG /−VG to the bottom-

gate electrodes. b, Macroscopic image of the bonded chip on the chip carrier. 

Scale bar, 2 mm. First magnification: microscope image of the photodiode 

array, which consists of 3 × 3 pixels. Scale bar, 15 μm. Second magnification: 

scanning electron microscopy image of one of the pixels. Each pixel consists of 

three WSe2 photodiodes/subpixels with responsivities set by the gate voltages. 

Scale bar, 3 μm. GND, ground electrode. c, Current–voltage characteristic 

curve of one of the photodetectors in the dark (blue line) and under optical 

illumination (red line). See also Extended Data Fig. 2a. The inset shows the gate-

voltage tunability of the photoresponsivity. d, Schematic illustration of the 

optical setup. Laser light is linearly polarized by a wire-grid polarizer and 

reflected by a spatial light modulator (SLM). The reflected light is then filtered 

by an analyser (intensity modulation) and the resulting image is projected onto 

the photodiode array. e, Microscope images of the 3 × 3 pixel letters used for 

training/operation of the network.
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We implemented two types of ANNs: a classifier and an autoencoder. 

Figure 1c shows a schematic of the classifier. Here, the array is oper-

ated as a single-layer perceptron, together with nonlinear activation 

functions that are implemented off-chip. This type of ANN represents 

a supervised learning algorithm that is capable of classifying images P 

into different categories y. An autoencoder (Fig. 1d) is an ANN that can 

learn, in an unsupervised training process, an efficient representation 

(encoding) for a set of images P. Along with the encoder, a decoder is 

trained to attempt to reproduce at its output the original image, P′ ≈ P, 

from the compressed data. Here the encoder is formed by the photo-

diode array itself and the decoder by external electronics.

Having presented the operational concept of our network, we now 

come to an actual device implementation. We used a few-layer WSe2 

crystal with a thickness of about 4 nm to form lateral p–n junction 

photodiodes, using split-gate electrodes (with a ~300-nm-wide gap) 

that couple to two different regions of the 2D semiconductor chan-

nel (Fig. 2a)10–12. WSe2 was chosen because of its ambipolar conduc-

tion behaviour and excellent optoelectronic properties. Biasing one 

gate electrode at VG and the other at −VG enables adjustable (trainable) 

responsivities between −60 and +60 mA W−1, as shown in Fig. 2c. This 

technology was then used to fabricate the photodiode array shown in 

Fig. 2b, which consists of 27 detectors with good uniformity, tunability 

and linearity (see Extended Data Figs. 1, 2b). The devices were arranged 

to form a 3 × 3 imaging array (N = 9) with a pixel size of about 17 × 17 μm2 

and with three detectors per pixel (M = 3). The short-circuit photocur-

rents Isc produced by the individual devices under optical illumination 

were summed according to Kirchhoff’s law by hard-wiring the devices 

in parallel, as depicted in Fig. 1b. The sample fabrication is explained 

in Methods, and a schematic of the entire circuit is provided in Extended 

Data Fig. 3. Each device was supplied with a pair of gate voltages, VG 

and −VG, to set its responsivity individually. For training and testing 

of the chip, optical images were projected using the setup shown in 

Fig. 2d (for details, see Methods). Unless otherwise stated, all measure-

ments were performed using light with a wavelength of 650 nm and 

with a maximum irradiance of about 0.1 W cm−2. Despite its small size, 

such a network is sufficient for the proof-of-principle demonstration 

of several machine-learning algorithms. In particular, we performed 

classification, encoding, and denoising of the stylized letters ‘n’, ‘v’ 

and ‘z’ depicted in Fig. 2e. Scaling the network to larger dimensions is 

conceptually straightforward and remains a mainly technological task.

