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Abstract

This report summarizes a comparison of different leaming techniques which was performed at the 20
European Summer School on Machine Leamning, held in Belgium during summer 1991. A variety of sym-
bolic and non-symbolic leaming techniques - namely AQ17-DCI, AQI7-HCI, AQI7-FCLS, AQ14-NT,
AQ15-GA, Assistant Professional, mFOIL, IDSR, IDL, ID5R-hat, TDIDT, ID3, AQR, CNZ, CLASS-
WEB, ECOBWEB, PRISM, Backpropagation, and Cascade Correlation - are compared on three classifi-
cation problems, the MONK s problems.

The MONK's problems are derived from a domain in which each training example is represenied by six
discrete-valued auributes. Each problem involves learning a binary function defined over this domain,
from a sample of training examples of this function. Experiments were performed with and without noise
in the training examples,

One significant characteristic of this comparison is that it was performed by a collection of researchers,
each of whom was an advocate of the technique they tested (often they were the creators of the various
methods). In this sense, the resulis are less biased than in comparisons performed by a single person advo-
cating & specific learning method, and more accurately reflect the generalization behavior of the leamning
technigues as applied by knowledgeable users,
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Once upon a time, in July 1991, the monks of Corsendonk Priory were faced with a school held in
their priory, namely the 2% Eyropean Summer School on Machine Learning. After listening more
than one week to a wide variety of learning algorithms, they felt rather confused: Which algorithm
would be optimal? And which one to aveid? As a consequence of this dilemma, they created a
simple task on which all learning algorithms ought to be be compared; the three WONK'S probiems.

This report summarizes the results.
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Results — a short overview

l [ #1 [ #2 | #3 |
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2 §.B. Thrun, T. Mitchell, and J. Cheng
1.1 The problem

The MONK’s problems rely on the an artificial robot domain, in which robots are described by six different
attributes [Wnek, Sarma, Wahab and Michalsks, 1991}

zy: headshape & round, squars; actagon
z3: bodyshape € round, square, octagon
3 issmiling £  yes, no

z4: holding & sword, balloon, fiag
zs: jacket.color € red, yellow, green, blue
zg: has_tie & yes, no

The learning task is a binary classification task. Each problem is given by a logical description of a class,
Robots belong either to this class or not, but instead of providing a compiete class deseription to the learning
problem, only a subset of all 432 possible robots with its classification is given. The learning task is then to
generalize over these examples and, if the particular learning technique at hand allows this, to derive a simple
class description.

s Problem M;:
(head_shape = body-shape) or (jacket_color = red)
From 432 possible examples, 124 were randomly selected for the training set. There were no misclassifi-
cations.

¢« Problem Ma:
exactly two of the six attributes have their first value.
(E.g.: body shape = headshape = round implies that robot is not smiling, holding no sword, jacket_color
is not red and has no tie, since then exactly two (body.shape and head shape) atiributes have their first
value) From 432 possible examples, 160 were randomly selected. Again, there was no noise.

+ Problem Mjy:
(jacket.color is green and holding a sword) or (jacket.color is mot blue and body_shape is

not octagen)
From 432 examples, 122 were selected randomly, and among them there were 5% misclassifications, L2,
noise in the training set.

Problem 1 is in standard disjunctive normal form and is supposed to be sasy learnable by all symbolic learning
algorithms as AQ and Decision Trees. Conversely, problem 2 is similar to parity problems. It combines different
attributes in a way which makes it complicated to deseribe in DNF or ONF using the given attributes only.
Problem 3 is again in DNF and serves to evaluate the algorithms under the presence of noise.

1.2 Visualization

All eontibutions in this report have two things in common: firstly, they refer to the same problems— the MONKs
problems -, and secondly, most results are visualized by a two-dimensional diagram. Due to the difficulties in
representing a six-dimensional space on a conventional sheet of paper, the plot is unfolded, as might be found in
[Wnek, Sarma, Wahab and Michalski, 1991]. The resulting diagrams of training and testing sets may be found
below.
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In all training set diagrams, positive examples are marked by “#" and negative ones by “~". Misclassifications,
as in the presence of noise, are indicated by boxes. Correspondingly, in all test sets positive examples are marked
by “#7 while empty felds indicate negative examples,

In turn, we will plot the results of all learning algorithms in the same way: # indicates that the learning
algorithm classifies the entity as a positive member, and a blank as a non-member. However, an additional
square will indicate misclassifications, i.e: if the classification obtained by the algorithm s wrong.

Acknowledgements

The authors thank Walter Van de Welde for the excelleni organization of 2™ European School on Machine
Learning, at which this comparison was created. We would also like ta thank all participants in this comparison,
including Bruno Roger.
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M,: Training set(124 examples, no noise) and test set
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Mas: Training set (169 examples, no noise} and test set
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Mj: Training set (122 examples, 6 misclassifications due to noise) and fest set

(jacket _color is green and holding a sword)

or (jacket_color is not blue and body.shape is not octagon)
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% J.Bala, E.Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Waek, J. Zhang
2.1 Introduction

This chapter describes briefly results from applying various AQ learning programs to the MONKS' problems.
The MONKS' problems are concerned with learning concept descriptions from examples, All examples come
from the same event space, which spanz 8 multiple-valued atiributes. The sizes of the value sets of the attributes,
«1, %2, ..., xB,are 3, 3,23, 4, and 2, respectively. Consequently, the space consists of the total of 3x3x2xlxdx2
= 432 possible events (examples].

There are three different MONKS’ problems. As deseribed in Chapter 1, the problems differ in the type of the
target concept to be learned, and in the amount of noise in the data. The training and testing sets of examples
were provided by the creators of the problems, Thrun, Mitchell and Cheng. A listing of all the data is in the
Appendix. Here is a brief summary of the data for each problem.

« Problem 1. There were 124 training examples, which represented 30% of the total event space (62 positive
and 62 negative), The testing examples were all possible examples (218 positive and 216 negative}.

« Problem 2. There were 152 training examples, which represented 40% of the total event space (105
positive and 64 negative). The testing sxamples were all possible examples {190 positive and 142 negative).

« Problem 3. There were 122 training examples, which represented 30% of the total event space (62 positive
and 60 negative). The testing examples were all possible examples (204 positive and 228 negative), We
were informed that 5% of the examples were misclassified.

The following AQ programs were used in the experiments:

o AQI7-DCI (a version of AQ program with data-driven constructive induction)

AQI7-HCI (a version of AQ program with hypothesis-driven constructive induction)

s AQ15-GA (a version of AQ program combined with a genetic algorithm}
AQ15-FCLS (a version of AQ program otiented toward learning flexible concepts)

s AQL4-NT (a version of AQ program criented toward noisy data)

Rules generated by different programs were tested using the ATEST program that computes a confusion matrix
{Reinke, 1984). The praogram computes the so-called consonance degree between an unknown example and
the rules for each decision class. The output from this program includes numerical evaluations of the the
accuracy of the rules based on the percentage of the testing examples correctly classified (by choosing the rule
that best fits the example), and the percentage of examples precisely matched by the correct decision rule..
These percentages are output by ATEST as OVERALL % CORRECT- FLEX-MATCH and OVERALL %
CORRECT-100% MATCH, respectively.

Details of these programs, and of the AQ algorithm underlying these programs are given in Section 2.3. I
chould be noted that results are not always presented for each of these programs as applied to each of the
three problems. As indicated above, these programs derive from the same basic method, each adding features
appropriate to specific types of problems. The different programs derived basically the same rule for the first
problem; the ones shown here are the ones whose knowledge representation schema allowed for the most elegant
presentation of the output. We felt that for the sake of brevity and emphasis on the matching of the programs
different features with the types of problems to be solved, we should present only the results of the programs
better suited for the given type of problem. For example, we felt that there was no reason to apply AQI4-NT,
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a program with special features to cope with noisy data, to Problem 2, a problem in which data were without
noise, and the testing events were 100% correctly classified by the rules obtained by other programs. For the
same reason, we did apply the data-driven constructive induction program AQ17-DCI to Problem 3, because
it is a strictly data driven method, and as such is less suitable for leaming from noisy data than other AQ

programs.

2.2 Results for the 1st problem (M;)

2.2.1 Rules obtained by AQ17-DCI

These ars the rules obtained by AQ17-DCI, a version of the AQ program that employs data-driven constructive
induction. The results inciude one rule for Class 0 (that represents positive examples of the concept), and one
rule for Class 1 (that represents the negative examples):

Class O:
Rule 1 [jacket_color > 1] & [head_shape <> body_shape] (totsl:62, unique:62)

Class 1:
Rule 1  [head_shape=body_shape]- (total:41, uniqua:33)
Rule 2 [jacket_color=1] {total:29, unigque:31)

Expressions in [ ] denote individual conditions in a rule. Values 1, 2,3 and 4 of the “jacket_color” attribute
denote red, yellow, green, and blue, respectively. The body-shape and the head-shape attributes had values
l-round, 2-square, and 3-octagon. In the above tules, “total” means the total number of training examples of
the given class covered by the rule, and “unique” means the number of training examples covered by that rule
only, and not by any other rules.

There is only one rule for Class 0, and there two rules for Class 1. The latter means that if any of the rules is
matched by a given instance, then that instance is classified to Class 1. A set of such rules is logically equivalent
to a disjunction of conjunctions. The syntax of the rules is defined formally according to the variable-valued
logic caleulus VL1. Individual rules correspond to “complexes” in VLL.

The results of applying the rules to the testing exampiaa are presented below.

RESULTS
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH:  100.00

where:

OVERALL % CORRECT FLEX MATCH means the percentage of the correetly classified examples within the
total set of testing examples, using a flexible matching function (see Reinke, 1984), and OVERALL CORRECT
0 100% MATCH means that the percentage of correctly classified examples that matched the rules exactly.

The number of testing events satisfying individual rules in the correct class description is given in the table
below:
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RULES

i1 R2
cLass O 215
CLASS 1 144 o8

2.2.2 Rules obtained by AQ17-HCI

These are the rules obtained by AQLT-HCI, a version of the AQ program that employs hypothesis-driven
constructive induction. The results include one rule for Class 0 that represents positive examples of the concept,
and one rule for Class 1 that represents the negative examples:

Class O:
Rule 1  [Negl7=falsel (tatal:82, unique:6I)

Class 1:
Rule 1 [Posif=falsa] (total:62, unique:62)

where Negl7 and Posl6 are attributes constructed from the original ones, or intermediate ones, as defined below
(these rules, as one can check, are logically equivalent to the AQ1T-DCI generated rules)

g01 <:: [head_shape=i] k [body_shape=2,3] & [jacket_coler>1]
205 <:: [head_shape=2] & [body_shape=1,3] & [jacket_color>1]
<08 <:: [head_shapew3] & [body_shape=1,2] & [jacket_color>i]
¢10 <:: [head_shape=i] & [body_shape=i]

c12 <:: [jacket_color=1]

213 ¢:: [head_shapew2] & [body_shape=2]

215 <:: [head_shape=3] & [body_shape=3]

Pos <:: [ci0=false] & [cl2=false)] k [ci3=false] % {c15=falsal

Heg <:: [cOi=false] B [cOS=falaa] & [cOB=false]

TEST RESULTS - SUMMARY
OVERALL % CORRECT FLEX MATCH: 100,00
OVERALL % CORRECT 100% MATCH:  100.00

Number of testing events satisfying individual rules in the correct class description:

RULES

L §
CLASS © 215
cLass 1 2186

Other programs either were not used on this problem, or generated similar results.
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2.3 Results for the 2nd problem (M)

2.3.1 Rules obtained by AQ17-DCI

The rules below were obtained by AQI7-DCI, which is capable of generating all kinds of new attributes from
the original attributes, For the problem at hand, the program found that a new attribute that expresses the
number of variables in the learning examples that have some specific value is highly relevant to this problem.
Such an attribute is assigned by the program the name #VarEQ(x), which means “the number of variables with
value of rank & (in their domain)” in an example. The lowest value in the domain has rank 1, the next lowest
has rank 2, etc. In this case, the relevant attribute was #VarEQ(1). Based on this attribute, the program
constructed appropriate decision rules. There were two one-condition rules for Class 0, representing the positive
examples of the concept, and one rule for Class 1 that represents the negative examples. The rule for Class 1
is logically equivalent to the negation of the union (disjunction) of the rules for Class 0.

Claas 0:
Rulae 1 [#varEQ(1)>=3]
Rule 2 [#VarEQ{1i)<w=i]

Class 1:
Rule 1 [#VarEQ(1)=2]

The rules say that the number of variables that take the lowest value from their domain is 1 or greater than 2
(i.e, not equal to 2.

