

Computer Science

The MONK’s Problems ~ A Performance Comparison
of Different Learning Algorithms

S.B.Thrun J.Bala_ E.Bloedom 1. Bratko B. Cestnik J. Cheng
K.DeJong $.Dzeroski D.Fisher S.E.Fahlman —R. Hamann
K. Kaufman $. Keller I.Kononenko J. Kreuziger R.S. Michalski
T. Mitchell P, Pachowice Y.Reich H. Vafaie W. Van de Welde

W. Wenzel J.Wnek J. Zhang

December 1991
(CMU-CS-91-197

Carne
Mellon

vet

zs

The MONK’s Problems - A Performance Comparison
of Different Learning Algorithms

S.B.Thrun J.Bala E.Bloedom I. Bratko B. Cestnik J. Cheng
K.DeJong $.Dzeroski D. Fisher S.E.Fahlman —R. Hamann

K. Kaufman. Keller I.Kononenko J. Kreuziger_R.S. Michalski
T.Mitchell PPachowicz Y.Reich H. VafaieW. Van de Welde

W. Wenzel J.Wnek J. Zhang
December 1991
(CMU-CS-91-197

‘School of Computer Science
Camegie Mellon University

Piusburgh, Pennsylvania 15213-3890

Abstract

This report summarizes a comparison of different learing techniques which was performed at the 2°
European Summer School on Machine Learning, held in Belgium during summer 1991. A variety of sym-
bolic and non-symbolic leaning techniques - namely AQI7-DCI, AQI7-HCI, AQI7-FCLS, AQU4-NT, AQIS-GA, Assistant Professional, mFOIL, IDSR, IDL, IDSR-hat, TDIDT, ID3, AQR, CN2, CLASS.
WEB, ECOBWEB, PRISM, Backpropagation, and Cascade Correlation - are compared on three classifi-
cation problems, the MONK’s problems.
‘The MONK’s problems are derived from a domain in which each training example is represented by
discrete-valued attributes. Each problem involves learning a binary function defined over this domain,
from a sample of training examples of this function. Experiments were performed with and without noise
in the training examples.
(One significant characteristic of this comparison is that it was performed by a collection of researchers,
each of whom was an advocate of the technique they tested (often they were the creators of the various
‘methods). In this sense, the results are less biased than in comparisons performed by a single person advo-
cating a specific learning method, and more accurately reflect the generalization behavior of the learning
techniques as applied by knowledgeable users.

Author affiliations: J. Cheng, SE. Fahlman,T: Mitchell, Y. Reich, and S.B. Thrun are with Camegie Mellon University J Bala, E.Bloedom, K. De
Jong. K. Kaufman, RS. Michalski P. Pachowicz, H. Vase, J. Wnek, nd I.Zhang are with George Mason Universiy (USA), 1. Brake, B. Cenk,
S, Drerosi, and I Kononenko are with Josef Stefan Insitute (Slovenia), W. Vande Weld is with Veije Universitet Brssel (Belgium) J. Keuziger,
R, Hamann, and W. Wenzel are with University of Karlsube (Germany), Keller is wth University of Zuerch (Switzerland), and D, Fisher i with
Vanderbilt University (USA).
‘SB. Torun gratefully acknowledges the financial support of Siemens Corp.

Keywords: Machine Learning, MONK’s problems, AQI7-DCI, AQI7-HCI, AQI7-FCLS, AQI4-NT, AQIS-GA,
Assistant Professional, mFOIL, IDSR, IDL, IDSR-hat, TDIDT, ID3, AQR, CN2, CLASSWEB, ECOBWEB, PRISM,
Backpropagation, Cascade Correlation

Once upon a time, in July 1991, the monks of Corsendonk Priory were faced with a school
their priory, namely the 2" European Summer School on Machine Learning. After listening more
than one week to a wide variety of learning algorithms, they felt rather confused: Which algorithm
would be optimal? And which one to avoid? As a consequence of this dilemma, they created a
simple task on which all learning algorithms ought to be be compared: the three MONK’s problems.
This report summarizes the results.

iii

Contents

Results — A Short Overview ix

1 The MONK’s Comparison Of Learning Algorithms ~ Introduction and Survey
(S.B. Thrun,'T. Mitchell, and J.Cheng) 1

1.1 The problem... . + se : 2

1.2. Visualization .

2. Applying Various AQ Programs to the MONK’s Problems: Results and Brief Description
of the Methods
(J.Bala, E.Bloedorn, K.De Jong, K. Kaufman, R.S. Michalski, P.Pachowiez, H. Vafaie, J.Wnek, and
J. Zhang)

2.1. Introduction . ack RD Ba — : 8

2.2. Results for the Ist problem (Mi) 9

2.2.1 Rules obtained by AQU7-DCI . . . _— 9

2.2.2 Rules obtained by AQIT-HCI ee ote ; 10

2.3 Results for the 2nd problem (Mz)... + + + = = u

2.3.1 Rules obtained by AQI7-DCI. . . . ss ‘ a

2.3.2 Rules obtained by AQU7-HCI cee n

2.3.3. Rules obtained by AQIT-FCLS- exe 13

24 Results for the 3rd problem (Ms) : 15

2.4.1 Rules obtained by AQIU7-HCT.... .. « . 15

2.4.2. Rules obtained by AQU-NT 2 oma Wasa ws 16

24.3 Rules obtained by AQUT-FCLS 5.5.5 : 16

24.4 Rules obtained by AQUS-GA ew * 2 x HF

2.5. A Brief Description of the Programs and Algorithms... . : 7

2.5.1 AQUT-DCI (Data-driven constructive induction)... . : . 7

iv

25.2

25.3

25.5

2.5.6

3 The Asi

[AQUT-FCLS (Flexible concept learning)... - + +

AQIT-HCI (Hypothesis-driven constructive induction)

AQUENT (noise-tolerant learning from engineering data)

AQIS-GA (AQIS with attribute selection by a genetic algorithm)

‘The AQ Algorithm that underlies the programs

istant Professional Inductive Learning System: MONK’s Problems

(B.Cestnik, I. Kononenko, and I. Bratko)

3.1 Introduction

3.2 Experimental results

BS Discussion... 0.65.2 eee eee eee eee

3.4 Literature

3.5 Resulting Decision Trees .

4 mFOIL on the MONK's Problems
(S. Déeroski)

4.1 Description

4.2 Set 1

43 Set 2.

44 Set3

5 Comparison of Decision Tree-Based Learning Algorithms on the MONK’s Problems

(W. Van de Welde)

5.1 IDL: A Brief Introduction

Bld

512

B13

Introduction ©. 6... 0-5

Related Work .

Conclusion

5.2 Experimental Results .

5.21 IDSR on test set 1

18

18

19

20

20

23

30

31

31

32

33

34

M

36

40

43

5.2.2 IDL on test set 1

5.2.3 IDBR-HAT on test set 1

5.2.4 TDIDT on test set 1

5.2.5 ID5R on test set 2

5.2.6 IDL on test set 2.

5.2.7 TDIDT on test set 2

5.2.8 TDIDT on test set 1

5.2.9 IDSR-HAT on test set 2

5.3 Classification diagrams

5.4 Learning curves . .

Comparison of Inductive Learning Programs
(J. Kreuziger, R. Hamann, and W. Wenzel)

6.1 Introduction

6.2 Short description of the algorithms

6.2.1 IDs

6.22 IDSR

623 AQR

6.24 CN2

6.2.5 CLASSWEB .

63 Results.........--

6.3.1 Training Time

6.3.2 Classifier Results .

6.4 Conclusion

6.5 Classification diagrams

60

60

60

6

6

62

62

63

63

4

69

vi

7 Documentation of Prism ~ an Inductive Learning Algorithm
(S. Keller)

7.1. Short Description .

7.2 Introduction .

7.3. PRISM: Entropy versus Information Gain .

7.3.1 Maximizing the information gain

7.3.2 Trimming the tree

7.4 The Basic Algorithm

‘The Use of Heuristics

7.6 General Considerations and a Comparison with ID3

7.7 Implementation

7.8 Results on Running PRISM on the MONK’s Test Sets

7.8.1 Test Set 1 - Rules

7.8.2. Test Set 2 - Rules

7.8.3 Test Set 3- Rules .

7.9. Classification diagrams .

Cobweb and the MONK Problems
(¥. Reich, and D. Fisher)

8.1 Copwes: A brief overview... Aggntenane

8.2 Ecoswes....

8.2.1 Characteristics prediction

8.2.2 Hierarchy correction mechanism

8.2.3 Information utlity function

8.3 Results

84 Summary

95

96

7

97

98

98

100

9 Backpropagation on the MONK’s Problems
(S.B.Thrun)

9.1 Introduction

9.2 Classification diagrams

9.3 Resulting weight matrices .

10 The Cascade-Correlation Learning Algorithm on the MONK’s Problems
(SE. Fahlman)

10.1 The Cascade-Correlation algorithm

10.2 Results.

10.3 Classification diagrams

101

102

103

vill

Results — a short overview

TT TS
 Bala, Ev Bloedorn, K-De Jong, K- Kaulman, WS. Michalski,

P. Pachowiez, H. Vafaie, J. Wnek, and J. Zhang

‘AQI7-DCT 100% [100% | 94.2

AQIT-HCI 100% | 93.1% | 100%

AQIT-FCLS 92.6% | 97.2%
AQI4-NT 100%

AQI5S-GA 100% | 86.8% | 100%

B. Cestnik, I. Kononenko, and I. Bratko

9% [100%
5 Dieses
mFOIL [100% | 65.2% | 100%

'W. Van de Velde

TD5R BLT 61.8%

IDL 97.2% | 66.2%

ID5R-hat 90.3% | 65.7%

TDIDT 75.7% | 66.7%

J. Kreuziger, R. Hamann, and W. Wenzel

1D3 98.6" 67.9% | 94.4%

1D3, no windowing | 83.2% | 69.1% | 95.6%

ID5R 79.7% | 69.2% | 95.2%

AQR 95.9% | 79.7% | 87.0%
CN2 100% | 69.0% | 89.1%

CLASSWEB 0.10 71.8% | 64.8% | 80.8%

CLASSWEB 0.15 65.7% | 61.6% | 85.4%

CLASSWEB 0.20 63.0% | 57.2% | 75.2%

S. Keller
90.5%

"Y. Reich, and D. Fisher

ECOBWES leaf prediction T1.8' 67.4% | 68.2%

ECOBWEB L.p. & information utility | 82. 7% | 71.3% | 68.0%

S.Thrun

Backpropagation 100% | 100% | 93.1'

Backprop. with weight decay 100% | 100% | 97.2%

S. Fatiman|
(Cascade Correlation [100% | 100% | 97.2%

Chapter 1

The MONK’s Comparison Of

Learning Algorithms — Introduction

and Survey

Sebastian B. Thrun
Tom Mitchell
John Cheng

Carnegie Mellon University, School of Computer Science, Pittsburgh, PA 15213
e-mail: Sebastian. Thrun@cs.cmu.edu, Tom. Mitchell@cs.cmu.edu, John.Cheng@cs.cmu.edu

2 S.B. Thrun, T. Mitchell, and J. Cheng

1.1 The problem

‘The MONK’s problems rely on the an artificial robot domain, in which robots are described by six different

attributes (Wnek, Sarma, Wahab and Michalski, 1991}:

2: headshape € round, square, octagon
22: bodyshape € round, square, octagon
za: issmiling € yes, no
z4: holding € _ sword, balloon, flag
Z5: jacket.color € red, yellow, green, blue
6: has.tie € yes, n0

‘The learning task is a binary classification task. Each problem is given by a logical description of a class.

Robots belong either to this class or not, but instead of providing a complete class description to the learning

problem, only a subset of all 432 possible robots with its classification is given. The learning task is then to

generalize over these examples and, if the particular learning technique at hand allows this, to derive a simple
class description.

* Problem Mi:
(head_shape = body-shape) or (jacket-color = red)

From 432 possible examples, 124 were randomly selected for the training set. There were no misclassifi-
cations.

‘« Problem Mz:
exactly two of the six attributes have their first value.

(B.g.: body shape = head.shape = round implies that robot is not smiling, holding no sword, jacket color
is not ted and has no tie, since then exactly two (body-shape and head.shape) attributes have their first

value) From 432 possible examples, 169 were randomly selected. Again, there was no noise,

* Problem Ms:
Gacket.color is green and holding a sword) or (jacket-color is not blue and body-shape is

not octagon)
From 432 examples, 122 were selected randomly, and among them there were 5% misclassifications, i.e.
noise in the training set.

Problem 1 is in standard disjunctive normal form and is supposed to be easy learnable by all symbolic learning

algorithms as AQ and Decision Trees. Conversely, problem 2 is similar to parity problems. Tt combines different

ataributes in a way which makes it complicated to describe in DNF or CNF using the given attributes only.

Problem 3 is again in DNF and serves to evaluate the algorithms under the presence of noise.

1.2 Visualization

‘All contibutions in this report have two things in common: firstly, they refer to the same problems ~ the MONK’s

problems -, and secondly, most results are visualized by a two-dimensional diagram. Due to the difficulties in

Fepresenting a six-dimensional space on a conventional sheet of paper, the plot is unfolded, as might be found in
{Wnek, Sarma, Wahab and Michalski, 1991]. The resulting diagrams of training and testing sets may be found

below.

‘The MONK’s comparison ~ Introduction and Survey 3

In all training set diagrams, positive examples are marked by “#” and negative ones by “-". Misclassifications,
as in the presence of noise, are indicated by boxes. Correspondingly, in all test sets positive examples are marked
by “#", while empty fields indicate negative examples.

In turn, we will plot the results of all learning algorithms in the same way: # indicates that the learning
algorithm classifies the entity as a positive member, and a blank as a non-member. However, an additional
square will indicate misclassifications, i.e. if the classification obtained by the algorithm is wrong.

Acknowledgements

‘The authors thank Walter Van de Welde for the excellent organization of 2° European School on Machine
Learning, at which this comparison was created, We would also like to thank all participants in this comparison,
including Bruno Roger.

References

J. Waek, J. Sarma, A. Wahab, and R. Michalski: Comparison learning paradigms via diagrammatic Visual-
ization: A case study in single concept learning using symbolic, neural net and genetic algorithm methods,
‘Technical Report, George Mason University, Computer Science Department, 1990

$.B. Thrun, T. Mitchell, and J. Cheng

‘Training set(124 examples, no noise) and test set Mi

(head_shape = body-shape) or (jacket-color = red)

 —|

pea_[yates | gee | wee]

see] tee] eet | ate

bel pet Deteiel ed at

 Gist
*

afololelelelel*lelelolel=l*lelel«[e[*[*[e[o[s[>

‘The MONK'’s comparison ~ Introduction and Survey

Mb: Training set (169 examples, no noise) and test set

“exactly two of the six attributes have their first value”

J
i = vie L J]
Cas Mee | eee bee | tae ase]
Gee eee [siete a+]

$.B, Thrun, T. Mitchell, and J. Cheng

Ms: Training set (122 examples, 6 misclassifications due to noise) and test set

(jacket-color is green and holding a sword)

(jacket_color is not blue and body-shape is not octagon) or

ath

 Get

Chapter 2

Applying Various AQ Programs to the

MONK’s Problems: Results and Brief

Description of the Methods

J. Bala
E. Bloedorn
K. De Jong
K. Kaufman
R.S. Michalski
P. Pachowicz
H. Vafaie
J. Wnek
J. Zhang

Center for Artificial Intelligence, George Mason University, 4400 University Drive, Faixfax, VA 22030

8 J.Bala, E. Bloedorn, K, De Jong, K. Kaufman, R.S. Michalski, P. Pachowice, H. Vafaie, J.Wnek, J. Zhang

2.1 Introduction

‘This chapter describes briefly results from applying various AQ learning programs to the MONKS’ problems.

‘The MONKS" problems are concerned with learning concept descriptions from examples. All examples come

trom the same event space, which spans 6 multiple-valued attributes. The sizes of the value sets of the attributes

HL a2, x6, are 3, 3, 2, 3,4, and 2, respectively. Consequently, the space consists of the total of 3xBx2acdxtx2
= 482 possible events (examples).

‘There are three different MONKS’ problems. As described in Chapter 1, the problems differ in the type of the

target concept to be learned, and in the amount of noise in the data. The training and testing sets of examples

wwete provided by the ereators of the problems, Thrun, Mitchell and Cheng, A listing of all the data is in the

‘Appendix. Here is a brief summary of the data for each problem.

« Problem 1. There were 124 training examples, which represented 30% of the total event space (62 positive

and 62 negative). The testing examples were all possible examples (216 positive and 216 negative)

« Problem 2. There were 169 training examples, which represented 40% of the total event space (105

positive and 64 negative). The testing examples were all possible examples (190 positive and 142 negative)

« Problem 3. There were 122 training examples, which represented 30% of the total event space (62 positive

and 60 negative). The testing examples were all possible examples (204 positive and 228 negative). We

were informed that 5% of the examples were misclassified.

‘The following AQ programs were used in the experiments:

AQIT-DCT (a version of AQ program with data-driven constructive induction)

[AQIT-HCI (a version of AQ program with hypothesis-driven constructive induction)

« AQI5-GA (a version of AQ program combined with a genetic algorithm)

AQIS-FCLS (a version of AQ program oriented toward learning flexible concepts)

AQILNT (a version of AQ program oriented toward noisy data)

Rules generated by different programs were tested using the ATEST program that computes a confusion matrix

(Reinke, 1984). The program computes the so-called consonance degree between an unknown example and

the rules for each decision class. ‘The output from this program includes numerical evaluations of the the

accuracy of the rules based on the percentage of the testing examples correctly classified (by choosing the rule
that best fits the example), and the percentage of examples precisely matched by the correct decision rule..

These percentages are output by ATEST as OVERALL % CORRECT- FLEX-MATCH and OVERALL %

CORRECT-100% MATCH, respectively.

Details of these programs, and of the AQ algorithm underlying these programs are given in Section 2.5. It

should be noted that results are not always presented for each of these programs as applied to each of the

three problems. As indicated above, these programs derive from the same basic method, each adding features

appropriate to specific types of problems. The different programs derived basically the same rule for the first

problem; the ones shown here are the ones whose knowledge representation schema allowed for the most elegant

presentation of the output. We felt that for the sake of brevity and emphasis on the matching of the programs

Hifferent features with the types of problems to be solved, we should present only the results of the programs

better suited for the given type of problem. For example, we felt that there was no reason to apply AQUL-NT,

Applying various AQ programs to the MONK’s problems 9

a program with special features to cope with noisy data, to Problem 2, a problem in which data were without
noise, and the testing events were 100% correctly classified by the rules obtained by other programs. For the
same reason, we did apply the data-driven constructive induction program AQIT-DCI to Problem 3, because
it is a strictly data driven method, and as such is less suitable for learning from noisy data than other AQ
programs.

2.2 Results for the 1st problem (M:)

2.2.1 Rules obtained by AQ17-DCI

‘These are the rules obtained by AQI7-DCT, a version of the AQ program that employs data-driven constructive
induction. The results include one rule for Class 0 (that represents positive examples of the concept), and one
rule for Class 1 (that represents the negative examples):

clase 0:
Rule 1 [jacket_color > 1] & (head_shape <> body_shape] (tota:

Class 1:
Rule 1 (head_shapesbody_shape]
Rule 2 [jacket.color=t]

Expressions in [] denote individual conditions in a rule, Values 1, 2, 3 and 4 of the “Jacket-color” attribute
denote red, yellow, green, and blue, respectively. The body-shape and the head-shape attributes had values
L-round, 2-square, and 3-octagon. In the above rules, “total” means the total number of training examples of
the given class covered by the rule, and “unique” means the number of training examples covered by that rule
only, and not by any other rules.

‘There is only one rule for Class 0, and there two rules for Class 1. The latter means that if any of the rules is
‘matched by a given instance, then that instance is classified to Class 1. A set of such rules is logically equivalent
to a disjunction of conjunctions. The syntax of the rules is defined formally according to the variable-valued
logic calculus VL1. Individual rules correspond to “complexes” in VL1.

‘The results of applying the rules to the testing examples are presented below.

RESULTS
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: _ 100.00

where:
OVERALL % CORRECT FLEX MATCH means the percentage of the correctly classified examples within the
total set of testing examples, using a flexible matching function (see Reinke, 1984), and OVERALL CORRECT
% 100% MATCH means that the percentage of correctly classified examples that matched the rules éxactly.

‘The number of testing events satisfying individual rules in the correct class description is given in the table
below:

10. J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowice, H. Vafaie, J. Wnek, J. Zhang

RULES
RL Ra

cuass 0 15
Lass 1 144 108

2.2.2 Rules obtained by AQ17-HCI

‘These are the rules obtained by AQUT-HCI, a version of the AQ program that employs hypothesis-driven
constructive induction. The results include one rule for Class 0 that represents positive examples of the concept,
‘and one rule for Class 1 that represents the negative examples:

je] (total:62, unique:62)

Rule 1 (Posiéefalse] (total:62, unique:62)

where NegiT and Posi6 are attributes constructed from the original ones, or intermediate ones, as defined below
(these rules, as one can check, are logically equivalent to the AQI7-DCI generated rules)

'] & [body shape=2,3] & [jacket_color>t]
)} & Cbody_shape=1,3] & Cjacket_color>t]

(head_shapen3] & (body_shape=t1,2] & (jacket_color>t]
Thead_shape=t] & (body_shape=1]

cot
cos
08

10
12 <:1 [jacket_color=1]
13 <:1 Dhead_shapes2] & Cbody_shape=2]
iS <:: Chead_shape=s] ® [body_shape=3]

[etdefalse] & (el2=falae] & [c13sfalse] & (ciS=talse]
2 [cOSefalse] & (cO8talse]

Pos.
Neg

TEST RESULTS - SUMMARY,
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: _ 100.00

Number of testing events satisfying individual rules in the correct class description:

RULES
Rt

ctass 0 218
CLASS 1 216

Other programs either were not used on this problem, or generated similar results.

Applying various AQ programs to the MONK’s problems n

2.3 Results for the 2nd problem (Mz)

2.3.1 Rules obtained by AQ17-DCI

The rules below were obtained by AQU7-DCI, which is capable of generating all kinds of new attributes from
the original attributes, For the problem at hand, the program found that a new attribute that expresses the
number of variables in the learning examples that have some specific value is highly relevant to this problem.
Such an attribute is assigned by the program the name #VarEQ(x), which means “the number of variables with
value of rank & (in their domain)” in an example. The lowest value in the domain has rank 1, the next lowest
has rank 2, ete. In this case, the relevant attribute was #VarEQ(1). Based on this attribute, the program
constructed appropriate decision rules. There were two one-condition rules for Class 0, representing the positive
examples of the concept, and one rule for Class 1 that represents the negative examples. The rule for Class 1
is logically equivalent to the negation of the union (disjunction) of the rules for Class 0.

Class 0:
Rule 1 [#Var£Q(1)>3]
Rule 2 [aVar£Q(1)<=1)

Class 1:
Rule 1 [#VarEQ(1)=2)

‘The rules say that the number of variables that take the lowest value from their domain is 1 or greater than 2
(ie, not equal to 2.

‘The results of applying the rules to the testing examples were:

Cc RESULIS
OVERALL % CORRECT FLEX MATCH: 100.0
OVERALL % CORRECT 100% MATCH: _ 100.0 |

2.3.2 Rules obtained by AQ17-HCI

‘There are 4 top level rules for Class 0 (positive examples), and 6 top level rules for Class I(negative examples)

class 0:
Rule 1 (Pos73=true} (total:90, unique:49)
Rule 2 [eldefalse] & [c26=false) & [cS3=talse] & [c67=fale0] &

[cTautalse] & (Neg74=false] (total:38, unique:6)
Rule 3 (holding=2,3] & [c6efalse] & [c20=false] & (Neg74=talse] (total:22, unique:5)
Rule 4 (head_shapee2] & (has.tien2] & [ct4=false] &

[cS0mtalse] & [Nog74=false) (total:6, unique:2)

‘Clase 1:
Rule 1 [Weg?4=true] (total:43, unique:30)
Rule 2 [jacket_color=2,2,4] & (has_tiew1] 2 (c60strue] & (Pos73=false] (total:17, unique:4)
Rule 3. (head_shape=2,3} & Cbody_shape=2] & (c28~false] & [Pos73=false] (total:16, unique:7)
Rule 4 [body_shape3] & [c4Betrue] & [c66etrue] (tot: i
Rule $ [Jacl ore3] & (c49etrue] & [cS2=false] & (cS:

[eSSefalse] & [c69etrue] & (Pos73etalse] (total:4, uniqu
Rule 6 [body_shape=3] & [cOefalse] & [clOmtrue] & (c23=true] # [c32=true] (total:3, unique:1)

12 J. Bala, B. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

Attributes “ci, 2” “PosT3,” and “Neg?4” were constructed during the learning process. The following
were relevant to the discovered rules:

40 <i: [eSwerue] & (et7atrue] 2 <i: Cacket_color*1,4]
41 <:: (c1Ssfalse] & (c28=false]

ss < eee i f 42 [holding=2,3] & [c39=false)
« ead _shapen2, c43 <1: [body shapen2,3] © [c39false]
€6 <i: Qhead.shapen2,3] & [body_shapen2,3) cA4 <1: (holdinge?2,3] & [jacket color=2,3,4]
ef <i: Qholdingst,2] & (jacket _coler=1,3,4] C48 C1: (eisefalee] & [e39efalsa)
<9 <: (Qhead_shapes1,3] & [jacket_color=2,3,4] a7 [erm] & [c39=false]

10 <:: [holding=1,2)] & [jacket_color=2,3,4] c48 <ii Cecket_coleret;2/4l © [e?otaleel
eld <1: [jacket_color=2,3,4] & (has tiew2] c49 <i: [etTefaise] & [e33-true]
e15 <1: [is emilingst] & (jacket color=2,3,4) 60 <:: Cbody_shape=2,3] & [c22=false]
16 <:: fholding=2,3] & (has_tie=2] €52 ¢:: Cjacket_color=2,3,4] & [c14=false]
ci7 <:: Cholding=2,3] & [jacket_color=2,3,4] 53 <:: (jacket_color=2,3,4] & (c2i=true]
18 <:: (is smiling=2] & (jacket_color=2,3,4] 55 [holdinge1,2] & [c14=false]
20 <:: (jacket_color=2,3,4] & (has_tie=1] 56 <:: Cholding=1,3] & (ci4=false]
21 <:: Cboay, 2,3) & (holding=2,3] 89 <:: [jacket_color=2,4]
622 <:: Cis smiling=2] & (holding=1,2] 60 <:: [e38efalse] & (c49=false]
23 <:: Cholding=1,3] & [jacket_color=2,3,4] 61 <:: [body_shape=2,3] & [jacket_color=2,3,4]
€26 <:: (head shapen2,3] & [Jacket color=2,3,4] C65 <:: [c20efalse] & [c39etalse] — “
28 < 1,3] & (jacket_color=2,3,4] 66 <2: solor=1,2,3] & (c46=true!
32 < +3] & Cjacket_color=1,2,3] 67 e] & [eagetrue]
633 < shape=2,3] & (has_tie=2] 68 e] & (cSS=false)
37 <:: Cis_smiling=2] ® (holding=2,3] 69 a] & [cSS*talse)
38 <:: [e2imtalse] & [c37=false] 70 <:: [jacket_color=2,3,4] & [c18=false]
39 <:: [e6strue] & [ct7=true] 72 <:: (jacket_color=i,2,3] & [c37=true]

Pos73 <:: [c4efalse] & [ci6=talse] & [c33sfalse] & [c39=false] & [c40=false] or
[e1Sefalee] & [cA3=false] & [c47=false] & (c68etalse] or
[body shape=1,2} & (c2isfalee] & [cAtmtrue] & (c4defalse] & [c6S=true] & (c67=false) or
[e33etrue] & [c60=true]

 Nog?4 <:: (eAwfalse] & (c42=true] & [c56=talse] & (c6S=truc] & [c68-true] or
[camtalse] & [cAmtalse] & (ci6efalse] & [ct7=true] & [c26etrue] or
[is_smiling=2] & (holding=2,3] & (cidnfalse] & (c4tetrue] &

[eaawerue] & [cS9efalse] & [c69=falee] & (c70ntalse] or
(has_tien2] & (cSetrue] & [c44ntalse] & [c6t=false]

 TEST RESULTS - SUMMARY
OVERALL % CORRECT FLEX MATCH: 93.06
OVERALL % CORRECT 100% MATCH: _ 86.

