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Abstract Mixture of experts (ME) is one of the most popular and interesting combin-

ing methods, which has great potential to improve performance in machine learning. ME is

established based on the divide-and-conquer principle in which the problem space is divided

between a few neural network experts, supervised by a gating network. In earlier works on

ME, different strategies were developed to divide the problem space between the experts. To

survey and analyse these methods more clearly, we present a categorisation of the ME litera-

ture based on this difference. Various ME implementations were classified into two groups,

according to the partitioning strategies used and both how and when the gating network is

involved in the partitioning and combining procedures. In the first group, The conventional

ME and the extensions of this method stochastically partition the problem space into a num-

ber of subspaces using a special employed error function, and experts become specialised

in each subspace. In the second group, the problem space is explicitly partitioned by the

clustering method before the experts’ training process starts, and each expert is then assigned

to one of these sub-spaces. Based on the implicit problem space partitioning using a tacit

competitive process between the experts, we call the first group the mixture of implicitly

localised experts (MILE), and the second group is called mixture of explicitly localised

experts (MELE), as it uses pre-specified clusters. The properties of both groups are inves-

tigated in comparison with each other. Investigation of MILE versus MELE, discussing the

advantages and disadvantages of each group, showed that the two approaches have comple-

mentary features. Moreover, the features of the ME method are compared with other popular

combining methods, including boosting and negative correlation learning methods. As the

investigated methods have complementary strengths and limitations, previous researches that

attempted to combine their features in integrated approaches are reviewed and, moreover,

some suggestions are proposed for future research directions.
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1 Introduction

Among the conventional classification methods, i.e., support vector machines, fuzzy sys-

tems and neural networks (NNs) methods are widely used in pattern recognition problems.

In comparison with each other, these methods have several advantages and disadvantages

in solving wide range of various classification problems (Kecman 2001). However, both

empirical studies and specific machine learning applications verify that a given classification

method outperforms all others for a particular problem or for a specific subset of the input

data, but it is abnormal to find a single method achieving the best results on the overall

problem domain (Dietterich 2000). As a consequence combining classifiers try to exploit

the local different behavior of the base classifiers to improve the accuracy and the reliability

of the overall classification system. There are also hopes that if a classifier fails, the overall

system can recover the error (Kotsiantis 2011a).

As the other view-point, combining classifiers is an approach to improve the performance

in classification (Kotsiantis et al. 2006; Lorena et al. 2008; Rokach 2010) particularly for com-

plex problems such as those involving limited number of patterns, high-dimensional feature

sets, and highly overlapped classes (Tran et al. 2011; Kotsiantis 2011b,a). Combining neural

network (NN) methods have two major components, i.e., a method to create individual NN

experts and a method for combining NN experts. Both theoretical and experimental studies

(Tumer and Ghosh 1996) have shown that combining procedure is the most effective when

the experts’ estimates are negatively correlated; but this procedure is moderately effective

when the experts are uncorrelated and only mildly effective when the experts are positively

correlated. Therefore, more improved generalization ability can be obtained by combining

the outputs of NN experts which are accurate and their errors are negatively correlated (Jacobs

1997; Hansen 2000).

There are a number of alternative approaches that were used to produce negatively cor-

related NNs for the ensemble. These approaches include varying the initial random weights

of NNs, varying the topology of NNs, varying the algorithm employed to train NNs, and

varying the training sets of NNs. It is argued that training NNs using different training sets

is likely to produce more uncorrelated errors than other approaches (Sharkey and Sharkey

1997). The two popular algorithms to construct ensembles that train individual NNs inde-

pendently and sequentially, using different training sets are bagging (Breiman 1996) and

boosting (Schapire 1990) algorithms, respectively. Negative correlation learning (NCL) (Liu

and Yao 1999a) and mixture of experts (ME) (Jacobs et al. 1991b), as the other combining

methods, employ special error functions to train NNs simultaneously producing negatively

correlated NNs.

It was shown that in contrast to common combining methods that produce unbiased experts

whose estimation errors are uncorrelated, the ME method produce biased experts whose

estimates are negatively correlated (Jacobs 1997). This combining method has special fea-

tures compared to common combining methods. The ME method is established based on

Divide-and-Conquer (D&C) principle (Jacobs et al. 1991b). In this method, the problem

space is partitioned stochastically into a number of subspaces through special employed

error function, experts become specialized on each subspace. This method uses a gating

network to manage this process, which trains together with the experts. The gating network

during the training of the experts, with respect to difference in the experts’ efficiencies in
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the different sub-spaces co-operate in the partitioning of problem, simultaneously. In this

method, instead of assigning a set of fixed combinational weights to the experts, the gating

network is used to compute these weights dynamically from the inputs, according to local

efficiency of each expert. Based on these special features among various types of combining

methods (Jacobs 1997; Polikar 2006), ME has attracted considerable attention in the liter-

ature of combining methods (Avnimelech and Intrator 1999; Ubeyli 2009; Xing and Hua

2008; Ebrahimpour et al. 2010).