The results of applying the rules to the testing examples were;

RESULTS
OVERALL % CORRECT FLEX MATCH: 100.0
OVERALL % CORRECT 100% MATCH: 1000

2.3.2 Rules obtained by AQ17-HCI

There are 4 top level rules for Class 0 (positive examples), and 6 top level rules for Class 1(negative examples):

Clasas 0:
Aule 1 [PosT3=true] (total:30, unique:49)
Rule 2 [cid=false] & [c26=false] k [c53=false] & [c67=falae] &
[c72=false] & [MegT4=false] (total:38, uniqua:6)
Rula 3 [holding=2,3] & [cBefalse] & [c20=false] & [Negid=false] {total:32, unique:S)
Bule 4 [head_shape=2] & [has_tie=2] & [c44=falae] &
[c50=falee] k [HegTé=falze] (total:6, unigue:2)

Class 1:
Rule 1 [(HegTd=true] {total:43, unique:30}
Bule 2 [jacket_color=2,3,4] k& [has_tie=1] & [c60=true] & [PoaV3=false] (total:i7, unique;d}
Aule 3 [head_shape=2,3] & [body_shape=2] k [cZ8=falsa] & [Fos73sfalse] (total:id, unigue:7T}
Rule 4 [body_shape=3] k [c4B=true] k [cé6=true] (total:4, unique:2}
Rule 5 [jacket_coler=3] k& [cd3=true] ¥ [c52=false] & [c53=falsa]

[c55=falas] k [cE9=true] & [PosTi=false] (total:4, unigue:2)
Rule 6 [body_shape=3] & [cOwfalse] & [ci0=true] & [c23=truel & [c3Z=true] (total:3. unique:1)
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Attributes “ci, i=2..72" “Pos73," and “Neg74” were constructed during the learning process, The following
were relevant to the discovered rules:

c2
<4
ch
ch
T
cd
cld
cid
18
clé
cl?
cia
c20
c2i
c22
o322
o268
c28
caz
o ke
237
38
39

e ma aw oaw

[

hhhf‘\hhﬁhhﬁhn.ﬂ\.ﬂhnﬂn.&n!\h

A

PosT3

NegT4

[jacket_colore=l, 4]

[body_shape=2,3] & [is_smiling=2]
[head_shape=2,3] & [ia_==iling=2]
[head_shape=?,3] k [body_shapa=2,3]
[holding=1,2] & [jacket_color=1,3,4]
[head_shape=1,3] & [jacket_colorw=2,3, 4]
[holding=1,%] & [jacket_color=2,3,4]

i [jacket_color=2,3,4] & [has_tie=Z]

: [ts_smiling=1] & [jacket_color=2,3,4]

: [holding=2,3] & [has_tie=2]

: [holding=2,3] & [jacket_color=2,3,4]

vy [is_smilingm?] k& [jacket_.color=2,3,4]

: [jacket_color=2,3,4] & [has_tie=1]

:1 [body_shape=2,3] & [holding=2,3]

: [is_ smiling=2] & [holding=1,2]

: [holding=1,3] & [jacket_color=2,3,4]

: [head_shape=2,3] & [jacket _color=2,3,4]
: [body_shape=1,3] & [jacket_color=2,3,4]
: [head_shapes?,3] & [jacket_color=1,2,3]

[head_shape=2,3] & [has_tie=2]

¢+ [is_smiling=2] & [holding=2,3]
: [e2i=false] & [c3T=falsa]
t1 [ch=true] & [ciT=trua]

2

A AN AR A A AN A A A A A A AR AA A A A A

cdl
42
c43
c44
cdf
caT
c48
49
c50
c52
cB3
c55
<58
ch9
<60
ciBl
=1
B8
<67
cB8
B3
cTa
ef2 €43

o ow

"

¢ [e5=trua] & [ci7=trual

: [ei5=false] k& [c28=false]

:: [holding=2,3] & [c39=falsal

: [body_shape=2,3] & [ec309=false]

:: [holding=2,3] & [jacket_color=2,3,4]

[cis=falsa]l & [cio=falsa]

: [eT=falsa] & [c3%=false]

: [jacket_color=1,2,4] & [cT=falsa]
: [cl7=falase] & [c3d=true]

ti [bedy_shape=2,3] & [c22=falze]

i1 [jacket_color=2,3,4] & [cis=false]
: [jacket_coler=2,3,49] & [e21=true]
:: [holding=1,2] & [cid=falaa]

1t [holding=1,3] & [cl4=false]

: [jacket_color=2,4]

: [cag@=falaa] & [c49=falze]

:: [body_shape=2,3] & [jacket_color=2,3,4]
: [c20=false] & [c39=falsal

[jacket_color=1,2,3] k [c4d=trua]
[c38=falea] & [cd9=true]
[c40=falee] & [cSS8=false]

: [ci6=falsa] & [c55=falsa]

[jacket_color=2,3,4] & [c18=false]
[jacket_colar=i,2,3] & [c3T=trusl

¢i: [ed=false] & [c16=falsal & [c33=false] & [ciS=falase] & [cdG=false] or
[c15=false] & [c¢3=falae] & [ciT=false] & [c6B=falme] or
[body_shape=1,2] & [c21i=false] & [c4i=trua] & [cad=false] & [cB5=true] & [c67=false] or

{c33=trual] & [cE0=trua]

<:: [cd=false] & [c4Z=true] k [c56=false] k& [c65=true] & [cE8=true] ar

[e2wfalae] k [c4=false] & [cl6=false] & [c17=true] & [c26=trus] or
[is_smiling=2] & [holding=2,3] & [(cl4=false] & [c4i=true] &
[cd3mtrue] & [cS9=falsa] & [c69=false] & [cTO=false] or

[has_tie=2] & [cS=true] & [cd4m=false] k [cBi=false]

OVERALL

TEST RESULTS - SUMMARY
RRECT FLEX MATCH:
OVERALL % CORRECT 100% MATCH:

493.06
86.57

The akiove summary of the resulta shows that the rules generated by AQIT-HCI approximate quite well the
concept in Problem 2 although they use only logical operators. This result is quite interesting because concepts
such as the one in Problem 2 are among the most difficult to learn using solely logic-based inductive learners
{classical rule learning or decision tree learning programs). This result demonstrates the power of hypothesis-
driven constructive induction.

Mumber of testing events satisfying individual complexes in the correct class description:

CLASS
CLASS

RULES

0
1

R1i R2 R3 R4 R5 RES6
232 B4 54 12
™ 44 32 10 s 4
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2.3.3 Rules obtained by AQ17-FCLS

These are the rules obtained by AQ17-FCLS, a version of the A{} program that learns flexible concepls by
generating rules that permit partial matching. The threshold parameter indicates the minimum percentage of
the individual conditions in the rule that must be satisfied for the rule to apply. The tesults include two rules
for Class 0 that represent positive examples of the concept, and 18 rules for Class 1 that represent the negative
examples. The discovered rules fully encompass Class 0, but they failed to get a complete grasp of the concept
of Class 1:

Clasa 0:
Rule 1 - [head_shape = 1] & [body_shape = 1] & [i=_=xiling = 1] &
[helding = 11 & [jacket_color = 1] & [has_tie = 1]
with THRESHOLD = 50 %
(Total positive examples coverad: 84)

This rule says that three or more variables must be equal to 1 (recall that for “is-smiling” and “has-tie”
attributes, the value 1 means “yes” and value 2 means “no” ; for attibrute “holding” the value | means
“sword,” ¥ means “balloon,” and 3 means “flag”).

Rule 2 [head_shaps = 2 , 3] & [body_shaps = 2 , 3] & [is_smiling = 2] &
[holding = 2 , 3] k [jacket_color =2 , 3 , 4] & [has_tiae = 2]
with THRESHOLD = 83 % (5/8)
(Total poaitive examples covered: 41)

This rule says that five or six out of six variables must be greater than 1, or equivalently, that at most one
variable can be equal to 1. Thus the disjunction of these two rules above means that the number of variables
which have value | cannot be equal to 2.

These rules classified 100% all the examples of Class 0.

Class 1.

Since the current program does nol have the ability fo express the negation of the above two rules for Class
to program generaled many “light-weight” rules to cover all ezamples of Class 1. The overall performance using
the flezible motch was not 100% because in some cases when an ezample matched equally well the rules for boih
classes, an incorrect class was chosen. In the nert version of the program, we will include the missing negation
aperatar,

Rulae 1 [is_smiling = 1] & [holding = 2 , 3] & [jacket_coler = 2] &
[has_tie = 2]
with THRESHOLD = 100 % (total positive examples covered: 8)

Rule 2 [head_shape = 2 , 3] & [body_shape = 2 , 3] & [is_smiling = 1] &
(holding = 2 , 2] & [jacket_color =2, 3 , 4] & [has_tie = 1]
with THREESHOLD = 100 % - (total positive examples covarsd: 3)

Rule 3 [head_shaps = 2 , 3] & [body_shaps = 2 , 2] & [is_smiling = 2] &
(holding = 2 , 3] & [jacket_color = 2] & [has_tie = 2]
with THRESHOLD = 100 ¥ (total positive examples coversd: T}

Bule 4  [head_shape = 3] & [body_shape = 1] & [is_smiling = 1] &
Cholding = i] & [jacket_color = 3] & [has_tie = 2]
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with THRESHOLD = 83 % {total positive examples covered: 5}

fule S [head_shape = 1] & [is_swiling = 1] & [holding = 2 , ] x
[jacket_color = 3 , 4] & [has_ties = 2]
with THRESHOLD = 100 % (total positive sxamples covered: 5)

Rule & [head_shape = 3 , 3] k [body_shape = 1] & [is_smiling = 2] &
[holding = 1 , 2] & [jacket_color = 2]
with THRESHOLD = 100 % {total positive examples covered: 4)

Rule 7 [head_shape = 1] k [body_shape = 2 , 3] & [is_smiling = 2] k
[holding = 2 , 3] k& [jacket color =2 . 3, 4] & [has_tie = 1]
vith THRESHOLD = 100 % (total pomitive examples coversd: 5}

Rule B [head_shape = 2 , 3] & [is_smiling = 2] & [jacket_color = | B
[has_tie = 2]
gith THRESHOLD = 100 % (total positive examples covared: 1)

Rule 9 (haad_shape = 2 , 3] &k [body_shapa =2 , 3] k [is_smiling = 2] &
[holding = 1] & [jacket_color = 2 , 3, 4] & [haz_tie = 1]
with THRESHOLD = 100 % (total positive examples covered: 4)

Rule 10 [head_shapa = 1 , 3] & [body_shapa = 1] & [helding = 1 , 7] &
[jacket_color = 4] & [has_tie = 2]
with THRESHOLD = 100 ¥ (total pesitive sxamples covered: 3)

Fula 11  [head_shape = 2] k [body_shapa = 2] & [is_smiling = 1] &
[holding = 1] & [jacket_coler = 2 , 3 , 4] & (has_tie = 2]
with THRESHOLD = 100 X {(total positive examples coverad: 5)

Aule 12 [head_shape = 1 , 2] & [body_shape = 3] & [holding = 2 , 3] &
[jacket_color = 1] & [has_tis = 2]
with THRESHOLD = 100 % (total poeitive examples coverad: 2)

Rule 13 [head_shape = 1] & [body_shaps = 1] & [is_smiling = 2] &
[holding = 3] & [jacket color = 2] & [has_tie = 2]
with THRESHOLD = 100 % {total positive axamples covered: 1)

Rula 14 [head_shape = 1] & [body_shape = 3] & [is_smiling = 7l &
[helding = 1] & [jacket_coler = 1 , 3] & [has_tia = 2]
with THRESHOLD = 100 % {total positive examples coverad: 1)

Rule 15 [head_shaps = 1] & [body_shape = 2] & [is_smiling = ] &
[holding = 2 , 3] & [jacket_color = 1] & {has_tie = 2]
with THRESHOLD = 100 % (total positive examples coverad: 1)

Rule 16 [head_shape = 2] & [body_shaps = 1] k& [i=_smiling = 1] &
[holding = 3] k [jacket_color = 2 , 3]
with THRESHOLD = 100 % {total poaitive examples covered: 2)

Rule 17  (head_shape = 3] k [body_shape = 2] & [is_smiling = 1] &
[holding = 2] & [ jacket_color = 1 . 2]
with THRESHOLD = 100 ¥ (total positive sxamples covered: 2)

Rula 18 [head_shape = 2 , 3] & [body_shapa = 1] & [ia_smiling = 2] &
[holding = 2 , 3] & [jacket_celor = 2, 3, 4] & [has_tis = 1]
with THRESHOLD = 100 % (total positive sxamples coversd: 3)
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TEST RESULTS - SUMMARY

The percentage of correctly classified testing events:

The percentage of correctly classified testing events in Class 0:
The percentage of correctly classified testing events in Class 1:

The total number of rules in the descriptions:

The total number of conditions in the descriptions:

02.6%

100.0%
85.2%

2 for Class 0
18 for Class 1,
110

2.4 Results for the 3rd problem (Mj)

2.4.1 Rules obtained by AQ17-HCI

Below are the rules obtained by the hypothesis-driven constructive induction method:

Glass O:
Rule
Rula
Rule
Rule

Lo

Clasza 1:
Aula
Aule 2

-

where Posl and Neg2 are attributes constructed from the original ones (Wnek & Michalski, 1991)

[Pori=true] (total:49, unique:49)
[body_shape=2,3] & [holding=2,3] & [jacket_color=3] (total:ll, unique:1i)
[body_shape=1] & [holding=1] & [jacket_color=3] (total:l, unique:1}
[body_shape=2] k& [holding=2] & [jacket_color=2] (ratal:l, unigque:1}
[HegZ=trus] (total:57, unique:57)

[body_shape=3] & [holding=1] & [jacket_celer=3,4] (total:3, unique:3)

Posl <:: [jacket_color=i] or [body_shape=3] & [jacket_color=1,2,4]

Weg2 ¢:: [body_shape=1,2] k [jacket_coler=1,2,3]

TEST RESULTS - SUMMARY

OVERALL % CORRECT FLEX MATCH:
OVERALL % CORRECT 100% MATCH:

100.00

86.11

13

Since this problem involves noisy data, the flexible match should always be-used. The results from L00% match
are shown just for comparison,

Number of testing events satisfying individual complexes in the correct class description:

CLASS o

CLASS i

RULES

Ri1 R2 R3 R4
180 24 O O
216 12
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2.4.2 Rules obtained by AQ14-NT

These are the rules obtained by AQ14-NT, a version of the AQ program that emplovs a noise-filtration technigue.
The results include one rule for Class 0 that represents positive examples of the concept, and one rule for Class
‘1 that represents negative examples.

After only two loops of concept-driven filtration of training dataset (with truncation parameter equal to 10%)
and repeated learning, we received the following set of rules:

Class O:
Ruls 1 [jacket_color=4]
Rule 2 [body_shape=3] & [holding=2..3]
Fule 3 [body_shape=3] & [jacket_color=i..2]
Class 1:
Rule 1 [body_shape=1..2] & [jacket_color=i..i]
Rule 2 [holding=1] & [jacket_color=3]

These riles récognized all test data eorrectly, i.e, on the 100% level.
Since there was supposed to be noise in the data, we are somewhat surprised by such a high degree of recognition.