To test the functionality of the photodiode array, we first operated 

it as a classifier (Fig. 1c) to recognize the letters ‘n’, ‘v’ and ‘z’. During 

each training epoch we optically projected a set of S = 20 randomly 

chosen letters. Gaussian noise (with standard deviation of σ = 0.2, 0.3 

and 0.4; Fig. 3c) was added to augment the input data28. In this super-

vised learning example, we chose one-hot encoding, in which each of 

the three letters activates a single output node/neuron. As activation 

function (the nonlinear functional mapping between the inputs and 

the output of a node) for the M photocurrents we chose the softmax 

function ϕ I( ) = e /∑ e
m

I ξ
k
M I ξ

=1
m k  (a common choice for one-hot encoding), 

where ξ = 1010 A−1 is a scaling factor that ensures that the full value range 

of the activation function is accessible during training. As a loss/cost 

function (the function to be minimized during training) we used the 

cross-entropy L 



y ϕ I= − ∑ log ( )

M m
M

m m

1
=1 , where ym is the label and 

M = 3 is the number of classes. The activations of the output neurons 

represent the probabilities for each of the letters. The initial values of 

the responsivities were randomly chosen from a Gaussian distribution, 

as suggested in ref. 29, and were different for the supervised- and unsu-

pervised-learning demonstrations. The responsivities were updated 

after every epoch by backpropagation30 of the gradient of the loss 

function

P

L∑R R
η

S
→ − ∇ (2)mn mn Rmn

with learning rate η = 0.1. A detailed flow chart of the training algorithm 

is presented in Extended Data Fig. 4d.

In Fig. 3a, b the accuracy and loss are plotted over 35 training epochs. 

The loss is decreasing quickly for all noise levels and reaches a minimum 

after 15, 20 and 35 epochs for σ = 0.2, σ = 0.3 and σ = 0.4, respectively. 

The accuracy reaches 100% for all noise levels, with faster convergence 

for less noise. In Fig. 3d we show the mean currents for each of the three 
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Fig. 3 | Device operation as a classifier. a, Accuracy of the classifier during 

training for varying artificial noise levels. An image is accurately predicted 

when the correct neuron has the largest activation. b, Loss function for 

different noise levels during training. The inset shows the initial and final 

responsivity distributions for σ = 0.2. c, Microscope images of the projected 

letters with different random noise levels. The complete dataset obtained over 

30 epochs of training is shown in Extended Data Fig. 7. d, Average currents for 

each epoch for each projected letter, measured during training with a noise 

level of σ = 0.2. Each graph shows the results of a separate experiment, in which 

the letters ‘n’ (top), ‘v’ (middle) and ‘z’ (bottom) are projected onto the chip, and 

three currents—corresponding to ‘n’ (blue), ‘v’ (red) and ‘z’ (green)—are 

measured. In the top graph, for example, the output that corresponds to the 

letter ‘n’ (current ‘n’) is the highest, so the ANN determines that the projected 

letter is ‘n’.
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letters during each epoch for σ = 0.2 (see Extended Data Fig. 5c, d for the 

other cases). The currents become well separated after about 10 epochs, 

with the highest current corresponding to the label of the projected 

letter. The inset in Fig. 3b shows histograms for the (randomly chosen) 

initial and final responsivity values for σ = 0.2 (see also Extended Data 

Fig. 5a, b). The robustness and reliability of the classification results of 

the analogue vision sensor were verified by comparison of the accuracy 

and loss with computer simulations of a digital system with the same 

architecture and learning scheme (Extended Data Fig. 6).

Next, we demonstrate encoding of image patterns with our device 

operating as an autoencoder (Fig. 1d). We chose logistic (sigmoid) 