‘The above summary of the results shows that the rules generated by AQI7-HCI approximate quite well the
concept in Problem 2 although they use only logical operators. This result is quite interesting because concepts
such as the one in Problem 2 are among the most difficult to learn using solely logic-based inductive learners
(classical rule learning or decision tree learning programs). This result demonstrates the power of hypothesis-
driven constructive induction,

Number of testing events satisfying individual complexes in the correct class description:

RULES
Ri R2 RS R4 RS RE

cuss 0 232 84 S412
cass 1 7 4 32 10 5 4

Applying various AQ programs to the MONK’s problems 13

2.3.3. Rules obtained by AQ17-FCLS

‘These are the rules obtained by AQI7-FCLS, a version of the AQ program that leams flexible concepts by
generating rules that permit partial matching. The threshold parameter indicates the minimum percentage of
the individual conditions in the rule that must be satisfied for the rule to apply. The results include two rules
for Class 0 that represent positive examples of the concept, and 18 rules for Class 1 that represent the negative
examples. The discovered rules fully encompass Class 0, but they failed to get a complete grasp of the concept
of Class 1:

Class 0:
Rule 1 . (head_shape = 1] & (body_shape = 1] & (is_smiling = 1] &

[holding = 1] & (Jacket_color = 1] & (has tie = 1]
with THRESHOLD = 50 %
(Total positive examples covered: 64)

‘This rule says that three or more variables must be equal to 1 (recall that for “is-smiling” and “has-tie”
attributes, the value 1 means “yes” and value 2 means “no” ; for attibrute “holding” the value | means
“sword,” 2 means “balloon,” and 3 means “flag”

Rule 2 (head_ehape = 2, 3] & (body_shape = 2, 3] & [is_smiling = 2] &
(holding = 2. 3] & [jacket_color = 2, 3, 4] & [has_tie = 2)
with THRESHOLD = 83 % (5/6)
(Total positive examples cov

 ed: 41)

‘This rile says that five ot six out of six variables must be greater than 1, or equivalently, that at most one
variable can be equal to 1. Thus the disjunction of these two rules above means that the number of variables
which have value 1 cannot be equal to 2.

‘These rules classified 100% all the examples of Class 0.

Class 1.

Since the current program does not have the ability to express the negation of the above two rules for Class 0,
to program generated many “light-weight” rules to cover all examples of Class 1. The overall performance using
the flezible match was not 100% because in some cases when an ezample matched equally well the rules for both
classes, an incorrect class was chosen. In the nezt version of the program, we will include the missing negation
operator.

Rule 1 [isaniling = 1] & (holding = 2 , 3] & (Jacket_color = 2] &
thas tie = 2]

‘with THRESHOLD = 100 % (total positive examples covered: 8)

Rule 2 Chead_shape = 2 , 3] & (body.shape = 2, 3] & (is.smiling = 1) &
Gholding = 2 , 3] & [jacketcolor = 2,3, 4] & (hastie= 1]
‘with THRESHOLD = 100 % (total positive examples covered: 9)

Rule 3 head_ehape = 2, 3] & (body_shape = 2, 2] & (is.smiling = 2] &
[holding = 2, 3] & [jacket_color = 2] & has_tie = 2)
‘with THRESHOLD = 100 % (total positive examples covered: 7)

 Rule 4 (head_shape = 3]
fholding = 11 & C

Coody_shape = 1] & [is_smiling = 1] &
\cket_color = 9] & (has_tie = 2]

14 J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowica, H. Vafaie, J. Wnek, J. Zhang

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

10

an

2

14

18

16

7

18

with THRESHOLD = 83 % (total positive examples covered: 5)

(head_shape = 1) & (ia_omiling = 1] & (holding = 2, 3] &
[jacket_color = 3 , 4] & (has_tie = 2)
‘with THRESHOLD = 100 % (total positive examples covered: 5)

[head_shape = 2, 3] & (body_shape = 1) & (is_smiling = 2] &
[holding = 1, 2] & (jacket_color = 2]
‘with THRESHOLD = 100 % (total positive examples covered: 4)

(head_shape = 1] & (body_shape = 2, 3] & (is_smiling = 2] &
[holding = 2, 3] & [jacket.color= 2, 3, 4] & (has_tie = 1]
with THRESHOLD = 100 % (total positive examples covere:

Uhead_shape = 2, 3] & [is_emiling = 2] & (jacket_color = 1] &
Chas_tie = 21
‘with THRESHOLD = 100 % (total positive exanp!

8 covered: 3)

(head_shape = 2, 3] & [body.shape = 2, 3] & [is smiling = 2] #
fholding = 1] & [jacket color = 2, 3, 4] & (hastie = 1)
with THRESHOLD = 100 (total positive examples covered: 4)

head_shape = 1, 3} & [body_shape = 1] & [holding = 1, 2] &
(jacket color = 4] & (has.tie = 2]
‘with THRESHOLD = 100 (total positive examples cove

[head_shape = 2] & (body_shape = 2] & [is_smiling = 1] &
{holding = 1] & [jacket_color = 2, 3, 4] & (has.tie = 2]

‘with THRESHOLD = 100 % (oval positive examples covered: 5)

(head.shape = 1, 2) & Cbody-shape = 3] # (holding = 2, 3] &
[jacket_color = 1] & fhas.tie = 2]
‘vith THRESHOLD = 100 % (total positive examples covered: 2)

[head_shape = 1] & (body shape = 1] & [is.smiling = 2] &
[holding = 3] & (jacket_color = 2] & (has_tie = 2]
‘with THRESHOLD = 100 % (total positive examples covered: 1)

(head_shape = 1) & (body.shape = 3] & [is smiling = 2] &
(holding = 1] & [jacket_color = 1 , 3] & [has tie = 2)
‘with THRESHOLD = 100 % (total positive examples covered: 1)

[head_shape = 1] & [body_shape = 2] & (is_smiling = 2]
[holding = 2 , 3] & [jacket.color = 1) & (has_tie = 2]
‘with THRESHOLD = 100 % (total positive examples covered: 1)

{nead_shape = 2] & (body_shape = 1] & (is_smiling = 1] &
Thoiding = 3] & Cjacket_color = 2, 3)
‘vith THRESHOLD = 100% (total positive examples covered: 2)

Chead_shape = 3] & (body_shape = 2] & (is_emiling = 1]
[holding = 2] & [jacket_color = 1, 2]
‘with THRESHOLD = 100 % (otal positive examples covered: 2)

(head_shape = 2, 3] & (body.shape = 1] & [is_smiling = 2] ©
[holding = 2, 3] & (jacket_color = 2, 3, 4] & (has_tie= 1]
with THRESHOLD = 100 % (total positive examples covered: 3)

Applying various AQ programs to the MONK’s problems 15

 TEST RESULTS - SUMMARY
‘The percentage of correctly classified testing events: O26
The percentage of correctly classified testing events in Class 0: 100.0%
‘The percentage of correctly classified testing events in Class 1: 85.2%

‘The total number of rules in the descriptions: 2 for Class 0

18 for Class 1.
‘The total number of conditions in the descriptions: Lo.

2.4 Results for the 3rd problem (Ms)

2.4.1 Rules obtained by AQ17-HCI

Below are the rules obtained by the hypothesis-driven constructive induction method:

(Posimtrue] (total:49, unique:49)
[body_shape=2,3] & (holding=2,3] & [jacket color=3] (total:11, unique
[oody-shape=t] & (holdingsi] & (jacket_colors3} (total.
(oody_shapen2] & (holding=2] & [jacket_color=2] (total:

(Weg2mtrue} (total:67, unique
Coody shapen3] & (holding=1] & [jacket_color#3,4] (total:3, unique:3)

7)
where Posl and Neg? are attributes constructed from the original ones (Wnek & Michalski, 1991)

 Post <:: (jacket.color=4] or _—[body_shape3] & (jacket_color=1,2,4]

Nog? <:: Cbody.shapest,2] & [jacket_color=1,2,3]

 TEST RESULTS - SUMMARY
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 86.11

Since this problem involves noisy data, the flexible match should always be used. The results from 100% match
are shown just for comparison.

Number of testing events satisfying individual complexes in the correct class description:

RULES
Ri R2R3 RE

cLass 0 180 24 0 0
cass 26 12

16 J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

2.4.2 Rules obtained by AQ14-NT

‘These are the rules obtained by AQU-NT, a version of the AQ program that employs a noise-filtration technique.
‘The results include one rule for Class 0 that represents positive examples of the concept, and one rule for Class

1 that represents negative examples.

After only two loops of concept-driven filtration of training dataset (with truncation parameter equal to 10%)
and repeated learning, we received the following set of rules:

Class 0:
Rule 1 Cjacket_color=4]
Rule 2. [body_shape=3] & Cholding=2. .3]
Rule 3 [body_shapes3] & [jacket_color=i..2]

class
Rule 1 (body_shape=t..2] & [jacket_color=t..3]
Rule 2 (holding=1] & [jacket_color=3]

‘These rules recognized all test data correctly, i.e., on the 100% level.
Since there was supposed to be noise in the data, we are somewhat surprised by such a high degree of recognition.

2.4.3 Rules obtained by AQU7-FCLS

‘These are the rules obtained by AQIT-FCLS. The results include two rules for Class 0 that represent positive
examples of the concept, and one rule for Class 1 that represents the negative examples. The threshold parameter
indicates the minimum percentage of selectors in the rule that must be true for the rule to apply. This set of
rules is intentionally incomplete and inconsistent with the training set since it was generated with a 10% error
tolerance. This produced better results than other tolerances that were tried:

Class 0:
Rule 1 [head_shape > 1] & [body_shape = 3] & [jacket_color = 4]

vith THRESHOLD = 67 % (Total positive examples covered: 42)

Rule 2 [head_shape = 1] & (body.shape = 3) & (jacket_color = 4]
with THRESHOLD = 67 % (Total positive examples covered: 26)

class 1:
Rule 1 (body.shape = 1 , 2] & {jacket color = 1, 2, 3]

with THRESHOLD = 100 % (Total positive examples covered: $7)

TEST RESULTS - SUMMARY
“The percentage of correctly classified events: 7.2%
‘The percentage of correctly classified events in Class 0: 100.0%
‘The percentage of correctly classified events in Class 1: 94.7%
‘The total number of rules in the descriptions: 2 for Class 0

1 for Class 1
The total number of conditions in the descriptions 8

Applying various AQ programs to the MONK’s problems 7

2.4.4 Rules obtained by AQ15-GA

Below are the rules obtained by AQIS-GA, a program that uses a genetic algorithm in conjunction with the AQ
rule-generation algorithm. The first rule is for the positive examples of the concept, Class 0, and the second for
the negative examples, Class 1. A genetic algorithm determined that 3 attributes (body shape, holding, and
jacketcolor) were the most meaningful. Using these, the rules discovered were as follows:

Class 0:
Rule 1 (jacket_color=4]
Rule 2 {body_shapes3] & [jacket_color=t..2]

Rule 3 shape=2. .3] B (holding=2..3] & [jacket_color=3]
Rule 4 spent] & (holdingst] & [jacket color=3]
Rule § japes2] & (holding=2] & (jacket_color=2]

clase tt
Rule 1 [body.shapeet..2] & (Jacket color*t..3]
Rule 2 fhody_shapes3] & [holdingei] & (jacket_color=3..4]

Results on testing the rules on testing events using program ATEST:

TEST RESULTS - SUMMARY
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: _ 100.00

2.5 <A Brief Description of the Programs and Algorithms

2.5.1 AQ17-DCI (Data-driven constructive induction)

This program is based on the classical AQ algorithm, but it includes an algorithm for constructive induction
that generates a number of new attributes. The quality of any generated attribute is evaluated according to a
special Quality Function (QF) for attributes, and if that function exceeds a certain threshold value, then the
attribute is selected. A brief description of the algorithm for constructive induction (Bloedorn and Michalski,
1991) is given below. The program works in two phases.

Phase 1.

1, Identify all numeric-valued attributes.
2, Repeat steps 3 through 5 for each possible combination of these attributes, starting with the pairs of

attributes, and extending them if their quality was found acceptable according to the attribute Quality
Function (QF).

3. Repeat steps 4 and 5 for each constructive induction operator. The current operators include addition,
subtraction, multiplication, integer division and logical comparison of attributes (Bloedorn and Michalski,
1991).

4. Calculate the values of the given attribute pair for the given constructive induction operator.
5. Evaluate the discriminatory power of this newly constructed attribute using the attribue Quality Function

(QF), described by Bloedorn and Michalski (1991). If the QF for an attribute is above an assumed
threshold, then the attribute is stored, else it is discarded.

18 J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

6. Repeat steps 4 and 5 for each available function operator that takes as argument an entire event (example),
and calculate various global functions (properties) of it.

‘The program has a default list of global functions, but allows the user to modify the list to fit the problem at
hand. The default list of functions include MAX (the maximum of the values of the numerical attributes in an
event), MIN (the minimum value), AVE (the average value), MF (the most-frequent value), LF (Ieast-frequent),
and #VarEQ(x), which measures the number of variables (attributes) that take the value x in an example of @
given class.

Phase 2.

1. Identify in the data ail attributes that are binary.

2. Search for pairwise symmetry among the attributes and then for larger symmetry or approximate sym-
metry groups, based on the ideas described in (Michalski, 1969a; Jensen, 1975.)

3. For each candidate symmetry group, create a new attribute that is the arithmetic sum of the attributes
in the group.

4, Determine the quality function (QF) of the newly created attributes, and select the best attribute.

5. Enhance the dataset with values of this attribute, and induce new decision rules.

‘The method described above allows the system to express simply symmetric or partially symmetric Boolean
functions and k-of-n functions, as well as more complex functions that depend on the presence of a certain
number of attribute values in the data. Such functions are among the most difficult functions to express in
terms of conventional logic operators.

2.5.2 AQUT-FCLS (Flexible concept learning)

‘This method (Zhang and Michalski, 1991) combines both symbolic and numeric representations in generating
a concept description. The program is oriented toward learning flexible concepts, i.e, imprecise and context-
dependent. To characterize such concepts the program creates two-tiered descriptions, which consist of a Basic
Concept Representation (BCR) and an Inferential Concept Interpretation (ICT) to handle exceptions. In the
program, the BCR is in the form of rules, and the ICT is in the form of a weighted evaluation function which
sums up the contributions of individual conditions in a rule, and compares it with a THRESHOLD. The learning
program learns both the rules and an appropriate value for the THRESHOLD.

Each rule of a concept description is learned in two steps, the first step is similar to the STAR algorithm in
‘AQ that generates a general rule, and the second step optimizes the rule by specializing it and adjusting the
accuracy threshold.

2.5.3 AQ17-HCI (Hypothesis-driven constructive induction)

AQIT-HCI (Hypothesis-Driven Constructive Induction) is a module employed in the AQI7 attribute-based
multistrategy constructive learning system. This module implements a new iterative constructive induction
capability in which new attributes are generated based on the analysis of the hypotheses produced in the
previous iteration (Wnek and Michalski, 1991). Input to the HCI module consists of the example set and a
set of rules (in this case generated by the AQIS program). The rules are then evaluated according to a rule

Applying various AQ programs to the MONK’s problems 19

quality criterion, and the rules that score the best for each decision class are combined into new attributes.
‘These attributes are incorporated into the set of training examples, and the learning process is repeated. The
process continues until a termination criterion is satisfied. The method is a special implementation of the idea
of the “survival of the fittest,” and therefore can be viewed as a combination of symbolic learning with a form
of genetic algorithm-based learning.

A brief description of the HCI algorithm follows:

1, Induce rules for each decision class using a standard AQ algorithm (as implemented in AQ-15) from a
subset of the available training examples.

2. Identify variables from the original set that are not present in the rules, and classify them.

3. For each decision class, generate a new attribute that represents the disjunction of the highest quality.

4, Modify the training examples by adding the newly constructed attributes and removing the ones found
to be irrelevant.

5. Induce rules from this modified training set.

6. Test these rules against the remainder of the training set. If the performance is not satisfactory, return
to step 1. Otherwise, extend the initial complete set of training examples with the attributes from the
obtained rules. Induce the final set of rules from this set of examples,

In these examples, the induction in steps 1, 5 and 6 was performed using the learning algorithm implemented
in the AQIS program.

2.5.4 AQU4-NT (noise-tolerant learning from engineering data)

‘The program implements an algorithm specially designed for learning from noisy engineering data (Pachowicz
and Bala, 1991a and 1991b). The acquisition of concept descriptions (in the form of a set of decision rules) is
performed in the following two phases:

© Phase 1:

Concept-driven closed-loop filtration of training data, where a single loop of gradual noise re-
‘moval from the training dataset is composed of the following three stages:

1, Induce the decision rules from a given dataset using the AQI4 (NEWGEM) inductive learn-
ing program.

2. Truncation of concept descriptions by removing “least significant” rules, that is rules that,
cover only a small portion of the training data (this step is performed using the so-called
‘TRUNC procedure).

3. Create a new training dataset that includes only training examples that are covered by the
truncated concept descriptions.

* Phase 2:

‘Acquire concept descriptions from improved training dataset using the AQ14 learning program.

20 J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

A justification for Phase 1 is that the noise in the data is unlikely to constitute any strong patterns in the data,
and therefore will require separate rules to account for it. Thus, the example covered by the “light rules” are
likely to represent noise, and therefore are removed from the dataset. Experiments with AQU4-NT applied to a
variety of engineering and computer vision problems have shown that it systematically produces classification
rules that both perform better and are also much simpler.

2.5.5 AQI5-GA (AQ15 with attribute selection by a genetic algorithm)

In this approach we use genetic algorithms in conjunction with AQIS. Genetic algorithms are used to explore
the space of all subsets of a given attribute set. Each of the selected attribute subsets is evaluated (its fitness
measured) by invoking AQI5 and measuring the recognition rate of the rules produced

‘The evaluation procedure as shown is divided into three main steps. After an attribute subset is selected, the
initial training data, consisting of the entire set of attribute vectors and class assignments corresponding to
examples from each of the given classes, is reduced. This is done by removing the values for attributes that
were eliminated from the original attribute vector. The second step is to apply a classification process (AQIS)
to the new reduced training data. The decision rules that AQ15 generates for each of the given classes in the
training data are then used for classification. The last step is to use the rules produced by the AQ algorithm in
order to evaluate the classification and hence, recognition with respect to the test data.

In order to use genetic algorithms as the search procedure, it is necessary to define a fitness function which
properly assesses the decision rules generated by the AQ algorithm. The fitness function takes as an input a
set of attribute or attribute definitions, a set of decision rules created by the AQ algorithm, and a collection
of testing examples defining the attribute values for each example. The fitness function then views the AQ-
generated rules as a form of class description that, when applied to a vector of attribute or attribute values,
will evaluate to a number. It is evaluated for every attribute subset by applying the following steps: For every
testing example a match score is evaluated for ail the classification rules generated by the AQ algorithm, in
order to find the rule(s) with the highest or best match. At the end of this process, if there is more than one
rule having the highest match score, one rule will be selected based on the chosen conflict resolution process.
This rule then represents the classification for the given testing example. If this is the appropriate classification,
then the testing example has been recognized correctly. After all the testing examples have been classified, the
overall fitness function will be evaluated by adding the weighted sum of the match score of all of the correct
recognitions and subtracting the weighted sum of the match score of all of the incorrect recognitions.

2.5.6 The AQ Algorithm that underlies the programs

All the above programs use AQ as the basic induction algorithm. Here is a brief description of the AQ algorithm

1, Select a seed example from the set of training examples for a given decision class.

2. Using the extend against operator (Michalski 1983), generate a set of alternative most general rules (a
star) that cover the seed example, but do not cover any negative examples of the class.

3. Select the “best” rule from the star according to a multi-criteria rule quality function (called LE - the
lexicographical evaluation function), and remove the examples covered by this rule from from the set of
positive examples yet to be covered.

4. If this set is not empty, select a new seed from it and go to step 2. Otherwise, if another decision class
still requires rules to be learned, return to step 1, and perform it for the other decision class.

Applying various AQ programs to the MONK’s problems 2

Acknowledgements

‘The authors thank Bill Deichler for his comments and criticism of this paper. This research was done in the
‘Antificial Intelligence Center of George Mason University. The activities of the Center are supported in part by
the Defense Advanced Research Projects Agency under the grants administered by the Office of Naval Research,
No. N00014-87-K-0874 and No. NO0014-91-J-1854, in part by the Office of Naval Research under grants No,
N00014-88-K-0397, No. NO0014-88-K-0226, No. N00014-90-J- 4059, and No. NO0014-91-J-1351, and in part by
the National Science Foundation under grant No. IRI-9020266.

References

Bala, J.W. and Pachowiez, P.W., “Recognizing Noisy Patterns of Texture via Iterative Optimization and Match-
ing of their Rule Description”, Reports of Machine Learning and Inference Laboratory 90-12, Center for Artificial
Intelligence, George Mason University, Fairfax, Va. 1990.

Bloedorn, E., and Michalski, R.S., “Data-driven Constructive Induction in AQIT-DCI: A Method and Experi-
ments,” Reports of Machine Learning and Inference Laboratory, Center for Artificial Intelligence, George Mason
University, 1991.

Bloedorn, E., Michalski, R.S. and Wnek, J., “AQI7 - A Multistrategy Constructive Learning System,” to
appear in Reports of Machine Learning and Inference Laboratory, Center for Artificial Intelligence, George
Mason University, 1991.

Jensen, G.M, “SYM-1: A Program that Detects Symmetry of Variable-Valued Logic Functions,” Report No.
729, Department of Computer Science, University of Illinois, Urbana, May 1975.

Michalski, R.S, “Recognition of Total or Partial Symmetry in a Completely or Incompletely Specified Switching
Function,” Proceedings of the [V Congress of the International Federation on Automatic Control (IFAC), Vol.
27 (Finite Automata and Switching Systems), pp. 109-129, Warsaw, June 16-21, 1969.

Michalski, R.S., “On the Quasi-Minimal Solution of the Covering Problem” Proceedings of the V International
Symposium on Information Processing (FCIP 69), Vol. A3 (Switching Circuits), Bled, Yugoslavia, pp. 125-128,
1969.

Michalski, R.S., “Discovering Classification Rules Using Variable-Valued Logic System VL,” Proceedings of
the Third International Joint Conference on Artificial Intelligence, pp. 162-172. Stanford, California, August
20-23, 1973.

Michalski, R.S., “A Theory and Methodology of Inductive Learning,” Chapter in the book, Machine Learning:
An Artificial Intelligence Approach, R.S. Michalski, J. Carbonell and T. Mitchell (Eds.), pp. 83-134, Morgan
Kaufmann Publishing Co., Mountain View, CA, 1983.

Michalski, R.S. and Larson, J.B., “Selection of the Most Representative Training Examples and Incremental
Generation of VL1 Hypotheses: the Underlying Methodology and the Description of Programs ESEL and
AQLI," Reports of Intelligent Systems Group, Report No. 867, Dept. of Computer Science, University of
Ilinois, Urbana, 1978.

Michalski, R.S. and McCormick, B.H. “Interval Generalization of Switching Theory,” Proceedings of the Thind
Annual Houston Conference on Computer and Systems Science, Houston, Texas, April 26-27, 1971.

22. J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

Michalski, R.S., Mozetic, [., Hong, J., and Lavrac, N., “The Multipurpose Incremental Learning System AQIS
and its Testing Application to Three Medical Domains,” Proceedings AAJ, Philadelphia, August 11-15, 1986,

Mozetic, I, “NEWGEM: Program for Learning from Examples, Program Documentation and User's Guide”,
Reports of Intelligent Systems Group, No. UIUCDCS-F-85-949, Department of Computer Science, University
of Illinois at Urbana-Champaign, 1985.