2.4.3 Rules obtained by AQ17-FCLS

These are the rules obtained by AQ17-FCLS. The results include two rules for Class 0 that represent positive
examples of the coneept, and one rule for Class | that represents the negative examples. The threshold parameter
indicates the minimum percentage of selectors in the rule that must be true for the rule to apply. This set of
rules is intentionally incomplete and inconsistent with the training set since it was generated with 2 10% error
tolerance. This produced better results than other tolerances that were tried:

Class O:

Rule 1 [head_shape > 1] & [body_shape = 3] & [jacket_color = 4]
with THRESHOLD = 67 % {Tetal positive examples coverad: 42)
Rule 2 [head_shape = 1] & [body_shape = 3] & [jacket_color = 4]
with THRESHOLD = &7 % (Total positive examples covered: 26)
Class 1:
Rule 1 [body_shaps = 1 , 2] & [jacket_color = 1, 2, 3]
with THRESHOLD = 100 % {Total pozitive examples coverad: 57)

TEST RESULTS - SUMMARY
The percentage of correctly classified events: 97.2%
The percentage of correctly classified events in Class 0:  100.0%
The percentage of correctly classified events in Class 1:  94.7%
The total number of rules in the descriptions: 2 for Class 0
1 for Class 1
The total number of conditions in the descriptions: 8
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2.4.4 Rules obtained by AQ15-GA

Below are the rules obtained by AQ15-GA, a program that uses a genetic algorithm in conjunction with the AQ
rule-generation algorithm. The first rule is for the positive examples of the concept, Class §, and the second for
the negative examples, Class 1. A genetic algorithm determined that 3 attributes (body shape, holding, and
jacket_color) were the most meaningful. Using these, the rules discovered were as follows:

Class 0:
Rula 1 [jacket_color=4]
Rule 2 [body_shape=3] & [jacket_color=l..2]
Rula 3 [body_shapes=3. 3] ¢ [holding=2..3] & [jacket_color=3i]
Rule 4 [body_shape=i] & [holding=1] & [jacket_color=3]
Rule § [body_shape=2] & [holding=2] & [jacket_color=2]

Class 1:

Rule 1 [body_shape=i..2] & [jacket_colersi..3]
Rule 2 [body_shape=3] & [holding=1] & [jackes_color=3..4]

Results on testing the rules én testing events using program ATEST:

TEST RESULTS - SUMMARY
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH:  100.00

2.5 A Brief Description of the Programs and Algorithms

2.5.1 AQ17-DCI (Data-driven constructive induction)

This program is based on the classical AQ algorithm, but it includes an algorithm for constructive induction
that generates a number of new attributes. The quality of any generated attribute is evaluated according to a
special Quality Function (QF) for attributes, and if that function exceeds a certain threshold value, then the
attribute is selected. A brief description of the algorithm for constructive induction (Bloedorn and Michalski,
1991} is given below. The program works in two phases.

Phase 1.

1. Identify all numeric-valued attributes.

2. Repeat steps 3 through 5 for each possible combination of these attributes, starting with the pairs of
attributes, and extending them if their quality was found acceptable according to the attribute Quality
Function (QF).

3. Repeat steps 4 and 5 for each constructive induction operator. The current operators include addition,
subtraction, multiplication, integer division and logical comparisen of attributes (Bloedorn and Michalsk,
1991).

4. Calculate the values of the given attribute pair for the given constructive induction operator.

5. Evaluate the discriminatory power of this newly constructed attribute using the attribue Quality Function
(QF), described by Bloedorn and Michalski (1991). If the QF for an attribute is above an assumed
threshold, then the attribute is stored, else it is discarded.
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6. Repeat steps 4 and 5 for each available function operator that takes as argument an entire event (example),
and calculate various global functions (properties) of it

The program has a default list of global functions, but allows the user to modify the list to fit the problem at
hand. The default list of functions include MAX (the maximum of the values of the numerical attributes in an
event), MIN (the minimum value), AVE (the average value), MF (the most-frequent value), LF (least-frequent),
and #VarEQ{x), which measures the number of variables (attributes) that take the value x in an example of a
given class,

Phase 2.

1. Tdentify in the data all attributes that are binary.

2. Search for pairwise symmetry among the attributes aa;ld then for larger symmetry or approximate sym-
metry groups, based on the ideas described in (Michalski; 196%a; Jensen, 1975.)

3. For each candidate symmetry group, create a new attribute that is the arithmetic sum of the attributes
in the group.

4, Determine the quality function (QF) of the newly created attributes, and select the best attribute,

5. Enhance the dataset with values of this attribute, and induce new decision rules,

The method described above allows the system to express simply symmetric or partially symmetric Boolean
functions and k-of-n functions, as well as more complex functions that depend on the presence of a certain
number of attribute values in the data, Such functions are among the most difficult functions to express in
terms of conveniional logic operators.

2.5.2 AQI17-FCLS (Flexible concept learning)

This method (Zhang and Michalski, 1991) combines both symbolic and numeric tepresentations in generating
a concept description. The program is oriented toward learning flexible concepts, i.e, imprecise and context-
dependent. To characterize such concepts the program creates two-tiered descriptions, which consist of a Basic
Concept Representation (BCR) and an Inferential Concept Interpretation (ICI) to handle exceptions. [n the
program, the BCR. is in the form of rules, and the ICT is in the form of a weighted evaluation function which
sums up the contributions of individual conditions in a rule, and compares it with a THRESHOLD. The iearning
program learns both the rules and an appropriate value for the THRESHOLD.

Each rule of a concept description is learned in two steps, the first step is similar to the STAR algorithm in
AQ that generates a general rule, and the second step optimizes the rule by specializing it and adjusting the
accuracy threshold.

2.5.3 AQI17-HCI (Hypothesis-driven constructive induction)

AQL7-HCI (Hypothesis-Driven Constructive Induction) is a module employed in the AQIT atiribute-based
multistrategy constructive learning systern, This module implements a new iterative constructive induction
capability in which new attributes are generated based on the analysis of the hypotheses produced in the
previous iteration (Wnek and Michalski, 1991). Input to the HCI module consists of the example set and a
set of rules (in this case generated by the AQL5 program), The rules are then evaluated according to a rule
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quality criterion, and the rules that score the best for each decision class are combined into new attributes.
These atiributes are incorporated into the set of training examples, and the learning process is repeated. The
process continues until & termination criterion is satisfied. The method is a special implementation of the idea
of the “survival of the fittest,” and therefore can be viewed as a combination of symbaolic learning with a form

of genetic algorithm-based learning.

A brief description of the HCI algorithin follows:

1. Induce rules for each decision class using a standard AQ algorithm (as implemented in AQ-15) from &
subset of the available training examples,

2. Identify variables from the original set that are not present in the rules, and classify them.
3. For each decision class, generate a new atiribute that represents the disgjunction of the highest quality.

4. Modify the training examples by adding the newly constructed attributes and removing the ones found
to be irrelevant.

5. Induce rules from this modified training set.

6. Test these rules against the remainder of the training set. If the performance is not satisfactory, return
to step 1. Otherwise, extend the initial complete set of training examples with the attributes from the
obtained rules. Induce the final set of rules from this set of examples.

In these examples, the induction in steps 1, 5 and 6 was performed using the learning algorithm implemented
in the AQ15 program.

2.5.4 AQI14-NT (noise-tolerant learning from engineering data)

The program implementa an algorithm specially designed for learning from noisy engineering data (Pachowicz
and Bala, 1991a and 1991b). The acquisition of concept descriptions (in the form of a set of decision rules) is
performed in the following two phases:

» Phase 1:

Concept-driven closed-loop filtration of training data, where a single loop of gradual noise re-
moval from the training dataset is composed of the following three stages:

1. Induece the decision rules from a given dataset using the AQ14 (NEWGEM) inductive learn-
ing program.

2, Truneation of concept descriptions by removing “least significant™ rules, that is rules that
cover only a small portion of the training data (this step is performed using the so-called
TRUNC procedure).

3. Create a new training dataset that includes only training examples that are covered by the
truncated concept descriptions.

+ Phase 2:

Acquire concept descriptions from improved training dataset using the AQ14 learning program.



20  J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, P. Pachowicz, H. Vafaie, J. Wnek, J. Zhang

A justification for Phase 1 is that the noise in the data is unlikely to constitute any strong patterns in the data,
and therefore will require separate rules to account for it. Thus, the example covered by the “light rules” are
likely to represent noise, and therefore are removed from the dataset. Experiments with AQ14-NT applied to a
variety of engineering and computer vision problems have shown that it systematically produces classification
riles that both perform better and are also much simpler.

2.5.5 AQ15-GA (AQ15 with attribute selection by a genetic algorithm)

In this approach we use genetic algorithms in conjunction with AQ15. Genetic algorithms are used to explore
the space of all subsets of a given attribute set. Each of the selected attribute subsets is evaluated (its fitness
measured) by invoking AQ15 and measuring the recognition rate of the rules produced.

The evaluation procedure as shown is divided into three main steps. After an attribute subset is selected, the
initial training data, consisting of the entire set of attribute vectors and class assignments corresponding to
examples from each of the given classes, is reduced. This is done by removing the values for attribuies thac
were eliminated from the original attribute vector. The second step is to apply & classification process (AQI3)
to the new reduced training data. The decision rules that AQL5 generates for each of the given classes (o the
training data are-then used for classification. The last step is to use the rules produced by the AQ algorithm in
order to evaluate the classification and hence, recognition with respect to the test data.

In order to use genetic algorithms as the search procedure, it is necessary to define a fitness function which
properly assesses the decision rules generated by the AQ algorithm. The fitness function takes as an input a
set of attribute or attribute definitions, a set of decision rules created by the AQ algorithm, and a collection
of testing examples defining the attribute values for each example. The fitness function then visws the ALQ)-
generated rules as a form of class description that, when applied to a vector of attribute or attribute values,
will evaluate to a number. It is evaluated for every attribute subset by applying the following steps: Forevery
testing example a match score is evaluated for all the classification rules generated by the AQ algorithim, in
order to find the rule(s) with the highest or best match. At the end of this process, if there is more than soe
rule having the highest match score, one rule will be selecied based on the chosen conflict resolution process.
This rule then represents the classification for the given testing example. If this is the appropriate classification,
then the testing example has been recognized correctly. After all the testing examples have been classified, the
overall fitness function will be evaluated by adding the weighted sum of the match score of all of the correct
recognitions and subtracting the weighted sum of the match score of all of the incorrect recognitions.

2.5.6 The AQ Algorithm that underlies the programs

All the above programs use AQ as the basic induction algorithm. Here is a brief description of the AQ algorithm:

1. Select a seed example from the set of training examples for a given decision claas,

2. Using the extend against operater {Michalski 1983), generate a set of alternative most general rules {a
star) that cover the seed example, but do not cover any negative examples of the class,

3. Select the “best” rule from the star according to a malti-criteria rule quality function (called LEF - the
lexicographical evaluation function), and remove the examples covered by this rule from from the set of
positive examples yet to be covered.

4. If this set is not empty, select a new seed from it and go to step 2. Otherwise, if another decision class
still requires rules to be learned, return to step I, and perform it for the other decision class.
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3.1 Introduction

Assistant Professional (Cestnik, Kononenko and Bratko, 1987} is a system for inductive learning of decision
tree, It is based on ID3 (Quinlan, 1979) and upgraded with several new features. Among the most impartant
improvemnents are binarization of the atiribules, abilily to prune the consirzcled tree at vartous levels and
ulilization of improved probabilily estimates.

The main purpose of binarization, which groups the atiribute values into two subsets, is to normalize the
informativity of all the attributes with respect to the number of values. As a result we usually gzet smaller and
more accurate decision trees, In addition, binarization also prevents over-splitting of the learning set. Thus,
the atiribute selection becomes more reliable even in lower levels of the tree where the number of examples
is relatively small. However, the binary construction is computationally less efficient and sometimes generates
irees that are not well structured.

The basic induction algorithm tends to construct exact decision tree, although in most of real-world problems
the classification can not be exact due to noise in data, As a result, a constructed tree may not only captuce
the proper relations in data but also fit rather random (noisy) patterns. Decision tree pruning mechanisms
{Mingers, 1989) were designed to prevent such over-fitting phenomenon. The algorithm that is implemented in
Assistant Professional is described in (Cestnik and Bratko, 1991).

Most of the inductive learning algorithms use probability estimates in crucial sub-tasks when constructing a
decision tree, such as in selecting the most "informative” attribute and in pruning the tree. Usually, relative
frequency is taken as an estimate. It has been shown that relative frequency is rather poor estimater, especially
when the number of examples is small. A more general bayesian estimate that proved to be mare robust with
respect of the number of examples was presented in {Cestnik, 1990). It is called m-estimate and has the following

form: W mes

N+m
where n is the number of positive examples, N is the total number of examples, p; is prior probability and m
is & parameter of the estimation. The formula is studied and explained in detail in (Cestnik and Bratho, 1601).

All the mentioned improvements enable Assistant Professional to construct reliable and compact decision trees.

The system was successfully used in many real-world applications in various problem areas, such as medicine,
economy, industrial quality control, properties prediction, etc.

3.2 Experimental results

Assistant Professional was tested on the three Monk’s domains. The tests were conducted on IBM PS5 11,
model 0. The domains were named as follows: FIRST, SECOND and THIRD. Here are the results of the
measurements of classification accuracy.

| classification accuracy on testing sample

FIRST . 100.00 % (432 of 432)
SECOND 81.25 % (351 of 432)
THIRD 100.00 % (432 of 432)

On the first and the third domain Assistant Professional was able to find a perfect domain model. However,
in the second domain the constructed tree is very large and its performance is relatively poor. [n an extensive
study of the domain (testing sample) we were able to determine (with a help of our "neural nets”) the correct
model which is the following:
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A robot is O0.K.
if exactly two attributes {out of 6] are equal to 1.