In this paper, we present a review of ME literature. To analyse the basic features of ME,

first the position of ME in various taxonomies of combining methods are described and the

training algorithm of conventional ME are then investigated. Approaches using D&C in the

ME method were implemented in different ways, and several methods were developed based

on this model, which used different strategies to divide the problem between the experts

(Jacobs et al. 1991a; Gutta et al. 2000; Tang et al. 2002; Ebrahimpour et al. 2011b). To

survey and analyse the ME-based methods more clearly, we present a categorisation of the

ME literature based on this difference. Various ME implementations were classified into

two groups, according to the partitioning strategies used. The properties of both groups in

ME literature are investigated in comparison with each other, discussing their advantages

and limitations. To present a complete survey and moreover, suggest novel ideas for future

research directions, the hybrid methods in which the strengths of ME are incorporated in the

other combining methods are also reviewed.

The rest of this paper is organized as follows. Section 2, first presents the basic features

of ME and its position in various taxonomies of combining methods. The training algorithm

of conventional ME and its extension are then described. In the Sect. 3, first our proposed

categorisation in the ME literature is presented. Next, Two groups of ME methods in the

literature are investigated in comparison with each other, discussing their advantages and

limitations. Section 4 first presents a review of common combining methods in terms of par-

titioning strategy to survey the hybrid methods proposed based on complementary features of

ME. Section 5 concludes the paper and finally, in the Sect. 6, some suggestions are proposed

for future research direction.

2 Background on ME

The ME method employed specific approaches as two components of its combining system.

In order to create individual NN experts, this method uses special error function to localise

the base experts in different distributions of data space. In this procedure, complex prob-

lem based on D&C approach is partitioned into a set of simpler sub-problems between the

experts (Jacobs et al. 1991b). In the combiner component, ME employs an approach that can

model the local competence of the experts in different distribution of data space according to

each input data. To further explicate the ME literature, first the basic features of ME and its

position in the taxonomy of combining methods are reviewed. Next, the conventional training

algorithm of ME and mixture of MLP-experts, as one of the most applied implementations

of ME, are also described.

2.1 Basic features of ME and its position in the taxonomy of combining methods

To describe the features of the ME method, the combining methods should be reviewed from

various perspectives. We thus review and categorise the combining methods according to var-

ious criteria, and we also determine the ME position in the taxonomy of combining methods.
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An important parameter in analysing the combining methods is how they combine the

output from base experts. According to the existence of the training process in the combiner

part of the ensemble, combining methods are classified into two categories. Several combiner

methods require no training after classifiers in the ensemble are trained individually. Other

combiners require additional training before, during or after training the individual classifiers,

including the weighted average combiner, Stacked Generalisation (SG), AdaBoost and ME.

The first group is called non-trainable, and the second is a trainable ensemble. The trainable

combining methods, according to the influence of input data on the combining process, are

classified into data-dependent and data-independent ensemble. In the first group, the input

has explicit interference in the ensemble, as the combining weights are functions of the input,

while the input does not influence the combining process in the second group. ME is consid-

ered the most famous method in the first class, and weighted averaging and SG are from the

latter class (Kuncheva 2004).

From the other viewpoint, combining methods act based on two different strategies: fusion

and selection. In classifier fusion, it is assumed that each ensemble member is trained on the

whole feature space (Kittler et al. 1998), whereas in classifier selection, each member is

assigned to learn a part of the feature space (Woods et al. 1997; Alpaydin and Jordan 1996).

Therefore, in the former strategy, the final decision is made considering the decisions of all

members, while in the latter strategy, the final decision is made by aggregating the decisions

of one or a few of experts. There also exist combination schemes lying between the two pure

strategies (Kuncheva 2002). Such a scheme; for example, is taking the average of outputs

with coefficients which depend on the input x. Thus, the local competence of the experts,

with respect to x, is measured by the weights. Then, more than one classifier is responsible

for x and the outputs of all responsible classifiers are combined. The ME method is the most

famous example of a scheme between selection and fusion (Kuncheva 2004).

According to these taxonomies of combining methods, ME is a data-dependent trainable

combining method that, with respect to input, acts based either on the selection or fusion

strategies.

2.2 Conventional ME

The ME method was introduced by Jacobs et al. (1991b). The authors examined the use of

different error functions in the learning process for expert networks in the ME method. Jacobs

et al. proposed making NNs into local experts for different distributions of data space; as a

result, the increased diversity among the experts led to improvements in the performance of

this method. Various error functions were then investigated with respect to a performance

criterion.

In the first test, the following error function was used for the experts:

E =

∥

∥

∥

∥

∥

∥

y −
∑

j

gjOj

∥

∥

∥

∥

∥

∥

2

(1)

where y and Oj are target vector and the output of expert j , respectively and gj is the

proportional contribution of expert j to the combined output vector.

According to an analysis of the derivation of this error function, the weights of each expert

are updated based on the overall ensemble error rather than the errors of each expert. This

strong coupling in the process of updating the weights of the experts engenders a high level

of cooperation over the whole problem space and tends to employ almost all of the experts
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for each data sample. This situation is inconsistent with the localisation of the experts in

different data distribution.

The second error function analysed was the following:

E =
∑

j

gj

∥

∥y − Oj

∥

∥

2
(2)

According to the derivation of this term, the weights of each expert are updated based on

their own error in the prediction of the target and yields a complete output vector rather than

a residual, in contrast with the first error function. Despite this advantage, this error function

does not ensure the localisation of the experts, which is the key factor in the efficiency of ME.