Pachowicz, P.W. and J. Bala, “Improving Recognition Effectiveness of Noisy Texture Concepts through Opti-
mization of Their Descriptions”, Proc of the Sth Int. Workshop on Machine Learning, Evanston, pp.625-629,
19a.

Pachowicz, P.W. and Bala, J, “Advancing Texture Recognition through Machine Learning and Concept. Opti-
mization”, Reports of Machine Learning and Inference Laboratory, MLI-6, Artificial Intelligence Center, George
Mason University, 1991b (also submitted to IEEE PAMI).

Reinke, R.E., “Knowledge Acquisition and Refinement Tools for the ADVISE Meta-expert System,” MasterUs
Thesis, University of Illinois, 1984.

Wnek, J. and Michalski, R.S.: “Hypothesis-driven Constructive Induction in AQI7: A Method and Experi-
ments,” Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, Sydney Australia,
August 1991.

Zhang, J. and Michalski, R.S., “Combining Symbolic and Numeric Representations in Learning Flexible Con-
cepts: the FOLS System”, to appear in Reports of Machine Learning and Inference Laboratory, Artificial
Intelligence Center, George Mason University.

Chapter 3

The Assistant Professional Inductive

Learning System: MONK’s Problems

B. Cestnikt
I. Kononenko?
I Bratkolt

+ Jotef Stefan Institute, Jamova 39, 61000 Ljubljana, Slovenia, E-mail: bojan.cestnik@ijs.ac.mail.yu

+ Faculty of Electrical Engineering and Computer Science, Tréaéka 25, 61000 Ljubljana, Slovenia

23

24 B. Cestnik, I. Kononenko, and I. Bratko

3.1 Introduction

Assistant Professional (Cestnik, Kononenko and Bratko, 1987) is a system for inductive learning of decision
tree. It is based on ID3 (Quinlan, 1979) and upgraded with several new features. Among the most important
improvements are binarization of the attributes, ability to prune the constructed tree at various levels and
utilization of improved probability estimates.

The main purpose of binarization, which groups the attribute values into two subsets, is to normalize the
informativity of all the attributes with respect to the number of values. As a result we usually get smaller and
mote accurate decision trees. In addition, binarization also prevents over-splitting of the learning set. Thus,
the attribute selection becomes more reliable even in lower levels of the tree where the number of examples
is relatively small. However, the binary construction is computationally less efficient and sometimes generates
trees that are not well structured,

The basic induction algorithm tends to construct exact decision tree, although in most of real-world problems
the classification can not be exact due to noise in data. As a result, a constructed tree may not only capture
the proper relations in data but also fit rather random (noisy) patterns. Decision tree pruning mechanisms
(Miners, 1989) were designed to prevent such over-fitting phenomenon. The algorithm that is implemented in
Assistant Professional is described in (Cestnik and Bratko, 1991).

Most of the inductive learning algorithms use probability estimates in crucial sub-tasks when constructing a
decision tree, such as in selecting the most "informative” attribute and in pruning the tree. Usually, relative
frequency is taken as an estimate. [t has been shown that relative frequency is rather poor estimator, especially
when the number of examples is small. A more general bayesian estimate that proved to be more robust with
respect of the number of examples was presented in (Cestnik, 1990). It is called m-estimate and has the following

form: dimes
Nem

where n is the number of positive examples, NV is the total number of examples, pa is prior probability and m
is a parameter of the estimation. The formula is studied and explained in detail in (Cestnik and Bratko, 1991).

All the mentioned improvements enable Assistant Professional to construct reliable and compact decision trees.
‘The system was successfully used in many real-world applications in various problem areas, such as medicine,
economy, industrial quality control, properties prediction, etc.

3.2. Experimental results

Assistant Professional was tested on the three Monk’s domains. The tests were conducted on IBM PS II,
model 60. The domains were named as follows: FIRST, SECOND and THIRD. Here are the results of the
measurements of classification accuracy.

 classification accuracy on testing sample

FIRST 100.00 (432 of 432)
SECOND | 81.25 % (351 of 432)

‘THIRD 100.00 % (432 of 432)

On the first and the third domain Assistant Professional was able to find a perfect domain model. However,
in the second domain the constructed tree is very large and its performance is relatively poor. In an extensi
study of the domain (testing sample) we were able to determine (with a help of our "neural nets”) the correct
model which is the following:

‘The Assistant Professional Inductive Learning System 25

A robot is 0.K.
if exactly two attributes (out of 6) are equal to 1.

‘This concept is extremely complicated for a system that learns decision trees in an attribute-value logic for-
malism. Note that on average you have to test almost all attributes to determine the answer. Therefore, the
constructed tree tends to be very bushy.

Here are the constructed decision trees in the three domains. In square brackets there is the number of examples
in the corresponding node.

3.3 Discussion

In this section we will briefly discuss the achieved results from the perspective of the three improvements of
Assistant Professional that are mentioned in the introduction.

Obviously, the binarization contributes the most in the THIRD domain. The constructed tree has a clear
structure and is perfectly understandable. In the FIRST domain, however, binarization has a rather negative
effect on the tree structure, since the concept Body_shape = Head-shape would require three branches (there are
three possible values for each attribute). In the SECOND domain binarization is expected to be helpful since
it only matters if an attribute has the first value or not. Nevertheless, due to the very complicated concept, it
did not really show it's power.

‘The pruning mechanism contributes mostly in the THIRD domain, since there are some examples corrupted by
“noise”. The main task is to detect and eliminate this corruption. The FIRST and the SECOND domain did
not contain any noise; therefore, the corresponding trees were not pruned at all.

‘The improved probability estimate, which is used also in the tree pruning mechanism, proved to have crucial
effect also in the tree construction phase. Just by changing the value of parameter m (Cestnik and Bratko,
1991) different attributes can be selected at various nodes in the tree. As a result, one mayor deficiency of the
original algorithm, namely the inability to backtrack, was in a way alleviated.

3.4 Literature

Cestnik, B., Kononenko, I., Bratko, I. (1987), ASSISTANT 86: A Knowledge-Elicitation Tool for Sophisticated
Users, Progress in Machine Learning, Eds. I.Bratko and N.Lavrac, Sigma Press, Wilmslow.

Cestnik, B. (1990), Estimating Probabilities: A Crucial Task in Machine Learning, Proc. of ECAT 90, Stock-
holm, Sweden, August 5-8

Cestnik, B., Bratko, I. (1991), On Estimating Probabilities in Tree Pruning, Proc. of EWSL 91, Porto, Portugal,
March 6-8, 1991.

Mongers, J. (1989), An Empirical Comparison of Pruning Methods for Decision Tree Induction, Machine Learn-
ing vol. 4, no. 2, Kluwer Academic Publishers.

Quinlan, J.R. (1979), Discovering Rules by Induction from Large Collections of Examples, Expert Systems in
the Microelectronic Age, Ed. D.Michie, Edinburgh University Press.

26 B. Cestnik, I. Kononenko, and I. Bratko

3.5 Resulting Decision Trees Decision Tree From Domain: SECOND
Pruned with m= 1.00

Constructed decision trees in the three domains:
Number of Nodes : 113
Number of Leaves: 57

Decision Tree From Domain: FIRST Number of Nulls
Pruned with m= 0.00

Number of Nodes : 15 | A¢:Honding [168]
Number of Leaves: 8 | ere sa
Number of Nulls : 0 1 I tread

i
i
tt
raid
vaya
rad

! bad
t Port 1 ao)

ToL 1 fT Atstead.shape (2)
! 11 Ett Ground)
ey Por ob tt tamu uae
tet rrr (46.011
Eke treed 54.01)
Tot TT Dyan 89 Vata | ai
Lot 1 A foquared piad dg
Tot tt Pvteyes tia ae 1
1 1 | Ground, octagend ae
rou He
raid
f Co V As:Mead.shape (22) ta
rad 1 Grou fot
ba te ad
Wot it baa
roi Way
rere taal
rad Vad
11 Goes Pay
rid raid
tid toe a
ptt bad
I itt ii

11 I Cequare,
11 fT Abrtas.ete (29)
rs)
Pot Lf 1 asetaamiting £16)
bob dt L tyest
11 1 1 LP A2eBody.shape £61
bor ob tt | Gouna
Por ot tb Lb vane tt
Bt Lao
prede
read
teen
tried
pirat
rrr
piri
bot toe
praia
Prards

AS: Jacket
[green, bi

The Assistant Professional Inductive Learning System aT

1 Croundl
Lb ¥tne 3)

 ‘At :Mend_ahape [17]

| Ground]
ek)
| Cequare,
| TP x2tBody-shape (8)
| 1 Crounal
ek)

ro octagon]
hoa 2 Ce)

(no)
1 At:Wead_shape [14]
| Grounal
LL Viyes
i
ma
ma tI
11 Caquare, octagon)
LoL Paine (8

5}
Atsitead shape [27]
Ground

| Az:Body-shape (111
| Ground, square)

1 A2:Body_shape (9)
| Caquare]
1 | A6:Has.tie [61

 1
I Tvicyes (4
11 tno}
Tot type Gl
| Ground]
| [asses ede (31
11 tyes}
LoL vane (a)
11 fro}
I Vvieyes 1]

Goer

ccs)
sare, octagon]

Ge

qu
At Mead _ahape [43]
Ground)

V As:Has.tie [13]

ts
{nol

1 AS:Jacket color (8)

ir
11 Gyen)

'
t
'
11 Creal
'
1

had 2)
bad
11 1 Paz:Body shape (2)
11 1 1 frounay
Por dL bia a
FL fF fequare}
rit Tvi-yes C1}
11 Gyentos)
1d LVieyes 03

[aquare, octa
V A4:Hotdiag [30]
| fattoon)
| s2Body shape (13)

| Gren
1 T AS:Jacket.cotor (51

| Creal
[Tyne
| [yeator]
toi

Cequared
TAs:Jacker.color (8)
| Crea]

Tassie
1 yes)
Ld Ata
1 | Cequare]
Tot tyne a
1 1 Coctagen]
'
1

cl

 ling (43

ape (2)

Lod vieyes
{no}

LT vieyes (2
fyeitos)
TAsete
| yes)
LT Mieyes 0
1 nol
FTW (3

 sling [4]

Cetagl
Attend

t
t
'
'
It
t
'
'
t
1
1
1
'
'
1
t
t
'
t
1
'
It
1
t ape (17)
| Caquared
'
1
1
1
1
t
1
1
1

i
1
1
1
i
i
1
I
1
I
1
'
1
1
1
1
t
'
'

TAS Jacket_color (8)

| Creal
As Ta_emtling (4)
(yes)
[vane C1]

{ne}
1 A2:Body-shape [3]

| Ground)
| se:Has tie (2)

'
1
1
1

1
1
1
1
1
i
1
1
IL

(yen
t
'
'
'
t

28 B. Cestnik, I. Kononenko, and I. Bratko

1) tf Pie aA Decision Tree From Domain: THIRD
| ! | i I : 1 Pruned with m= 3.00

Deke EY
rep be RE
pee ee Number of Nodes : 9
th flee ad Number of Leaves: 5
prrtrrta Number of Nulls : 0
rrrrerdd
ee
11 1 Coceagen}
11 1D A6:Ras tte C14 Toto te | A2:Body_shape (1222
1 hed | Coctagon)
Ptr 1 1 Ad:Wotding (412
tral 1 I fswora]
Pra 11 L AS:Jacketacolor [14]
rrr Cr te
tae ToL Ld tieyes a)
Pau 11 1 Cred, yottos, biuel
trae Pod 1 vaeyes 08
Pia PO db ve tat
padre to , flag]
bard ro on
rare | Ground, square)
true | | AB:Jacket color (81)
trad 1
trad a ‘
hard Coctagon) 1
birt 1 AB:Jacket.color (2) 1
brad I Cyettor) '
brad toi res)
braid | Crea)
rrr Loi vieyes 4)
rrr
brad ta

Chapter 4

’s Problems

Sago Deroski

Axtificial Intelligence Laboratory, Jodef Stefan Institute, Jamova 39, 61111 Ljubljana, Slovenia
e-mail: saso.dzeroski@ijs.ac.mail.yu
For correspondence until May Ist 1992: The Turing Institute, 36 North Hannover Street, Glasgow G1 2AD
United Kingdom, e-mail: saso@turing.ac.uk

29

30 S. Dieroski

4.1 Description

‘The learning system considered in this summary is named mFOIL and belongs to the class of inductive learn-
ing systems that construct logie programs (sets of Prolog clauses) from training examples and background
knowledge. This kind of systems that learn relations has been recently named Inductive Logic Programming

‘The basic structure of mFOIL is similar to that of FOIL (Quinlan 1990), but the search heuristics and stopping
ctiteria employed are quite different. They are adapted to learning from imperfect (noisy) data. Instead of the
entropy (information gain) heuristic, estimates of the expected error of clauses are used as search heuristics.
Namely, clauses with the least expected error (estimated from the training set) ate considered best. Bayesian
probability estimates, such as the Laplace estimate and the m-estimate (Cestnik 1990) are used for estimating
the expected error of clauses. In addition, mFOIL uses beam search instead of the hill climbing used in FOIL,

FOIL uses a function-free concept description language, in which conditions of the form Attribute = value are
not directly expressible, but require the addition of special predicates in the background knowledge. Such
conditions are, however, necessary for solving the monk's problems. mFOIL can use conditions of the above
form without adding special predicates in the background knowledge.

mFOIL is described in my MSe thesis (Déeroski 1991), which is available on request. It is implemented in
Quintus Prolog 2.5.1 (cca. 600 lines of code) and was run on a Sun SPARC Station 1

Iran mFOIL using different search heuristics: Laplace or m-estimate of expected ertor of clauses. Different
values of m were used in the m-estimate. Higher values of m direct the search towards more reliable clauses,
ive., clauses that cover more examples. This did not influence the results on the first training set, but had some
effect on the results on the second and the third set. Below are given the rules obtained together with the
corresponding search heuristics. The bad results on the second set are due to the small number of examples for
each of the disjuncts and the bias in mFOIL which favors shorter rules.

References

Cestnik, B. (1990) Estimating probabilities: A crucial task in machine leaning. European Conference on Al,
ECAI 1990. Stockholm, Sweden.

Dieroski, $. (1991) Handling noise in inductive logic programming. M.Sc. Thesis, University of Ljubljana,
Faculty of Electrical Engineering and Computer Science.

Quinlan, J.R. (1990) Learning logical definitions from relations. Machine Learning 5 (3), 239-266.

mFOIL on the MONK’s Problems

4.2 Set1

Heuristics used in mFOIL:

1, 2, 3, 4, 8, 16, 32, 64
Induction time: cca 1 min
Accuracy: 100 %

robot (A,B,C,0,E,P) :=
AB.

robot (A,B,C,D,E,F) 2
Eered.

4.3 Set 2

Heuristic used in mFOIL: m=3
Induction time: cea 10 min
Accuracy: 69.21 %

robot (A

C,D,E,F)
Esyellow,
not Cano,
not Desword,
Feno.

robot (A,B,C,D,E,F) :-
Detlag,
Beoctagon,
crys,
not Exgreen.

robot (A,B,C,D,E,F) :~
Cmno,
Esred,
not Desvord,
not Beround,
not Around.

robot (A,B,C,D,E,F) :=

not Deflag.
robot (A,B,C,D,E,F) :=

Esyollow.
robot (A,B,C,D,E,F) i=

Eagreen,
Beround
not Pryes,
not Awequare.

robot (A,B,0,D,E,?)
Eagreen,
not C=no,
Feno,
Arround,
not Desword.

robot (A,B,C,D,E,F) +
Besquare,
Eeblue,
ony
not Avround.

robot (A,B,C,D,E,F) =
not Cayes
arround,
Enyollow,
not Dessord.

robot (A,B,C,D,E,F) :

 robot (A,B,C,D,E,F)
Eagreen,
not Feno,

‘not Cayes,
Eered,
Feno,
not Around.

robot (A,B,C,D,E,F) :~
Eagreen,
Ansquare,
not C=no,
not Desvord,
not Feno.

robot (A,B,C,D,E,F) =

not Cayes,
not Desrord.

robot (A,B,C,D,E,F)
Eeblue,
Feo,
not Cano,
not Anaquar’

robot (A,B,C,D,E,F) i=
Feno,
Eered,
not Cay
not Beround,

robot (A,B,C,D,E,F)
Desvord,
cmno,
Beoctagon,

31

32 S. Dieroski

Ansquare 4.4 Set 3
Faye robot(A,B,C,D,E,F) i=

Beround, Heuristic used in mFOTL: m=
ot Induction time: cca 1 min
er iiss Accuracy: 100%
not Amequ:

robot (A,BC,D,E,F) +
octagon,

Deflag. robot (A.B,C,D,Es) i=
not Feno, ‘not Broctagon,
not Eere not E*blue.
not Beoctegias robot (A,B,C,D,E,F) '=

Exgreen,
Desword,

Beoctagon.

Chapter 5

Comparison of Decision Tree-Based

Learning Algorithms on the MONK’s

Problems

‘Walter Van de Welde

Vrije Universiteit Brussel, Artificial Intelligence Laboratory, Pleinlaan 2, B-1050 Brussels, Belgium
e-mail: walter@arti9.vub.ac.be

33

34 W. Van de Welde

5.1 IDL: A Brief Introduction

5.1.1 Introduction

IDL is an algorithm for the incremental induction of decision trees. Inctemental learning methods are useful
when examples become available on a regular basis but good hypotheses are needed anytime, possibly for a
performance task. Inctementality is, however, not the primary motivation for this research. More importantly,
IDL is specifically designed to find small decision trees. There are various teasons to prefer smaller trees. One
reason is efficiency: the fewer decision nodes in a tree, the more efficient an instance can be classified with it. This
is, however, a weak argument since cost and frequency of test execution should be taken into account, so that
the most cost-effective tree is not necessarily also the smallest one [Nunez 88; Tan and Schlimmer 89]. Another
reason to prefer small trees is comprehensibility: small trees tend to be easier to understand. Comprehensibility,
however, also depends on the form of the tree. For example Arbab and Michy (85) argue that linear trees are
easier to understand. Perhaps the strongest argument for small trees is the relation between tree complexity and
classification accuracy (Breiman, Friedman, Olshen and Stone 84; Quinlan 86; Mingers 89a,b; Utgoff 90]. Pear!
{78] showed that the complexity of a hypothesis for explaining data is related to the likelihood that it actually
explains it. A learning algorithm with a bias towards simplicity is likely to find more accurate hypotheses as
well. This heuristic of Occam’s Razor has been employed and justified by many authors both empirically [Clark
and Niblett 89; Fisher and Schlimmer 88; Iba, Wogulis and Langley 88] and theoretically (Blumer, Ehrenfeucht,
Haussler and Warmuth 87]

Complex trees are sometimes unavoidable. For example, an accurate tree for a concept exhibiting the parity
problemll has an exponential number of nodes [Séshu 89] and trees for boolean disjunctive normal form concepts
contain duplicated subtrees when only using ground attributes as tests [Pagallo and Haussler 80]. Also, different
heuristics in otherwise similar algorithms may lead to significant variations in tree size [Mingers 893]. ‘The
induced trees may nonetheless be more complex than strictly necessary. For example, finding the smallest trees
for the six-multiplexer concept [Barto 85; Wilson 87] is well known to be far beyond all classical decision tree
induction algorithms [Quinlan 88]. So, even when a small tree exists, state of the art decision tree algorithms
may fail to find, or even come close to it. IDL on the other hand finds ’small trees which are often optimal in
size. For example, it has no problem inducing a best tree for the 6-multiplexer while requiring fewer examples
‘and less computation than the other algorithms. The problem of induding optimal decision trees is, however,
NP-hard (Hyafil and Rivest 76; Hancock 89]. A practical algorithm is necessarily based on strong heuristic
guidance and is guaranteed to fail on at least some induction tasks.

To appreciate the novelty of the approach taken in IDL, it is useful to take a look at the relationship with its
predecessors, non-incremental top-down induction of decision trees like ID3 {Quinlan 83,86] and the incremental
algorithms ID4 [Schlimmer and Fisher 86), [D5 {Utgoff 88a] and IDSR [Utgoff 90]. Top-down induction performs
a general-to-specific hill-climbing search, guided by statistical heuristics and without backtracking. The incre-
mental versions, for which a statistics-based best split is always tentative, are designed to recover with minimal
loss of training effort from deviations from the search path which ID3 would follow given the same examples
E. More sophisticated representations and search operators allow these algorithms to simulate a backtracking
top-down search in a hill climbing search (Langley, Gennari and Iba 87; Fisher 87]. However, these algorithms
do not contribute any new ideas to improve the complexity or accuracy of learned decision trees. IDL uses
the same search operators to construct a small and accurate tree which is not necessarily [D3-equivalent but
topologically minimal. In a topologically minimal tree only a minimal number of tests is required to classify
objects. IDL is guided by statistics in a top-down search for an accurate tree. At the same time it looks for
smaller trees in a bottom-up fashion. Here it is guided, not by statistics, but by tree topological considerations.
In effect, IDL simulates a bi-directional search.

Comparison of Decision Tree-Based Learning Algorithms 35

5.1.2 Related Work

ID4 [Schlimmer & Fisher 1986], ID5 [Utgoff 88a] and IDSR [Utgoff 89] are three recently developed algorithms
for incremental induction of decision trees. The relation with IDL was briefly explained in the introduction. In
[Van de Velde 89] it was conjectured that IDL finds a topologically minimal tree if it exists. Elomaa and Kivinen
{90} showed, however, how IDL may fail to find the optimal tree for the 3-multiplexer. The multi-multiplexer
concept also disproves this conjecture. Their algorithm IDL’ nevertheless successfully postprocesses trees and
removes irrelevant attributes. Related experiments are reported on in [Van de Velde 90]. ‘These experiments
use a version of IDL which is more eager to apply the statistical selection criterion. This has the advantage
that any consistent tree can be taken as an initial hypothesis, no matter how it was generated,

Others have explicitly addressed the problem of suboptimality in tree-size. Pruning techniques (Quinlan 87;
Fisher and Schlimmer 88; Mingers 89b] avoid overfitting and reduce complexity, often while increasing accuracy.
In a multiplexer-like concept the problem occurs at the top: a TDIDT-like algorithm will choose a wrong top-
level attribute and there is no way to prune this away. Quinlan (88) proposes to transform a tree into a set

of rules which are subsequently simplified. Every possible classification path is interpreted as a rule. Each
of the conditions in the rule is.removed in turn and classification accuracy of the rule set is tested. If this is
improved, then the condition is permanently removed. This process has been shown to be capable of strong
optimization at the expense of introducing a different representation. More sophisticated rule simplification
techniques have been studied by many authors (Michalski 87; Clark and Niblett 89; Zhang and Michalski 89]
They use statistical measures to balance the importance and typicality of patterns. The techniques of pruning,
tree transformation, and rule tweaking can be viewed along a continuum of increasing liberty to manipulate the
representation of patterns. IDL is somewhere in the middle: it manipulates several rules at once and is capable
of both introducing and deleting tests in a rule. Also note that IDL is incremental, is not motivated by noise,
works with one representation, and uses tree structure information in addition to statistics.

Other researchers reduce tree complexity by allowing different tests than the primitive ones, for example boolean
combinations (Breiman, Friedman, Olhsen, Stone 84; Clark and Niblett 89; Pagallo and Haussler 89; Seshu $9] or
linear threshold units [Utgoff 8b; Utgoff and Brodley 90]. Of these, FRINGE (Pagallo and Haussler 80] is closest
in spirit to IDL. It was developed to overcome the problem of replicated subtrees when learning Disjunctive
Normal Form concepts. Such concepts usually have no decision tree representation without replications when
the primitive attributes are used. FRINGE examines the fringe (2 bottom levels) of a complete tree to find
replicated partial paths. The conjunction of two attributes or their negation is added as first class attribute
and a new tree is built. This process iterates until no more changes occur. In comparison, note that IDL is
incremental, does not change representation bias and tackles the replication problem for concepts which do have
a representation without replication. Utgoff and Brodley’s method [90] is also incremental.

Wilson (87] used multiplexer concepts to test his classifier system, called Boole. Quinlan [88] noted the ex-
tremely slow convergence rate and obtains much better results when using C4, a TDIDT like algorithm, and
postprocessing to rules (see above). Bonelli, Parodi, Sen and Wilson [90] describe NewBoole, a new version of
Boole which converges significantly faster to accurate results. It still requires around 800 examples to find an
(almost) accurate hypothesis, and around 5000 examples to find the minimal set of rules. The same authors also
used neural nets of different sizes to learn the same concept. They report convergence after 1600 cycles for a
reasonable net (6:20-20-10-10:1). On the 11-multiplexer NewBoole requires around 4000 examples to converge,
a neural net around 8000.

Selective training goes back to the windowing technique in 1D3 [Quinlan 83]. Wirth and Catlett (88) discuss
related techniques and note that the benefit of windowing is limited. Utgoff [89] shows that a window size of
one (i.e., IDSR-hat) results in improved training. The idea is not really applicable in IDL, because it still does
much work after the tree has become fully accurate.