This concept is extremely complicated for a system that learns decision trees in an attribute-value logie for-
malism. Note that on average you have to test almost all attributes to determine the answer. Therefore, the

constructed tree tends to be very bushy.

Here are the constructed decision trees in the three domains. In square brackets there is the number of examples
in the corresponding node.

3.3 Discussion

In this section we will briefly discuss the achieved results from the perspective of the three improvements of
Assistant Professional that are mentioned in the introduction.

Obviously, the binarization contributes the most in the THIRD domain. The constructed tree has a clear
structure and is perfectly understandable. In the FIRST domain, however, binarization has a rather negative
effect on the tree structure, since the concept Bodyshape = Head_shape would require three branches (there are
three possible values for each attribute). In the SECOND domain binarization is expected ta be helpful since
it only matters if an attribute has the first value or not. Nevertheless, due to the very complicated concept, it
did not reaily show it's power.

The prumng mechanism contributes mostly in the THIRD domain, since there are some examples corruptad hy
“noise”, The main task is to detect and eliminate this corruption. The FIRST and the SEC{)ND domain did
not contain any noise; therefore, the corresponding trees were not pruned at all. '

The improved probability estimate, which is used also in the tree pruning mechanism, proved to have crucial
effect also in the tree construction phase. Just by changing the value of parameter m (Cestnik and Bratko,
1591) different attributes can be selected at various nodes in the tree. As a result, one mayor deficiency of the
original algorithm, namely the inability to backtrack, was in a way alleviated,
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3.5 Resulting Decision Trees

Constructed decision trees in the three domains:

Decision Tree From Domain: FIRST
Pruned with m= 0.00

Number of Nodes : 15
Number of Leaves: §
Nurmber of Nuils : 0

AB:Jackat_color I:l"ldl
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|
I
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Decision Tree From Domain: SECOND
Pruned with m= 1.00

Mumber of Nodes - 113
Mumber of Leaves: 57
Number of Nulls : 1
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4.1 Description

The learning system considered in this summary is named mFOIL and belongs to the class of inductive learn-
ing systems that construct logie programs (sets of Prolog clauses) from training examples and background
knowledge. This kind of systems that learn relations has been recently named Inductive Logic Programming.

The basic structure of mFPOIL is similar to that of FOIL (Quinlan 1990), but the search heuristics and stopping
criteria employed are quite different. They are adapted to learning from imperfect (noisy) data. Instead of the
entropy (information gain) heuristic, estimates of the expected error of clauses are used as search heuristics.
Namely, clauses with the least expected error {estimated from the training set) are considered best. Bavesian
probability estimates, such as the Laplace estimate and the m-estimate {Cestnik 1990) are used for estimating
the expected errar of clauses. In addition, mPQIL uses beam search instead of the hill climbing used in FOIL,

FOIL uses a function-free concept description language, in which conditions of the form Atéribute = value are
not directly expressible, but require the addition of special predicates in the background knowledge. Such
conditions are, however, necessary for solving the monk's problems. mFOIL can use conditions of the above
form without adding special predicates in the background knowledge.

mFOIL is described in my MSc thesis (DZeroski 1991}, which is available on request. It is implemented in
Quintus Prolog 2.5.1 (eca. 600 lines of zode) and was run on a Sun SPARC Station 1.

I ran mFOIL using different search heuristics: Laplace or m-estimate of expected error of clauses, Different
values of m were used in the m-estimate, Higher values of m direct the search towards more refiable clauses,
i.e., clauses that cover more examples. This did not influence the results on the first training set, but had some
sffect on the results on the second and the third set. Below are given the rules ohtained together with the
corresponding search heuristics. The bad resuits on the second set are due to the small number of examples for
each of the disjuncts and the bias in mFOIL which favors shorter rules.
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4.2 Setl

Heuristies used in mFPOIL:
Laplace,

m=0, 0.01,0.5, 1, 2, 3, 4, &, 16, 32, 64

Induction time: cca 1 min
Accuracy: 100 %

robot(A,.B;S,0,E,F} :-

A=8.
robot(A,B,C,D,E,F} i=
E=rad.

4.3 Set 2

Heuristic used in mFOIL: m=3
[nduction time: cca 10 min
Accuracy: 59.21 %

rebot(A,B,C,D,E,F) :=
E=yallow,
not C=no,
not Dm=gword,
F=na,
robot(A,B,C,D.E,F) =
D=flag,
B=octagon,
C=ayasa,
not E=green.
robet(A,8,C,D,E,F) :=
C=no,
E=red,
net D=sword,
not B=round,
not A=round.
robot{A,B,C,D.E,F) :=
E=yellow,
B=round,
not Ceyas,
not D=flag.
robot(A,B,C,D,E, F) =
B=square,
C=yaa,
E=yellow.
robot(A,B,C,D,E.F) 1=
Emgraen,
B=round,
not Feyes,
not Asaguare.

mFOIL on the MONK's Problems

robot (A,B,0,D,E,F} :=

E=green,

not C=no,

F=nao,

A=round,

not D=sword.
robiot{A,B.C.D,E.F) =

B=sgquara,

E=blue,

Cwyas,

net A=round.
robot(A,.B,C,D,E,F} =

not C=yas,

A=round,

E=yallow,

not D=avord.
robot(A,8.€,0,E,F) ==

E=greean,

D=agord,

Fene,

L=yea,

not A=round.
robot(A,B,C,D,E,F} 1=

E=graean,

not Fwmo,

B=aguare,

not C=yes,

not A®sgquare,
robot{A,B,C,D.E,F) =

not C=yas,

E=rad,

Fenio,

not A=round.
robot{A,B,C,.D,E,F} 1~

Esgraen,

A=aquare,

not C=mo,

not D=sword,

net F=no.
robot(A,B,C,D,E,E} ;=

E=blue,

B=square,

not Famao,

not Cwyas,

not D=aword.
robot{A,B,,D,E,.F} =

E=blue,

Feno,

nat C=na,

not A=sguare.
rebot (A,B,C,D,E,F) 1=

F=nao,

E=rad,

not C=yes,

not B=round.
robot(A,B,C,D.E,F) :=

P=aword,

Cwno,

Bwoctagon,
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A=square,
Fayes.

robot (A,B,C.D.E,F} 2=

B=round,
F=ng,
E=bhlua,

not D=flag,
not A=aguara.

robot (A,B,C,D,E.F) =

A=octagon,
D=flag,

not F=no,

not E=sred,

not B=octagon.

5. Dieroski

4.4 Set 3

Heuristic used in mFOIL; m=64
Induction time: cca 1 min
Aceuracy: 100%

robet{k,.B,C,D,.E,F) :=
not Bwoctagon,
not Esblue.

robot(A,8,C,D,E,F} -
Emgreen,
D=gword,
B=octagon.
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5.1 IDL: A Brief Introduction

5.1.1 Introduction

IDL is an algorithm for the incremental induction of decision trees. Incremental learning methods are useful
when examples become available on a regular basis but good hypotheses are needed anytime, possibly for a
performance task. Incrementality is, however, not the primary metivation for this research. More importantly,
IDL is specifically designed to find small decision trees. There are various reasons to prefer smaller trees. One
reason is efficiency: the fewer decision nodes in a tree, the more effieient an instance can be classified with ic. This
is, however, a weak argument since cost and frequency of test execution should be taken inte account; so that
the most cost-effective tree is not necessarily also the smallest one [Nunez 38; Tan and Schlimmer 89]. Another
reason to prefer small trees is comprehensibility: small trees tend to be easier to understand, Compreliensibility,
however, also depends on the form of the tree. For example Arbab and Michy (85) argue that linear trees are
easier to understand, Perhaps the strongest argument for small trees is the relation between tree complexity and
classification accuracy [Breiman, Frisdman, Olshen and Stone 84; Quinlan 86; Mingers 80a.b; Utgeff 30]. Peari
[78] showed that the complexity of a hypothesis for explaining data is related to the likelihood that it actually
explains it. A learning algorithm with a bias towards simplicity is likely to find more accurate hypotheses as
well. This heuristic of Occam's Razor has been employed and justified by many authors both empirically [Clatk
and Niblett 89: Fisher and Sehlimmer 88; Iba, Wogulis and Langley 88] and theoretically [Blumer, Ehrenfeucht,
Haussler and Warmuth 87],

Complex trees are sometimes unavoidable. For example, an accurate tree for @ concept exhibiting the paricy
problem]l has an exponential number of nodes [Seshu 89] and trees for boolean disjunctive normal form concepts
contain duplicated subtrees when only using ground attributes as tests [Pagallo and Haussler 8], Also, different
heuristies in otherwise similar algorithms may lead to significant variations in tree size [Mingers 89a). The
induced trees may nonetheléss be more complex than strictly necessary. For example, Ainding the smallest trees
for the six-multiplexer concept [Barto 85; Wilson 87] is well known to be far beyond all classical decision Lree
induection algorithms [Quinlan 88, So, even when a small tree exists, state of the art decision tree algorithms
may fail to find, or even come close to it. IDL on the other hand finds ‘small trees which are often optimal in
size, For example, it has no problem inducing a best tree for the f-multiplexer while requiring fewer examples
and less computation than the other algorithms. The problem of induding optimal decision trees is, however,
MP-hard [Hyafil and Rivest 76; Hancock 89]. A practical algorithm is necessarily based on strong heuristic
guidance and is guaranteed to fail on at least some induction tasks.

To appreciate the novelty of the approach taken in IDL, it is useful to take a lock af the relationship with its
predecessors, non-incremental top-down induction of decision trees like ID3 [Quinlan 83,86} and the incremental
algorithms ID4 [Schlimmer and Fisher 86}, [D5 [Utgoff 88a] and ID5R [Utgoff 90]. Top-down induction performs
a general-to-specific hill-climbing search, guided by statistical heuristics and without backiracking., The incre-
mental versions, for which a statistics-based best split is always tentative, ars designed to recover with minimal
loss of training effort from deviations from the search path which ID3 would follow given the same examples
E. More sophisticated representations and search operators allow these algorithms to simulate a backtracking
top-down search in a hill climbing search [Langley, Gennari and Tba 87; Fisher &7]. However, these algorithms
do not contribute any new ideas to improve the complexity or accuracy of learned decision trees, [DL uses
the same search operators to construct a small and accurate tree which is not necessarily [Dd-equivalent but
topologically minimal. In a topologically minimal tree only 2 minimal number of tests is required to classify
objects. IDL is guided by statistics in a top-down search for an accurate tree. At the same time it looks for
smaller trees in a bottom-up fashion. Here it is guided, not by statistics, but by tree topological considerations.
In effect, IDL simulates a bi-directional search.
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5.1.2 Related Work

ID4 [Schlimmer & Fisher 1986], ID5 [Utgoff 83a] and ID3R [Utgoff 89] are three recently developed algorithms
for incremental induction of decision trees. The relation with IDL was briefly explained in the introduction. In
[Van de Velde 89] it was conjectured that IDL finds a topologically minimal tree if it exists. Elomaa and Kivinen
{90] showed, however, how IDL may fail to find the optimal tree for the S-multiplexer. The multi-multiplexer
concept also disproves this conjecture. Their algorithm IDL' nevertheless successfully postprocesses trees and
removes irrelevant attributes. Related experiments are reported on in [Van de Velde 98]. These experiments
use a version of IDL which is more eager to apply the statistical selection criterion. This has the advantage
that any consistent tree can be taken as an initial hypothesis, no matter how it was generated.

Others have explicitly addressed the problem of suboptimality in tree-size. Pruning techniques [Quintan &7;
Fisher and Schlimmer 88; Mingers 89b] avoid overfitting and reduce complexity, often while increasing accuracy,
In a multiplexer-like concept the problem occurs at the top: a TDIDT-like algorithm will choose a wrong top-
level atiribute and there is no way to prune this away, Quinlan [88] proposes to transform 2 tree into a set
of rules which are subsequently simplified. Every possible classification path is interpreted as a rule. Each
of the conditions in the rule is.removed in turn and classification accuracy of the rule set is tested. IF this is
improved, then the condition is permanently removed. This process has been shown to be capable of strong
optimization at the expense of introducing a different representation. More sophisticated rule simplification
techniques have been studied by many authers [Michalski 87; Clark and Niblett 88; Zhang and Michalski 89).
They use statistical measures to balance the importance and typicality of patterns. The techniques of pruning,
tree transformation, and rule tweaking can be viewed along a continuum of increasing liberty to manipulate the
representation of patterns, IDL is somewhere in the middle: it manipulates several rules at once and is capable
of both introducing and deleting tests in a rule. Also note that IDL is incremental, is not motivated by noise;
works with one representation, and uses tree structure information in addition to statistics,

Other researchers reduce tree complexity by allowing different tests than the primitive ones, for example boolean
combinations [Breiman, Friedman, Olhsen, Stone 84; Clark and Niblett 89; Pagallo and Haussler 89; Seshu 88] or
linear threshold units [Utgoff 88b; Utgoff and Brodley 90]. Of these, FRINGE [Pagallo and Haussler 89] is closest
in spirit to IDL. It was developed to overcome the problem of replicated subtrees when learning Disjunctive
Normal Form concepts. Such concepts usually have no decision tree representation without replications when
the primitive attributes are used. FRINGE examines the fringe (2 bottom levels) of a complete tree to find
replicated partial paths. The conjunction of two attributes or their negation is added as first class attribute
and a mew tree is built. This process iterates until no more changes occur. In comparison, note that [DL is
incremental, does not change representation bias and tackles the replication problem for concepts which do have
a rapresentation without replication. Utgoff and Brodley's method [90] is also incremental.