activation functions for the code neurons ϕ I( ) = (1 + e )
m m

I ξ− −1m , again 

with ξ = 1010 A−1 as a scaling factor, as well as for the output neurons 

P ϕ z′ = ( ) = (1 + e )n n n
z− −1n , where z W ϕ I= ∑ ( )n n

N
nm m m=1  and Wnm denotes 

the weight matrix of the decoder. We used the mean-square loss func-

tion P P′L= −
1

2
2 , which depends on the difference between the 

original and reconstructed images. The responsivities were again 

trained by backpropagation of the loss according to equation  (2), with 

a noise level of σ = 0.15. Along with the encoder responsivities, the 

weights of the decoder Wnm were trained. As shown in Fig. 4a, the loss 

steeply decreases within the first ~10 training epochs and then slowly 

converges to a final value after about 30 epochs. The initial and final 

responsivities/weights of the encoder/decoder are shown in Fig. 4b 

and Extended Data Fig. 8, and the coded representations for each let-

ter are depicted in Fig. 4c. Each projected letter delivers a unique signal 

pattern at the output. A projected ‘n’ delivers negative currents to 

code-layer neurons 1 and 2 and a positive current to code-layer neuron 

3. After the sigmoid function, this causes only code-layer neuron 3 to 

deliver a sizeable signal. The letters ‘v’ and ‘z’ activate two code-layer 

neurons: ‘v’, code-layer neurons 0 and 2; ‘z’, code-layer neurons 1 and 

2. The decoder transforms the coded signal back into an output that 

correctly represents the input. To test the fault tolerance of the autoen-

coder, we projected twice as noisy (σ = 0.3) images. Not only did the 

autoencoder interpret the inputs correctly, but the reconstructions 

were considerably less noisy (Fig. 4d).

As image sensing and processing are both performed in the analogue 

domain, the operation speed of the system is limited only by physical 

processes involved in the photocurrent generation31. As a result, image 

recognition and encoding occur in real time with a rate that is orders 

of magnitude higher than what can be achieved conventionally. To 

demonstrate the high-speed capabilities of the sensor, we performed 

measurements with a 40-ns pulsed laser source (522 nm, ~10 W cm−2). 

The photodiode array was operated as a classifier and trained before-

hand, as discussed above. We subsequently projected two letters (‘v’ and 

‘n’) and measured the time-resolved currents of the two corresponding 

channels. In Fig. 5 we plot the electric output pulses, which demonstrate 

correct pattern classification within ~50 ns. The system is thus capable 

of processing images with a throughput of 20 million bins per second. 

This value is limited only by the 20-MHz bandwidth of the used ampli-

fiers, and substantially higher rates are possible. Such a network may 

hence provide new opportunities for ultrafast machine vision. It may 

also be employed in ultrafast spectroscopy for the detection and classi-

fication of spectral events. We also note that the operation of the vision 

sensor is self-powered (photovoltaic device) and electrical energy is 

consumed only during training.

Let us now comment on the prospects for scalability. In our pre-

sent implementation the weights of the ANN are stored in an external 

memory and supplied to each detector via cabling. Scaling will require 

storing the weights locally. This could be achieved, for example, by 

using ferroelectric gate dielectrics or by employing floating gate 

devices32–34. To demonstrate the feasibility of the latter approach, we 

present in Extended Data Fig. 9 a floating split-gate photodetector. 

Once set, this detector ‘remembers’ its responsivity value and delivers 

a photocurrent of adjustable sign/magnitude. During training, each 

detector could then be addressed by its column and row, using the 

standard infrastructure of active pixel cameras.

Another important question is the number of required subpixels 

M. As shown in the example in Fig. 1d, a segmentation of each pixel 

into 3 × 3 subpixels may be adequate for some applications. Given the 

exponential increase of network complexity with M, increasing the seg-

mentation to 6 × 6 subpixels would already result in a very powerful ANN 

with a manageable number of 36 analogue outputs. We propose that 

such a network may also be trained as a binary-hashing35 autoencoder, 

eliminating the need for analogue-to-digital conversion. Binary hash-

ing encodes each feature into a binary code of the output signal, which 

means that a 36-bit digital output allows as many as 236 – 1 ≈ 7 × 1010 
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Fig. 4 | Device operation as an autoencoder. a, Loss of the autoencoder during 

training. The complete dataset of 30 epochs of training is given in Extended 

Data Fig. 7. b, Responsivity and weight distributions before (initial) and after 

(final) training. c, Autoencoding of noise-free letters. The encoder translates 

the projected images into a current code, which is converted by the 

nonlinearity into a binary activation code and finally reconstructed into an 

image by the decoder. d, Randomly chosen noisy inputs (σ = 0.3) and the 

corresponding reconstructions after autoencoding.
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encodable features. The implementation of an analogue deep-learning 

network becomes feasible by converting the photocurrents into volt-

ages that are then fed into a memristor crossbar. We finally remark that 

besides on-chip training, demonstrated here, the network can also be 

trained off-line using computer simulations, and the predetermined 

photoresponsivity matrix is then transferred to the device.

In conclusion, we have presented an ANN vision sensor for ultrafast 

recognition and encoding of optical images. The device concept is 

easily scalable and provides various training possibilities for ultrafast 

machine vision applications.
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Methods

Device fabrication

The fabrication of the chip followed the procedure described in ref. 26. 