36 W. Van de Welde

5.1.3 Conclusion

IDL represents a new approach to the incremental induction of decision trees. It uses a similar representation
as ID4 [Schlimmer and Fisher 86] and the same set of search operators, (splitting, pruning and transposition) as
1D5(R) [Utgoff 88a,90]. It was argued that a decision tree represents a target concept by virtue of representing
a specialization of it. The task of induction is to find a tree such that this specialization is as close as possible
to the target concept. Search for a good decision tree can be understood as search in concept space, mediated
by decision tree manipulations. The role of the three operations was reconsidered, as well as the heuristics to
guide their application. A statistical selection measure, based on a metic on concept space (Lopez de Mantaras

used to guide the expansion of a tree. Tree topological considerations, based on a notion of topological
relevance, guide the transposition of nodes to generate oportunities for pruning. IDL uses these heuristics to
simulate a bi-directional search for a tree which is topologically minimal. Such a tree minimizes the number of
tests needed for classification, and is therefore small. Experiments show that IDL finds small trees, and often
optimal ones,

A number of things need to be investigated further. A major open issue is to characterize the concepts for
which IDL finds a topologically minimal tree. It is not understood, for example, what makes the 3-multiplexer
so different from the 6-multiplexer concept to justify the occasional failure of IDL on the former. Also, the
large standard deviations on the mushroom domain are not well understood. It is disappointing that IDL could
not find drastically better trees on natural domains, like it did for the multiplexers. Aze there no natural data
sets for multiplexer-like concepts? Since IDL occasionally fails to find an optimal tree an average case analysis,
as outlined by Pazanni and Sarrett [90] would be more useful than a worst-case one. Integration of IDL with
constructive induction techniques seems a promising line of research. Situations in which IDL keeps on switching
the levels of attributes could be used as an indication that a new attribute may be useful. The behavior of IDL
in the presence of noise has not been studied. The integration of techniques developed for top-down algorithms
[Mingers 89b] should be investigated.

References

Arbab, B., and Michie, D. (1985) Generating Rules from Examples. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence p631-633.

Barto, A.G. (1985) Learning by statistical cooperation of self-interested neuron-like computing elements. In
Human Neurobiology 4, p229-256.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.K. (1987) Occam’s razor. In Information Processing
Letters 24, p377-380. North Holland, Amsterdam.

Bonelli, P., Parodi, A., Sen, S., Wilson, S. (1990) NEWBOOLE: A Fast GBML System. In Porter, B.W.,
Mooney, RJ. (Eds.) Proceedings of the Seventh International Conference on Machine Learning, p153-159.
Morgan Kaufmann, San Mateo CA.

Breiman, L., Friedman, J.H., Olhsen, R.A. , Stone, C.J. (1984) Classification and regression trees. Belmont,
CA: Wadsworth International Group.

Clark, P., and Niblett, T. (1989) The CN2 Induction Algorithm. In Machine Learning 3, p261-283. Kluwer
Academic Publishers. Boston, MA.

Cockett, J.R.B. (1987) Discrete decision theory: Manipulations. In Theoretical Computer Science 54, p215-236.

Comparison of Decision Tree-Based Learning Algorithms 37

Elomaa, T., Kivinen, J, (1990) On Inducing Topologically Minimal Decision Trees. In Proceedings of the second
IEEE conference on Tools for Artificial Intelligence. Washington, D.C.

Fisher, D.H. (1987) Knowledge Acquisition via Incremental Conceptual Clustering. Doctoral Dissertation,
Department of Information and Computer Science, University of California, Irvine, CA.

Fisher, D.H., and Schlimmer, J.C. (1988) Concept Simplification and Prediction Accuracy. In Laird, J. (Ed.)
Proceedings of the Fifth International Conference on Machine Learning p22-28. Morgan Kaufmann, San Mateo
cA.

Flann, N.S. and Dietterich, T.G. (1990) A Study of Explanation-Based Methods for Inductive Learning. In
Machine Learning 4, p187-. Kluwer Academic Publishers, Boston MA.

Hancock, T. (1989) Finding the smallest consistent decision tree is NP-complete, M.Sc. thesis, Harvard Uni-
versity, Cambridge, MA.

Hyafil, R. and Rivest, R.L. (1976) Constructing optimal binary trees is NP-complete. In Information Processing
Letters 5, p15-17.

Iba, W., Wogulis, J., Lanley, P. (1988) Trading Off Simplicity and Coverage in Incremental Concept Learning.
In Laird, J. (Ed.) Proceedings of the Fifth International Conference on Machine Learning p73-79. Morgan
Kaufmann, San Mateo CA.

Langley, P., Gennari, J-H., Iba, W. (1987) Hill-Climbing Theories of Learning. In Langley, P. (Ed.) Proceedings
of the Fourth International Workshop on Machine Learning p312-323. Morgan Kaufmann, San Mateo CA.

Lopez de Mantaras (1990) ID3 Revisited: A Distance-Based Criterion for Attribute Selection. To be published
in Machine Learning. Kluwer Academie Publishers, Boston MA.

Mingers, J. (1989a) An empirical comparison of selection measures for decision-tree induction. In Machine
Learning 3, p319-342. Kluwer Academic Publishers. Boston, MA.

Mingers (1989b) An empirical comparison of pruning methods for decision-tree induction. In Machine Learning
4, p227-243. Kluwer Academic Publishers. Boston, MA.

Nunez, M. (1988) Economic induction: a case study. In Sleeman, D. (Ed.) Proceedings of the Third European
‘Working Session on Learning p139-145. Pitman, London UK.

Pagallo, G., Haussler, D. (1989) Two Algorithms that Learn DNF by Discovering Relevant Features. In Segre,
A.M. (Ed.) Proceedings of the Sixth International Workshop on Machine Learning p119-123. Morgan Kauf-
mann, San Mateo CA.

Pazzani, M.J., Sarrett, W. (1990) Average Case Analysis of Conjunctive Learning Algorithms. In Porter, B.W.,
Mooney, R.J. (Eds.) Proceedings of the Seventh International Conference on Machine Learning, p339-347.
Morgan Kaufmann, San Mateo CA.

Pearl, J. (1978) On the connection between the complexity and credibility of inferred models. In International
Journal General Systems 4, p255-264.

Quinlan, J.R. (1983) Learning efficient classification procedures and their application to chess end games. In
Michalski, R., Carbonell, J., Mitchell, T. (Eds.) Machine Learning: An artificial intelligence approach p463-482.

38 W. Van de Welde

Morgan Kaufmann, San Mateo CA.

Quinlan, J.R. (1986) Induction of Decision Trees . In Machine Learning 1, p81-106. Kluwer Academic Publish-
ers, Boston MA.

Quinlan, J-R. (1987) Simplifying Decision Trees. In International Journal of Man-Machine Studies.

Quinlan, J.R. (1988) An empirical comparison of genetic and decision-tree classifiers. In Laird, J. (Ed.) Pro-
ceedings of the Fifth International Conference on Machine Learning p135-141. Morgan Kaufmann, San Mateo
CA.

Rendell, L. (1986) A General Framework for Induction and a Study of Selective Induction. In Machine Learning
1, p177-226. Kluwer Academic Publishers, Boston MA.

Schlimmer, J.C., Fisher, D. (1986) A case study of incremental concept induction. In Proceedings of the Fifth
National Conference on Artificial Intelligence p496-501. Morgan Kaufmann, San Mateo CA.

‘Schlimmer, J.C. (1987) Concept Acquisition through Representation Adjustment. Doctoral Dissertation. Uni-
versity of California, Irvine.

Seshu, R. (1989) Solving the Parity Problem. In Morik, K. (Ed.) Proceedings of the Fourth European Working
Session on Learning p263-271. Pitman, London UK.

Steels, L. (1990) Components of Expertise. In Al Magazine. Summer 1990 p.

Tan, M., Schlimmer, J.C. (1980) Cost-Sensitive Concept Learning of Sensor Use in Approach and Recognition.
In Segre, A.M. (Ed.) Proceedings of the Sixth International Workshop on Machine Learning p392-395. Morgan
Kaufmann, San Mateo CA.

Utgoff, P-E. (1988a) ID5: An Incremental ID3. In Laird, J. (Ed.) Proceedings of the Fifth International
Conference on Machine Learning p107-120. Morgan Kaufmann, San Mateo CA.

Utgoff, P.E. (1988b) Perceptron Trees: A case study in hybrid concept representations. In Proceedings of the
Seventh National Conference on Artificial Intelligence, p601-606. Morgan Kaufmann, San Mateo CA.

Utgoff, P.E. (1989) Improved Training via Incremental Learning. In Segre, A.M. (Ed.) Proceedings of the Sixth
International Workshop on Machine Learning p362-365. Morgan Kaufmann, San Mateo CA.

Utgoff, P.E. (1990) Incremental Learning of Decision Trees. In Machine Learning 4, p161-186. Kluwer Academic
Publishers, Boston MA.

Utgoff, P.E., and Brodley, C.E. (1990) An Incremental Method for Finding Multivariate Splits for Decision
‘Trees. In Porter, B.W., Mooney, R.J. (Eds.) Proceedings of the Seventh International Conference on Machine
Learning, p58-65. Morgan Kaufmann, San Mateo CA.

Van de Velde, W. (1989) IDL, or Taming the Multiplexer. In Morik, K. (Ed.) Proceedings of the Fourth
European Working Session on Learning p211-226. Pitman, London UK.

‘Van de Velde, W. (1990) Incremental Induction of Topologicaily Minimal Trees. In Porter, B.W., Mooney, R.J
(Eds.) Proceedings of the Seventh International Conference on Machine Learning, p66-74, Morgan Kaufmann,
San Mateo CA.

Comparison of Decision Tree-Based Learning Algorithms 39

Wilson, 8.W. (1987) Classifier Systems and the Animal Problem. In Machine Learning 2 p . Kluwer Academic
Publishers, Boston MA.

Wirth, J., Catlett, J. (1988) Experiments on the Costs and Benefits of Windowing in ID3. In Laird, J. (Ed.)
Proceedings of the Fifth International Conference on Machine Learning p87-99. Morgan Kaufmann, San Mateo
CA.

Zhang, J., Michalski, R.S. (1989) Rule Optimization via SG-Trune Method. In Morik, K. (Ed.) Proceedings of
the Fourth European Working Session on Learning p251-262. Pitman, London UK.

40 W. Van de Welde

5.2 Experimental Results

Thave done some of the experiments for the comparison of the algorithms. The runs on the first data-set are
complete, except for the timing information. The runs for the second example are in progress and I will send
them later today. I will not do the third example since I surender to noise. Nevertheless I think you will agree
that in the class of decision tree algorithms, the performance of IDL is quite impressive

Here is what I did. I ran several algorithms on the training-set and tested them on the test-set. If the algorithm
is non-incremental I used a run on the complete training set. If the algorithm is incremental I ran it with 500
examples randomly selected from the training set. Testing is always on the full test set. All results are averaged
over 10 runs.

T used the following algorithms:

TDIDT: plain old ID3 with information gain as selection measure,

sntal version of ID3 produced by Utgof#. Information
gain is the selection measure. No pruning.
IDL: IDL as described in an unpublished paper, very similar to the
algorithm described in IML-90
IDSR-hat: IDSR #ith example filter. Trains only if the example is
misclassified by the current hypothsis. No pruning.

I send the results in several files. In seperate mails I will provide the following information:

‘TDIDT: the tré
size and accuracy of the tree
the concept described by it

IDSR, IDL, IDSR-hat:
data on size and accuracy as it evolves with training
a typical tree and its size and accuracy
‘the concept described by that typical tree

The evolving data for the incremental algorithms allow to produce the learning curves for each of the algorithms
T produced graphs with Exel and will send them by mail if | do not succeed making a postscript version of it.

About the results:

IDL is clearly the best. It produces the smallest trees with by far the best accuracy of all. It is also worth
noticing that the standard deviations for IDL are very small, and that the concepts described by the trees
that IDL produces are the same. This means that search in concept space is finished, but IDL can not decide
on the best representation. So it limit-cycles between 3 different trees, all small and equally accurate (the
only difference is in the order of testing the three relevant attributer). This illustrates how the use of not
only statistical information bt also tree-topological one makes the algorithm unsensitive to sampling differences
(small disjuncts or sparse sampling are no big problem either). Here are the data for all 10 trees to show this:

MONKS-1 IDL used IDL nods
300 500 42 2 97.2222
$00 500 36 26 97.22222

 IDL leaves IDL accuracy

500
500
500
500
500
00
500
500

500
500
500
500
500
500
500
500

2
40
40
40
36
2
40
42

2
2
28
26
23
ar
29

Comparison of Decision Tree-Based Learning Algorithms a

97.22222
97.2222
97.22222
97.22222
97.2222
97.2222
97.2222
97.2222

On the other hand IDSR produces larger and less accurate trees with enormous standard deviations as shown
by data for the 10 trees that IDBR produces:

MOWKS=1
500 500,

IDSR used IDSR nodes IDSR leaves IDGR accuracy
75 48 81.94404

500
500
500
500
500
500
500
500
$00

500
500
500
500
500
00
500
500
500

54
50
61
70
40
3
78
™!
59

40
32
40
43
2
45
50
46
a7

8171296
90.97222
87.73148
77.31481
97.2222
77.546295
84.0278
80.32407
86.24259

‘As expected IDSR-hat does somewhat better than IDR. Here are the data for the 10 trees to give an idea of
the deviations.

MONKS-1 IDSR-hat used IDSR-hat nodes IDSR-hat leaves IDSR-hat accuracy
500 51 $6 36 85.416664
500 62 68 43 79.861115
500 52 40 27 97.2222,
500 49 40 27 97.22222
$00 53 40 27 97.22222
800 62 §1 93 92.361115
500 50 39 26 94.44444
500 48 40 27 97.22222
500 58 49 32 90.2778
500 53 40 27 97.22222

I sent a number of files with the results of TDIDT, IDL, ID5R and ID5R-hat on the second monk’s concept.
‘The results are averaged only over 5 runs this time.

‘The effect I seem to get is that IDL does not get beyond its initial phase of building up a large tree. In other
words, it does not get anyway near to collapsing it. The fact that it grows larger than for [DSR is not anomalous,
but normally this is followed by a rapid collaps to a smaller form (see MONKS-1 this effect). ‘This concept
seems to be too difficult for trees to handle anyway...

Here are the 5 individual results for IDL:

MOWKS-2 IDL used IDL nodes IDL leaves IDL accuracy
500 500 176 111 74.30856

42 W. Van de Welde

500 500 170 104 65.046295,
$00 500 180 114 73.84259
$00 500 197 112 68.05556
500 500 184 111 61.34259

Here are the 5 individual results for ID5R:

MONKS-2 IDSR used IDSR nodes IDSR leaves IDSR accuracy
$00 $00 145 93 64.12037
500 500 153 91 64.583336
500 500 173 104 65.74074
500 500 171 102 65.2778
500 500 165 96 61.805S57

Here are the 5 individual results for ID5R-h:

 MOWKS-2 IDSR-HAT used IDSR-HAT nodes IDSR-HAT 1:
$00 113 130 77 63.425926
$00 115 131 82 65.74074
500 118 133 80 64.81481
500 120 133 84 62.5
$00 118 138 83 62.73148

IDSR-HAT accuracy

IDL finds larger trees, slightly more accurate. [DSR and ID5R-HAT find trees that are comparable in accuracy
to the TDIDT tree (66.666664% with 159 nodes and 95 leaves) but the ID5R-HAT tree is smaller.

Comparison of Decision Tree-Based Learning Algorithms

5.2.1 ID5R on test set 1 BODY_SHAPE = 1: <i>
BODY.SWAPE = 2 | <O>
BODY _SHAPE = 3 | <O>

weap. stare = 2:
DESCRIPTION OF THE TREE: B0DY.SIAPE = 1 > <O>

Boor snipe = 2: <> typical tree found by id5r BODY_SHAPE = 3 | <O>
Ceuined on first monk's training set weap. sire = 3 30D-SHAPE = 2 + <0> 500 examples (canton from £011 BODY_smare = 3: <>

training

1] A1.71296 accuracy on teat s0t

oe ee 5.2.2 IDL on test set 1
Sacrer_cotan = 2 ssrie = 1: DY_SHAPE = 1: <i> BODY_SHAPE = 2 DESCRIPTION OF THE TREE

HEAD-SHAPE™= t+ <0... Hesplsure = 2: <>
HEMDLSIAPE = 3 | <O> 1 Typical tree found by 442 suoy- stirs = trolued on first menka's training set
WEAD-SIAPE = t+ <O>. NEAD_stAPE = 2: <>. $00 sxamples (random fron HED sure 23: <3... 1° Rinteraining 960)

s.r: 136 nodes Sooy.suare = 1 |e leaves MEAD-SIAPE'= % : <1>.. 57.22022 accuracy on text set
MED.stare = 2 <O>. HEAD_SIAPE = 3: <> oor. stare = 1:

0pY. SHAPE = MEAD.SHAPE = 1: <1>.
TS-SMTLi¥e = 1: <a> EAD_SHArE = 2:
ISuaMILI¥O = 2: <>. SucKET-coLOR = 4: <1>

ooy. sare = 3 Sucxeracaton = 2: <o>
MEAD-SHAPE = 1 <O> SuexetacaLon = 3: <0>
HEAD_SMrE = 3 | <i>. jhoxeracoton = 4 | <0>

sacxst_coton = 3 = wexD stAPi = 2 > HOLOTHG = 1 SioKRT-cOLOR'= 1: <1>
WEAD.SHAPE = t+ Suoxer=coton = 2: <0>

BODY SHAPE = 1: <1>... Sucxeracoton = 3 | <0>
B0DY_SHAPE = 2: <O> oor sure = 2!

weap. stare = 2 EAD APE = 2 BODY.SHAPE = 1: <O>... SueKET-cOLOR= 3: <3> DISMAPE = 2: <b. + Sensteotan = 2 | <>
RODY_SUAPE = 3 | COD... SuexeT-coon = 3 : <0>

weap. $iaPE = 9 + Shoxarentan = 4 <0...
BODY.SHAPE = 2 : <O> mun stare = 2: <2.
nooy_suare = 3: <>. WenD stare = 3: wowine = 3 SHOKET.cOLOK = 1: <1> TASLTIE = Ls > henareotan = 2: <> lnsirts = 2: Sjuoxer-coton = 3 : <0>
EAD_SHAPE = 1: <o> Sucxer-cotan = 4: <0>
MEADLSIAPE = 2: €2D. poor_siare = 3 =
ARADLSHAPE = 3 EAD SHAPE = 1 TSLSNTLINO = 1: <1. SicKET-COLOR = 4: <2>

ISEMLING = 2: <>. Sucnet=coton = 2: <0> wowias = 2 Shenarcotan = 3 | <>
TS.SNILIHG = 1 + Suceetscotan = 4 : «o>

HMSLTIE = 1: <O>.. esp. stape = 2 stk = 2: <>... TiCKETACOLOR™ 1: <1>..
18.SMILING = 2 Jaoter-couan = 2: «o>. WEAD.SWAPE™= 1 : c0>.. TOKETLoOLOR = 3: <>.

MEADISMAPE = 2; <>. Jacnerscouan = 4: <O>.
TEMDISIAPE = 3&2... wei -StarE = 3's <>.

JACKETcoLOR = 4
WEAD.SHAPE = 1:

44 W. Vande Welde

5.2.3 IDS5R-HAT on test set 1 5.2.4 TDIDT on test set 1

DESCRIPTION OF THE TREE:

Tree found by tdidt trained

DESCRIPTION OF THE TRER: $3 on fret monks’s training set

14 Tree found by idSr-hat trai $5 124 examples (full training set)
on firat monke’s training set $1 86 nodes

82 Leaves
of 500 1} 75.69444 accuracy on test set

JACKET coLoR = 1: <1>
SACKET_cOLOR = 2:

tent set WOLDING = 1
MEAD_SWAPE = 1

BODY_SHAPE = 1: <1>
JACKETcOLOR = 1: <1>.. BODY_SHAPE = 2: <0>
JACKET COLOR = 2: BODY_SHAPE = 3: <O>

MOLDING = 1 WEAD_SHAPE = 2
WEAD_SHAPE = 1 1S.SMILTNG = 1; <1>

BODY.SHAPE = 3: <o> 1S_SMILING = 2 : <o>
BODY_SHAPE = 1: <1>... HEAD SHAPE = 3:
BODY_SHAPE = 2: <O> MAS TIE = 4: <>

EAD SHAPE = 2 MASLTIE = 2: <o>
BODY.SHAPE = 1: <o>. wouorc =2
BODY_SHAPE = 2 : <i> BODY.SHAPE = 4 : <o>

NEAD.SHAPE = 3: <0> BODY_SWAPE = 2: <1>
MOLDING = 2: <o>. BoDY_SHAPE = 3: <o>
HOLDING = 3 wopiaa'= 3

BODY.SHAPE = 1: 1S_SMILTNG = 1:
MAS_TIE = 1 MEAD.SWAPE = 1
HAS TIE = 2 ‘BODY.SHAPE = 1: <i>

‘opr stAPE = 2 DY_SHAPE = 2: <O>
MEAD.SHAPE = 1: <o>.. BODY_SHAPE = 3: <O>
HEAD_SHAPE = 2: <i>. MEAD SHAPE = 2: <i>
HEAD_SKAPE = 3: <0>. MEAD SHAPE = 3:

BODY.SHAPE = 3: DY_SHAPE = 1 : <o>
HEAD.SHAPE = 1: <o> BODY.SHAPE = 3: <1>
WEAD“SHAPE = 3: <1> 15_suILiNG = 2

JACKET coLaR = 3 ‘BODY.SHAPE = 1: <o>
WEAD.SHAPE = 1 BODY_SHAPE = 2: <o>

BODY_SHAPE = 1: <1> BODY.SHAPE = 3:
‘BODY_SHAPE = 2: <O>... WAS_TEE = 1: <o>
‘BODY_SKAPE = 3: <O>. MASLIIE = 2: <>

WEAD_SHAPE = 2: JACKET.cOLOR = 3:
‘BODY_SHAPE = 1: <o>. WAS_TIE = 1
BODY.SHAPE = 2: <i>... Woupraa = 1
BODY.SHAPE = 3: <O>... 1S_SMILTHG = 1

MEAD_SHAPE = 3: BODY.SHAPE = 1
‘BODY _SHAr Oe EAD.SHAPE = 1: <1>
BODY_SKAPE = 2: <0>.., HEAD_SHAPE = 2: <o>
BODY_SHAPE = 3: <t> ‘Bopy SHAPE = 2

JkcKET_cOLOR NEAD_SHAPE = 4: <o>
MEAD SHAPE = 1: NEAD_SHAPE = 2: <i>

BODY,SHAPE = 1 : <i>... IS_sMILtNa'= 2: <o>
BODY.SMAPE = 2: <o>.. nouDtiG = 2:
BODY.SHAPE = 3: <O>.. TS_SMILING = 1: <o>

MEAD.SHAPE = 2: 1S_SmILT40 = 2
BODY.SHAPE = 3: <o> MEAD.SHAPE = 1: <1>
BODY.SHAPE = 1 : <o>... EAD_SHAPE = 2: <O>
BODY.SMAPE = 2: <1>.., MOLDING = 3 : <o>

WEAD.SHAPE = Was_T1B = 2:
BODY.SHAPE = 2: <>... S_SMILtya = 1
BoDY_SHAPE = 3: <i>. woLDING = 3:

WEAD_SHAPE = 1: <1>

Comparison of Decision Tree-Based Learning Algorithms

HEAD_SHAPE = 2: <O>
woLDTG = 2:

MEAD_SHAPE = 1: <o>
HEAD_SKAPE = 2: <1>
HEAD_SHAPE = 3: <i>

Wouping = 3: <>
1s.SMILING = 2

WOLDING = i
‘BODY_SKAPE = 2

MEAD.SHAPE = 2: <1>
HEAD SHAPE = 3: <o>

BODY.SHAPE = 3
D_SHAPE = 2: <0>

HEAD_SHAPE = 3: <1>
wooing = 3: <>
woLDiNa = 3

HEAD_SHAPE = 1: <o>
HEAD SHAPE = 2: <o>
MEAD_SHAPE = 3: <i>

JACKET COLOR = 4:
HEAD_SHAPE = 1:

BODY.SHAPE = 1: <i>
BODY_SHAPE = 2 : <o>
BODY_SHAPE = 3: <o>

WEAD,SHAPE =
BODY.SHAPE = 1: <o>
BODY_SHAPE = 2: <i>
BODY_SHAPE = 3 : <o>

WEAD_SHAPE =
BODY.SHAPE = 2 : <o>
DODYSHAPE = 3: cir d4111-> 1)

5.2.5 ID5R on test set 2

DESCRIPTION OF THE TREE:

11 Typical trae found by id5r
trained on second aonks’s
training set

+ 00 examples (random trom
ty fall training see)
11 165 nodes.
$95 Leaves

1 61.808567 accuracy on tes

JACKET_cOLOR = 1
15_SHTLTNG =

HEAD_SHAPE = 1: <O>..
HEAD_SHAPE = 2

HOLDING = 1: <0>
WOLDING = 2: <0>...
HOLDING = 3

BODY_SHAPE = 1: <o>
BODY_SHAPE = 3 : <i>.

EAD SHAPE = 3:
HOLDING = 1: <0>..
woLprna = 2:

BODY.SHAPE = 1
BODY_SKAPE = 2

MouDI¥e = 3
15_SMILTHG = 2

wOLDING = 4:
MAS_TIE = 1
was_TTE = 2

<>
<>

<o>

>.

HEAD.SHAPE = 1
HEAD_SHAPE = 2: <1>

MOLDING = 2 + <1
wocpina = 3

WEAD.SHAPE =
HAS TIE #
MAS_TIE =

1
2

@

Baby SHAPE = 4

BODY_SHAPE = 1
BODY_SHAPE = 2

aus_T1E
HEAD.SHAPE =

JACKET coLoR = 2:
BODY.SHAPE = 1

EAD_SHAPE = 4
ISsMILt4a =
1S_SMILING =

MEAD_SHAPE = 2
HOLDING = 1

a:
3

1
2

1s_saILinG = 1
15.SMILING

nowotie = 2
Moxprya = 3

18_sMILINe
Is_sMILna

HEAD_SHAPE = 3
MOLDING = 1
woLDTua = 2
MOLDING = 3

TS_SNILING
1s.sarLine

WAS TIE
mas TIE

BoDy_sHAPE = 2
15.SMILING = 1
IS_SMILI4G = 2

BODY_SHAPE = 3
EAD SHAPE =

HOLDING =
WOLDIEG =

EAD_SHAPE =
MOLDING =
WOLDING =
wOLDING =

EAD _SHAPI
JACKET COLOR = 3

WEAD.SHAPE = 1
BODY_SKAPE = 1
BODY_SHAPE = 2

WOLDING = 2:
NAS_TIE =

sa:

«p.
re

>.