Therefore, Jacobs et al. introduced a new error function based on the negative log probability

of generating the desired output vector, assuming a mixture of Gaussian models:

EME = − log
∑

j

gj exp

(

−
1

2

(

y − Oj

)T
�−1

(

y − Oj

)

)

(3)

where � presents the covariance matrix in mixture model. Assuming the identity covariance

matrix (� = I ) for this model (Jacobs et al. 1991b), the above error function can be expressed

as:

EME = − log
∑

j

gj exp

(
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)

(4)

To evaluate this error function, its deviation with respect to ith expert (4) is analysed:

δEME

δOi

= −
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⎣

gi exp
(

− 1
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j gj exp
(
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2
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)

)

⎤

⎦ (y − Oi) (5)

In this term, similar to the previous error function, the learning of each expert is based on

its individual error. Moreover, the weight-updating factor for each expert is proportional to

the ratio of its error value to the total error. These two features in the proposed error func-

tion that cause the localisation of each expert in their corresponding subspace eliminate the

deficiencies of previous error functions. Thus, the ME method has better efficiency with this

error function.

In addition, a gating network is used to complete a system of competing local experts. The

gating network allows the mixing proportions of the experts to be determined by learning

a partition of input space and trusts one or more expert(s) in each of these partitions. The

learning rule for the gating network attempts to maximize the likelihood of the training set by

assuming a Gaussian mixture model in which each expert is responsible for one component

of the mixture (Dailey and Cottrell 1999).

2.3 Mixture of MLP-experts training algorithm

One of the most applied implementations for ME is mixture of MLP-experts (MME) (Water-

house 1997; Nguyen 2006; Ebrahimpour 2007). In the version of MME, the MLP is used for

the experts and gating network, instead of linear networks to improve the performance over a

conventional ME. In this implementation, Each expert network is an MLP network with one

hidden layer that computes an output Oi as a function of the input vector, x and weights of

hidden and output layers and a sigmoid activation function. The weights of MLPs are learned

using the error back-propagation, BP, algorithm, in order to maximize the log likelihood of
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the training data given the parameters. For each expert i, the weights are updated according

to the following rules:

�wy = ηehi(y − Oi)(Oi(1 − Oi))O
T
hi

(6)

�wh = ηehiw
T
y (y − Oi)(Oi(1 − Oi))Ohi

(1 − Ohi
)xi (7)

where ηe is learning rate for the experts. wh and wy are the weights of input to hidden and

hidden to output layer for the experts, respectively.OT
hi is the transpose of Ohi , the outputs of

the hidden layer of expert. The first term of derivation of ME error function (Eq. 5) is shown

with hi (Eq. 8). This term can be considered as an estimation of the posterior probability that

expert i can generate the desired output y:

hi =
gi exp

(

− 1
2

‖y − Oi‖
2
)

∑

j gj exp
(

− 1
2

∥

∥y − Oj

∥

∥

2
) (8)

According to the ME error function (Eq. 4), the error function of the gating network can be

written as:

EG =
1

2
‖(h − Og)‖2 (9)

where h = [hi]
N
i=1. Based on this error function, the weights of the gating network in the

MME method are determined using the BP error algorithm according to the following rules:

�wy,g = ηg(h − Og)(Og(1 − Og))O
T
h,g (10)

�wh,g = ηgw
T
y,g(h − Og)(Og(1 − Og))Oh,g

(

1 − Oh,g

)

xi (11)

where ηg is the learning rate, and wh,g and wy,g are the weights of the inputs to hidden and

hidden to output layers of the gating network, respectively.OT
h,g is the transpose of Oh,g , the

outputs of the hidden layer of the gating network.

In this learning procedure, the expert networks compete for each input pattern, while the

gate network rewards the winner of each competition with stronger error feedback signals.

Thus, over time, the gate partitions the input space in response to the expert’s performance.

The training step in the MME method is illustrated in Fig. 1.

For the testing step in the MME method, the gating network assigns a weight gi to each of

the experts’ output, Oi . The softmax function applied on the gating network outputs leads to

a higher extent of diversity. The gi can be interpreted as estimates of the prior probability that

expert i can generate the desired output y. The gating network is composed of two layers: the

first layer is an MLP network, and the second layer is a softmax nonlinear operator. Thus the

gating network computes, Og which is the output of the MLP layer of the gating network,

then applies the softmax function to achieve:

gi =
exp

(

Og,i

)

∑N
j=1 exp

(

Og,j

)
i = 1, . . . , N (12)

where N is the number of expert networks, so gi is nonnegative and sum to 1.

Finally, to combine the experts’ outputs, the gate assigns a weight gi as function of x to

each of expert’s output Oi , and the final mixed output of the ensemble is:

OT =

N
∑

i=1

Oigi (13)

Figure 2 shows the testing step in MME method.
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Fig. 1 Diagram for simultaneous training of the experts and gating network through the error functions of

MME method is shown in Fig. 1. The experts compete to learn the training patterns, and the gating network

mediates the competition
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Fig. 2 Diagram for the testing step in the MME method. In this step, the input x is given to the MME experts

and gating network, simultaneously and soft-max function is applied on the outputs of the gating network.