As a substrate we used a silicon wafer, coated with 280-nm-thick SiO2. 

First, we prepared a bottom metal layer by writing a design with elec-

tron-beam lithography (EBL) and evaporating Ti/Au (3 nm/30 nm). 

Secondly, we deposited a 30-nm-thick Al2O3 gate oxide using atomic 

layer deposition. Via holes through the Al2O3 isolator, which were 

necessary for the connections between the top and bottom metal 

layers, were defined by EBL and etched with a 30% solution of KOH in 

deionized water. Thirdly, we mechanically exfoliated a ~70 × 120 μm2 

WSe2 flake from a bulk crystal (from HQ Graphene) and transferred 

it onto the desired position on the sample by an all-dry viscoelastic 

stamping method36. The crystal thickness (about six monolayers, or 

~4 nm) was estimated from the contrast under which it appears in an 

optical microscope. Next, we separated 27 pixels from the previously 

transferred WSe2 sheet by defining a mask with EBL and reactive ion 

etching with Ar/SF6 plasma. Mild treatment with reactive ion etching 

oxygen plasma allowed the removal of the crust from the surface of 

the polymer mask that appeared during the preceding etching step. 

Then, a top metal layer was added by another EBL process and Ti/Au 

(3 nm/32 nm) evaporation. We confirmed the continuity and solidity of 

the electrode structure by scanning electron microscopy and electri-

cal measurements. Finally, the sample was mounted in a 68-pin chip 

carrier and wire-bonded.

Experimental setup

Schematics of the experimental setup are shown in Fig. 2d and Extended 

Data Fig. 4a–c. Light from a semiconductor laser (650 nm wavelength) 

was linearly polarized before it illuminated a spatial light modulator 

(SLM; Hamamatsu), operated in intensity-modulation mode. On the 

SLM, the letters were displayed and the polarization of the light was 

rotated depending on the pixel value. A linear polarizer with its optical 

axis oriented normal to the polarization direction of the incident laser 

light functioned as an analyser. The generated optical image was then 

projected onto the sample using a 20× microscope objective with long 

working distance (Mitutoyo). Pairs of gate voltages were supplied to 

each of the detectors individually using a total of 54 digital-to-analogue 

converters (National Instruments, NI-9264) and the three output cur-

rents were measured by source meters (Keithley, 2614B). For time-

resolved measurements, a pulsed laser source emitting ~40-ns-long 

pulses at 522 nm wavelength was used. The output current signals were 

amplified with high-bandwidth (20 MHz) transimpedance amplifiers 

(Femto) and the output voltages were recorded with an oscilloscope 

(Keysight). For the time-resolved measurements, the analyser was 

removed and the SLM was operated in phase-only mode to achieve 

higher illumination intensities (~10 W cm−2). The phase-only Fourier 

transforms of the projected images were calculated using the Gerch-

berg–Saxton algorithm37. For reliable and hysteresis-free operation, 

the vision sensor was placed in a vacuum chamber (~10−6 mbar). Alter-

natively, a protective dielectric encapsulation layer may be employed 

to isolate the two-dimensional semiconductor from the environment.

Data availability

The data that support the findings of this study are available from the 

corresponding authors upon reasonable request.
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Extended Data Fig. 1 | Photodiode array uniformity. Gate tunability of the responsivities of all 27 photodetectors. One of the detector elements (pixel 7, subpixel 

2) did not show any response to light (due to a broken electrical wire), which, however, had no crucial influence on the overall system performance.



Extended Data Fig. 2 | Photodiode characteristics. a, Current–voltage 

characteristic curve under dark (blue) and illuminated (green) conditions.  

The series resistance Rs and shunt resistance Rsh are ~106 Ω and 109 Ω, 

respectively. For zero-bias operation, we estimate a noise-equivalent power of 

NEP = Ith/R ≈ 10−13 W Hz−1/2, where R ≈ 60 mA W−1 is the (maximum) responsivity 

and I k T f R= 4 Δ /th B sh the thermal noise, where kB is the Boltzmann constant,  

Δf is the bandwidth and T is the temperature. b, Dependence of the short-

circuit photocurrent on the light intensity for different split-gate voltages. 