2 <>
Pelee

Pep
<>

<>

o>

1
ae

..
<>.

o>
pts

<>

<>

oe

od
1

Papo

Ts_snteiac = 1
15_SMILING = 2

mas T1E =
HOLDING = 3

S_SNILIG
1S.saIL 0

as TIE

2
o>

a7
wie oes

<>
pts

pte

.

<>
pot

45

46

WAS TIE = 2: <>
BODY_SHAPE = 3:

WAS_TIE © 4: <0>...
MASLTIE = 2:

WOLDIWG = 1:
IS_SHILING = 1: <o>
ISSNILING = 2: <1>

WOLDING = 2: <o>...
WEAD,SHAPE = 2

1S_SHILI4a = 1
BODY.SHAPE = 1:

WAS_TIE = 1: <o>
MAS_TIE = 2: <>.

BODY.SHAPE = 2:
WOLDING = 1; <0>.
MOLDING = 2: <i>...
wooing = 3

WAS.TIE = 1 : <i>
HASITIE = 2: <0>

BODY SHAPE = 3
WOLDING = 1: <i>...
WoLDTNG = 2:

WS.TIE* 1: <>
HAS_ITE = 2; <0>

IS suILiNa = 2:
woLprwa = 1:

MAS_TIE © 1: <>...
WAS_TIE = 2: <0>.

MOLDING = 2: <0>...
HOLDING = 3: <0>..

:AD_SHAPE = 3
MOLDING = 1

WAS TIE = 1:
‘BODY_SHAPE = 1: <O>...
DODY_SHAPE = 2

TS_SHILING = 1: <o>
IS/SmILING = 2: <1>

BODY.SHAPE = 3: <O>...

TS_SHILING = 1: <1>.
18 SMILING = 2

‘BODY.SHAPE = 1: <1>
BODY.SHAPE = 2: <o>

HOLDING'= 2:
BODY_SHAPE = 1: <1>
BODY_SHAPE = 2: <O>
BODY_SHAPE = 3: <O>

woupIna’= 3
WASTE = 1: <>...
MAS_TIE = 2

BODYSRAPE = 1: <1>...
BODY_SHAPE = 2: <O>...

JACKET COLOR ® 4:

BODY_SHAPE = 1:
WAS.TIE = 1: <0...
HAS_TIE = 2

WEAD.SHAPE = 1: <t>
MEAD_SKAI <>.

TS_SMILENG = 1: <1>.
ISISAILING = 2: <o>.

‘oDY SHAPE = 2
MOLDING = +

TSSMILING = 1: <1>...
IS_suittaa = 2:

WEAD.SHAPE = 1: <O>..
MEAD_SMAPE = 2

WAS_TIE = 1: <>

W. Van de Welde

Mas TIE = 2: <o>
woutya = 27 <i>.
wouprya = 3:

WAS_TTE = 1:
Ts_sarut4a = 1

TWEAD.SHAPE = 1 : <0>
WEAD_SHAPE = 2: <>

IS_SMILING = 2: <i>
was TIE = 2

Ts_smrmna = 1: <1>
ISLSMILING = 2: <>

BoDY_SHAPE = 3
13 _SHILING = 1

WOLDING = 2: <o>
wouptna = 3: <a>)

1S_SHILING = 2: <>

5.2.6 IDL on test set 2

DESCRIPTION OF THE TREE:

Typical tree found by iat
trained on second monks’s

500 examples (random from
fall training set)

6.203708 accuracy on test

Is_snILING = 1:
mAs TIE = 1:

JACKET COLOR = 1: <0>.
JACKET COLOR = 2:

BODY_SHAPE = 1: <0>...
BODY.SHAPE = 2: <i>
BODY_SHAPE = 3
MEAD SHAPE = 1:
MEAD SHAPE = 2:
NEAD_SHAPE = 3:

JACKET COLOR = 3:
‘BODY.SHAPE = 1: <O>
‘BODY_SHAPE = 2

EAD.SHAPE = 1: <0>
EAD_SHAPE = 2

MOLDING = 1 : <o>
WOLDING = 2: <>
WOLDING = 3 : <i>

WEAD.SHAPE = 3:
HOLDING = 1: <o>
Moupiye = 3 : <>

BoDY_SKAPE = 3
MEAD.SHAPE = 1

WEAD SHAPE = 2: <i>
HEADLSHAPE = 3: <0...

JACKET coLoa =
ODT SHAPE = 1: <0>.
BODY.SMAPE = 2:

WEADSHAPE = 1: <0>.

Comparison of Decision Tree-Based Learning Algorithms

EAD_SHAPE = 2: <1>
BoDY_SHAPE = 3

MEAD_SHAPE = 1: <0.
HEAD_SHAPE = 2: <1

was_tte = 2
JACKET cOLOR = 1

‘BODY.SHAPE = 1: <O>
BODY.SHAPE = 2:

HEAD_SHAPE = 1: <O>..
MEAD_SMAPE = 3

MOLDING = 1; <O>
HOLDING = 2: <>

BODY _SHAPE = 3:
MEAD_SHAPE = 1:

HEAD SHAPE = 2 +
HOLDING = 1: <0>
WOLDING = 3 : <>

SACKET.cOLOR = 2 +
1: o>,

MEAD SHAPE = 2:
WOLDING = 1: <o>
woLDIug = 2 : <>
WoLDING = 3 : <>

HEAD_SHAPE = 3: <i>

BODY.SHAPE = 2 : <i>...
BODY_SHAPE = 3

HOLDING = 1: <o>.
HOLDING = 2: <i>.
wOLDING = 3: <1>)

JACKET.cOLOR = 3:
BODY_SHAPE = 1: <i>.
BODY_SHAPE = 2

HEADSHAPE = 1: <1>.
HEAD SHAPE = 2: <o>
HEAD SHAPE = 3

WOLDING = 1: <>
WOLDING = 3 : <o>

BODY_SHAPE = 3
MEAD_SHAPE = 1

HOLDING = 1 : <o>
MOLDING = 2 : <i>

HEAD_SKAPE = 2
WOLDING = 4; <1>
WoLDING = 2 : <o>

MEAD.SHAPE = 3:
WOLDING = 1: <1>
HOLDING = 2: <O>

JACKET COLOR = 4
‘BODY.SHAPE = 1: <i>.

Y_SMAPE = 2: <i>...
BODY SHAPE = 3

WEAD.SHAPE = 1: <1>
HEAD_SHAPE = 2: <O>

IS.SmILING = 2:
‘BODY.SHAPE = 1

Has_TTE = 1
JACKET coLoR = 1 + <0>.
SACKET_cOLOR = 2: <i>.
SACKETIcOLOR = 3 : <0>.
JACKET COLOR = 4: <O>.

wus.t1E = 2
Jacket coLon = 1

WEAD_SHAPE = 1: <o>

WEAD_SIAPE = 2: <1>..
WEAD_SHAPE = 3. <1>

JACKET coLOR = 2
MEAD_SHAPE = 1: <i>...

EAD_SHAPE =
HOLDING =
HoLpraa =

WEAD_SHAPE =
HOLDING =
AOLDING =

JACKET_cOLOR

2
WEAD_SHAPE = 2:
WEAD_SHAPE = 3

JACKET.COLOR = 4:
WEAD,SHAPE = 1
WEAD_SHAPE = 2
HEAD_SHAPE = 3

HOLDING = 1
HOLDING = 3

BODY_SHAPE = 2
WASTTE = t

JACKET_coLOR = 4
WEAD.SHAPE = 1
WEAD_SHAPE = 2

HOLDING = 1
HOLDING =
MOLDING =

EAD.SHAPE =
HOLDING =
wocrae = 3

JACKET.coLOR
SACKETLcoLOR = 3

WEAD_SHAPE = 1
EAD SHAPE = 2
HEAD_SHAPE = 3

JACKET.COLOR = 4
WEADSHAPE =

wouDIG = 1
wocotye = 2
wOLDING = 3

HEAD.SHAPE = 2
wus TIE = 2

Jacket couoa = 1
JACKET cOLOR = 2

SacKETacoLon = 3:
JACKET coLOR = 4

BODY_SHAPE = 3 :
WAS.TIE = 1

Jacket covoa = 1
WEAD.SHAPE = 2
WEAD_SKAPE = 3

HOLDING = 1
oping = 2
HOLDING = 3

JACKET_coLOR =
WEAD.SHAPE =
HEAD_SHAPE =

MOLDING =
wOLDING =

EAD.SHAPE = 3:
JACKET.coLR = 3:

TWEAD_SHAPE = 1
WEAD_SHAPE = 2

wOLDING = 1
HOLDING = 3

HEAD_SHAPE = 3
JACKET.COLOR = 4

WAS_THE = 2
TACKET_COLOR = 1
JACKET coLoR = 3

MEAD_SHAPE = 1+
MOLDING = 1:

2s

“2
<>

<>

o..
a.

a...
<>.

od
<>

<>.

<>
pig

©
pts

o>
<>.
<>
>

<>

org

<>
<>
<o..

<>
<>
prs

>.

ore
<o>
<0.

>.

>
<>

o>.

.

“

av

48

woLDINa = 2 : <o>
READ_SHAPE = 2; <0>
HEAD_SHAPE = 3: <O>..

JACKET COLOR = 4: <0>

5.2.7 TDIDT on test set 2

DESCRIPTION OF THE TREE:

ii The tree found by TDIDT

(fui training set)
1} 159 nodes

| 98 Leaves
1} 66.666664 accuracy on tast set

11 169 example

JACKET_cOLOR * 1
1S_SMILTHG = 1:

WAS_TIE = 1: <>
MAS_TIE = 2:

HEAD_SHAPE = 1: <o>
HEAD_SKAPE = 2

HOLDING = 1: <o>
WoLDING = 3

jODY_SHAPE = 1 : <0>
BODY_SHAPE = 3: <i>

MEAD_SHAPE = 3
WOLDING = 1 ; <O>
HOLDING = 2

‘ODY-SHAPE = 1: <o>
BODY-SKAPE = 2: <i>

HOLDING = 3 : <o>
15_SMILING = 2

WOLDING = 1:
HAS TIE © 1
WAS_TIE = 2

BODY.SHAPE = 4: <o>
BODY.SHAPE = 3: <i>

wovpiwa = 2: <i>
WOLDING = 3 :

MEAD_SHAPE = 1:
MAS.TTE = 1; <0>
HAS_IIE = 2

‘BODY_SKAPE = 1: <o>
BODY_SHAPE = 2; <1>

WEAD_SHAPE = 2
MAS.TIE = 1:

]DDY_SHAPE = 1 : <0>
BODY_SHAPE = 2: <i>

Ws.T1B = 2: <>
WEAD.SHAPE = 3: <1>

JACKET COLOR = 2
TS_Snttta = 1:

WOLDING = 1 :
‘BODY_SHAPE = 1 : <0>
BODY-SHAPE = 2: <1>
BODY_SHAPE = 3: <O>

WOLDING'= 2:

W. Van de Welde

was_T1E = 1
‘py si

BODY_SHAPE = 2
BODY_SHAPE = 3

was TIE = 2: <>
MOLDING = 3

WAS_TTE = 1:
SODY_SHAPE = 1
BODY_SHAPE = 2

BODY SHAPE = 3
wast1E = 2: <>

1S_SRILING = 2:
BODY_SHAPE = 1

WOLDING = 3: <i>
MouDtya = 2: <1>
MOLDING = 3

HEAD_SHAPE = 1
HEAD_SHAPE = 2

MEAD SHAPE = 3

WASTE = 1:
Mas_TIE = 2

BODY_SHAPE = 2 : <o>
BoDY SHAPE = 3

MEAD _SHAPE =
HEAD_SHAPE =

HOLDING =
HOLDING =

EAD_SHAPE =
JACKET cOLOR = 3+

15_SaILIN = 1
HAS.TIE = 1

HEAD _SHAPE =
HEAD_SHAPE =

MOLDING =
woLDTaG =
MOLDING =

HEAD_SHAPE =
MOLDING =
HOLDING =

Was TIE = 2:

1
“>
<>

©
pot
Ps

ed
<>

red
>

oe
<>
<>

2 <>

2 <o>

prs

<>
pte

‘BODY _SHAPE = x: <i>
BODY_SHAPE = 2

MEAD _SHAPE =
HEAD_SHAPE =
HEAD_SHAPE =

NOLDING =
HOLDING =

‘BoDY.sHAPE = 3
WOLDING = 1

HEAD_SHAPE =
EAD_SHAPE =
MEAD _SWAPE =

woLDiNa = 2
HEAD_SHAPE =
HEAD_SHAPE =
EAD_SHAPE =

15.surLina = 2
WOLDING = 1

‘BODY.SHAPE =
WAS_TIE =
HASLTIE =

BODY.SHAPE =
WASTE =
MAS_TIE =

BopY.siAPE = 3
WAS_TTB = 1:

HEAD_SHAPE =
HEAD _SHAPE =

ord
>

a

1 o>
pg

Pe

2
2 <0>
1 o>

<>
Pe

rp
<>

1:
21a

Comparison of Decision Tree-Based Learning Algorithms

WASTE = 2: <i>
Mourne ="2 :

MEAD.SHAPE = 3
BODY_SHAPE = 1:
BODY SHAPE = 2
BODY_SHAPE = 3

MEAD SHAPE = 2: <o>
MEAD SHAPE = 3: <o>

HOLDING = 3:
WAS TTB = 1

‘BODY.SHAPE = 2:
BODY_SHAPE = 3

Ws_TIE'= 2: <0>
JACKET cOLOR'= 4

BODY_SHAPE = 1
HAS.TIE = 1: <o>
Mas TIE = 2:

wOLDING = 1: <i>
woLDiNa = 2

WEAD_SHAPE = 1
MEAD_SHAPE = 2
HEAD_SHAPE = 3

MOLDING = 3: <o>
BODY.SHAPE = 2:

MEAD.SHAPE = 1
MOLDING = i : <o>
MoLprac = 2

1S.SMILING = 1:
Is _sMILI4G = 2

nope = 3
was_t1E = 1:

Is_smiuta = 1:
IS_SMILI¥G = 2

was_THE = 2
Ts_smILiag = 1
IS_SHILING = 2

HEAD_SWAPE = 2
WAS.TIE #1: <>
uas_TIE = 2

is_sarurng = 1
IS_SMILING = 2:

MEAD_SKAPE = 3: <o>
BODY_SHAPE = 3

MOLDING = 1: <o>
HOLDING = 2: <o>
woLDIne = 3

TS.SMILING = 1: <1>
<>

5.2.8 TDIDT on test set 1

DESCRIPTION OF THE TREE:

found by taiae
on firet monks’s

75.69444 accuracy

<>
pg
<>

od
@

a
<>
pe

o>

o>
pots

©

>
>

JACKET COLOR = 4: <1>
JACKET_coLOR = 2:

HOLDING = 1
MEAD SHAPE = 1

‘BODY.SHAPE = 1: <1>
BODY.SHAPE = 2: <o>
BODY_SHAPE = 3: <o>

HEAD_SHAPE = 2
IS_SAILING #4: <1>
IS_SNILING = 2; <o>

WEAD.SHAPE = 3
WASTE = 4: <>
MASLITE = 2: <0>

nouotya = 2
BODY SHAPE = 1 : <o>
‘BODY_SHAPE = 2: <1>
BODY.SHAPE = 3: <o>

MowpIna’= 3 :
18_SMILiNG = 1

MEAD_SHAPE = 1

BODY.SHAPE = 1: <1>
BODY-SHAPE = 2: <0>
BODY_SHAPE = 3: <o>

MEAD.SHAPE = 2: <i>
MEAD_SHAPE = 3:

BODY.SHAPE = 1: <o>
BODY_SHAPE = 3: <1>

15_smILg = 2
DY_SHAPE = 1: <o>

BODY_SHAPE = 2: <o>
BODY_SHAPE = 3:

MAS_TTE = 1; <o>
WAS_IIE = 2: >

JACKET_coLOR = 3
WAS_TIE = 1

WoLDING = +
1S.SMILTHG = 1

BODY.SHAPE = 1:
WEAD.SHAPE = 1
HEAD_SHAPE = 2

BODY.SHAPE = 2:
MEAD_SHAPE = 1

HEAD_SHAPE = 2
IS_SMILNG = 2: <>

WoLDING = 2:
TS_SMILING = 1: <o>
Is_smIL 4a = 2

>

<>
pte

WEAD.SHAPE = 1: <1>
NEAD_SHAPE = 2: <o>

WOLDING = 3: <o>
MAs_TIE = 2:

Ts_snILtHG = 1
wouDIG = 1:

MEAD_SHAPE = 4: <1>
EAD_SHAPE = 2: <0>

HOLDING = 2:
WEAD.SHAPE = 1: <0>
NEAD_SHAPE = 2: <>
WEAD_SHAPE = 3: <i>

woLDING = 3: <>
18.SMILING = 2

woLDIxG = 1
ODY_SHAPE = 2
MEAD. SHAPE =
MEAD_SHAPE =

BoDY.sKiPE = 3
HEAD_swAPE =
MEAD SHAPE =

i
>

pre

50

MOLDING = 2: <o>
HOLDING = 3:

EAD.SHAPE = 1: <0>
WEAD_SHAPE = 2: <o>
HEADSHAPE = 3: <1>

JACKET cOLOR = 4
WEAD.SHAPE = 1:

‘BODY_SHAPE * 1: <1>
BoDY SHAPE = 2: <0>
BODY.SHAPE = 3: <o>

WEAD_SHAPE = 2
BODY.SHAPE = 1 : <o>
BODY.SHAPE = 2: <1>
BODY.SHAPE = 3: <o>

HEAD_SHAPE = 3
BODY_SHAPE = 2: <o>
BODYISKAPE = 3 cx 2111-91)

5.2.9 ID5R-HAT on test set 2

DESCRIPTION OF THE TREE:

ii Typical tree found by idSr-nat
fy trained on second

monks’s training #
115 examples used out of 500
(random trom fall training #¢t)
131 nodes
au
65.74074 accuracy on test set

wouorNG = 1
MAS.TIE = 1:
JACKET coLOR = 1 : <0>

o>...
Pep

HEAD_SHAPE = 3: <O>...
JACKET_COLOR = 3:

‘BODY.SHAPE = 1: <O>...
BODY_SHAPE = 2:

T_SMILING = 1: <0>,.
IS_SHILING = 2: <i>.

BODY.SHAPE = 3: <O>...
JACKET.COLOR © 4: <0>..

as TIE = 2:
BODY_SHAPE = 1

TS.SMILING = 1: <0>...
IS.SMILING = 2: <>...

BoDY SHAPE = 2
IS.SMILING = 1:

IACKET.COLOR = 1: <0>.
IAcKET_cOLOR = 2: <a>.
JACKET_COLOR = 4: <I>...

18.SHILING = 2: <0>-
BODY_SHAPE = 3

‘SACEET.cOLOR = 2: <o>
JACKET cOLOR = 1:

TS_ENILING #1: <0>...

Van de Welde

Is_smrLtna = 2: <>
JACKET_coLOR = 3

WEAD_SHAPE = 1
TS_SHILING = 1: <o>
IS_SHILING = 2: <i>

WEAD.SHAPE #2: <i>
HEAD SHAPE = 3: <i>

JACKET.COLOR = 4 = <O>.
ovina = 2

MEAD_SHAPE = 1
was TIE = 4:

TS.SMILING = 1: <0>.
IS_SMILING = 2

‘BODY.SHAPE = 1: <o>
BODY_SHAPE = 2: <1>

was 118 = 2
JACKET_cOLOR = 1:

1S.SMILIHG = 1: <o>
Is.SAILIG = 2: <>.

JACKET_couoR = 2: <1>..
JACKET coLoR = 3

1S.SMILIWG = 1: <1.
IS_SMILING = 2: <o>

JACKET coLoa = 4
‘BODY.SHAPE = 1: <1>
BODY_SHAPE = 3: <O>.

HEAD_sHAPE = 2
JACKET coLoR = 1

1S.SMILING = 1: <0>.
IS_SMILING = 2: <>

JACKET coLoR = 2
‘BODY SHAPE = 4:
BODY_SHAPE = 2: <0>..
BODY_SHAPE = 3: <o>..

JACKET COLOR = 3
WASLTIE = 1

Ts smtbina = 1: <>.
IS_SHILI¥G = 2: <o>

Was.tig = 2: <0>.
JACKET COLOR = 4: <0>.

WEAD_SHAPE = 3
JACKET COLOR = 1:

‘BODYSHAPE = 1: <O>
BODY_SHAPE = 23 <I>.
BODY_SHAPE = 3: <i>

JACKET COLOR = 2:
BODY_SHAPE = 1
BODY_SKAPE = 2:

15.SMTLING = 1: <>
IS.SMILta = 2:

BODY_SHAPE = 3 : <O>
JACKET_COLOR = 3: <0>..
JACKET COLOR = 4 : <i>

woLprna = 3
TS_SHILING = 1:

MEAD.SMAPE = 1:
MAS.TIE = 1: <0>.
HAS_TIE = 2: <i>.

HEAD_SIAPE = 2
BODY_SHAPE = 1

JACKET COLOR = 1: <>
SACKET COLOR = 2: <1>
SACKETIcOLOR = 3: <1>.
JACKET_COLOR = 4: <o>

BODY_SHAPE = 2: <i>...
BODY_SKAPE = 3: <1>

EAD.SHAPE = 9
JACKET.COLOR = 1: €0>.

Comparison of Decision Tree-Based Learning Algorithms

sacERT.coLOR = 2: <1.
SACKET_coLOR = 3

MASLTIE = 1: <>
HASLTIE = 2: <0>.

1S.smrLrng = 2:
MEAD.SHAPE = 1:

BODY_SHAPE = 1: <1>.
‘BODY SHAPE = 2

waS_TIE = 1:
JacKET.covon = 1
JACKET_cOLOR = 3
SACKET COLOR = 4

was tte =2 :
JACKET.coLon = 1
SACKETICOLOR = 3
‘JACKET cOLOR = 4

BoDY_sMAPE = 3 : <i>
MEAD SHAPE = 2
JACKET coLOR = 1

MAS_TTE = 1
BODY_SHAPE = 1:
BODY_SHAPE = 2

MAS_TIE= 2: <>

©
pre
pie

oe

o>

<>
pos

JACKET COLOR = 2: <0>..
JACKET_COLOR = 3 : <0>.
JACKET COLOR = 4 : <O>

WEAD.SHAPE = 3
JACKET cOLOR = 1: <a>.
IACKET COLOR = 2:

RAS_TIE = 1
‘BODY.SHAPE = 1
BODY_SHAPE = 3

Ws_TIE = 2: <0>.
JACKET_COLOR = 4: <0>.

oe
@

W. Van de Welde 52

5.3. Classification diagrams

(a) Result of IDSR on test set 1, Accuracy: 83.1%
(b) Result of IDL on test set 1, Accuracy: 100.0%
]

]

ietrie]
ed | vee | mee | tee

et Let
pee

petytel

rel peteiet

 (lca Tne | green | wise | ved

Comparison of Decision Tree-Based Learning Algorithms

(a) Result of IDSR-HAT on test set 1, Accuracy: 90.3%
(b) Result of TDIDT-based method on test set 1, Accuracy:

Laster

54

W. Van de Welde

(a) Result of ID5R on test set 2, Accuracy: 66.2%
(b) Result of IDL on test set 2, Accuracy: 71.3%

C
Ca we
C

eee | see | et 1

Comparison of Decision Tree-Based Learning Algorithms 55

(a) Result of TDIDT on test set 2, Accuracy: 67.1%
(b) Result of ID5R-HAT on test set 2, Accuracy: 67.8%

56 W. Van de Welde

5.4 Learning curves

1D5R on MONKS-1

& IDSR nodes |

+ IDSR leaves
 © IDSR accuracy |

0 50 100 150 200 250 300 350 400 450 500

IDSR-HAT on MONKS-1

© NIL nodes

| + NIL loaves |
| © NIL accuracy

0 50 100 150 200 250 300 350 400 450 500

Comparison of Decision Tree-Based Learning Algorithms

IDL on MONKS-1

| & IDL nodes
| |

| > IDL leaves

| # IDL accuracy |
i

0 50 100 150 200 250 300 350 400 450 500

IDL-HAT on MONKS-1

| S NIL nodes

| + NIL leaves

NIL accuracy |
Ls

0 50 100 150 200 250 300 350 400 450 500

58 W. Van de Welde

Chapter 6

Comparison of Inductive Learning

Programs

J. Kreusiger
R. Hamann
W. Wenzel

Institute for Real-Time Computer Control Systems & Robotics, Prof. Dr.-Ing. U. Rembold and Prof. Dr
Ing. R. Dillmann, University of Karlsruhe, Faculty for Informatics, Postfach 6980, 7500 Karlsruhe 1, Germany,
E-Mail: kreuzig@ira.uka.de

60 J. Kreuziger, R. Hamann, and W. Wenzel

6.1 Introduction

‘At the Institute for Real-Time Computer Control Systems & Robotics a library of inductive machine learning
algorithms is being developed. So far this library consists of:

IDS - classical decision tree learning algorithm

« IDSR - an incremental decision tree learning algorithm

AQR- a version of the AQ-rule learning algorithms

CN2- rule decision list learning algorithm

© COBWEB - conceptual clustering algorithm for attributes with symbolic values

CLASSIT - conceptual clustering algorithm for attributes with numerical values

CLASSWEB - algorithm that integrates COBWEB and CLASSIT. In the following only this algorithm is
referred to

‘These algorithms have been implemented in a very homogeneous way, i.e. they use the same description for
objects that have to be learned, they are called in a similar way and they are all available under one common
user interface.

‘The reason for building up this ML-library is, that our institute is interested in applying machine learning
techniques to robotics applications, As a first step we wanted to gain experiences with the classical inductive
learning methods in order to find out their capabilities and limitations.