Wilson [87] used multiplexer concepts to test his classifier system, called Boole. Quinlan [83] noted the ex-
tremely slow convergence rate and obtains much better results when using C4, a TDIDT like algorithm, and
postprocessing to rules (see above). Bonelli, Parodi, Sen and Wilson [90] describe NewBoole, a new version of
Boole which converges significantly faster to accurate results. It still requires around 800 examples to find an
(almost) accurate hypothesis, and around 5000 examples to find the minimal set of rules. The same authors also
used neural nets of different sizes to learn the same concept. They report convergence after 1600 cycles for a
reasonable net (6:20-20-10-10:1). On the 11-multiplexer NewBocle requires arcund 4000 examples to converge,
a neural nef around 8000

Selective training goes back to the windowing technique in ID3 [Quinlan 83]. Wirth and Catlett [B8] discuss
related techniques and note that the benefit of windowing is limited. Utgoff [89] shows that a windew size of
one (i.e., ID5R-hat) results in improved training. The idea is not really applicable in IDL, because it still does
much work after the tree has become fully accurate.
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5.1.3 Conclusion

[DL represents a new approach to the incremenial induction of decision trees. It uses a similar representation
as 1D4 [Schlimmer and Fisher 86] and the same set of search operators, (splitting, pruning and transposition) as
IDG(R) [Utgoff 88a,90]. It was argued that a decision tree represents a target concept by virtue of reprezenting
a specialization of it. The task of induction is to find a tree such that this specialization is as close as possible
to the target concept. Search for a good decision tree can be understood as search in concept space, mediated
by decision tree manipulations. The role of the three operations was reconsidered, as well as the heuristics to
guide their application. A statistical selection measure, based on a metric on concept space [Lopez de Mantaras
30] is used to guide the expansion of a tree. Tree topological considerations, based on 2 notion of topological
relevance, guide the transposition of nodes to generate oportunities for pruning. IDL uses these heuristics to
simulate a bi-directional search for a tree which is topologically minimal. Such a tree minimizes the number of
tests needed for classification, and is therefors small. Experiments show that IDL finds small trees, and often
cptimal ones.,

A number of things need to be investigated further. A major open issue is to characterize the concepts for
which IDL finda a topologically minimal tree. It is not understood, for example, what makes the 2-multiplexer
so different from the 6-multiplexer concept to justify the occasional failure of IDL on the former. Also, the
large standard deviations on the mushroom domain are not well understood. It is disappointing that 1DL could
not find drastically better trees on natural domains, like it did for the multiplexers. Are there no natural data
sets for multiplexer-like concepts? Since [DL occasionally fails to find an optimal tree an average case analysis,
as putlined by Pazanni and Sarrett [90] would be more useful than a worst-case one. Integration of IDL with
constructive induction techniques seems a promising line of research. Situations in which IDL keeps on switching
the levels of aitributes could be used as an indication that a new attribute may be useful. The behavior of IDL
in the presence of noise has not been studied. The integration of technigques developed for top-down algorithms
[Mingers 89b] should be investigated.
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5.2 Experimental Results

I have done some of the experiments for the comparison of the algorithms. The runs on the first data-set are
complete, except for the timing information. The runs for the second example are in progress and [ will send
them later today. 1 will not do the third example since [ surender to noise. Nevertheless T think vou will agres
that in the class of decision tree algorithms, the performance of IDL is quite impressive.

Here is what [ did. [ ran several algorithms on the training-set and tested them on the test-set. If the algorrithm
is non-incremental [ used a run on the complete training set. If the algorithm is incremental [ ran it with 500
examples randomly selected from the training set. Testing is always on the full test set. All results are averaged
over 10 runs.

[ used the follewing algorithms:

TDIDT: plain old ID3 with information gain as gelection measure,

ne pruning.

IDSR: the incremental varsion of ID3 produced by Utgeff. Information
gain is the selection measure. No pruning.

IDL: IDL as described in an unpublished paper, very similar to the
algeritha described in IML-30

IDER~hat: IDSR with example filter. Trains only if the exampla is
misclasgified by the current hypothais. Ne pruning.

I send the results in several files. In seperate mails [ will provide the following information:

TRDT: the trees
size and accuracy of the tree
the concept describad by it

IDER, IDL, IDSR-hat:

data on size and accuracy as it svelves with training
a typical tree and its aize and accuracy

the concept described by that typical tree

The evolving data for the incremental algorithms allow to produce the learning curves for each of the algerithms.
I produced graphs with Exel and will send them by mail if [ do not succeed making a postscript version of it.

About the results:

« IDL is clearly the best. It produces the smallest trees with by far the best accuracy of all. It is alse worth
noticing that the standard deviations for [DL are very small, and that the concepts deseribed by the trees
that IDL produces are the same. This means that search in concept space is finished, but IDL can not decide
on the best representation. So it limit-eycles between J different trees, all small and equally aceurate (the
only difference is in the order of testing the three relevant attributer). This illustrates how ihe use of not
only statistical information bt also tree-topological one makes the algorithm unsensitive to sampling dilferences
{small disjuncts or sparse sampling are no big problem either). Here are the data for all 10 trees 1o show this:

MONES-1 IDL used IDL nodes IDL leaves IDL accuracy
500 500 42 2% 97.322222
500 500 38 268 97.22222



500 500
500 500
500 500
500 500
S0Q 500
S00 OO
500 500
500 500

42 29
40 27
40 2T
40
36
42
40
42

28

29
a7
29
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aT.22222
ar, 22222
97.22322
97.22222
97, 22222
9T . 22922
97.22222
97.23222

On the other hand ID5R produces larger and less accurate trees with enormous standard deviations as shown
by data for the 10 trees that ID5R produces:

HONES-1

500
500
500
500
500
500
500
500
500
500

500
500
500
500
500
500
500
500
500
500

IDSR used IDSR nodes IDSR leavea IDSR accuracy

75
- 64
50
61
70
40
73
78
T4
59

48
40
3z
40
43
b {
45
50
46
ar

‘81.94444

41.71288
90,87223
87.73148
T7.31481
97 .22222
T7.546295
B4.02778
80.32407
B6.34250

As expected ID5R-hat does somewhat better than IDSR. Here are the data for the 10 trees to give an idea of

the deviations.

MONES-1 IDS5R=hat used IDSR-hat nodes IDSR=hat leaves IDSR-hat accuracy

500
500
500
500
500
S04
500
500
00
500

51
62
52
43
53
52
50
48
58
53

56 36
68 43

40
40
40
51
3s
40
49
40

85.416664
T9.861115

2T 97.2222%
27 97 .22222
27 97.22222
33 92.381115
26 D4.44444
2T 97.22222
32 90.277TR
2T 97.22222

[ sent a number of files with the resuits of TDIDT, IDL, IDSR and ID5R-hat on the second monk's concept.
The results are averaged only over 5 runs this time.

The effect [ seem to got is that IDL does not get beyond its initial phase of building up a iatlge tree, In other
words, it does not get anyway near to collapsing it. The fact that it grows larger than for_IDﬁR is not anam alous,
but normally this is followed by a rapid collaps to a smaller form (see MONKS-1 this effect). This concept
seems to be too difficult for trees to handle anyway...

Here are the 5 individual results for IDL:

MONES-2 IDL used IDL nodes IDL leaves IDL accuracy
500 500 176 111 T4.30556



42 W. Van de Welde

500 500 170 104 65.046295
500 500 180 114 73.84259
500 500 197 112 68.05656
500 500 184 111 61.34259

Here are the 5 individual results for ID5R:

MONKS-2 IDSR used IDSH nodes IDSR leaves IDSR accuracy
500 500 145 93 64.12037

500 500 153 91 64.583336

500 500 173 104 65.74074

00 500 171 102 65.27778

OO 500 165 95 61.BOSSSET

Here are the 5 individual results for IDSR-hat:

MONES-2 IDSR-HAT uaed IDSR-HAT nodes IDSR-HAT leavea IDSR-HAT accuracy
500 113 130 77 63.425926

500 115 131 82 65.74074

500 118 133 80 64.81481

500 120 133 B4 62,5

500 115 138 B3 52.73148

IDL finds larger trees, slightly more accurate. ID5R and IDSR-HAT find trees that are comparable in accuracy
to the TDIDT tree (68.666664% with 159 nodes and 95 leaves) but the IDSR-HAT tree is smaller.
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5.2.1 IDSR on test set 1

DESCRIPTION OF THE TREE:

Typical tree found by idir
; trained on first menka's training set

training sat)
i 54 nodes
40 leaves
81,71298 accuracy om tast sat

; 500 sxamples (random from full

JACEET _GOLOR = 1 : <1>,..
JACKET_COLOR = 2
HAS _TIE = 1 :

BODY_SHAPE = 1 ; <1».,,

BODY_SHAPE = 2
HEAD_SHAPE = 1 : <0>..,
HEAD_SHAPE = 2 : <1>...
HEAD_SHAPE = 3 : <0»...

BODY_SHAPE = 3
HEAD_SHAPE = 1 <03, .,
HEAD_SHAPE = 2 : €00, . .
HEAD_SHAPE = 3 : «€1>. ..

HAZ_TIE = 2 :

BODY_SHAPE » 1 :
HEAD_SHAPE = 1 : <1>...
HEAD_SHAPE = 2 : <0>, ..
HEAD_SHAPE = 3 : <0>,..

BODY_SHAPE = 2 |
IS_SHILING = 1 - <i>...
I3 SMILING = 2 : <0>,..

BODY_SHAPE = 3
HEAD_SHAPE m 1 - <0>..:
HEAD_SHAPE = 3 : <1>,..

JACKET _COLODR = 3 :
EOLDING = 1 :

HEAD_SHAPE = 1
BODY_SHAPE = 1 : <1>, ..
BODY_SHAPE = 1 : <02

HEAD_SHAPE = 2 :
BODY_SHAPE = 1 : <0>, ..
BODY_SHAPE = 2 : <€1>,..
BODY_SHAPE = 3 : <0, ..

HEAD_SHAPE = 3
BODY_SHAPE = 2 : <02
BODY_SHAFE = 3 : <i>, ..

HOLDING = 2 :
RAS_TIE = | : <O0F...
HAS_TIE = 2 :
HEAD_SHAPE = 1 i <03, ..
HEAD_SHAPE = 7 : <i>...
HEAD_SHAFE = 3 :
IS_SMILING = 1 ; <1»...
IS_SHILING = 2. : <0>, ..
HOLDING = 3

I3_SMILING = | :

HAS_TIE w 1 ; <D>...
HAS_TIE = 2 : «<i>,,.

IS_SHILING = T :
HEAD_SHAPE = 1 : <0>..,
HEAD_SHAPE = 2 : «0>...
HEAD.SHAPE = 3 ; <1>. ..

JACKET COLOR = & :
HEAD_SHAFE = 1 :

BODY_SHAPE = 1 : <i>, .,
BODY_SHAPE = 7 : <0, ..
BODY_SHAFE = 3 : <03, ..
HEAD_SHAPE = 2 :
BODY_SHAPE = 1 @ <0>, .,
BODY_SHAPE = 2 ; <1>, .,
BODY_SHAPE = 3 : <0»>, .,
HEAD_SHAPE = 3 :
DODY_SHAPE = 3 : <O¥. ..
BODY_SHAPE = 3 ; €1>..,

5.2.2 IDL on test set 1

DESCRIPTION OF THE TREE:

i+ Typical tree found by idl
i trained on first monks's training set

17 500 examples (random from
full training sat)

7136 nodes

iy 28 leavas

i4 8T,22222 accuracy on test sat

BODY_SHAPE = 1 :
HEAD_SHAPE = 1 : <i>,..
HEAD_SHAPE = 2 :

JACKET_COLDR = 1 : €1>,..
JACKET _COLOR = 2 © <O, ..
JACKET.COLOR = 3 : <02,..
JACKET_COLOR = 4 : <0>, ..
HEAD_SHAFE = 3 :
JACEET_COLOR = 1 : <1>, .,
JACKET COLOR = 2 = <0>, .,
JACKET_COLOR = 3 : €03>,,.
BODY_SHAPE = 2 :
HEAD_SHAFE = }
JACKET._COLOR = 1 : <i>...
JACKET_COLOR = 2 : <02, .,
JACKET_COLOR = 3 : <0>, .,
JACKET_COLOR = 4 - <0>...
HEAD_SHAFPE = 2 : <i>,..
HEAD_SHAPE = 3 :
JACKET_COLOR = { : 1>, ..
JACKET _COLOR = 7 : <0>, ..
JACEET_COLOR = 3 : <0>
JRCEET_COLOR = 4 : <0>, .,
BODY _SHAFE = 3 :
HEAD _SHAPE = 1 :
JACKET. COLOR = L : <1>..,
JACKET_COLOR = 3 : «<0>...
JACKET _COLDR = 3 : <0¥, ..
JACEET_COLOR = 4 : <02, .,
HEAD_SHAPE = 2 :
JACEET _COLOR = 1 @ <I>. ..
JACEET _COLOR = 2 § <0Q», .,
JACEET.COLOR = 3 : «0>...
JACEET _COLOR = 4 : «<0>. .,
HEAD_SHAPE = 3 : <i>.
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5.2.3 ID5R-HAT on test set 1

DESCRIPTION OF THE TREE:

i+ Tree foumd by ldEr-hat traimed

i+ on first wonks's training set

i1 58 axamples usad out of 500

i1 {random from full training set}

i3 49 nodes
35 22 leaves
ii S0.2TTTE accuracy on tast sat

JACRET_COLOR = 1 : €1»...
JACKET _COLOR = 2 ;
HOLDING = 1 :
HEAD_SHAPE = 1 :
BODY _SHAPE = 3 : <0»
BODY_SHAPE = 1 :© <13..,

BODY_SHAPE = 2 : <03...

READ_SHAPE = 2
BODY_SHAPE m 1 : <D>. .,
BODY_SHAPE = 2 : €1>. ..