Importantly, the response is linear (I ∝ P), as assumed in equation (1).
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Extended Data Fig. 3 | Circuit of the ANN photodiode array.



Extended Data Fig. 4 | Experimental setup. a, Experimental setup for training 

the classifier and the autoencoder. CW, continuous wave. b, Experimental 

setup for time-resolved measurements. TIA, transimpedance amplifier. A pulse 

generator triggers the pulsed laser as well as the oscilloscope. c, Photograph of 

the optical setup (for schematic see Fig. 2d). d, Flow chart of the training 

algorithm. The blue shaded boxes are interactions with the ANN photodiode 

array.
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Extended Data Fig. 5 | Classifier training. Photoresponsivity values of all 27 

photodetectors with σ = 0.3 training data. a, b, Initial (a) and epoch 30 (b) 

responsivity values. The weights for the σ = 0.2 and σ = 0.4 training data are 

similar. c, Measured currents over all epochs for a specific projected letter and 

at all three noise levels. d, Histogram of the initial and final responsivity values 

for the three different noise levels.



Extended Data Fig. 6 | Comparison with computer simulation. Classifier 

training of the analogue vision sensor (solid lines) and simulation of the system 

on a computer (dashed lines) for different data noise levels σ. The same ANN 

architecture, input data, effective learning rate and starting weights have been 

used. The same accuracy and loss are eventually reached after training. The 

slightly slower convergence of the analogue implementation compared with 

the simulation reflects the nonidealities (defective subpixel, device-to-device 

variations) of the former. Further discussion on the impact of nonidealities is 

provided in Extended Data Fig. 10.
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Extended Data Fig. 7 | Training datasets. a, b, Dataset of 30 epochs of classifier (a) and autoencoder training (b) with a test data noise level of σ = 0.4 and σ = 0.15 

respectively.



Extended Data Fig. 8 | Autoencoder photoresponsivities/weights. a, b, Initial (a) and epoch 30 (b) encoder photoresponsivity values (left) and decoder weights 

(right).
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Extended Data Fig. 9 | Floating-split-gate photodiode with memory.  

a, Schematic of the floating gate photodiode. The addition of 2-nm-thick Au 

layers, sandwiched between Al2O3 and hexagonal boron nitride (hBN), enables 

the storage of electric charge when a gate voltage is applied to the device, 

acting as a floating-gate memory. b, Electronic characteristic curves of the 

photodiode operated in p–n, n–p and p–p configurations. c, The ability of the 

device to ‘remember’ the previous configuration can be verified from the time-

resolved photocurrent measurement. The measurement is performed as 

follows: the back-gate voltages are set to VG1 = +5 V and VG2 = −5 V and are then 

disconnected, that is, there is no longer an applied gate voltage and the only 

electric field is that generated by the charge stored on the floating electrodes. 

The short-circuit photocurrent is then measured upon optical illumination. 

The light is then switched off, at ~1,100 s, with a corresponding drop of the 

photocurrent to zero. After ~1,600 s, the light is switched on again, causing the 

current to reach its initial value, and then a smaller value when the intensity of 

the light is reduced (~1,700 s). After ~2,300 s, the opposite voltage 

configuration is applied to the back gates (VG1 = −5 V and VG2 = +5 V), inducing a 

polarity inversion that also remains permanent. Now, a positive photocurrent 

(red line) is obtained.



Extended Data Fig. 10 | Robustness of the network. a, Detector uniformity, 

extracted from Extended Data Fig. 1. The fitted Gaussian probability 

distribution has a standard deviation of σ = 0.205 (40 mA W−1 V−1). b, Monte 

Carlo simulation of a vision sensor with detector responsivities of a given 

standard deviation. (The photodetectors of the actual device have a measured 

photoresponsivity standard deviation of 0.205.) Trained on the MNIST 

database of handwritten digits, the classifier has 784 pixels and 10 subpixels 

per pixel. For each data point, 50 random photoresponsivity variations were 

evaluated. c, Accuracy dependence on the number of (randomly chosen) 

defective subpixels. The same ANN and Monte Carlo simulation scheme as in  

b were used. For each data point, 50 random sets of modified 

photoresponsivities were evaluated.
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