All algorithms base on a common description of the objects to be learned, which consists of a set of attributes,
each defined by a name, a domain, a ‘noisy-flag’ and some additional information for the conceptual clustering
algorithm. In addition a symbol which is used for unknown attribute values can be identified. Each algorithm
will then be called with a set of examples (classified for ID3, ID5R, AQR and CN2; unclassified for CLASSWEB)
As IDSR and CLASSWEB are incremental methods, a former received classifier can also be given as input. Each
algorithm results in a classifier which can be used for classifying further given objects. For a better understanding
of the results a textual representation of the classifier can be printed on the screen. For decision tree learning
algorithms and conceptual clustering also a graphical display is available. For the incremental methods it is
also possible to display a trace during classifier generation. The implementation work has been done on a SUN
Spare Station 1+ in SUN Lucid Common Lisp using CLX and CLUE for only the graphical interface ([HW91]).

6.2 Short description of the algorithms

In this section a very short description of the algorithms will be given. For further details please see the
corresponding literature. The representation of examples as attribute-value-pairs, where the set of attributes is
given and fixed, is common to all algorithms.

6.2.1 ID3

1D3 is the most popular representative of TDIDT-algorithms (Top Down Induction of Decision Trees). It builds

up a decision tree based on the classified training examples ([Qui86]). The internal nodes of a decision tree

Comparison of Inductive Learning Programs al

tepresent a test based on one specific attribute. For each possible attribute value there is one subtree, which
is for itself a decision tree. The leaves of the tree represent class names. For classifying a new object with a
built-up decision tree, the value of the attribute at the root of the tree will determine which subtree has to be
considered recursively. The recursion will end, if.a leaf of the tree is reached. In that case the class name given
in that leaf represents the class in which the object has to be classified

‘The idea for building up the decision tree is to iteratively find the attribute in the set of attributes of the objects
which gives the ‘best’ partition of the set of training examples. ‘Best’ is defined in terms of the information
gain given by a partition according to the specific attribute.

‘The basic algorithm has already been extended by Quinlan ([Qui86]) to handle noisy attributes and unknown
attribute values. In the implemented algorithm noise is handled by applying chi-square test for stochastic
independence to the noisy attribute with respect to the class distribution. Unknown attribute values have to
be handled during building of the decision tree and during classification. For building up the decision tree
unknown attribute values are taken into account in the calculation of the information gain.

‘The algorithm as being implemented also uses windowing over the training set, i.e. a subset of the training
set is chosen at random and the decision tree is built up by using only these examples. After that all other
examples of the training set are classified using this DT. If some of the examples are incorrectly classified, a
selection of these will be added to the window and the procedure will start again. Due to the complexity of the
given training sets, a lot of iterative steps had to be performed.

6.2.2 ID5SR

‘The IDSR algorithm ({Utg89]) has been developed by P.E. Utgoff as a kind of TDIDT-algorithi which is able
to work incrementally, but results finally, i.e. after all training examples, in the same decision tree as ID3.
“Inctemental’ means that the examples can be given one after another. A very easy solution for the problem of
successively given examples would be to generate an ID3 decision tree from scratch with all examples given so
far. In contrast to that approach, ID5R always uses the decision tree developed so far for integrating the new
example. For that reason the data structure of a node in an IDSR. tree has been enlarged by the information
necessary to calculate the information gain function of the attributes.

If during insertion of the new example the situation arises that the current test attribute is not the one with
the highest information gain, the tree has to be restructured. This is done by investigating all subtrees of the
current node by using the new attribute as the test attribute. In a second step the test attribute in the current
node is exchanged for the attribute in the subtrees.

In our implementation IDR does not result in exactly the same tree as ID3, even if all examples ate given.
First this is caused by the fact that ID5R does not generate NULL-classes, because leaves are only splitted
further, if it is really necessary. Second, if there are several attributes with the same information gain and one
of these attributes is already used as test attribute, then a restructuring of the tree will not be done. It would
be of course also possible to take the first attribute in the list as new test attribute and to restructure the tree
accordingly.

6.2.3 AQR

‘The AQR algorithm is an implementation of the AQ-family, which has been founded by R. Michalski in 1969.
AQR is a reconstruction of a straight-forward implementation of the basic AQ algorithm and has been described
in {CN89]. The algorithm results in one decision rule for each class. The condition of each rule is called a cover

62 J. Kreuziger, R. Hamann, and W. Wenzel

and represents a disjunction of so-called complexes. Each complex for itself is a conjunction of selectors and

each selector is a basic attribute test (has the attribute one of a set of values, etc.).

For classifying a new object, each rule is checked to see, whether the condition is completely satisfied, ive. the
example is covered by the rule. If exactly one rule is satisfied, the corresponding class is the classification result.
If several rules are applicable, then the most common class of training examples covered by those rules is used
fas result. If none of the rules can be applied, the class that appeared most often in the training set is used as
result.

‘The decision rules are sequentially built up for the different classes. Starting with an empty cover successively
1a seed, ic. a positive example which is not covered so far is being selected and a star is being generated, which
is a set of complexes that cover the seed but no negative examples. From these complexes the one which is the
best one according to a user-defined criterion is being chosen and added to the cover as an extra disjunct. The
positive examples that are covered by that additional complex are then deleted from the list of examples. In
‘our implementation the best complex is the complex that maximizes the number of positive examples that are
covered,

6.2.4 CN2

‘This algorithm has been developed by P. Clark and T. Niblett ({CN89]). It shall combine the advantages of the
families of ID3- and AQ-algorithms. The classifier resulting from that algorithm is an ordered set of if-then-rules
(decision list). This means that the representation is very similar to AQ, i.e. if ‘complex’ then predict ‘class’,
but the rules have to be checked from top to bottom. If none of the rules applies to a new object, again the
class that appeared most often in the training set will be taken.

‘The idea of Clark and Niblett was to enable AQ-like algorithms to handle noisy data by also taking complexes
into account that do not fit the positive/negative border accurately. The method is based on the beam-search
method as being used in AQ. During each iteration the algorithm searches for a complex that covers a large
number of examples of one class and only few examples of other classes. The complexes are evaluated by an
evaluation function which determines their predictiveness and reliability. If a good complex has been found,
the examples that are covered, are deleted from the set of training examples. The search for a complex can be
seen as a general-to-specific search with some pruning. During each iteration a set of the best complexes found
so far is being remembered. These are specialized by adding a new conjunctive term or deleting a disjunctive
part of one of the selectors. CN2 evaluates all possible specializations of each complex, which may lead to an
enormous computational effort.

6.2.5 CLASSWEB

CLASSWEB is a combination of the algorithms COBWEB ((Fis87]) and CLASSIT ({GLF89]). These are
methods for conceptual clustering. In contrast to the four algorithms described so far, these use unclassified
examples as input and try to find a concept hierarchy for the examples where the similarity in one concept is
as high as possible and the similarity between different concepts is as low as possible. While COBWEB only
handles nominal values and CLASSIT only numerical ones, our CLASSWEB algorithm is able to handle both.
types in an integrated way.

For building up a concept hierarchy CLASSWEB uses four different operators to integrate a new example into
the already existing concept hierarchy. These are: 1.) classifying the object into an existing class, 2.) creating
a new class, 3.) combining two classes into a single class and 4.) dividing a class into several classes. Applied
to internal concept nodes these different operators are scored according to category utility and the best one is

Comparison of Inductive Learning Programs 63

chosen.

We have also implemented the so-called cutoffin CLASSWEB. By that parameter the algorithm does not have
to classify each example down to a leaf, but also may decide to stop at some higher level in the hierarchy. Cutoff
is a measure whether an example and a concept class are similar enough to stop at that concept node. If cutoff
is set to zero, the algorithm behaves exactly like the original COBWEB method.

To compare CLASSWEB with those inductive learning algorithms which use classified examples as input,
somehow the class information had to be added to the examples. This was done by handling the class of each
example as an additional attribute. During classification the prediction capabilities of CLASSWEB are used,
to determine a class for the unclassified example.

6.3 Results

‘The following tables compare the performance of the different algorithms on the three problem sets. The time
data given correspond to compiled SUN Lucid Common Lisp 3.0 code on a SUN SPARC station 1+.

6.3.1 Training Time

‘This following table states the time required for each algorithm on each training set to build up a classifier.

Algorithm “Training Set 1 | Training Set 2 | Training Set 3
TDs. 35.51 154.02 33.04
TD3 no wind. 498 TOL 3.14
DSR. 99.20 407.09 78.91
AQR, 41T 9.45 4.00

‘CN2 748 74.04 10.25,
CLASSWEB 0.10 1406.47, 013.78 T3135
LASSWEB 0.15 367.47 ‘977.04 382.09

CLASSWEB 0.20 499.94 646.06 21.21
‘Time is given in seconds and was averaged over three test runs over each algorithm and each training set.

Remarks:

‘The 1D3-algorithm as implemented uses a 20%-windowing as mentioned above. For the three given problems
this leads to a large number of necessary iterations. That's why there are also results given for ID3 without
windowing (ID3 no wind.).

‘The CN2-algorithm uses a user-defined threshold value for doing its noise test. This is set to 0.1

‘The cutoff-parameter in CLASSWEB was set to 0.10, 0.15 resp. 0.20 in three different experiments,

64 J. Kreuziger, R. Hamann, and W. Wenzel

6.3.2 Classifier Results

First we will give some measurements such as number of nodes, leaves, rules and so on, which will reflect the
complexity of the resulting algorithms. Afterwards some of the resulting classifiers for the different algorithms
and training sets are given.

1D3

 [Measurement | Training Set 1 | Training Set 2 | Training Set 3
[# nodes 13, 66 13
(Preaves 3 Ti 29

ID3 no windowing

 Measurement | Training Set 1 | Training Set 2 | Training Set 3

F nodes 32 4 if

‘# leaves 62 710 aI

IDSR

 [Measurement | Training Set 1] Training Set 2 | Training Set 3

(Binodes 34 oa if
(#leaves 32 99 28}

AQR

 Measurement | Ivaining Set 1_| Training Set 2] Training Set 3

Class 0 | Class 1 | Class 0 | Class 1 | Class 0 | Class 1
=# complexes 3 6 a a 16 20,
selectors: 109 if 147 [__187 a oT

cN2

 Measurement | Training Set 1 | Training Set 2 | Training Set 3
rules 10 58 24

(Helectors 3] 145 3

Comparison of Inductive Learning Programs

CLASSWEB (cut-off = 0.10)

 Measurement | Training Set 1 | Training Set 2 | Training Set 3

concepts: 219) 305 2IT
[nodes 95 1aT, Es

leaves 12 168 12

CLASSWEB (cut-off = 0.15)

 Measurement | Training Set 1 | Training Set 2 | Training Set 3

concepts: oT Es 68
nodes a 2, 26
leaves 36 35 a2

CLASSWEB (cut-off = 0.20)

 Measurement | Training Set 1 | Training Set 2 | Training Set 5

 # concepts a 26 2,
nodes 7 10 Tr
leaves is 16 18

‘Training Set 1

D3

JACKET-COLOR
oa

BODY.SHAPE
‘ HEAD-SHAPE

28 ie
a RAD SHAPE

HEAD-SHAPE
.

BODY-sHAPE

66

a

J. Kreuziger, R. Hamann, and W. Wenzel

RODY-SHAPE
1
2
3

HEAD-SHAPE
BODY-SHAPE,

ra
2 2e

BoDY-SHAPE
21
a0

3
BODY-SHAPE

1 NULL
20
30

AQR

BODY-SHAPE =
WAS-TIE = 1
IS-SMILING = 1 & HEAD-SHAPE = 1
BODY-SHAPE =
JACKET-COLOR = 2 & HEAD-SHAPE = 1
JACKET-COLOR =
HOLDING = 3 & BODY-SHAPE= 2 &
HOLDING = 1 & BODY-SHAPE= 3 &
BODY-SHAPE = 3
HOLDING = 3 &

WAS-TIE = 2 & IS-SHILING= 2 &
JACKET-COLOR = 4 & HEAD~SHAPE = 1
HOLDING = 1 & HEAD-SHAPE = 2 &
HOLDING = 2 & IS-SNILING= 1 &
HEAD-SHAPE = 2 & HOLDING= 2 &
IS-SHILING = 1 & BODY-SHAPE = 1
HAS-TIE = 2 & IS-SMILING= 2 &
HOLDING = 3 & BODY-SHAPE= 1 &
HOLDING = 2 & BODY-SHAPE= 3 &
BODY-SHAPE = 3 & HOLDING=3 &
BODY-SHAPE = 3 & JACKET-COLOR =
IS-SMILING = 2 & HOLDING= 1 &
IS-SHILING = 2 & HEAD-SHAPE = 2
HAS-TIE = 2 & HEAD-SHAPE = 3 &
JACKET-COLOR =
HEAD-SHAPE = 3 &

HOLDING = 2 &
HEAD-SHAPE = 3
HOLDING = 3 &
HOLDING = 3 &
ae=> CLASS 0° (1

BODY-SHAPE = 1
JACKET-COLOR = 1
IS-SMILING = 1

3
°
1

& JACKET-COLOR = 2 & HOLDING = 1 & HEAD-SHAPE
HOLDING = 1 & BODY-SHAPE = 2 & HEAD-SHAPE = 1

& JACKET-COLOR = 4
2 HOLDING = 2 & HEAD-SHAPE = 1 & JACKET-COLOR = 3

HEAD-SHAPE = 1
HEAD-SHAPE = 1

1
'

‘& BODY-SHAPE = 2
4 & HEAD-SHAPE = 1 & BODY-SHAPE = 2

& JACKET-COLOR = 2 & HEAD-SHAPE = 1
BODY-SHAPE = 3. & JACKET-COLOR= 3. &

‘& HEAD-SHAPE
& JACKET-COLOR HEAD-SHAPE = 1

BODY-SHAPE = 1
BODY-SHAPE = 1
BODY-SHAPE = 1
2 HEAD-SHAPE =
HOLDING = 2 &
HEAD-SHAPE = 2
HEAD-SHAPE = 2

1
®
®
2

‘® BODY-SHAPE = 3

t
I

1
IS-SHILING

'

JACKET-COLOR
JACKET-COLOR = 3
© JACKET-COLOR =

BODY-SHAPE = 1

2

& JACKET-COLOR = 3
JACKET-COLOR = 3. & HEAD~SHAPE = 2

4 & HEAD-SHAPE = 2
BODY-SHAPE = 3. & HEAD~SHAPE = 2
& BODY-SHAPE = 3. & JACKET-COLOR = 2
HOLDING = 3 & BODY-SHAPE = 1

JACKET-COLOR = 4 & BODY-SHAPE = 2
& JACKET-COLOR = 3 & BODY-SHAPE = 2
IS-SMILING = 2 & BODY-SHAPE= 2 & JACKET-COLOR
BODY-SHAPE = 2 & HEAD-SHAPE = 3. & JACKET-COLOR
PE'0"] = 1/2)

& HEAD-SHAPE = 1
1

& BODY-SHAPE = 2 & HEAD-SHAPE = 2

2 & BODY-SHAPE = 1 & HEAD-SHAPE = 3
JACKET-COLOR = 4 & HOLDING = 1 & Is-SHTLING

& BODY-SHAPE
1

1

1
1
al

I

Comparison of Inductive Learning Programs

BODY-SHAPE = 2 & HEAD-SHAPE = 2
HAS-TIE = 1 & BODY-SHAPE = 3. & HEAD-SHAPE 3

HAS-TIE = 2 & HEAD-SHAPE = 3 & BODY-SHAPE = 3
==> CLASS "17 (P('1"] = 1/2)

DEFAULT ===> CLASS "0° (P[?0"] = 1/2)

cN2

JACKET-COLOR = 1 ===> CLASS '1”
HEAD-SHAPE = 2 & BODY-SHAPE = 3

BODY-SHAPE = 1 & HEAD-SHAPE = 3
BODY-SHAPE = 1 & HEAD-SHAPE = 2
BODY-SHAPE = 1 ===> CLASS '1
HEAD-SHAPE = 2 ===> CLASS "1?
BODY-SHAPE = 2 ===> CLASS °0°
HEAD-SHAPE = 3. ===> CLASS 71”
HAS-TIE = 2 ===> CLASS '0?
HAS-TIE = 1 ===> CLASS '07

DEFAULT ===> CLASS '0”

==> CLASS 0°
=> CLASS "0°
 => CLASS '0"

Accuracy

‘Algorithm’ ‘Training Set 1 | Training Set 2 | Training Set 3
TDs 100.00 00.00 100.00
1D3 no w. 100.00 100.00 100.00

TDsR. 100.00 100.00 100.00.
‘AQR. 100.00 100.00 100.00

z 100.00 92.90 100.00
CLASSWEB 0.10 87.10 69.25 36.89
CLASSWEB 0.15, 74.19 69.23 36.07
CLASSWEB 0.20 66.94 59.76 79.51

‘Algorithm: “Test Set 1 | Test Set 2 | Test Set 3]
TDs, 38.56 e792 EEE

[IDS no w. 83.24 9.12 95.60
TDSR 79.17 69.25 95.28
AQR, 95.88 79.63 87.04
GND 100.00 08.98 30.12
CLASSWEB 0.10 71.16 64.81 80.79
CLASSWEB 0.15, 65.74 S157 B5.A2
CLASSWEB 0.20 62.96 37.18 75.23

6.4 Conclusion

The results of this chapter give a good survey about the possibilities and limitations of the different tested
inductive learning algorithms. Especially it is possible to compare the learning results not only with respect to
accuracy, but also with respect to training time and classifier complexity. Since we mainly used the algorithmsin
the form as they were described in journal articles, they do not necessarily represent the actual version available
to the authors of the original algorithms. Nevertheless the comparison clearly points out, which algorithms are
‘more useful for domains similar to the Monk's problems.

Another interesting result is the strong impact of parameters on the learning result. Windowing in 1D3 influences
classifier complexity, accuracy and training time. In CLASSWEB they are determined very strongly by the
cut-off parameter, which varies only between 0.1 and 0.2 in our experiments, but results in a factor of 3 in
training time and a factor of 10 in classifier complexity.

It also has to be mentioned that some important capabilities of the algorithms have not been tested and compared
by using the given learning problems. These are for example the handling of noise in specific attributes, of costs
for determining attribute values and of unknown attribute values in [D3 and ID5R. The incremental nature
of IDSR was not really needed in these test cases because all examples were given in advance. The ability to
handle unknown attribute values in AQR and CN2 was not used either.

Acknowledgement

‘This research work was performed at the Institute for Real-Time Computer Control Systems & Robotics, Prof.
Dr-Ing. U. Rembold and Prof. Dr.-Ing. R. Dillmann, Faculty for Informatics, University of Karlsruhe, 7500
Karlsruhe 1, Germany. The work is funded by the "Sonderforschungsbereich Kiinstliche Intelligenz” of the
Deutsche Forschungsgemeinschatt.

Bibliography

[CN89]_P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261-283, 1989.

[Fis87] D.H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:130-
172, 1987.

[GLF89] J.H. Gennari, P. Langley, and D.H. Fisher. Models of incremental concept formation. Artificial
Intelligence, 40:11-61, 1989.

{HW91] R. Hamann and W. Wenzel. Implementation of inductive learning algorithms. Studienarbeit, Institute
for Real-Time Computer Control Systems & Robotics, University of Karlsruhe, 1991. (in German).

(Qui86] JR. Quinlan. Induction of decision trees, Machine Learning, 1:81-106, 1986,

[Utg89] P.E. Utgoff. Incremental induction of decision trees. Machine Learning, 4:161-186, 1989.

68

69 Comparison of Inductive Learning Programs

6.5 Classification diagrams

(b) Result of ID3 on test set No. 2, Accuracy: 67.4%
(a) Result of ID3 on test set No. 1, Accurac

J. Kreuziger, R. Hamann, and W. Wenzel 70

, Accuracy: 94.7% (a) Result of ID3 on test set No. 3,
(b) Result of ID3OW on test set No. 1 , Accuracy: 82.4%

 L

L

4 bet

fa tlolelelelololel
=

oc

tio lelelele[ol

a Comparison of Inductive Learning Programs

g3
26
2 a
d

3.5
2
a

a8
ae
38 4
o
o

88
as
6
s

33
ae
SE
 j

d_ | pete [gree | bias |

petetet

Deletedeiet

J. Kreuziger, R. Hamann, and W. Wenzel 2

, Accuracy: 78.9%
, Accuracy: 69.0%

(a) Result of ID5R on test set No. 1,
(b) Result of IDSR on test set No. 2,

moe Le |
1

seo | Mes | at pele

ee | peter

 Gast

Comparison of Inductive Learning Programs

 «fy

“
b
l

(a) Result of IDSR on test set No. 3, Accuracy: 95.1%
(b) Result of AQR on test set No. 1, Accuracy: 94.4%

[ws | yates

 (gous eee | oe

bet

J. Kreuziger, R. Hamann, and W. Wenzel 4

(a) Result of AQR on test set No. 2, Accuracy: 79.6%
(b) Result of AQR on test set No. 3, Accuracy: 87.0%

15 Comparison of Inductive Learning Programs

, Accuracy: 100.0%
(b) Result of CN2 on test set No. 2, Accuracy: 69.0%
(a) Result of CN2 on test set No. 1

Leieiet

Lj

J. Kreuziger, R. Hamann, and W. Wenzel 76

(a) Result of CN2 on test set No. 3, Accuracy: 89.1%
(b) Result of CLASSWEB 0.10 on test set No. 1, Accuracy: 71.8%

 etre]

pet

beivisl

7 Comparison of Inductive Learning Programs

No. 3, Accuracy: 80.8%
Result of CLASSWEB 0.10 on test set No. 2, Accuracy: 64.3%

(b) Result of CLASSWEB 0.10 on test set
(a)

 [pete | gee | wae

 i it
ziriel rel

J. Kreuziger, R. Hamann, and W. Wenzel 78

No. 2, Accuracy: 61.6%
5 on test set No. 1, Accuracy: 65.7% (a) Result of CLASSWEB 0.1

(b) Result of CLASSWEB 0.15 on test set

 —|

rae | see]

vee eon | vee use 1

 Gea

 Git

79 Comparison of Inductive Learning Programs

No. 1, Accuracy: 63.0%
(a) Result of CLASSWEB 0.15 on test set No. 3, Accuracy: 85.4%
(b) Result of CLASSWEB 0.20 on test set

 Laster | see

J. Kreuziger, R. Hamann, and W. Wenzel 80

(a) Result of CLASSWEB 0.20 on test set No. 2, Accurac}
(b) Result of CLASSWEB 0.20 on test set No. 3, Accuracy:

wow | geen | tee

 (

Chapter 7

Documentation of Prism — an
Inductive Learning Algorithm

Stefan F. Keller

Al-Lab, Institute for Informatics, University of Zuerich, CH-8057 Zuerich

81

82 S. Keller

7.1 Short Description

PRISM was invented by Jadzia Cendrowska (1987). Based on Quinlan’s induction algorithm ID3, PRISM pay
attention to maximizing he information gain for a single value of an atribute in contrast to ID3 which tries to
minimize the average entropy for an attribute-value pair.

7.2 Introduction

‘The decision tree output of ID3 algorithm is one of its major weaknesses. Not only can it be incomprehensible
and difficult to manipulate, but its use in knowledge based systems frequently demands irrelevant information
to be supplied. We argue that the problem lies in the induction algorithm itself and can only be remedied
by radically altering the underlying strategy. The resulting algorithm, although based on ID3, uses a different
induction strategy to induce rules which are modular in the sense how they are constructed. This approach
avoids many of the problems associated with decision trees.

7.3 PRISM: Entropy versus Information Gain

‘The main cause of the problem described above is either that an attribute is highly relevant to only one
classification and irrelevant to the others, or that only one value of the attribute is relevant.

‘There can be shown that while in the construction process of a decision tree although e.g, the entropy of
a distinct branch dl has been reduced to 0, the entropy of the other branch has actually increased to some
higher entropy-measure. Attribute d would be chosen by [D3 because it minimizes the average entropy of the
training set, or alternatively, it maximizes the average amount of information contributed by an attribute to
the determination of any classifiaction.

In order to eliminate the use of irrelevant values of attributes and attributes which are irrelevant to a classifica-
tion, an improving algorithm needs to maximize the actual amount of information contributed by knowing the
VALUE of the attribute to the determination of a specific classification.

7.3.1 Maximizing the information gain

So, the task of an induction algorithm must be to find the attribute-value pair, ax, which contributes the most
information about a specified classification, dn, i.e. for which I(dn | ax) is maximum.

‘This can be done in the following way: Let S be the data set; first find the ax for which p(dn — ax) is
maximum. Lets call the choosen attribute c2 (=attribute c, value 2). Repeat now the process on a subset of S
which contains only those instances which have value 2 for attribute c until there are all instances removed.

7.3.2 Trimming the tree

‘The remaining “branches” are not yet labelled, so the next step in the induction process is to identify the best
rule of the set of instances which are not examples of the first rule. This is done by removing from $ all instances

Documentation of Prism ~ an Inductive Learning Algorithm 83

containing this rule and applying the algorithm to the remaining instances. If this is repeated until there are no
instances of class dl left in S, the result is not a decision tree but a collection of branches. The whole process
can then be repeated for each classification in turn, starting with the complete training set, S, each time.

‘The final output is an unordered collection of modular rules, each rule being as general as possible, thus ensuring
that there are no redundant terms.

‘Tie following assumptions have been made about the training set:

the classifications are mutually exclusive

there is no noise, i.e. each instance is complete and correct

each instance can be classified uniquely

no instance is duplicated

‘¢ the values of the attributes are discrete

the training set is complete, i.e. all possible combinations of attribute-value pairs are represented

Given that the assumptions above hold, the algorithm produces a complete set of correct rules.

7.4 The Basic Algorithm

If the training set contains instances of more than one classification, then for each classification, dn, in turn:

Step 1
calculate the probability of occurence, p(dn — ax), of the classification dn for each attribute-value pair ax,

Step 2: 7
select the ax for which p(dn — ax) is a maximum and create a subset of the training set comprising all the
instances which contain the selected ax,

Step 3:
repeat Steps 1 and 2 for this subset until is contains only instances of class dn. The induced rule is 2 conjunction
of all the attribute-value pairs used in creating the homogeneous subset.