HEAD_SHAPE = 3 : <0>, .,

HOLDING = 2 : <0>, .,
HOLDING = 3

BODY_SHAPE = 1 :

HAS_TIE = 1 : <id>...
HAZ TIE w 2 : <Q>.,,

BODY_SHAPE = % :
HEAD_SHAPE = | : <O>, .,
HEAD_SHAPE = 2 : <1%..,
HEAD_SHAPE = 3 : <0>...

BODY_SHAFE = 3
HEAD_SHAPE = 1 : <0¥. ..
HEAD_SHAPE = 3 : <13, ..

JACEET_COLOR = 3 -
HEAD_SHAPE = 1 :

BODY_SHAPE = 1 : <15...

BODY_SHAPE = 2 : <0>,

BODY_SHAPE = 3 : <>, .,

HEAD_SHAPE = 7 :

BODY_SHAPE = 1 : <0>...

BODY_SHAPE = 2 : <€1>...

BODT_SHAPE = 3 : <0»...

HEAD_SHAPE = 3 :

BODY_SHAPE m 1 ; <Q>...

BODY_SRAPE = 3 : <0%,,,

BODY_SHAPE = 3 : <1>,,,

JACKET_COLDR = & :
HEAD_SHAPE = 1 :

BODY _SHAPE = 1 : <13,..

BODY_SHAPE = 2 : <03, ,,

BODY_SHAPE = 3 ; <0%...

HEAD_SHAPE = 2 :

BODY_SHAPE = 3 : <03

BODY_SHAPE = 1 : <0%...

BODY_SHAPE = 2 : <1>...

HEAD_SHAPE = 2

BODY_SHAPE = T : <0>...

BODY_SHAPE = 3 : <13, .,
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5.2.4 TDIDT on test

DESCRIPTION OF THE TREE:

ii Tres found by tdidt trained

ii 124 sxamples (full training s
i+ B8 nodes
vi B2 laawas
i+ T75.659444 accuracy on tast set

JACRET_COLOR = § : <1>
JACEET COLOR = 2
HOLDING = 1 ¢
HEAD_SHAPE = 1
BODY_SHAPE = 1 : <15
BODY_SHAPE = 2 : <03
BODY_SHAPE = 3 ; <0>
HEAD_SHAPE = 2
IS_SMILIEG = 1 ; <1>
IS_3RILING =2 : <0»
HEKD_SHAPE = 3
HAS_TIE = 1 : <1>
KAS_TIE = 2 : <0»

BODY_SHAPE = 1 : <03
BODY_SHAPE = 2 : <1>
BODY_SHAPE = 3 : <0>
HOLBING = 3 |
15 SMILING = { :
HEAD_SHAPE = 1 :
BODY_SHAPE = 1 : <15
BODY_SHAPE = 2 : <0>
BODY_SHAPE = 3 : <0»
HEAD_SHAPE = 2 : <i>
HEAD_SHAPE = 3 :
BODY_SHAPE = 1 © <05
BODY_SHAFE » 3 : <1>
IS_SMILING = 2 -
BODY_SHAPE = 1 : <>
BODT_SHAPE = 2 : <0>
BODT_SHAPE = 3 :
HAS_TIE = 1 : <0%
HAS_TIE = 2 : <i»
JACKET_COLOR = 3 :
HAS_TIE = 1 :
HOLDING = 1 :
IS_SNILING = 1 :
BODY_SHAPE = 1 :
HEAD_SHAPE = | :
HEAD_SHAPE = 2 ;
BODY_SHAPE = % :
HEAD_SHAPE = 1
HEAD_SHAPE = 2 ;
IS_SMILING = 2 : <03
ROLDING = 2 ;
IS_SMILING = 1 : <03
18_SHILING = 2 :
BEAD_SHAPE = 1 : €13
HEAD_SHAPE = 2 : <03
HOLDING = 3 ; <0
HAS_ TIE = 2 :
IS_SNILING = 1 :
HOLLING = 1 :
HEAD_SHAPE = 1 : <13

set 1

: on first menks's training set

at)

1>
<Q»

A0

1>
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HEAD_SHAPE = 2 : <0>

HOLDING = 2 :

HEAD_SHAPE = 1 . <>
HEAD_SHAPE = 2 | <12
HEAD_SHAPE = 3 ! <1>

HOLDING = 3 :
IS_SHILING = 2 :
HOLDING = § :

<1

BODY_SHAPE = 2 1
HEAD _BHAPE = 2 : <i>
HEAD_SHAPE = 3 : <Q>

HEAD_SHAPE = 3 © <1>

HOLDING = 2 :
HOLDING = 3 :

<Q>

HEAD_SHAPE = 1 : <0»
HEAD_SHAPE = 2 | <0>
HEAD_SHAPE = 3 : <i»

JACKET_COLOR = 4 :
HEAD_SHAPE = 1 -
BODY_SHAPE =
BODY_SHAPE =

BODY _SHAPE =
HEAD_SHAFE = 2
BODY _SHAPE =

W OR

=

HEAD_SHAPE = 3
BODY_SHAPE =
BODY_SHAPE =

L e

[ b
B
I 45

L 203
BODY_SHAPE = 2
BODY_SHAPE = 3

1>
<o

i 20>
coega(il 1111 -2 1)

5.2.5 ID5R on test set 2

DESCRIPTION OF THE TREE:

;3 Typical tree found by idSr
;i trained on second monks's

i training set

Vi

.1 500 examples {random from
HH full training set)

i1 165 nodes
;i 95 leaves

;i 61.B0655T accuracy om cast sat

JACKET_COLOR = 1 ¢
TS_SHILING = 1 :

HEAD_SHAPE = 1
HEAD_SHAPE = 2 :
HOLDING = 1 :
HOLDING = 2 :
ROLDING = 3 :

L1

-1 > RN
...

BODY_SHAPE = 1 1 <0>
BODY_SHAPE = 3 | <1>.,,

HEAD_SHAFE = 3 :
ROLDING = {1 :
HOLDING = 7 :

Cox. ..

BODY_SHAPE = 1
BODY_SHAPE = 1
HOLDING = 3 ; <02
IS SMILING = 7 ;
HOLDING = 1
HAS.TIE = 1 : <g>, ..
HAS_TIE = 2 :
HEAD_SHAPE = 1
HEAD_SHAPE = 1 :
HOLDING = 2 ; £1>,..
HOLDING = 3 ¢
HEAD_SHAPE = 1 :

T 477
HIE 4 ]

0¥

HAS_TIE = 1 : <0, ..

HAS_TIE = 2 :

BODY_SHAPE = 1 :
BODY_SHAPE = 2 :

HEAD_SHAPE = 2 :
HAS_TIE = 1

BODY_SHAPE = 1 :
BODY _SHAPE = 2 :

<13

<03
41>

HAS_TIE = T : <1>...
HEAD_SHAPE = 3 : €1,

JACKET_COLDR = 2 :

BODY _SHAPE = 1 :
HEAD_SHAPE = 1

IS_SMILING = 1 : <0>. .
IS _SMILING = 7 : <i>_ ..

HEAD_SHAPE = 2
ROLDING = 1

IS_SHILING = 1 : <O
IS_SNILING = 2 @ <1i> .,

HOLDING = 2 @ <1>...

HOLDING = 3 :
IS_SMILING = 1 @ <1>...
IS_SMILING = 2 @ <0>, .

HEAD_SHAPE = 3
HOLDING = 1 | <1>, ..
HOLDING = 2 ; <1>, .,
HOLDING = 3 :

IS_SMILING = 1 : <I>

Is_sMILING = 2 :

HAS_TIE = 1 = <i>
HAS_TIE = 2 : <0>

BODY _SHAFPE = 2
IS _SMILING = 1 ; <1i>, ..
IS_SMILING = 2  <0>..,
BODY_SHAFE = 3 :

HEAD_SHAPE = 1 |
HOLDING = 2 : <0». ..
HOLDING = 3 : <1>...

HEAD_SHAFE = 2 :
HOLDING = 1 ; <i>...
HOLDING = 2 : <O, ..
HOLDING = 3 : <i>...

HEAD_ SHAFE = 3 : <0, ..

JACKET_COLOR = 3 :

HEAD_SHAPE = 1 :
BODY_SHARE = 1 : <03, ..
BODY_SHAPE = 2 :

HOLDING = 2 :
HAS_TIE = 1 :

I3 _SNILING = 1 :

IS_SMILIEG = 2
HAS_TIE = 2 @ <13
AOLDING = 3

<0
L &

IS_SMILING = 1 : <0>...

IS_SMILING = 2 :

HAS_TIE = 1 1 <1>
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HAS_TIE = 3 : <O»
BODY_SHAPE = 3
HAS_TIE = 1 : €03...
HAS_TIE = 2 :

HOLDING = 1 :
IS_SMILING = 1 ; <0>
IS_SMILING = 2 ; <1>

HOLDING = 2 : <0>...

HEAD_SHAPE = 7 ;
IS_SRMILING = 1 :
BODY_SHAPE = 1 :
HAS_TIE = 1 : <O»
HAS_TIE = 2 : <i>», ..
BODY_SHAPE = 2 :

HOLDING = 1 : <O». ..

HOLDING = 2 : <1>,.,

HOLDING = 3 :

HAS_TIE = 1 : <i>
HAS_TIE = 2 : <O»
BODY_SHAPE = 3 :
HOLDING = 1 : <i>,..
HOLDING = 2 :
HAS_TIE = 1 : <1%
FAS_TIE = 2 3 <O>
I3_SHMILING = 2 ©
HOLDING = 1 :
HAS_TIE = 1 : €%, ..
HAS_TIE = 2 : <05, ..
HOLDING = 2 : <053...
HOLDING = 3 : <0, ..
HEAD_SHAPE = 3 :
ROLDING w 1 ;
HAS_TIE = 1 :

BODY_SHAPE = 1 1 <0»...

BODY_SHAPE = 2 :
IS_SHILING = 1 1 <0>
IS_SMILING = 2 § <1>

BODY_SHAPE = 3 : <O»...

HAS_TIE = 2 :

IS_SHILING = 1 : <1>...

IS_SHILING = 3 :
BODY_SHAPE = 1 : <1>
BODY_SHAPE = 7 : <0>

HOLDING = 2 :
BODY_SHAPE = ) : <i>..,
BODY_SHAPE m 2 : <0>...
BODY_SHAPE = 3 | <0>, .,
HOLDING = 3 :
HAS_TIE = 1 : <1%,..
HAS_TIE= 2 :
BODY_SHAPE = 1 : <i>...
BODY_SHAPE = 2 : <0>..,.
JACEET COLOR = 4 :
BODY_SHAPE m 1 :
HAS TIE = 1 @ <0>. ..
HAS_TIE = 2 :
HEAD_SHAPE = 1 : <i>,..
HEAD_SHAFE = 2 : <0>,..
HEAD_SHAPE = 3 :
IS_SNILING = { : <i>, ..
IS_SHILIRG = 2 : <O>,,,
BODY_SHAFE = 7 :
HOLDING = } :
IS_SMILING = 1 : <i>...
I[S_SAILING = 2 :

HEAD_SHAFE = 1 : <0>, ..

HEAD_SHAPE = % :
HAS_TIEw™ | : <I>

W. Van de Welde

HAS_TIE = 2 : <O>
HOLDI®G = 3 : <i>...
HOLDIEG = 3 :
HAS_TIE = 1 :

[5_SHMILING = 1 :
HEAD_SHAPE = 1 ; <0>
HEAD_SHAPE = 1 : <€1>

IS_SHMILING = 3 ; <13.,.

HAS_TIE = 2 :
IS_SMILING = L ; <i>...
IS_SWILING = 2 : <>,
BODY_SHAFE = 3 :

IS_SMILING = 1
HOLDING = 2 @ =0, .,
ROLDING = 3 | €4>..,

IS_SMILING = 2 ; <>, ..

5.2.6 IDL on test set 2

DESCRIPTION OF THE TREE:

Typical tres found by idl
; trained an second monks'a
: training set

500 axamples (random from
full training set}h

170 nodas

i 10T leaves

i1 66 I03T0E accuracy on tast sat

IS_SWMILING = 1 :
HAS_TIE = 1 :
JACEET_COLOK = L : <0>.,,
JACKET_COLOR = 2 :
BODY_SHAPE = 1 : €0%...
BODY_SHAPE = 2 ; <i>...
BODY_SHAPE = 3 :
HEAD_SHAPE = 1 : <03...

HEAD_SHAPE = 1 : <1>»...
READ_SHAPE = 3 : <0>, ..
JACKET_COLOR = 3 ¢
BODY_SHAPE = 1 : <0>.
BODY _SHAPE = 2 :
HEAD_SHAPE = 1 : 0>,
HEAD_SHAPE = I :
KOLDING = 1 : «<0>
EOLDIRG = 2 : <i>
HOLDING = 3 : <i>
HEAD_SHAPE m 3 :
FOLDING = 1 : <0>
HOLDING = 3 : «<i>
BODY_SHAPE = 3
HEAD_SHAPE = 1 ; <0>,.,
HEAD_SHAPE = 3 : <i>. ..
HEAD_SHAPE = 3 ; <0>,..

JACKET_COLOR = 4 :
BODY_SHAPE = 1 | <O>, ..
BODY_SHAFE = I :

HEAD_SHAPE = 1 : <0>, ..
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HEAD_SHAFE = 2 : <i>...

BODY_SHAFE = 3 :

HEAD _ZHAPE m 1 1 <>, ..
HEAD_SHAPE = 2 : <1>,.,

HAS _TIE = 2 ¢
JACKET._COLOR = 1
BODY_SHAPE = 1 : «0>. ..
BODY_ SHAPE = 2

HEAD_SHAFE = 1 i <0>..,

HEAD_SHAPE = 3 :
HOLDING = L : <02
HOLDING = 3 : <1>

BODY_SHAFE = 3 :

HEAD_SHAPE = 1 | <00 ..