The final output of ensemble system is calculated based on the weighted averaging of base MLP experts

As a result of good classification performance and transparency of the MME method, it

has been widely employed in many applications (Ebrahimpour et al. 2011a,c; Ubeyli et al.

2010) since Jacobs’ proposal (Jacobs et al. 1991a,b). Considering the types of learners and

training algorithms employed in the learning of experts and gating, also regarding the way

that gating involve in the dividing problem space, several works have been reported in both

of MILE and MELE groups which are surveyed in the next section.

3 Categorisation of ME literature

Jacobs et al. (1991b) proposed an ensemble method based on the D&C principle, called

ME. Approaches using D&C in the ME method were implemented in different ways, and
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several methods were developed based on this model, which used different strategies to divide

the problem between the experts (Jacobs et al. 1991a; Gutta et al. 2000; Tang et al. 2002;

Ebrahimpour et al. 2011b). To survey and analyse these methods more clearly, we present

a categorisation of the ME literature based on this difference. Various ME implementations

were classified into two groups, according to the partitioning strategies used and both how

and when the gating network is involved in the partitioning and combining procedures.

The conventional ME (Jacobs et al. 1991b) and the extensions of this method (Jacobs et al.

1991a; Kim et al. 2003; Ebrahimpour et al. 2008a) stochastically partition the problem space

into a number of subspaces using the special employed error function (Eq. 4), and experts

become specialised in each subspace. These methods use a gating network to manage this

process, which are trained together with the experts. In this group, the gating network, consid-

ering the differences in the experts’ efficiencies in the different sub-spaces, simultaneously

co-operate in partitioning the problem when training the experts. In the second group, the

problem space is explicitly partitioned by the clustering method before the experts’ training

process starts, and each expert is then assigned to one of these sub-spaces. Based on the

implicit problem space partitioning using a tacit competitive process between the experts, we

call the first group the mixture of implicitly localised experts (MILE), and the second group

is called mixture of explicitly localised experts (MELE), as it uses pre-specified clusters.

Below, we first review the methods in the MILE group before describing the methods in the

MELE group.

3.1 Mixture of implicitly localised experts

In the conventional ME proposed by Jacobs et al. (1991b), during a competitive learning pro-

cess, a number of separate experts learn to handle different but overlapped subsets of training

data. Throughout learning, a gating network decides which of the experts should be used

for each training case; it rewards the expert(s) with the best performance with stronger error

feedback signals. Simultaneously, the gating network partitions the input space according to

the experts’ performance and allocates a subspace to each expert to learn.

In the MILE group, several methods attempt to improve ME task decomposition by modi-

fying the error function of the gating network (Jacobs et al. 1991a; Hansen 1999; Ubeyli et al.

2010). Jacobs investigated the procedure of task decomposition through competition in ME

method (Jacobs et al. 1991a). The authors discussed that in the problem space partitioning

in ME method, there is a trade-off between selection and fusion strategies to achieve desir-

able task decomposition. According to analysis of bias-variance-covariance decomposition

of error, it was found that selection approach reduce bias and covariance terms via localising

the experts in sub-problems while fusion approach leads to variance reduction and desirable

solution is acquired in optimum balance between the two terms (Kuncheva 2002; Jacobs

1997). In order to achieve a better balance in ME method, Jacobs et al. proposed an extended

error function for gating network including two terms: selection term and fusion term, which

in the training phase, gating network learns in the switching condition between these two error

terms (Jacobs et al. 1991a). while if, on a given training pattern, the system ’s performance

is significantly better than it has been in the past, then the weights of gating network are

adjusted to make the output corresponding to the winning expert network increase towards

1 and the outputs corresponding to the losing expert networks decrease towards 0 leading

to the selection approach. Alternatively, if the system’s performance has not improved, then

the gating network’s weights are adjusted to move all of its outputs towards some neutral

value which yields fusion strategy. This extension allows the ME method to make better
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switch between selection and fusion which yields better performance in comparison with

conventional ME.

Hansen (1999, 2000) reported a potential problem that may occur in the competitive ME

learning procedure, the zero co-efficient problem. Unfavourable initial parameters in the ME

may cause this problem. In this condition, due to the low performance of the unfavourable

initialized experts through the competitive, the gating network assigns near-zero weights to

them, which cause elimination from the competitive learning process. To solve this problem,

Hansen suggested adding a term to the error function of the gating network that leads the

ensemble to fusion and averaging situations. Although this idea solves the zero-coefficient

problem, it is not suitable for the ME method, as it is against the principle of localising and

diversifying the experts and causes the ME method not to reach its ideal performance.

Different types of learners and training algorithms were also employed for the experts and

gating network learning in the MILE (Waterhouse et al. 1996; Hansen 1999; Ebrahimpour

et al. 2008d). In the conventional ME, the experts and gating network were linear classifi-

ers; however, for more complex classification tasks, the experts and gating network could

be of more complicated types (Gutta et al. 2000). For instance, Ebrahimpour et al. (2007)

proposed a face detection method in which the MLPs were used in forming the expert and

gating network to improve the face detection accuracy.