Step 4:
remove all instances covered by this rule from the training set.

Step 5:
repeat Steps 1-4 until all instances of class dn, have been removed.

When the rules for one classification have been induced, the training set is restored to its initial state and the
algorithm is applied again to induce a set of rules covering the next classification. As the classifications are
considered separately, their order of presentation is immaterial. If all instances are of the same classification
then that classification is returned as the rule, and the algorithm terminates.

84 S.Keller

7.5 The Use of Heuristics

Opting for generality I: If there are two or more rules describing a classification, PRISM tries to induce the most
general rule first, Thus PRISM selects that attribute-value pair which has the highest frequency of occurence
in the set of instances being considered.

Opting for generality II: When both the information gain offered by two or more attribute-value pairs is the
same and the numbers of instances referencing them is the same, PRISM selects the first.

7.6 General Considerations and a Comparison with ID3

A rule will not be induced by PRISM if there are no examples of it in the training set, but this applies to all
induction programs. Even human beings cannot be expected to induce rules from non-existent information

The accuracy of rules induced from an incomplete training set depends on the size of that training set (as with
all induction algorithms) but is comparable to the accuracy of a decision tree induced by ID3 from the same
training set, despite the gross reduction in number and length of the rules.

‘The major difference between ID3 and PRISM is that PRISM concentrates on finding only relevant values of
attributes, while [D3 is concerned with finding the attribute which is most relevant overall, even though some
values of that attribute may be irrelevant. Alll other differences between the two algorithms stem form this: [D3
divides a training:set into homogeneous subsets without reference to the class of this subset, whereas PRISM
must identify subsets of a specific class. This has the disadvantage of slightly incresed computational effort, but
the advantage of an output in the form of modular rules rather than a decision tree.

7.7 Implementation

Version: 0.9
Status: Experimental
Language: Common Lisp
Authors: Lindsey Spratt (spratt@hawk.cs.ukans.edu), Spring 1990,

modified by Stefan F. Keller (keller@ifi.unizh.ch), Summer 1991.

References

~ Cendrowska, Jadzia (1987); PRISM: An algorithm for inducing modular rules, in: Int, Journal of Man-
Machine Studies, Vol. 26, Nr.1,2,4, Vol.27, Nr.2;3,4.

- Cendrowska, Jadzia (1988); PRISM: An algorithm for inducing modular rules, in: B.R.Gaines & J.H.Boose
(eds.), Knowledge Acquisition for Knowledge-Based Systems, Academic Press, 253-274

Documentation of Prism ~ an Inductive Learning Algorithm 85

7.8 Results on Running PRISM on the MONK’s Test Sets

TEST PLATFORMS:
Mac: Macintosh Allegro Common Lisp 2.0b2, Macintosh IIci, 4MB memory
Sun: Franz Allegro Common Lisp 4.0.1, Sun spare/320, 24MB memory

TEST SET 1:
No. of trainig-examples: 124
No. of test-examples: 432
No. of rules induced: 29
Covered test-examples: 86Mac run time: 80.145, 85,10s, 80.43s, 81.10s, 80.058
Sun run time: 23.30s, 22.80s, 23.50s, 23.12s, 23.088,
‘Average run time on Sun: 23.168

TEST SET 2:
No. of trainig-examples: 169
No. of test-examples: 432
No. of rules induced: 73
Covered test-examples: 73Mac run time: (409.26s)
‘Sun run time: 121.505, 122.508, 120.758, 122.185, 121.008
Average run time on Sun: 121.588

TEST SET 3:
No. of trainig-examples: 122
No. of test-examples: 432
No. of rules induced: 26
Covered test-examples: 90Mac run time: (59.638)
Sun run time: 16.77s, 17.00s, 16.638, 16.60s, 17.30s
‘Average run time on Sun: 16.863

86 S. Keller

7.8.1 Test Set 1 - Rules

(Gacketcoler 1)))
(lass))

(head shape 3) (beds
(elas)))

j-thape 9)))

(holding 1) (body.shape 2) (head_shape 2)))
~) (elas

(boay,
(elas
Coody shape 2) (head shape 2)))
(clase))

Choad,
(elas

1) Gacket color 4) (ody.

ape 3)?
 (jacket col

(class 0)))
sf 2) (holding 2) (has tie 2)))

(jacket col
(class 0)))

(has tie 1 (holding 3))) (jacket col
(rigE (elas 09))

cautE=10
(IF ((Jacketacolor 2) (head shape 1) (bedy_shape 3)))
(THEN (class 09))

cautg=11
(AF ((Jacketcolor 4) (body shape 1) (head_shape 2)))
(TWEE (class 0)))

cnutg-12
(AF (Cjacket color 3)
(THEE (cass 09))

caute-13
(AE ((Jacket color 3) (has tie 1) (head shape 2) (body_shape 1)))
(THEN (class 05))

(holding 2) On

J_shape 1) (has.tie 2)?

(IF ((Jacket color 2) (is.amiling 2) (holding 3) (body_shape 1)?
(THEE (class 0))) .

cautE-15
CAF (head anape 1) Coody
(TWEE (class 0)))

cnoLE-16
(IF ((Jacket color 3) (4s_amiling 2) (head.shape 2) (body.
(TWEE (class 0)))

caute-17
(UF ((Jacket color 2) ({s_amiling 2) (head.shape 2) (body.
(Tugx (class 05))

cauue-18
CP (Cjacket.coler 4)
(Tuma (class 0)))

(QULE=19
(IF ((jacket-color 2) (holding 2) (body shay
(twEx (class 09))

<RULE=20
CGF (jacket color 3) (body.shape 2) (head.shape 1)))

0)

CIF ((Jacket.color 2) (dedy.shape 2) (head shape 1))),
(Tuma (class 05>)

caug-22

Documentation of Prism ~ an Inductive Learning Algorithm

(AP (jacket color 4) (is_amiling 1) (Dody.shape 2) (head.shape 9)))
(WEN (class 09))

cauts-23
(HF ((Jacket color 3) (head shape 3) (body.shape 1)))
(TWEE (class 059)

caute-24
(AF ((Jacket color 2) (head.shape 3) (body.shape 1)))
(THEN (class 0))

cnu-25
UF (Gacketcolor 3) (he!
(rimx (class 0)))

(RULE-26
ar

»)) fing 1) (haad.shape 3) (body_shay

2) (has tie 1) (head shape 32)
cauts-27

CGF (Cholding 3) (Jacket_color 4) (is_smiling 1) (body_shape 3) (head_shape 2)))
(TUE (class 0)))

caute-28
CAF ((jacket color 3) (bedy.shape 1) (head_shape 29)?
(TWEE (class 059)

caute-29
(HF ((Jacketcolor 2) (4s.amiling 2) (holding 3) (has.tie 1)))
(Tun (class 05)

7.8.2 Test Set 2 ~- Rules

solor 4) (has.tie 1))) (AF (holding 1) (Jacke
(THEE (class 0)))

(AF ((jacketacolor 4) (body.shape 1) (has tie 1)))
(THEE (class 09)?

(GF ((hend_shape 1) (holding 1) (is.smiling 19))
(THEE (class 0)))

CHF (Cjacketcolor 4) (body_shape 3). (is_smiling 29))
(TEx (class 0)))

nutes
(AF ((Jacket-coler 3) (1s.smiling 2) (holding 2) (has_tie 2)))
(Tuna (class 05))

caus
AF ((nastie 1) (head shape 1) (is_smtling 10)
(THEE (class 9)))

couue-7
(IF ((nolding 1) (heads
(THEN (class 0)))

D Gus.cie 0)?

(IF (Chead_ahape 2) (has tie 2) (body_shape 2) (ii
(THEE (class 0)))

catE-9
(IF ((Jacket color 1) Cis smiling 1) (body.
(THEN (class 0)))

caut-10
(IF ((Jacket color 3) (
(THEN (elass 09))

cute
(IP (holding 1) (Jacket
(tga (class 0)))

cnog=12
HF (Cia_emiling 2) (Jacke.
(tiga (class 0)))"

mmiling 2)))

219)

 familing 2) (holding 3) (has.tie 2)))

 olor 1) (is.smiling 1)?

jor 2) (body_shape 2)))

88 S. Keller

cauts-13
CIF (Cjacket color 3) (has tie 1) (body ah
(tuna (class 099)

pb»

cauLE-14
(IF ((jacket color 1) (head shape 1) (body-shape 1)))
(TWEE (class 0)))

caute-15
(AF ((head.ahape 2) (holding 2) Gjacket.color 4)))
(THEN (clase 0)))

cauL-16
(IF (jacket color 3) (head.shape 3) (body_shape 3) (has_tie 1)))
(TuRH (class 0)))

cauus-17
(HF ((head shape 2) (holding 2) (body_shape 3) (jacket color 2)))
(TWEE (class 0)))

caute-8
HF ((nolding 3) (is _amiling 2) (jacket.
(TWEE (class 0)))

caute-19
(UF ((Jacket color 1) Cis smiling 1) (has tie 0)?
(THEN (class 09))

aute-20
(IF ((Jacket color 3) (he
(rWgH (elass 0)))

cat=24
GE ((jacket_color 3) (head shape 2) (ha
(rex (class 0)))

cavig=22
CIF ((jacket-color 3) (head.shay
(Tuga (class 05))

cauue-23
CAF ((holding 1) (is_emiling 1) (has_tie 1)?
(THEN (class 0)))

caut-24
(GF (holding 3) (4s emiling 2) (head_shape 2) (jacket.color 29))
(THEE (class 0)))
ULE-25.
(AF ((jacket color 1) (head shape 1) (is.smiling 1)))
(THEE (class 09)?
ULE-26
(GF (Cis.emiling 2) (holding 3) (body.shape 3) (jacketcolor 3)))
(TWEE (class 0)?
WULE-27
(GF (head shape 3) Coody_shape 3) (jacket col
(tex (class 0)))

jor 4) (haste 2)?

Ling 2) (holding 2))

shape 2) Cis,

tie 2) (holding 29)?

3) (hody_shape 2) (has_tie 2) (holding 3)))

20)

cnULE-28
ar pe 1) (Jacket color 1) (has.tte 1)))
(rum (class 0)))

camus-29
GF ((Jacket color 3) (head.shape 3) (holding 2) (body_shape 3)?
(THEE (class 05))

catE-30
(GF ((nolding 1) (body_shape 1) (is.smiling 19))
(THEE (class 0)))

cauts-31
GF (body.
(THEE (class 0)))

caute-32
CIF (holding 3) (isemiling 2) Cacke
(THEN (class 0)))

cautE-33
(AE ((body-shape 2) (holding 3) (Jacket.
(ruta (class 0))

cautg-34
(IF ((jacket_color 3) (holding 3) (he
Cruea (class 059)

cams-35
CHF ((jacket color 2) (1s.amiling 1) (body_shay

yo 2) (Jacket color 3) (has tie 2) (is_smiling 29))

(has_tie 2) (headshape 3)

shape 2) (has tia 2) (body shape 2)?

a»

Documentation of Prism ~ an Inductive Learning Algorithm 89

(twa (clase 0)
(aULE-36

CIF ((acketcoler 2) (
(THEN (class 1)))

cnute-37
(HE ((nolding 3) (body sh
(TWER (class)

caute-38
(GP (Gjacket color 2) (body.shape 1) Cisamiling 2) (has tie 1D))
Crug (elass 1)))

caut-39
CIP (Cjacke
(awen (clase 1)

cautE-40
GF (body.
(tuen (class 1)))

caut-41
(IF ((Jacketcoler 3) (body.shape 2) (head,
(TaEH (class 1)))

caLE-42
CIF ((body.shape 3) jacket col
(THEN (clase 1)?

caut-43
(AF ((haad shape 2) (hastie 1) (body_shape 3) (Jacket color 4)))
(THEN (class 1)?

cnut-44
CGF ((hend.ahape 2) (has tie 1) (body shape 3) (holding 1) (is_amiling 29))
(rien (elas 1)))

(aoLe-45
(IF ((nolding 2) (Jacket
(Tuga (class 10>)

cautE-46
(GF (jacket color 3) (holding 1) (has.tie 2) (bodyshape 1)))
(rin (elase 139)

cautg-ar
(HF (Cholding 3) (has.tie 1) (oody.ehape 2) (Jacketcolor 3) (is.smiling 29))

DD»)

 sdy.ehape 1) (head shape 3) Cis,

3) Gacketcotor 1)))

olor 3) (is.amiling 1) (haste 2) (body.shape 1))?

2) Gacket color @) (i
smiling 1) (has_tie 2)))

spe 1) (has tie 2) Gs.

1 2) (holding 3) (head_shape 1)))

color 1) (4s_omiling 2)))

1) Gackat color 2) (holding 2))

CIF (nas tie 2) (body.
(rugH (elass 1)))

caut-49
CIF C(hastie 2) (body.
(THEN (class 1)))

cauts-s0
AF (holding 3) (jacks
(THEE (elass 1)?

caus
(HF ((Jacket color 3) Cis.smiling 1) (head,
(rvex (class 1)))

cautg-52
(IF ((has the 2) (head shape 1) (Jacket color 2) (holding 2)))
(tex (class 19>)

cautE-s3
(AF ((ody-ahape 2) (Jacket.
(wma (elas 1)))

«cauts-54
HF (nas the 2) (head.
(tiga (class 1)

cauLe-ss
CIF ((Jacketacolor 3) (holding 1) (ha
(turn (class 159)

caote-s6
CIF ((holding 3) GJacket color 2) (is_smiling 1) (head.
(TWEE (class 1)))

caULE-57
CAF ((Coody-shape 2) (has tie 1) Gjacket_color 3) (holding 3) (h
(THEN (class 1)))

cats-s8

1-thape 30)?

tie DD)

40 2) (holding 2) (i

spe 1) (Jacket color 4) (body.

tie 2) Gaemiling 1)

2 2)?

1_thape 29)

90 S.Keller

arc
(rie (es

<aULE-59
CIF (Cbody.shape 2) (has tie 1) Cjacke
(rugn (class 1)))

 color 4) (is_amiling 2) (holding 2)))

(RULE€0
CIF ((nas_tia 2) (hody.shape 3) (head.shape 1) (holding 3)))
(tum (class 1)

caug-61
CF ((Jacket color 3) Gu

nape 1) (has_tie 2) (dody_shape 3)
Ga_aniling 1) (holding 2)))

(THE (class 9)
cnut-62

anape 2) (Jacket color 1) (is.smiling 2) (haa tie 2)))
(ug (class D))

CGP ((Jacket color 3) (holding 1) (has tie 2) (body_shape 3) Cia,
(tiga (class 13))

cnuLg-04
(GF (Coody.shape 2) (haste 1) (Jacket.color 3) Cis,
(THEE (elas 1)

{Ling 2) (head_shape 1)))

RULE-68

(HF ((head_ahape 3) (Jacket color 4) (holding 2) (has.tie 2)))
(rma (class 1)))

cag-26
CIF (CJucket color 1) (head.shape 2) Cis_smili
(rina (clase 1)

2) (has_tie 0)

caute-<7

CHF (Coody shape 2) (head.shape 2) Gis.
(mn (class))

cautE-8
CIF (Coody-ahape 2) (has.tie 1) (holding 3) (is
(THEN (clase 1)))

cnut-69
CIF ((jacket.col
(TWEE (elass 1)?

cauts-70
(AF -((haad_shape 3) (Jacket color 3) (has_tie 1) (holdi
(THEN (clase 1))

cnuL-71
(GF (head shape 3) GJacket_color 4) (holding 1) (has tie 2)))
(THEE (clase D))

caue=72
GF (body shape 2) (hastie 1) (1s_smiling 2) Jacket.«
(twex (class 1)))

cauLg=-73,
CAF ((jacketacolor 1) (holding 3) (head.st
(tuna (class 159)

1 3) (holding 4) (has_tie 2) (1ssmiling 1) (head_shape 2)))

a»)

or 3) (holding 1)))

18 2) (body-shape 2)))

7.8.3 Test Set 3 - Rules

cout
{AF ((bedy.shape 2) (Jacket color 1)))
(THEN (lass D))

caui-2
OF (jacket.
(ruma (elas 199)

ams-3
(IF ((dody_shape 2) (Jacketcolor 2) (head.
(ruga (elas)

cams-4
IF (jacket:

jor 2) (bedy-shape 1)))

Documentation of Prism ~ an Inductive Learning Algorithm

(THEE (clase 1)?
c7ULE=5

CAP ((body.shape 1) Gacker.
(THEN (class 1)

cauLE-6
CIP (Cjacket_coler 3) (body.shape 1) (has.tie 2)))
(tex (class 1)))

<nULE-7
GP ((vody.shape 2) (jacket color 2) (has_ie 2)))
(THEE (class 1)))

cauus-8
(IF ((Jacket color 3) (holding 1) (body shape 3)))
(Tun (clase 159)

cautE-9
CAF ((Jacketcolor 3) Cbody_sna
(raEn (clase 19)

(RULE-10
(IF ((jacket color 3) (body.shape
(THEN (clase 1)))

caute-t
(GF ((Jacket color 3)
(THEN (class 1)))

caut-12
(AF ((body.ahape 2) (head_shape 1) (hatte 2) (4
(THEN (class 1)?

olor 1)))

Ling 29))

shape

ULE 13
GF Cas sp0 3) (holding 1) Gis smiling 1) (body_shape 3)))
(TWEE (class 1)))

cauts-t4
(AF ((jacket color 4) (has tie 2))
(THEN (class 09))
ULE-15

 (IP (Cjacket_color 4) (had.shape 1)?
(HH (class 0)))

(aULE-16
(IP ((body-ahape 3) (is.smiling 2)))

(HEH Celass 0)))
cauLg-17

CAF ((jacketucolor 4) (holding 3)))
(tugx (class 0)))
ULE-18
(GF (Coody_shape 3) holding 39)?
(THEN (elass 0)))

caut-19
(UF ((Jacket-color 4) (body_shape 1)))
(THER (class 039)

(<aULE-20
(AF (body shape 3) (holding 29)?
(tugx (class 0)))

nue 21
(HF ((Jacket color 4) (body.shape 2)))
(tuey (class 0)))

ULE~22
CAF (body shape 3) (head shape 1)))
(rWEx (class, 0)))
ULE-23

(IF ((Sacketacolor 3) (is.amili
(THEE (elass 0)))

cauLe=24
CIP (Cjacket color 3) (holding 3) (heads
(tumx (class 0)))

caut-25
(AF (holding 2) (has tie 1) (is.amiling 1) (bedy-shape 2) (h
(WEE (class 0))

cnut-26
(AF ((Jacket color 3) (holding 2) (head.
(THEN (elase 0)))

Doe

nape 1) (dody-shape 1)))

2) (boay.shape 2)?

»»

91

S. Keller 92

di ion 9 Classificati 7.

iagrams

(b) Result of PRISM on test set No. 2, Accuracy: 72.7%
(a) Result of PRISM on test set No. 1, Accuracy: 86.3%

Lae 1 vee] fen | siee | wea | yet Es,

93

Result of PRISM on test set No. 3, Accuracy: 90.3%

Documentation of Prism ~ an Inductive Learning Algorithm

1

 [C.

94 S. Keller

Chapter 8

Cobweb and the MONK Problems

‘Yoram Reicht
Douglas Fisher!

+ Engineering Design Research Center, Carnegie Mellon University, Pittsburgh PA 15213
+ Department of Computer Science, Vanderbilt University, Nashville, TN 37235

95

96 Y. Reich, and D. Fisher

8.1 Copwes: A brief overview

‘This chapter describes the results of applying a variant of the Conwes system (Fisher, 1987a) called Ecoswes
(Reich, 1991; Reich and Fenves, 1991) to the MONK problems."

Conwes differs significantly from other systems described in this report. Most notably, the system is unsu-
pervised: it does not assume that observations are preclassified (¢.g., a8 positive or negative examples of some
concept). Rather, the objective of a clustering system such as COBWEB is to discover ‘useful’ or ‘interesting’
categories in a set of observations. Coawes is also incremental like ID4 (Schlimmet and Fisher, 1986), its de-
scendents, and AQIS (Michalski, Mozetic, Hong, & Lavrac, 1978), which were described earlier. Observations
are not processed en masse, but are processed as they are presented to the system.

 In particular, Coswes is an incremental concept formation system that creates hierarchical classification trees
over a stream of observations. CoBWEB operates on examples described by a list of attribute-value pairs. If
examples are classified @ priori as in supervised systems, and included in an object's description, then this
classification is simply treated as another attribute.?

Unsupervised clustering systems are guided by some ‘internal’ metric of quality ~ some categories must be pre-
ferred over others. In CoBWEB, a classification is ‘good’ if an observation’s features can be guessed with high
accuracy, given that it belongs to a specific (discovered) class. For example, the standard biological classes of
mammals, reptiles, birds, etc. are deemed good because knowing that an animal is a mammal (for example) al-
lows many high-confidence predictions about its features (e.g., has-hair, varm-blooded, bears~living-young,
etc.). CoBWEB makes use of a statistical function that partitions a set of examples into mutually-exclusive classes
C1,C2y...,Cn. The function used by CoBwes is category utility (Gluck & Corter, 1985):

Dhar PCr) Di Dy P(AL = Vile)? — De Dj P(A = Vis)? ay

 where Ci is a class, A; = Vij is a property-value pair, P(2) is the probability of z, and n is the number of
classes. The first term in the numerator measures the expected number of property-value pairs that can be
guessed correctly by using the classification. The second term measures the same quantity without using the
classes. Thus, the category utility measures the increase of property-value pairs that can be guessed above the
guess based on frequency alone. The measurement is normalized with respect to the number of classes.

When a new example is introduced, CoBWEB tries to accommodate it into an existing hierarchy starting at the
root. The system performs one of the following operator

1. expanding the root, if it does not have any sub-classes, by creating a new class and attaching the root
and the new example as its sub-classes;

adding the new example as a new sub-class of the root;
adding the new example to one of the sub-classes of the root;

merging the two best sub-classes and putting the new example into the merged sub-class; or

5. splitting the best sub-class and again considering all the alternatives.

Tin that reference the name ECOBWEO ia not used. A larger system that includes it, called BRIOGER, is discussed.
20ne way of testing the abilities of an unsupervised aystem like COBWE® ie to see if « priori known classifications can be

‘rediscovered’ in the data. ‘This can be informative for purposes of benchmarking a clustering system, but as Fisher and Pazzani
(1991) point out, it is of limited utility.

Cobweb and the MONK Problems 7

If the example has been assimilated into an existing sub-class, the process recurses with this class as the top of
a new hierarchy. CoBWEB again uses category utility to determine the next operator to apply.

Coswes makes predictions using a mechanism similar to the one used for augmenting the hierarchy by new
examples but allowing only operator 3 to apply. Coswes sorts a partial example description down the hierarchy
to find the best host for the partial description. ‘The best host is a leaf node (i.e., a training example) that is
‘used to complete the partial description. It is important to note at this point that the performance task used to
evaluate Coswes and other unsupervised systems (e.g., AUTOCLASS) is different from the performance task for
supervised systems. In the latter case, a set of learned rules is used to predict membership relative to an a prior
known set of classes. In clustering systems, prediction accuracy is measured relative to all descriptive attributes
= how well does the classification scheme support prediction of any unknown attribute value? Copwes seeks
to improve classification along all attributes, not simply the single dimension of ‘class membership’. Moreover,
the system's strategies for classification and prediction bear interesting relationships to other systems. Notabl
Coswes sifts objects down trees like [D3 and related systems, but does so based on the object's known values
along many attributes at each node in the tree. Thus, CoBwes is a polythetic classification system, not a
monothetic classification system like D3, which classifies objects based on their value along a single attribute
at each decision node.

8.2 EcoBWEB

‘This section briefly reviews variants on some of CoBWES’s mechanisms that are tested within Ecoawes

8.2.1 Characteristics prediction

Initial versions of Coswes sorted observations to a leaf of a classification tree. At this point predictions about,
the new object's missing values were made, by appealing to this ‘best matching’ leaf's (i.e., a previously-seen
observation) attribute values. However, this strategy can ‘overfit’ the data, in much the same way that overfitting
occurs in supervised systems that maintain overly-specific (i.e., idiosyncratic) rules for class prediction. In the
characteristics prediction method EcoBWEB sorts a partial description in the same way as CoBWEB does (i.e.,
using the category utility function to select the class that is the best host for the partial description). The
only difference between the current and CoBwes’s operation is that if Ecoswes encounters a characteristic?
property-value pair that is missing from the partial description, it assigns it to the partial description. If the
characteristic is the class attribute, the classification process can terminate. Similarly intented methods were
also investigated in Fisher (1989), though we will only experiment with Ecoawes’s strategy here.

8.2.2 Hierarchy correction mechanism

A characteristic of both supervised and unsupervised incremental learning systems is that the rules and/or
classification schemes that are developed depend on the order in which training data is encountered. This is best,
demonstrated in experiments reported by Fisher et al (1991); they tested different orderings and characterized
some as ‘best-case’ orderings (i.e., those leading to ‘good’ classification schemes’), and others as ‘worst-case’
orderings. A primary research objective is to mitigate ordering effects in incremental systems.

In Ecoswes, a hierarchy-correction scheme was designed to mitigate some of the order effects introduced in

TCharacteriatica are property values th P(A: = ViICe) 2 threshold and P(Cs|A: = Vi,) > threshold, where threshold
pre-determined fixed value

98 Y. Reich, and D. Fisher

Coswes’s incremental learning operation. The scheme follows three steps. First, properties that are deemed
critical by a domain expert are manually selected as ‘triggers’. Second, the hierarchy is traversed top-down,
Each class with a characteristic property value that differs from a characteristic in one of the class’ ancestors, is
removed along with its subtree from the hierarchy. Third, the examples at the leaves of all the removed subtrees
are reclassified into the hierarchy. The process can iterate several times until no change of the hierarchy is
obtained.