HEAD_ SHAPE = 2
HOLDING = 1 @ <0>
HOLDING = 3 : <1>
JACKET _COLOR = 2 :
BODY_SHAPE = 1 :

HEAD_SHAPE = 1 : <0»..

HEAD_SHAFE = 3 ;
HOLDING = 1 t <02
HOLDIEG = 2 : <1>
KOLDING = 3 : <1>

HEAD_SHAPE = 3 © <1>..

BODY_SHAPE = 2 1 <1>...
BODY_SHAPE = 3 !
HOLDING = f : <€0>...
HOLDIEQ = 2 ; <i>..,
HOLDIEG = 3 ; <1¥, .,
JACEET _COLOR = 3 :
BODY_SHAPE = 1 § <i>...
BODY_SHAPE = 2

HEAD_SHAPE = 1 ; <1>...
HEAD.SHAPE = 2 1 <0>..,

HEAD_SHAPE = 3 :
HOLDING = 1 © <1>
HOLOING = 3 : <0>
BRODY_SHAFE = 3 :
HEAD _SHAPE = @
HOLDING = 1 : <>
HOLDING = 2 ; <1>
HEAD_SHAPE = 2 :
HOLDING = 1 : <13
HOLDING = 2 : <0>
HEAD_SHAPE = 3 :
HOLDING = 1 : €i>
HOLDING = 2 : <0>
JACKET _COLOR = 4 ;
BODY_SHAPE w 1 @ <1>...
BODY _SHAPE = 2 : <1>, ..
BODY _SHAPE = 3 :

HEAD_SHAFE = 1 : <€1>...
HEAD_SHAPE = 2 : <0%...

IS_SRILIEG = 2 :
BODY_SHAFE = 1 :
FAS_TIE = 1 :

JACKET _COLOR = 1 : <0>,..
JACEET_COLOR = 2 ; €1>, ..
JACKET_COLOR = 3 : <0>, .,
JACKET_COLOR = 4 : <0, ..

HAE TIE =2 :
JACEET_COLOR = 1

HEAD_SHAFE = 1 : <0>...
HEAD_SHAPE = 2 : <1>,..
HEAD_SHAFE = 3 : <i>...

JACKET_COLOR = 2 :

HEAD_SHAPE = 1 1 <i>...

HEAD_SHAPE = 2 :
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5.3 Classification diagrams

(a) Result of ID3R on test set 1, Accuracy: 23.1%
(b) Result of IDL on test set 1, Accuracy: 100.0%
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{a) Result of IDSR-HAT on test set 1, Aceuracy: 80.3%

(b) Result of TDIDT-based method on test set 1, Accuracy: 7T5.7%
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(a) Result of ID5R on test set 2, Accuracy: 66.2%
(b) Result of IDL on test set 2, Accuracy: T1.3%
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(a) Result of TDIDT on test set 2, Accuracy: 67.1%
(b) Result of IDSR-HAT on test set 2, Accuracy: 67.8%
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5.4 Learning curves

ID5R on MONKS-1
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6.1 Introduction

At the Institute for Real-Time Computer Control Systems & Robotics a library of inductive machine learning
algorithms is being developed. So far this library consists of;

» 1D3 - classical decision tree learning algorithm
s IDSR - an incremental decision tree learning algorithm

AQR - a version of the AQ-rule learning algorithms

N2 - rule decision list learning algotithm
« COBWEB - conceptual clusteting algorithm for attributes with symbolic values
» CLASSIT - conceptual clustering algorithm for attributes with numerical values

CLASSWEB - algorithm that integrates COBWEB and CLASSIT. In the following only this algorithm is
referred to.

These algorithms have been implemented in a very homogeneous way, Le. they use the same description for
objects that have to be learned, they are called in a similar way and they are all available under one common
user interface,

The reason for building up this ML-library is, that our institute 1s interested in applying machine learning
techniques to robotics applications, As a first step we wanted to gain experiences with the classical inductive
learning methods in order to find out their capabilities and limitations.

All algorithms base on a common description of the objects to be learned, which consists of a set of attributes,
each defined by a name, a domain, a 'noisy-flag’ and some additional information for the conceptual clustering
algorithm. In addition a symbol which is used for unknown attribute values can be identified. Each algorithm
will then be called with a set of examples (classified for ID3, ID5R, AQR and CN2; unclassified for CLASSWEBR).
As ID5R and CLASSWERB are incremental methods, a former received classifier can also be given as input. Each
algorithm results in a classifier which can be used for classifying further given objects. For a better understanding
of the results a textual representation of the classifier can be printed on the screen. For decision tree learning
algorithms and conceptual clustering also a graphical display is available. Far the incremental methods it is
also possible to display a trace during classifier generation, The implementation work has been done on a SUN
Sparc Station 1+ in SUN Lucid Common Lisp using CLX and CLUE for only the graphical interface ([HWO1]).

6.2 Short description of the algorithms

In this section a very short description of the algorithms will be given. For further details please see the
corresponding literature. The representation of examples as attribute-value-pairs, where the set of attributes is
given and fixed, is common to all algorithms.

6.2.1 1ID3

ID3 is the most popular representative of TDIDT-algorithms {Top Down Induction of Decision Trees), It builds
up a decision tree based on the classified training examples ([Qui8f]). The internal nodes of & decision tree
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represent a test based on one specific attribute. For each possible attribute value there is one subtree, which
is for itself a decision tree. The leaves of the tree represent class names. For classifving a new ohject with a
built-up decision tree, the value of the attribute at the root of the tree will determine which subtree has to be
considered recursively. The recursion will end, if a leaf of the tree is reached. In that case the class name given
in that leal represents the class in which the object has to be classified.

The idea for building up the decision tree is to iteratively find the attribute in the set of attributes of the chjects
which gives the "best' partition of the set of training examples. 'Best’ is defined in teems of the information
gain given by a partition according to the specific attribute.

The basic algorithm has already been extended by Quinlan ([QuiB6]) te handle noisy attributes and unknown
attribute values. In the implemented algorithm noise is handled by applying chi-square test for stochastic
independence o the noisy attribute with respect to the class distribution, Unknown attribute valuea have ta
be handled during building of the decision tree and during classification. For building up the decision tres
unknown attribute values are taken into account in the caleulation of the information gain.

The algorithm as being implemented also uses windowing over the training set, i.e. a subset of the training
set is chosen at random and the decision tree is built up by using only these examples. After that all sther
examples of the training set are classified using this DT, If some of the examples are incorrectly classified, a
selection of these will be added to the window and the procedure will start again. Due to the complexity of the
given training sets, a lot of iterative steps had to be performed.

6.2,.2 IDSR

The ID5E algorithm {[UtgR0]) has been developed by P.E, Utgoff as a kind of TDIDT-algorithm which is able
ta work incrementally, but results finally, i.e. after ail training examples, in the same decision trée as IDJ.
Incremental’ means that the examples can be given one after another. A very easy solution for the problem of
suceessively given examples would be to generate an ID3 decision tree from scratch with all examples given so
far. In contrast to that approach, IDAR always uses the decision tree developed so far for integrating the new
example. For that reason the data structure of 4 node in an IDSR tree has been enlarged by the information
necessary to calenlate the information gain function of the attributes.

"If during insection of the new example the situation arises that the current test attribute is not the one with
the highest information gain, the tree has to be restructured. This is done by investigating all subtrees of the
current node by using the new attribute as the test attribute. In a second step the test attribute in the current
node is exchanged for the attribute in the subtrees.

In our implementation IDGR does not result in exactly the same tree as D3, even if all examples are given.
First this is caused by the fact that ID5R does not generate NULL-classes, because leaves are only splitted
further, if it iz really necessary. Second, if there are several attributes with the same information gain and one
of these attributes is already used as test attribute, then a restructuring of the tree will not be dene. It would
be of course ‘also possible to take the first attribute in the list as new test attribute and to restructure the tree

accordingly.

6.2.3 AQR

The AQR algorithm is an implementation of the AQ-family, which has been founded by R. Michalski in 1969.
AQR is a reconstruction of a straight-forward implementation of the basic AQ algorithm and has been described
in [CN89]. The algorithm results in one decision rule for each class. The condition of each rule is called a cover
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and represents a disjunction of so-called complexes. Each complex for itself is a conjunction of selectors and
sach selector is a basic attribute test (has the attribute one of a set of values, ete.}.

For classifying a new object, each rule is checked to see, whether the condition is completely satisfied, L.e. the
example is covered by the rule. If exactly one rule is satisfied, the corresponding class is the classification resuli,
If several rules are applicable, then the most commaon class of training examples covered by those rules is used
as result. If none of the rules can be applied, the class that appeared most often in the training set is used as
result.

The decision rules are sequentially built up for the different classes. Starting with an empty cover guccessively
a seed, i.e. a positive example which is not covered so far is being selected and a star 1z being generated, which
is a set of complexes that cover the seed but no negative examples. From these complexes the one which is the
best one according to a user-defined criterion is being chosen and added to the cover as an extra disjunct. The
positive examples that are covered by that additional complex are then deleted from the list of examples. In
our implementation the best complex is the complex that maximizes the number of positive examples that are
covered.

8.2.4 CN2

This algorithm has been developed by P. Clark and T. Niblett {[CN8&9]). It shall combine the advantages of the
families of TD3- and AQ-algorithms. The classifier resulting from that algorithm is an ordered set of if-then-rules
{decision list). This means that the representation is very similar to AQ, i.e. if ‘somplex’ then predict "class’,
but the rules have to be checked from top to bottom. If none of the rules applies to a new object, again the
class that appeared most often in the training set will be taken.

The idea of Clark and Niblett was to enable AQ-like algorithms to handle noisy data by also taking complexes
irito account that do not fit the positive/negative border accurately. The method is based on the beam-search
method as being used in AQ. During each iteration the algorithm searches for a complex that covers a large
number of examples of one class and only few examples of other classes. The complexes are evaluated by an
evaluation function which determines their predictiveness and reliability. If a good complex has been found,
the examples that are covered, are deleted from the set of training examples. The search for a complex can be
seen as a general-to-specific search with some pruning. During each iteration a set of the best complexes found
so far is being remembered. These are specialized by adding a new conjunctive term or deleting a disjunctive
part of one of the selectors. CN2 evaluates all possible specializations of each complex, which may lead to-an
enormous computational effort.

6.2.5 CLASSWEB

CLASSWEB is a combination of the algorithms COBWEB ([Fis87]) and CLASSIT ([GLFS88]). These are
methods for conceptual clustering, In contrast to the four algorithms described so far, these use unclassified
examples as input and try to find a concept hierarchy for the examples where the similarity in one concept is
as high as possible and the similarity between different concepts is as low as possible. While COBWEE only
handles nominal values and CLASSIT only numerical ones, our CLASSWEB algorithm is ahle to handle bath
types in an integrated way.

For building up a concept hierarchy CLASSWEB uses four different operators to integrate a new example into
the already existing concept hierarchy. These are: 1.) classifying the object into an existing class, 2.] creating
a new class, 3.) combining two classes into a single class and 4,) dividing a class into several classes. Applied
to internal concept nodes these different operators are scored according to category utility and the best one i8
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chosen.

We have also implemented the so-called cutoff in CLASSWEB. By that parameter the algorithm does not have
to classify each example down to a leaf, but also may decide to stop at some higher level in the hierarchy. Cutoff
is a measure whether an example and a concept class are similar enough to stop at that concept node. If cutoff
is set to zero, the algorithm behaves exacily like the original COBWEB method.

To compare CLASSWEB with those inductive learning algorithms which use classified examples as input,
somehow the class information had to be added to ihe examples, This was done by handling the class of each
example as an additional attribute. During classification the prediction capabilities of CLASSWEB are used,
to determine a class for the unclassified example.

6.3 Results

The following tables compare the performance of the different algorithms on the three problem sets. T hie time
data given correspond to compiled SUN Lueid Common Lisp 3.0 code on a SUN SPARC station 1+

6.3.1 Training Time

This follewing table states the time required for each algorithm on pach training sei to build up a classifier.

Algorithm Traiming 9t 1 | Araining oet @ | Traming Sek 3
103 35.51 154.02 23.04
103 ne wind, 4.98 761 3.74
DGR 99.20 407.09 T8.91
AQR 417 .45 4.00
CN2 4.48 74.04 10.25
CLASSWER 0.10 1406.47 2013.78 1311.25
CLASSWEB 0.15 R67.47 977.04 882.09
CLASSWEB 0.20 409.04 646.06 521.21

Time is given in seconds and was averaged over three test runs over each algorithm and each training set.
Remarks:

The [D3-algorithm as implemented uvses a 20%-windowing as mentioned above. For the three given problems
this leads to a large number of necessary iterations. That's why there are also results given for ID3 without
windowing (ID3 no wind.}.