The methods discussed above use gradient-decent based training algorithms, but the fol-

lowing methods use other training algorithms for the experts and gating networks. In the

training procedure, ME method attempts to achieve two goals: (1) for a given expert, find

the optimal gating function, and (2) for a given gating function, train each expert to achieve

maximal performance on the distribution assigned to it by the gating function. This decompo-

sition of the learning task motivates an Expectation Maximization (EM) algorithm, though

simultaneous training was also used. Jordan and Jacobs (1994) extended their method to

the so-called Hierarchical mixture of experts in which each component of ME is replaced

by a ME method. In Jordan and Jacobs (1994), authors indicated that the gating network

performs a typical multiclass classification task (Mangiameli and West 1999; Viardot et al.

2002). EM (Chen et al. 1999) algorithm was introduced to the ME architecture in order that

the learning process is separated in a way that fits well with the modular structure. Since the

EM algorithm learns only the cluster centroids and not intermediary points, it will not work

well on non linear examples. In Guler and Ubeyli (2005), Hong and Harris (2001), ME is

used with MLPs experts for medical diagnostic systems and ECG beats classification, respec-

tively. These papers illustrated the use of modified ME structure to guide model selection for

classification of electrocardiogram beats with diverse features. EM algorithm was used for

training the proposed method, so that the learning process was decoupled in a manner that

fits well with the modular structure.

3.2 Mixture of explicitly localised experts

Researchers have proposed MELE methods since 2000, which generally have better perfor-

mance than the MILE methods (Gutta et al. 2000; Tang et al. 2002). Although these methods

have the same structure as the MILE methods, including some experts and a gating network,

they work differently as the partitioning mechanism. Unlike MILE, which stochastically

partitions the input space and specialises each expert network on nested and stochastic input

space regions, MELE methods partition the input space into more separable spaces, and each

expert is then specialised on a pre-specified subspace with altered learning rules of a con-

ventional ME. As in the previous group, several methods are developed in the MELE group

that use different learning systems for the experts and gating network.
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Tang et al. attempted to explicitly localise the experts by applying a cluster-based pre-

processing step to partition the input space for the experts (Tang et al. 2002). They used

Self-Organising Maps as the gating network to partition the input space according to the

underlying probability data distribution. As a result, they achieved a better generalisation

ability with more parameter setting stability. Nevertheless, as they argued at the end of the

paper, the proposed method was designed for only binary and low-dimensional problems.

Goodband et al. presented a new algorithm based on ME method to incorporate photon

scatter to design compensators for intensity modulated radiation therapy (Goodband et al.

2006). The algorithm utilizes the fuzzy C-means clustering algorithm to partition data before

training of the experts commences. Each MLP expert is trained on a specified overlapped

subset of data. A reduction in the size of training set also allows the Levenberg–Marqu-

ardt algorithm to be implemented. ME is also controlled by a Radial-Basis Function gating

network, which is designed using the centroid of each subset as a centre for each basis

function.

Nguyen et al. introduced a novel method based on the principles of both Cooperative

Co-evolution and mixture of experts (Nguyen et al. 2006). They showed that their method

can automatically decompose problems into different regions of the input space, and assign

the experts to these distinct regions. This Cooperative Co-evolution layer allows better explo-

ration of the weight space, and hence, an ensemble with better performance was achieved.

Ebrahimpour et al. (2011a,c) proposed a view-independent face recognition system using

ME by manual decomposition of the face view space into specific angles (views) (Ebrahim-

pour et al. 2008d). In this method, they do not rely on the unsupervised partitioning of the face

space by ME, in which, similar to Self-Organizing Maps, the experts’ areas of specialization

are autonomously clustered. Instead, using teacher-directed learning (Kamimura 2004), the

face space is divided in two conditions into a number of overlapping or disjoint subspaces and

each expert being specialized on its subspace (Ebrahimpour et al. 2008b,c). Nevertheless, the

proposed method is efficient in 2D face recognition and, as argued by the authors, extending

this approach to other classification problems and applications could be challenging and not

always possible.

3.3 Comparing MILE with MELE

This section compares MILE and MELE, discussing their advantages and disadvantages.

MILE methods divide the problem space implicitly between the experts. The implicit

partitioning of the problem space has some drawbacks:

1. Problem partitioning in this method is based on different expert performance in differ-

ent regions, which originates from different initial weights. This partitioning type is not

efficient for the ME method, as it may leads to complex and nested partitions, and thus,

the gating network cannot model it well (Tang et al. 2002).

2. In the MILE, one or more expert(s) may be eliminated from the competitive ME learning

process, according to the abovementioned zero-coefficient problem (Hansen 2000).

To overcome these problems in the MILE methods, researchers have several approaches in

the MELE group that attempted to partition the problem space explicitly. The MELE meth-

ods use prior knowledge to divide the task that the system would be required to perform.

This approach assesses the significance of using a priori problem decomposition between the

experts. This decomposition can be acquired by some criteria, e.g., clustering. Most MELE

methods use a clustering step to partition the initial input space, and different partitions may
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be forwarded to different experts. Tang et al. (2002) investigated such a scheme and claimed

that the MELE can provide some advantages:

1. Dividing the input space into partitions according to the underlying probability data

distribution can solve the problem of complex and nested partitioning in MILE.

2. The partitioning step can explicitly determines the ME architecture, as the same number

of experts and clusters is selected.

3. Due to the clustering step, each expert selectively learns the corresponding region that

leads to a clearer distinction between experts’ responsibilities, resulting in a better gen-

eralisation ability.