‘A second mechanism was designed to generate an ordering of examples that will result in a better classification
hierarchy than the classification generated by random ordering of examples (e.g., Fisher et al, 1991). There
are several variants of this technique. A simple and promising one used by ECOBWEB is created by following
the next three steps until the training example set is exhausted. First, calculate the property-value pairs that
are most frequent in the examples that were already learned. This can be easily done by looking at the root
of Coswes’s classification hierarchy. Second, find an example, in the training examples that have not been
learned, that is most distant from the frequent description calculated in the first step. Third, use this example
as the next training example.

8.2.3 Information utlity function

Ecoswes uses the usual category utility function in its operation. In addition, it allows the use of an alternate
measure of category quality function. In this function the term P(A; = Vij|C)? in Equation 8.1 is replaced
by P(A; = VijICi) log P(As = VislCe). This measure was also developed by Gluck and Corter (1985), and has
similar, though not identical, biases in the classes that are favored.

8.3 Results

Upon examining the concepts in the MONK problem, it is clear that Coswes will encounter difficulties in
learning them. For example, consider the first concept:

(head.shape = body.shape) or (jacket.color = red)

involves relations between different attributes. Fisher (1987b) notes that probabilistic classification trees con-
tain all the information for calculating correlation probabilities between attributes. This, however, requires
using multiple paths of the hierarchy for making ‘ideal’ predictions. CoBWEB, however, makes predictions by
ascending in a single path to a leaf node and uses the classification of this leaf to make predictions. Variants of
Conwen that descended multiple paths would undoubtedly perform better in this domain.

Secondly, it is important to note that Copwes and Ecopwes are unsupervised systems, The intent of these
systems in tasks like data analysis is to discover classes that are interesting and important for purposes of
predicting all unknown attribute values; discovered categories can then be examined by human analysts to help
them search for the interesting aspects on a new domain. It is difficult to imagine a set of rules that imply
less natural and less informative categories from the standpoint of most data analysis tasks than those in the
MONK suite of problems. Thus, while these problems represent extreme cases that are useful for benchmarking
supervised systems, their utility for evaluating unsupervised systems is limited. Nonetheless, Conwes and its
descendents have been evaluated in terms of prediction accuracy. These problems can be used to highlight
some of the differences between supervised and unsupervised systems, and the limitations of using unsupervised
systems in cases where supervised systems are more appropriate (i.e., in those cases where « priori classes are

Cobweb and the MONK Problems 99

known and the focus of prediction).

Table 8.1 provides the results of Ecopwea on the MONK’s problems. Each of the entries was calculated
by running 10 experiments with random orderings of the training examples. ‘The average and the standard
deviation of the runs are provided.

Table 8.1: Results of Ecoswes

Prediction method Fr # Ex]
Ave. STD | Ave. STD | Ave. STD

Teaf prediction 0-718 0.042 | 0.674 0.028 | 0.682 0.031
Teaf prediction 0.683 0.020 | 0.686 0.026 | 0.681 0.038

with hierarchy correction
Teaf prediction with 0.752 0.030 | 0.660 0.038 | 0.676 0.018

ordering (most distant)
characteristic prediction | 0.672 0.097 | 0.074 0.07 | 0.605 0.057
characteristic prediction | 0.674 0.036 | 0.651 0.088 | 0.683 0.035
with hierarchy correction
Leaf prediction TATOO | OTIS 0.035 | 0.680 0.020]
information utility J

Overall, Ecoawes’s performance on this database is inferior to the performance of the other programs. It
should be noted that neither the hierarchy correction scheme nor the ordering scheme are sufficient to mitigate
order effects; for example, in some of the runs performance as good as 98.8% accuracy were observed for problem
#1. No such performance levels were observed, on the other hand, for problems #2 or #3. Figure 8.1 shows one
of the classification trees generated from the training examples of the first problem. Similar trees are generated
for the other problems as well. The most characteristic attribute is the class. ‘The rest are not so importants
at the top level. This is probably one of the reasons for the inferior performance of Coswes. In particular,
the hierarchy shows that the characteristic prediction always stops at the first classification level since it finds
a characteristic value of the class attribute at that level.

Class description (# of EXs: 124)
Property Value P(vicl)

hastie = 20.548
1 0.824
1 0.500
3 0.379
1 0.363
30.347

Jacket_color 4 0.274

Class description (# of EXs: 63) Class description (# of EXs: 61)
Property Value P(vicl) P(clIv) Property Value P(vicl) P(cllv)

class 0 © 0.984 1.000 class 1 1,000 0.984
hastie 20.571 0.529 is.miling 1 0.587 0.523,
head.shape 1 0.508 0,711 hastie = 20.825 0.471

2 0,508 0.542 jacket_color 1 0.475 1.000
2 0.381 0.615 head_shape 3 © 0.426 0.703

jacket_color 4 0.365 0.676 holding 10.426. (0.619
dody_shape 3 0.349 0.468, body_shape 3 © 0.410 0.532
Figure 8.1: Two top levels of the classification hierarchy of the first problem

‘There are also other differences in the biases uted to select the MONK problems, and the biases that motivate Comwes's
design. For example, COBWES's use of probabilistic, polythetic classification is either not exploited by or in sharp contrast to the
representation biases implicitly behind the MONK problems.

8.4. Summary

In sum, we have applied EcosweB to the MONK problems. This system is unsupervised, and thus results
should be interpreted carefully. Our experiments show that the system does not perform as well as supervised
alternatives. This highlights the distinction between supervised and unsupervised systems and the different
performance tasks that should be used to evaluate systems of each paradigm.

Bibliography

(Fisher, 1987a] Fisher, D. H. (1987a). Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2(7):139-172.

(Fisher, 1987] Fisher, D. H. (1987b). Knowledge Acquisition Via Incremental Conceptual Clustering. PhD
thesis, University of California, Irvine, CA. Available as Technical Report 87-22, Information and Computer
Science, University of California, Irvine.

(Fisher, 1989] Fisher, D. H. (1989). Noise-tolerant conceptual clustering. In Proceedings of the Eleventh In
ternational Joint Conference on Artificial Intelligence, Detroit, MI, pages 825-830, San Mateo, CA. Morgan
Kaufmann.

[Fisher et al, 1991} Fisher, D., Xu, L., Carnes, R., Reich, Y., Fenves, S., Chen, J., Shiavi, R., Biswas, G., &
Weinberg, J. (1991). Selected Applications of an AI Clustering Technique to Engineering Tasks. Technical
Report 91-07, Computer Science, Vanderbilt University, Nashville, TN.

(Fisher and Pazzani, 1991] Fisher, D. H. (1991). Computational models of concept learning. In Fisher, D. H. J.,
Pazzani, M. J., and Langley, P., editors, Concept Formation: Knowledge and Experience in Unsupervised
Learning, pages 3-44, San Mateo, CA. Morgan Kaufmann.

(Gluck and Corter, 1985] Gluck, M. and Corter, J. (1985). Information, uncertainty, and the utility of cate-
gories. In Proceedings of the Seventh Annual Conference of the Cognitive Science Society, Irvine, CA, pages
283-287, San Mateo, CA. Academic Press.

[Michalski, Mozetic, Hong, and Lavrac, 1978] Michalski, R. S., Mozetic, I., Hong, J., and Lavrac, N. (1978). The
Multipurpose Incremental Generation of VL1 Hypotheses: the underlying methodology and the description of
programs ESEL and AQU1. Technical Report 867, Computer Science, University of Illinois, Urbana,

[Reich, 1991] Reich, Y. (1991). Building and Improving Design Systems: A Machine Learning Approach. PhD
thesis, Department of Civil Engineering, Carnegie Mellon University, Pittsburgh, PA. Available as Technical
Report EDRC 02-16-91.

(Reich and Fenves, 1991] Reich, Y. and Fenves, S. J. (1991). The formation and use of abstract concepts in
design. In Fisher, D. H. J., Pazzani, M. J., and Langley, P., editors, Concept Formation: Knowledge and
Experience in Unsupervised Learning, pages 323-353, San Mateo, CA. Morgan Kaufmann.

(Schlimmer and Fisher, 1986] Schlimmer, J. and Fisher, D. (1986). A case study in incremental learning. In
Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia, PA, pages 496-501, San
Mateo, CA. Morgan Kaufmann.

100

Chapter 9

Backpropagation on the MONK’s

Problems

Sebastian B. Thrun

Carnegie-Mellon University, School of Computer Science, Pittsburgh, PA 15213
e-mail: Sebastian. Thrun@cs.cmu.edu

101

102 S.B. Thrun

9.1 Introduction

This paper briefly describes the results of the plain backpropagation algorithm (1] obtained on the three MONK’s
problems. Backpropagation is a function approximation algorithm for multilayer feed-forward perceptrons based
fon gradient descent. Conversely to many symbolic learning algorithms, backpropagation learns functions by
nonlinear La-approximations. This technique has been successfully applied to a variety of real-world problems

speech recognition, bomb detection, stock market prediction ete

Although multilayer networks represent continuous functions, they are frequently restricted to binary classi-
fication tasks as the MONK’s problems. In all three cases we used the following architecture: ‘There were
17 input units, all having either value 0 or 1 corresponding to which attribute-value was set. ll input units
had a connection to 3 (first MONK’s problem), 2 (second problem) or 4 (third problem) hidden units, which
itself were fully connected to the output unit, An input was classified as class member if the output, which
is naturally restricted to (0,1), was > .5. Training took between ten and thirty seconds on a SUN Spare Sta-
tion for each of the three problems. On a parallel computer, namely the Connection Machine CM-2, training
time was further reduced to less than 5 seconds for each problem. The following results are obtained by the
plain, unmodified backpropagation algorithm. These results reflect what an unexperienced user would obtain
by running backpropagation on the MONK’s problems.

 training epochs accuracy

MONKS #1
MONK’s # 2
MONK’s #3

However, in the third training set, the error did never approach zero in all runs we performed, which indicated
the presence of noise ‘and/or a local minimum. This important observation led us to refine the results for the
third problem using weight decay! (1,2]. This wideley used technique often prevents backpropagation nets fiom
overfitting the training data and thus improves the generalization. With weight decay a = 0.01 we improved
the classification accuracy on this third set significantly and, moreover, the concept learned was the same for
all architectures we tested (ie, 2, 3, of 4 hidden units).

training epochs | accuracy
MONK’s # 3 with weight decay 105 97.2%

Backpropagation with weight decay learned the correct concepts for the first two MONK’s problems again
with 100% accuracy. These classification results clearly demonstrate the appropriatenes of the backpropagation
algorithm on problems as the MONK's problems.

References

{1] Rumelhart, D. E. and McClelland, J. Parallel Distributed Processing. Vol. I + I, MIT Press 1986

(2] Chauvin, Y. Dynamic Behavior of Contrained Backpropagation Networks. In Advances in Neural Information
Processing Systems 2, Morgan Kaufmann Publishers, 1990.
 Tin our implementation, weight decay waa realized by minimising the complexity term a - (7, ufy + JC, @f) in addition to
the conventional La-eror term over the training set, Here a isa constant factor, wiy denotes the weight frm init j to unit i, and

the threshold (bias) of unit

Backpropagation on the MONK's Problems 103

9.2 Classification diagrams

(a) Results of BACKPROP (with/without weight decay) on test set 1, Accuracy: 100.0%
(b) Results of BACKPROP (with/without weight decay) on test set 2, Accuracy: 100.0%

wh
el
el
el
el
=[
el
=l
el
e[
el
*l
el
el
e[
e[
e[
©

sl
el
el
ol
=[
e[
+[
+l
el
e[
el
el
el
e[
=[
e[
el
e

sl
el
el
ol
el
=[
»[
*[
el
e[
el
al
el
el
el
el
el
e

=

S.B. Thrun 104

3 8 z cs

3 2 ¢ g > g 3 3 = oO 3 3 2 5 a So
2 = g g 2 a 3 7 « =

5 Z < as = 3 ; 8 z 3 $ 3 - 2 3 3 a So
a = ry
§ g a = 2 2 s

sea 1 tes) Lose |

Backpropagation on the MONK’s Problems

9.3. Resulting weight matrices

MONKS's problem # 1: weights and biases

to-node
“rom-node Tiddeni__Widdea.2 _hidden3 | output

‘mput-l (head-shape round) | -6.503145 0.618412 1.660409,
input.2 (head-shape square) |] 1.210703 1.939613 2.972592
input.3 (head-shape octagon) || 5.356444 3.597301 1.266992
input.A (body shape round) || -6.692434 2.129635 2.032242
input.5 (body shape square) || 6.457639 0.864312 4.260765
input.s (body-shape octagon) |} 0.225053 -2.428098 1.839603
input_7 (is.smiling yes) 0.096995 0.131133 0.053480
input_8 (ia_smiling no) 0.011828 0.135277 0.107302
input-9 (holding sword) 0.076848 0.459903 ° -0.008368
input.10 (holding balloon) |} -0.016940 0.151738 0.148955
input 11 (holding flag) 0.087298 0.196521 0.023554
input-12 (jacket.color red) |] 5.735210 4.337359 0.865479

put 13 (jacket.color yellow) || -2.257168 -1.410376 0.494681
put 4 (jacket.color green) || -2.232287 -1.109825 0.382717
jput15 (jacket-color blue) |) -1.710642 1.452455 0.479513
put.16 (has.tie yes) 0.109696 0.434166 0.276487

input_17 (has-tie no) 0.111667 _ 0.131797 _o.g10714
Bias 0.486541 0.142983 0.525971

Tidden 9.24999
hidden 2 8.639715
hhidden.3 9.419991
Dias [3.670920

MONKS’ problem # 2: weights and biases

Tonode
Tom-node TiddenI__hidden.2 | output
Tnput-t (head-shape round) [| -4.290219 3.037149,
input2 (head-shape square) |] 1.400753 -2.577242
input 3 (head-shape octagon) |} 1.479862 -2.492254
input4 (body-shape round) |} 4.363966 3.835199
input.5 (body-shape square) |} 1.154510 -2.347489
input.s (body shape octagon) |) 1.542958 2.227530
input 7 (is.smiling yes) -3.396133 2.984736
input. (is-smiling no) 1,868955 -2.994535
input.9 (holding sword) 4.041057 4.239548
input.10 (holding balloon) 1.293933 -2.195403
input11 (holding flag) 1.160514 2.272035,

utA2 (jacket.color red) |] 4.462360 4.451742
nut13 (Jacket-color yellow) |] 0.749287 -1.869545

;put14 (jacket.color green) |} 0.640353 -1.727654
input-15 (jacket-color blue) |) 1.116349 -1.332642

input 16 (has.tie yes) “3.773187 3.290787
input.17 (has.tie no) 1.786105 “9.296139

Pias =LOTS762_-0.274980
Tidden “1038625
hidden 2 9.448544
Dias 3.031395

106 S.B. Thrun

MONKS's problem # 3: weights and biases (without weight decay)

to-node
From-node “Widder hidden? —hidden.3 Widen [output
input (head-shape round) [| 0.277334 -0.673423 -0.345908 0.121908 |
input_2 (head-shape square) 1.759524 1.150119 0.098689 0.329486 |
input-3 (head-shape octagon) || -1.328410 0.941278 0.059910 0.017674,
input-a (body-shape round) | 3.466870 -0.022787 0.222484 0.214138,
input.5 (body_shape square) 2.460525 3.988668 0.021681 0.235819
inpat.s (body-shape octagon) |) 6.622062 -3.306938 0.125044 -0.134328
input.7 (is-smiling yes) 1.615026 0.224221 -0.917908 “0.594920

input 8 (is_smiling no) “1493791 0.183452 -0.326599 0.361663
input.9 (holding sword) 0.780008 -0.786854 0.072768 0.507106
input-10 (holding balloon) |} 0.733984 0.260856 0.004670 0.422573
input-11 (holding flag) 0.415208 1.410443 -0.023262 0.325766
input-12 (Gacket color red) |} -3.263737 1.324418 0.028837 -0.154449
input.13 Gacketcolor yellow) |] -1.996538 1.518800 0.951912 0.044775,
input-14 Gacketcolor green) |] -0.492256 0.183902 0.057546 -0.058255
imput-15 (jacket.color blue) || §.090627 “3.446529 -0.082472 0.191738
input_16 (has.tie yes) 0.897500 -0.717589 0.314088 0.099872

input 17 (has.tie no) 0.502348 0.954327 _-0.074588_-0.329295
ia 0.564889 0.248641 0.484047 —-0.227007 |
hidden i “TT 58008

hidden 2 e.serssa |
hidden 3 0.117112
hidden_4 0.064650
bias 7.191085

MONKS's problem # 3: weights and biases (with weight decay)

to-node.
rom-node Wddent hidden? [output
input-l (head-shape round) [| -0.020477 0.008986
input-2 (head-shape square) |} -0.976094 -0.264778
input.3 (head shape octagon) | -0.051924 0.028672
input-a (body shape round) |} 0.991798 0.991750,
input.5 (body shape square) |} 1.031170 1.027708 |.
input-6 (body-shape octagon) |} -1.284263 -1.279808
input-7 (ia. smiling yes) 0.303040 0.914212
inpat.8 (is-smiling no) -0.216766
input.9 (holding sword) -0.064305
input_10 (holding balloon) -0.257165
input_t1 (holding flag) -0.131509 -0.122790
input 12 (jacket.color red) 1.001415 1.004192
input-13 (jacket.color yellow) || 0.898066 0.896869,
input-14 (jacket.color green) || 0.670929 0.673218,
input.15 (jacket.color blue) =1.280272 -1.272798
input.16 (has.tie yes) 0.354472 -0.355268
input.17 (has.tie no) 0.040973 _ 0.037927
ia 0.519686 0.340492

Tiddea i Tres
hidden 2 1.759077
Bias “1501497

Chapter 10

The Cascade-Correlation Learning

Algorithm on the MONK’s Problems

Scott E. Fahlman

Camegie Mellon University, School of Computer Science, Pittsburgh, PA 15213
e-mail: Scott.Fahlman@cs.cmu.edu

107

108 S.E. Fahiman

Output Units

Hidden Unit 2

Hidden unit 1

Inputs

41

Figure 10.1: see text for details

10.1 The Cascade-Correlation algorithm

Cascade-Correlation (Fahlman, 1990] is a supervised neural network learning architecture that builds a near-
minimal multi-layer network topology in the course of training. Initially the network contains only inputs,
output units, and the connections between them. This single layer of connections is trained (using the Quickprop
algorithm (Fahlman, 1988]) to minimize the error. When no further improvement is seen in the level of error,
the network’s performance is evaluated. If the error is small enough, we stop. Otherwise we add a new hidden
unit to the network in an attempt to reduce the residual error.

Tocreate a new hidden unit, we begin with a pool of candidate units, each of which receives weighted connections
from the network's inputs and from any hidden units already present in the net. The outputs of these candidate
units are not yet. connected into the active network. Multiple passes through the training set are run, and each
candidate unit adjusts its incoming weights to maximize the correlation between its output and the residual
error in the active net. When the correlation scores stop improving, we choose the best candidate, freeze its
incoming weights, and add it to the network. This process is called “tenure.” After tenure, a unit becomes a
permanent new feature detector in the net, We then re-train all the weights going to the output units, including
those from the new hidden unit. This process of adding a new hidden unit and re-training the output layer is
repeated until the error is negligible or we give up. Since the new hidden unit receives connections from the old
ones, each hidden unit effectively adds a new layer to the net, (See figure 1.)

Cascade-correlation eliminates the need for the user to guess in advance the network's size, depth, and topology.
A reasonably small (though not minimal) network is built automatically. Because a hidden-unit feature detector,
once built, is never altered ot cannibalized, the network can be trained incrementally. A large data set can be
broken up into smaller “lessons,” and feature-building will be cumulative.

Cascade-Correlation learns much faster than backprop for several reasons: First only a single layer of weights
is being trained at any given time. There is never any need to propagate error information backwards through
the connections, and we avoid the dramatic slowdown that is typical when training backprop nets with many
layers. Second, this is a “greedy” algorithm: each new unit grabs as much of the remaining error as it can. Ina
standard backprop net, the all the hidden units are changing at once, competing for the various jobs that must
be done—a slow and sometimes unreliable process.

The Cascade-Correlation Learning Algorithm 109

10.2 Results

For all these problems I used the standard Common Lisp implementation of Cascade-Correlation on a Decstation
3100. This code is public-domain and is available to outside users via anonymous FTP. Contact sef@cs.cmu. edu
for details.

T used the same parameters in all of these tests. Here is the printout of those parameters:

[Sig0W O10 "Wing 1.00 winrar. >
Mu 2.00 OEps 1.00 ODey 0.0000 OPat 20, OChange 0.010
IMu 2.00 Eps 1.00 Tey 0.0000 [Pat 15 [Change 0.030
Utype ‘GAUSSIAN Otype ‘SIGMOID RawErr NIL Pool 8
(train 100 100 10)

Monk #1:

After 95 epochs, 1 hidden unit: 0 Errors on training set. 0 Errors on test set.
Elapsed real time: 5.11 seconds

Monk #2:

Alter 82 epochs, 1 hidden unit: 0 Errors on training set. 0 Errors on test set.
Elapsed real time: 7.75 seconds

Monk #3:

After 259 epochs, 3 hidden units: 0 Errors on training set. 40 errors on test set (i.e. accuracy 95.4%).
Elapsed real time 12.27 seconds.

‘Training and test-set performance was tested after each output-training phase. The minimum test-set error
was observed after the initial output-training phase, before any hidden units were added. (Not surprising, since
with no noise this problem is linearly separable.) Using any sort of cross-validation system, this is where the
algorithm would stop.

At that point, the results were as follows:

‘Training: 7 of 122 wrong:

: RND 2¥ : GRN Output: T
RND ¥ : GRN Output: T
SQR x YEL Output: T

i: SQR ¥ GRN Output: T
Head: SQR ¥ GRN Oueput: NIL
Head: OCT 2¥ GRN Output: NIL
Head: OCT ¥ BLU Output: NIL

Test: 14 of 432 wrong:

110 S.E. Fablman

: RND GRN : NIL
RND GRN NIL

RND GRN NIL
i: RND : GRN 2 NIL
: SQR GRN NIL
i: SQR GRN NIL
i: SQR Holding: SWD : GRN NIL
: SQR Holding: SWD : GRN NIL
i SQR Holding: SWD : GRN NIL
SQR Holding: SWD : GRN NIL
oct Holding: SWD GRN NIL
oct Holding: SWD GRN NIL
oct Holding: SWD : GRN : NIL.

: OCT Holding: SWD : GRN NIL

So on the test set, performance is 96.7%

By turning up the OUTPUT-DECAY parameter to 0.1 (an odd thing to do, but sometimes useful when the
training set is too small for good generalization), we can do a little better. After the initial output-training
phase:

‘Training: 8 of 122 wrong:

: RND RND Y Output: T
RND SQR x Output: T
SQR SQR ¥ Output: T
SQR SQR ¥) Output: T
SQR SQR Y Holding: FLG Output: T

: SQR oct Y Holding: SWD Jacket: GRN- Tie: Y Output: NIL
Head: OCT oct Y Holding: SWD Jacket: GRN- Tie: N- Output: NIL
Head: OCT : OCT :Y Holding: SWD Jacket: BLU Tie: Y Output: NIL

Test: 12 of 432 wrong:

Head: RND Body: OCT Smile: ¥ Holding: SWD Jacket: GRN- Tie: ¥ Output:
Head: RND OCT Smile: Y Holding: SWD Jacket: GRN- Tie: N- Output:
Head: RND OCT Smile: N SWD Jacket: GRN Tie: Y Output:

: BND OCT Smile: N SWD Jacket: GRN Tie: N Output:
SQR OCT Smile: ¥ SWD Jacket: GRN Ti Output:
SQR OCT Smile: ¥ SWD Jacket: GRN Tie: N Output:

Head: SQR OCT Smile: N SWD Jacket: GRN- Tie: Y Output:
Head: SQR OCT Smile: N SWD Jacket: GRN Ti Output:

Head: OCT oot SWD Jacket: GRN Tie: ¥ Output:
Head: OCT : OCT SWD Jacket: GRN Tie: N- Output:

Head: OCT oct SWD Jacket: GRN- Tie: Y Output
Head: OCT oct SWD Jacket: GRN- Ti Output:

Score on test set: 97.2%

‘We can see here what the problem is: All the bad test-set cases are Green and holding a sword, so they should
be true. But this positive value is not strong enough to offset the negative weight from Octagonal body.

In the training set, there are only two examples showing the green-sword combination overpowering an octagonal
body, and that is apparently not enough to make the point. There are 11 cases showing that octagonal/sword
should be negative and 8 cases showing that octagonal/green should be negative.

If we switch the training and test set, we see how easy it is to solve this problem in the absence of noise and

small-sample fluctuations.

Switching the training and test set: After 16 epochs and 0 hidden units:

Training: 0 of 432 wrong. Test: 6 of 122 wrong.

RND Body: RND Smile: ¥ Jacket: GRN Tie: ¥ Output: T

Head: RND Body: SQR. Jacket: GRN Y Output: T
Head: SQR_ Body: SQR Jacket: YEL Y Output: T
Head: SQR Body: SQR Jacket: GAN Y Output: T
Head: SQR Body: SQR Jacket: GAN Tie: N- Output: T.
Head: OCT Body: OCT Holding: SWD Jacket: BLU Tie: Y Output: NIL.

These, I believe, are exactly the noise cases deliberately inserted in the original training set. Note that three of
these noise cases are

Square/Square/Yes => NIL (when T is correct)

‘This explains the other two error cases observed in the first run of this problem. If we look at square/square/yes
cases in the training set, NIL cases outnumber T cases, 5 to 3,

Bibliography

(Fahiman, 1988] Fahlman,S. E. (1988) “Faster-Learning Variations on Back-Propagation: An Empirical Study”
in Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann.

[Fahlman, 1990] Fahlman, S. E. and C. Lebiere (1988) “The Cascade-Correlation Learning Architecture” in D.
S. Touretzky (ed.), Advances in Neural Information Processing Systems 2, Morgan Kaufmann

ul

S.E. Fahiman 2

iiagrams ‘ion di 3 Classificat: 10

(a) Training set. #3 first run, Accuracy: 96.8%
(b) Training set #3 second run, Accuracy: 97.2%

y Ey

1