In contrast, there are three unfavourable consequences of this scheme:

1. As Jacobs et al. mentioned, though domain knowledge may be useful in suggesting a

priori decomposition of a task, the boundaries between subtasks are rarely explicitly

marked in the data presented to the experts. Moreover, the optimal allocation of experts

to subtasks depends not only on the nature of the task but also on that of the learner

(Jacobs et al. 1991a). MELE did not account for this, which may be considered an

advantage of MILE over the MELE methods.

2. If the interaction among NN experts in the ensemble were missing, as in pure explicit

problem space decomposition, some portions of the task might remain unsolved and

the bias term does not reduce significantly with training. The MILE methods over-

come this problem by facilitating interaction using the competitive learning process of

conventional ME.

3. The cluster-based partitioning does not consider the information regarding the data class

label and may lead to unbalanced class partitioning into clusters, which is not desirable

for NN experts.

In addition to categorising ME methods in these classes, as mentioned above, problem space

partitioning in ME is based on dynamic switching between the selection and fusion or in other

words, on the balance between hard splits of problem versus soft splits (Kuncheva 2004).

To more accurately analyse this balance, Jacobs (1997) investigated the error decomposition

of the ME method into bias-variance-covariance terms. As this error decomposition tends

towards the selection strategy, mostly in the MELE methods, it reduces bias and covariance

terms; tending towards the fusion strategy, mostly in the MELE methods, leads to variance

reduction. As there is a trade-off between these constituent generalisation error terms, it is

not possible to minimise them simultaneously. To reach the minimum generalisation error, a

system should achieve optimal balance between these terms.

The discussed advantages and limitations of the MILE and MELE groups are summarized

in Table 1.

As in the above comparison of MILE and MELE, the balance of bias-variance-covariance

trade-off and the similar balance between selection and fusion also show the complementary

features of these two categories.

4 Comparing ME with other popular combining methods

In this section, the popular combining methods are first shortly reviewed and compared in

terms of used partitioning strategy. Next, the hybrid combining methods that employ the

strengths of ME to improve their performance are investigated and some suggestions are

proposed to extend these hybrid combining methods.
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Table 1 Summary of the advantages and limitations of the MILE and MELE methods in creation of NN

experts

Two groups of ME Creation of

NN experts

Mixture of implicitly

localised experts

Advantage Considering not only the nature of the task but also

that of the learners.

Tending towards the fusion strategy that reduces the

variance error term.

Disadvantage The complex and nested partitions for the experts

that can not be modelled efficiently by the gating

network.

Probable elimination of the experts from the

competitive ME learning process, according to the

zero-coefficient problem.

Mixture of explicitly

localised experts

Advantage Considering the probability data distribution for

problem partitioning can solve the problem of

complex and nested partitioning in MILE.

Determination of the ME architecture, as the same

number of experts and clusters.

A clearer distinction between experts’

responsibilities, due to the clustering step.

Tending towards the selection strategy that reduces

bias and covariance error terms.

Disadvantage The optimal allocation of experts to subtasks

depends not only on the nature of the task but also

on that of the learners, not to be considered in

MELE.

Missing the interaction among NN experts in pure

explicit problem space decomposition and

probably remaining some portions of the task

unsolved.

Not considering the information regarding the data

class label that may lead to unbalanced class

partitioning into clusters.

4.1 Combining methods, in terms of partitioning strategy

Both theoretical and experimental studies (Tumer and Ghosh 1996) have shown that more

improved generalization ability can be obtained by combining the outputs of NN experts

which are accurate and their errors are negatively correlated (Jacobs 1997; Hansen 2000). It

was shown that in contrast to systems that produce unbiased experts whose estimation errors

are uncorrelated, ME architectures produce biased experts whose estimates are negatively

correlated (Jacobs 1997).

As mentioned before, Sharkey et al. argued that training NNs using different training sets

is likely to produce more uncorrelated errors than other approaches (Sharkey and Sharkey

1997). Common combining methods use various strategies to produce different training sets

for training individual NNs. In bagging (bootstrap aggregating), the training set is randomly

sampled k times with replacement, producing k training sets with sizes equal to the original

training set for k different experts. Boosting, on the other hand, trains the ensemble of NNs

sequentially by adaptively changing the distribution of the training set based on the accuracy

of the previously created NNs. Similar to bagging, the NNs are generated by resampling the
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training set; while in the resampling mechanism of boosting, the training samples that were

wrongly predicted by former NNs will play more important roles in the training of later NNs.

While bagging and boosting create explicitly different training sets for different NNs by

probabilistically changing the distribution of the original training data, NCL and ME implic-

itly create different training sets by encouraging different NN experts to learn different parts

or aspects of the training data (Liu and Yao 1999b). The key idea behind the NCL is to

introduce a correlation penalty term to the error function of each individual NNs so that each

NN minimizes its error together with the correlation of the ensemble. The introduced error

function in the NCL encourages the individual NNs in an ensemble to learn different parts

or aspects of a training data simultaneously and interactively, so that the ensemble can learn

the whole training data better.

After reviewing common combining methods and their approaches of partitioning training

set between NN experts, we present the motivations for integrating them in a hybrid combin-

ing method. As the explicit and implicit approaches of partitioning training set have comple-

mentary strengths and limitations, previous researches have attempted to combine their fea-

tures in hybrid approaches (Waterhouse 1997; Islam et al. 2008; Ebrahimpour et al. 2011a,c).

In the next section, we review the hybrid combining methods in which the complementary

features of ME are incorporated in the other combining methods to address their limitations.

4.2 Hybrid combining methods, by using the complementary features of ME

In this section, the hybrid approaches that attempted to incorporate the complementary fea-

tures of in the other combining methods are first reviewed. Next, we compare the ME and

NCL method, discussing their advantages and limitations against each other and presenting

a motivation for combining the both methods in a hybrid combining method.

Waterhouse and Cook (1997) and Waterhouse (1997) attempted to combine the features of

boosting and ME. They proposed two approaches to address the limitations of each method

and overcome them by combining elements of the other method. The first approach may be

viewed as an improved ME that initializes the partitioning of the data set for assignment to

different experts in a boost-like manner. Because boosting encourages classifiers to become

experts on patterns that previous experts disagree on, it can be successfully used to split the

data set into regions for each expert in the ME method, thus ensuring their localisation. The

second approach may be viewed as an improved variant of the boosting algorithm, in which

the main advantage is the use of a dynamic combination method for the outputs of the boosted

networks.

Avnimelech and Intrator (1999) extended Waterhouse’s work and proposed a new dynam-

ically boosted ME method. They analysed the learning mechanism of two ensemble algo-

rithms: boosting and ME. The authors discussed the advantages and weaknesses of each

algorithm and reviewed several ways in which the principles of these algorithms can be com-

bined to achieve improved performance. Furthermore, they suggested a flexible procedure

for constructing a dynamic ensemble based on the principles of these two algorithms. The

proposed ensemble method employs a confidence measure as the gating function, which

determines the contribution of each expert to the ensemble output. This proposed method

outperformed both static approaches previously proposed by Waterhouse and Cook (1997).

The advantages of the proposed method are that it uses a flexible procedure for constructing

ensemble in an incremental structure and also a flexible gating function. However, the authors

did not present and discuss the used and also the available flexible parameters and their effects

on the performance of the proposed method. The other disadvantage is that the suggested

algorithm for constructing ensemble in an incremental structure has a heavy computational
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load because of re-partitioning and so re-training of whole ensemble members after adding

a new expert.

As a result of using boosting method for initialization of ME structure in the previous

approach (Waterhouse and Cook 1997), the problem space is not distributed well-balancedly

between the experts and thus, the initialization procedure does not meet its goal of training

the experts in different parts of training set. In order to solve this problem, Ebrahimpour et

al. (2012) proposed an approach in which boost-wise partitioning procedure was modified to

train the base networks in ensemble on different balanced subsets of training set. In this paper,

a pre-loading procedure was suggested included two separate steps: confidence-based boost-

wise partitioning step and initialization step. In the first step, both of the error and confidence

measures are used as the difficulty criteria in the boost-wise partitioning of problem space.

Using confidence criteria in addition to the error measure provides more flexibility in filtering

procedure so that this partitioning step can be conducted in the way that yields to balance

partitioning of problem space. According to the nature of implementation, the proposed

method was called Boost-wise Pre-loaded ME.

After reviewing previous researches attempted to combine the features of boosting and

ME methods, we investigate the NCL and ME methods in comparison with each other to

provide a novel idea to present an improved version of ME using the feature of NCL.

As mentioned before, combining systems have two major components. Regarding the first

component, the creation of individual NN experts, NCL has almost the better efficiency. Its

superiority comes from its use of a regularization term that provides a convenient way to

balance the bias-variance-covariance trade-off and thus improves the generalization ability,

whereas ME does not include such control over the trade-off (Liu and Yao 1999a). However,

from the other viewpoint, ME has an partly advantage over NCL in the creation of individual

NN experts. This advantage comes from the error function of ME in which the learning of

each NN expert is based on its individual error, while in the NCL all individual NNs are

concerned with the whole ensemble error (Islam et al. 2003).

In contrast, ME provides a better approach for the second component of combining sys-

tems, the combination of base NN experts. One of the advantages of ME over other combining

methods is its distinct technique for combining the outputs of the base experts. ME uses a

trainable combiner that, according to the input x, dynamically selects the best expert(s) and

combines their outputs to create the final output (Kuncheva 2004). The combining function

of ME includes a dynamic weighted average in which the local competence of the experts

with respect to the input are estimated by the weights produced by the gating network. The

outputs of all experts responsible for input x are then combined. But in NCL method, the

static combining methods such as: average or winner take all method were used to combine

the NCL experts (Liu and Yao 1999a), while these static methods does not have the capability

to model the local competence of NCL experts.

The mentioned advantages and limitations of the ME and NCL methods in each component

of a combining system are summarized in Table 2.

As it is clear from the analysis of the features of both methods and their advantages and

disadvantages, the two methods have complementary features.

Characterization of both methods showed that they have different but complementary

features. Based on the similar ensemble structures and strategies used in both the NCL

and ME methods and due to their complementary features, several researches attempted

to combine the principles of both should address their limitations and overcome them by

combining elements of the other method. Ebrahimpour et al. (2011a) proposed an improved

version of NCL method in which the capability of gating network, as the combining part of

ME, is used to combine the base NNs in the NCL ensemble method. The gating network
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Table 2 Summary of the advantages and limitations of the ME and NCL methods in each component of a

combining system

Ensemble

method

Combining

component

Part 1

Creation of NN experts

Part 2

Combination of NN experts

Mixture of

experts

Advantage • Each NN expert is trained

based on its individual error

and localised in their

corresponding subspace

based on D&C approach.

• A gating network is used to

compute the weights of

combining dynamically

from the inputs, according

to the local expertise of

each expert.

• It can produce individual

NNs whose errors tend to

be probably negatively

correlated.

Disadvantage • There is no control over the

bias-var-cov trade-off.

–

Negative

correlation

learning

Advantage • There is a regularization

term that provides a

convenient way to balance

the bias-var-cov trade-off,

thus improving the

generalization ability.

–

• It can produce individual

NNs whose errors tend to

be near optimum negatively

correlated.

Disadvantage • All individual NNs are

concerned with the whole

ensemble error.

• Previously used static

combiner methods does not

have the capability to model

the local competence of

NCL experts.

provides a way to support this needed functionality for combining the NCL experts. So the

proposed method was called Gated-NCL. As the other viewpoint, Masoudnia et al. (2012)

presented an approach to introduce the advantage of NCL into the training algorithm of ME,

i.e., Mixture of Negatively Correlated Experts. In this proposed method, the capability of a

control parameter for NCL is incorporated in the error function of ME, which enables its

training algorithm to establish better balance in bias-variance-covariance trade-off and thus

improves the generalization ability.

5 Conclusion

ME, as one of the most interesting combining methods, was reviewed and investigated in

this paper. ME is established based on D&C principle and a gating network supervise prob-

lem space partitioning between the experts. In earlier works on ME, different strategies

were developed to divide the problem space between the experts. After reviewing ME’s

place in the combining taxonomies, to survey and analyse the ME-based methods more

clearly, we presented our proposed categorisation of the ME literature that classifies these

methods into two categories based on the differences in the partitioning used: Mixture of
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Implicitly Localised Experts (MILE) and Mixture of Explicitly Localised Experts (MELE).

In the MILE methods, the problem space is stochastically partitioned into a number of sub-

spaces, experts become specialized on each subspace. The gating network, during the training

of the experts, with respect to difference in the experts’ efficiencies in the different sub-spaces

co-operate and manage the partitioning of problem simultaneously. In the MELE methods,

the problem space is explicitly partitioned by the clustering method before the experts’ train-

ing process starts and, each expert is then assigned to one of these pre-specified sub-spaces.

The properties of two groups were analysed in comparison with each others. As discussed

comparison of MILE and MELE, the balance of bias-variance-covariance trade-off and the

similar balance between selection and fusion, also show the complementary features of these

two categories. Moreover, ME was compared with two other popular combining methods,

including boosting and NCL. Characterization of ME and the other methods showed that they

have complementary strengths and limitations. Considering the complementary properties

of ME compared to other combining methods and, moreover, of the MILE versus MELE, the

question arises as to whether their integration can lead to the improved and more powerful

combining schemes. We studied this question, and based on the complementary features of

these methods, some suggestions were proposed for future research directions in the next

section.

6 Future works

Analysing the different advantages and disadvantages of the MILE and MELE methods and

moreover, of the ME compared to other combining methods, some intuitions are proposed as

future research directions to achieve a better trade-off between the bias, variance and covari-

ance terms of generalisation error in the ensemble or, similarly, better balance between the

selection and fusion strategies. To meet these objectives, some approaches can be applied in

MILE or MELE, including the following ideas:

1. Incorporating a free parameter in the MILE or MILE training algorithms that can control

this trade-off, similar to the lambda factor in the NCL method or the temperature factor

suggested by Jacobs (1997), can enhance the generalisation performance.

2. If the MELE training algorithm is modified to encourage the experts to have more coop-

eration, especially in the overlapping regions between the expertise areas of two or more

experts, this would lead to a greater generalisation ability.

3. The ME structure is well suited for incorporating prior knowledge to bias the nature of the

decomposition to be performed. This property could be used to combine the complemen-

tary features of MILE and MELE groups. If a two-step hybrid system could be designed

in which, first a priori data acquired by clustering was used to initialise the experts on

different distributions and in the second step, as in MILE methods, the conventional ME

learning algorithm is performed. This hybrid approach may avoid the potential MILE

problems. Due to the initializing step, the disadvantages of the nested and complex prob-

lem space partitioning caused by initial random weights may be decreased, and network

initialisation in the first step makes each expert network also can learn considerable

problem sub-spaces, which avoids the zero-coefficient problem. Moreover, an interest-

ing future direction is using other methods rather than clustering to partition the training

set based on different parameters, including confidence or other difficulty criteria.

In addition to above suggestions, regarding the previously developed methods based on the

ME model in which BP training algorithm were used for convergence, the identity constraint
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was applied to the covariance matrix in the mixture models. To overcome this limitation and

improve the efficiency for the ME-based methods, a dynamic process can be employed to

optimize the covariance matrix of mixture models during the ME training algorithm. The

global heuristic optimization approaches such as evolutionary or swarm-based optimization

algorithms are good candidates for this application.
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