The CN2-algorithm uses a user-defined threshold value for doing its noise test. This is set to 0.1

The cutoff-parameter in CLASSWER was set to 0.10, 0.15 resp. 0.20 in three different experiments,
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8.3.2 Classifier Results

First we will give some measurements such as number of nodes, leaves, rules and so on, which will reflect the
complexity of the resulting algorithms. Afterwards some of the resulting classifiers for the different algorithms

and training sets are given,

D3
Measurement | Lraiming Set 1 | Lraming Set 2 | Training Set 3
# nodes 13 56 13
# leaves 28 110 29
ID3 no windowing
Measurement | Training Set 1 | Training Set 2 | Training Set 3
# nodes 32 fid 14
# leaves 52 L0 31
IDsSR
Measurement | Training Set 1 | Training Set 2 | Training Set 3
# nodes 34 G4 14
| # leaves 52 99 28 |
AQR
Measurement | Training Set 1 Training Set 2 Training Set 3
Class [ | Class 1 | Class 0 | Class | | Class 0 | Class 1
# complexes a0 [ 40 43 16 20
& selectors 100 4 47 187 T 67
CNZ
Measurement | Training Set 1 | Training Set 2 | Training Set 3
# rules 10 o8 24
# selectors 13 145 38
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CLASSWEB (cut-off = 0.10}

Measurement | Lraining Set 1 | Training Set 2 | Training Set 3
# concepts 219 305 217
| # nodes 45 137 95
| # leaves - 124 LG8 122

CLASSWEB (cut-off = 0.15)

Measurement | Traiming Set 1 | Training Set 2 | Lraining Set 3 |
# concepts a7 58 B8
# nodes 21 23 26
# leaves 36 35 42

CLASSWEB (cut-off = 0.20)

Measurement | Lraining Set 1 | Lraiming et 2 | Training Set 3
#* concepts 21 26 29
# nodes 7 10 11
# leaves 14 16 13
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BODY-SHAPE = 2 & HEAD-SHAPE = 2 |

HAS-TIE = 1 & FBEODY-SHAPE = 3 & HEAD-SHAPE = 3 |
HAS-TIE = 2 & HEAD-SHAPE = 3 & BODY-SHAPE = 3
c===> GLASS '1' (P['17] = 4/2)

DEFAULT ===> CLASS *0° (P['0'] = 1/2)

CHNZ

JACKET-COLOR = §  ===> CLASS "1’

HEAD-SHAPE = 2 & BODY-SHAPE = 3 === CLASS 'Q’
BODY-SHAPE = 1 & HEAD-SHAPE = 3  ===> CLASS 'O’
HODY-SHAPE = 1 & HEAD-SHAPE = 2  ===> CLASS '0'
BODY-SHAPE = 1  ===3> CLASS °1°

HEAD-SHAPE = 2  ==w> CLASS "1’

BODY-SHAPE = 2 === CLASS '0°7

HEAD-SHAPE = 3 ===} CLASS "1’

HAS~TIE = 2 ===} CLASS '0’

HAS-TIE = 1  ==w3> CLASS 'O

DEFAULT ===> CLASS *0°

Accuracy

Algorithm Training Set 1 | Training Set 2 | Training Set 3

1D3 100.00 100,00 100.00

ID3 no w. 100.00 100.00 100.00

ID5R 100.00 100.00 100.00

AQR 100.00 100.00 100.00
N2 10:0.00 02,90 100.00
CLASSWEB 0.10 87.10 69.23 26,80
CLASSWEB 0.15 T4.18 £9.23 £86.07
CLASSWEB 0.20 66,94 59.76 79.51

Algorithm Test Set 1 | Test Set 2 | Test Set 3

1D3 92.56 67.02 9444

[D3 no w. 83.24 69.12 95.60

IDER, T9.77T 69.23 45 .28

AQR. 95.88 70.63 87.04

CN2 100.00 £8.98 8912
CLASSWEB 0.10 T1.76 84.81 80.7%
CLASSWEB 0.15 65.74 81.57 85.42
CLASSWEB 0.20 62.96 57.18 75.23




6.4 Conclusion

The results of this chapter give a good survey about the possibilities and limitations of the different tested
inductive learning algorithms. Especially it is possible to compare the learning results nat only with respect to
accuracy, but also with respect to training time and classifier complexity. Since we mainly used the zigorithmsin
the form as they were described in journal articles, they do not necessarily represent the actual version available
to the anthors of the original algorithms. Nevertheless the comparison clearly points out, which algorithms are
more useful for domains similar to the Monk's problems.

Another interssting result is the strong impact of parameters on the learning result. Windewing in 1D3 influences
elassifier complexity, accuracy and training time, In CLASSWEB they are determined very strongly by the
cut-off parameter, which varies only between 0.1 and 0.2 in our experiments, but results in a factar of 3 in
training time and a factor of 10 in classifier complexity.

[t aléo has to be mentioned that some important capabilities of the algorithms have not been tested and compared
by using the given learning problems. These are for example the handling of noise in specific attributes, of costs
for determining attribute values and of unknown attribute values in ID3 and ID3R. The incremental nature
of ID5R. was not really needed in these test cases because all examples were given in advance. The ability to
handie unknown attribute values in AQR and CN2 was not used either.
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6.5
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Classification diagrams

(a) Result of ID3 on test set No. 1, Accuracy: 97.7%
(b) Result of ID3 on test set No. 2, Accuracy: 67.4%
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-

Accuracy: 94.7%
No. 1, Accuracy: 82.4%
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Comparison of Inductive Learning Programs
(b) Result of ID3OW on test set No. 3, Accuracy: 95.1%

(a) Result of ID3OW on test set No. 2, Accuracy: 69.9%
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J. Kreuziger, R. Hamann, and W. Wenzel

T2

test set No. 1, Accuracy: 73.9%

(a) Result of ID5R on

No. 2, Accuracy: 69.0%

(b) Result of ID5R on test set
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Comparison of Inductive Learning Programs

95.1%
94 4%

(a) Result of IDSR on test set No. 3, Accuracy

(b) Result of AQR on test set No. 1, Accuracy
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J. Kreuziger, K. Hamann, and W, Wenzel

(a) Result of AQR on test set No. 2, Accuracy: 79.6%
(b) Result of AQR. on test set No. 3, Accuracy: 87.0%
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Comparison of [nductive Learning Programs 75

(a) Result of CN2 on test set No. 1, Accuracy: 100.0%
(b) Result of CN2 on test set No. 2, Accuracy: 63.0%
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J. Kreuziger, R. Hamann, and W. Wenzel

(a) Result of CN2 on test set No. 3, Accuracy: 89.1%

(b) Result of CLASSWEB 0.10 on test set No. 1, Accuracy: T1.8%
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Comparison of [nductive Learning Programs

Result of CLASSWEB 0.10 on test set No. 2, Accuracy: 64.3%

of CLASSWEB 0.10 on test set No., 3, Accuracy: 80.8%

(b) Result
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No. 2, Accuracy: 61.6%

J. Kreuziger, B. Hamann, and W. Wenzel
of CLASSWEB 0.15 on test set No. 1, Aceuracy: 65.7%

(a) Result
(b) Result of CLASSWEB 0.15 on test set
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EB 0.15 on test set No. 3, Accuracy: 85.4%
set No. I, Accuracy: 63.0%

Comparison of Inductive Learning Programs

(b) Result of CLASSWEB 0.20 on test

(a) Result of CLASSW
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{a) Result of CLASSWEB 0.20 on test set No. 2, Accuracy: 57.2%
(b) Result of CLASSWEB 0.20 on test set No. 3, Accuracy: T5.2%
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Chapter 7

Documentation of Prism — an
Inductive Learning Algorithm

Stefan F. Keller

Al-Lab, Institute for Informatics, University of Zuerich, CH-B057 Zuerich

81



82 5. Keller
7.1 Short Description

PRISM was invented by Jadzia Cendrowska (1987). Based on Quinlan’s induction algorithm 1D3, PRISM pays
attention to maximizing he information gain for a single value of an atribute in contrast to [D3 which tries to
minimize the average entropy for an attribute-value pair.

7.2 Introduction

The decision tree output of D3 algorithm is one of its major weaknesses. Not only can it be incomprehensible
and difficult to manipulate, but its use in knowledge based systems frequently demands irrelevant information
to be supplied. We argue that the problem lies in the induction algorithm itself and can only be remedied
by radically altering the underlying strategy. The resulting algorithm, although based on ID3, uses a different
induction strategy to induce rules which are modular in the sense how they are constructed. This appreach
avoids many of the problems associated with decision Lrees.

7.3 PRISM: Entropy versus Information Gain

The rhain cause of the problem described above is either that an attribute is highly relevant to enly one
classification and irrelevant to the others, or that only one value of the attribute is relevant.

There: ¢an be shown that while in the construction process of a decision tree although ez the entropy of -
a distinct branch d1 has been reduced to 0, the entropy of the other branch has actually increased to some
higher entropy-measure. Attribute d would be chosen by [D3 because it minimizes the average entropy of the
training set, or alternatively, it maximizes the average amount of information contributed by an attribute to
the determination of any classifiaction.

In order to eliminate the use of irrelevant values of attributes and attributes which are irrelevant to a classifica-

tion, an improving algorithm needs to maximize the actual amount of information contributed by knowing the
VALUE of the attribute to the determination of a specific classification.

7.3.1 Maximizing the information gain

So, the task of an induction algorithm must be to find the attribute-value pair, ax, which contributes the maost
information about a specified classification, dn, i.e. for which I{dn | ax) is maximum.

This can be done in the following way: Let S be the data set; first find the ax for which p{dn — ax) is
maximum. Lets call the choosen attribute <2 (=attribute ¢, value 2). Repeat now the process on a subset of 3
which contains only those instances which have value 2 for attribute ¢ until there are all instances removed.

7.3.2 Trimming the tree

The remaining "branches™ are not yet labelled, so the next step in the induction process is to identify the best
rule of the set of instances which are not examples of the first rule, This is done by removing from S all instances
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toﬁtaining this rule and applying the algorithm to the remaining instances. If this is repeated until there are no
instances of class d1 Teft in 5, the result is not a decision tree but a collection of branches. The whole process
can then be repeated for each classification in turn, starting with the complete training set, 3, each time,

The final output is an unordered collection of modular rules, each rule being as general as possible, thus ensuring
that there are no redundant terms.

The following assumptions have been made about the training set:

°

the classifications are mutually exclusive

there is no noise, i.e. each instance is complete and correct

each instance can be classified uniquely

= no instance is duplicated

& the values of the attributes are discrete

the training set is complete, i.e. all possible combinations of attribute-value pairs are represented

Given that the assumptions abeve hold, the algorithm produces a complete set of correct rules.

7.4 The Basic Algorithm

If the training set contains instances of more than one classification, then for each classification, dn, in turn:

Step L:
caleulate the probability of occurence, p{dn — ax), of the classification dn for each attribute-value pair ax,

Step 2: .
select the ax for which p(dn — ax) is a maximum and create a subset of the training set comprising all the
instances which contain the selected ax,

Step 3:
repeat Steps 1 and 2 for this subset until is contains only instances of class dn. The induced ruleisa conjunclion
of all the attribute-value pairs used in creating the homogeneous subset.

Step 41
remove all instances covered by this rule from the training set.

Step 5:
repeat Steps 1-4 until all instances of class dn, have been removed.

When the rules for one classification have been induced, the training set is restored to its initial state and the
algorithm is applied again to induce a set of rules covering the mext classification. As the classifications are
considered separately, their order of presentation is immaterial. If all instances are of the same classification
then that classification is returned as the rule, and the algorithm terminates.
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7.5 'The Use of Heuristics

Opting for generality [: [f there are two or mare rules describing a classification, PRISM tries to induce the most
general rule first; Thus PRISM selects that attribute-value pair which has the highest frequency of occurence
“in the set of instances being considered.

Opting for generality [I: When both the information gain offered by two or more atiribute-value pairs is the
same and the numbers of instances referencing them is the same, PRISM selects the fiest.

7.6 General Considerations and a Comparison with ID3

A rule will not be induced by PRISM if there are no examples of it in the training set, but this applies to all
induction programs. Even human beings cannot be expected to induce rules from non-existent information.

The accuracy of rules induced from an incomplete training set depends on the size of that training set (as with
all induction algorithms) bui is comparable to the accuracy of a decision tree induced by ID3 from the same
training set, despite the gross reduction in number and length of the rules.

The major difference between ID3 and PRISM is that PRISM concentrates on finding only relevant values of
attributes, while [D] iz concerned with finding the attribute which is most relevant overall, even though some
values of that attribute may be irrelevant. All other differences between the two algorithms stem form this; [D3
divides a training set into homogeneous subsets without reference to the class of this subset, whereas PRISM
must identify subsets of a specific class. This has the disadvantage of slightly incresed computational effert, but
the advantage of an output in the form of modular rules rather than a decision tree.

7.7 Implementation

Version: 0.9

Status: Experimental

Language: Common Lisp _ _

Authors:  Lindsey Spratt (spratt@hawk.cs.ukans.edu), Spring 1990,
modified by Stefan F. Keller (keller@ifi.unmizh.ch), Summer 1991.
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7.8 Results on Running PRISM on the MONK's Test Sets

TEST PLATFORMS:
Mac: Macintosh Allegro Common Lisp 2.0b2, Macintosh Ilci, dMB memory
Sun: Franz Allegro Common Lisp 4.0.1, Sun sparc/320, 24MB memory

TEST SET 1:

No. of trainig-examples; 124

Mo. of test-examples: 432

No. of rules induced: 29

Covered test-examples: 86Mac run time: 80.14s, 85.10s, 80.43s, 81.10s, 80.05s
Sun run time: 23.30s, 22.80s, 23.50s, 23.12s, 23.08s

Average tun time on Sun: 23.16s

TEST SET 2:

No. of trainig-examples: 189

Mo, of test-examples: 432

No. of rules induced: 73

Covered test-examples: TdMac run time: (409.26s)

Sun run time: 121.50s, 122.50s, 120,758, 122.18s, 121.00s
Average run time on Sun: 121.58s

TEST SET 3:

No. of trainig-examples; 122

No. of test-examples: 432

No. of rules induced: 26

Covered test-examples: 90Mac run time: (58.63s)
Sun run time: 16.77s, 17.00s, 16.63s, 16.680s, 17.30s
Average run time on Sun: 16.86s
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7.8.1 Test Set 1 — Rules

{RULE-1
(IF  {{jackat_color 1)})
CTHEN {class 1}}}

(RULE-2
(IF  ((head_shaps 3} (body_shape 3)1)
(THEN (class 1))}

(RULE-3
{IF {(holding 1) (bedy_shaps 2) (head_shaps 2)))}
(THER {clams 1}})

CRULE-4
({IF {{body_shaps 1} (head_shaps 1}3)
CTHEN (class 1)}) '

(RULE=5
(IF  ((body_shaps 2} (hesd_shaps 2}))
(THEE (claas 1))}

(RULE-8
(IF  {{(head_shape 1} {jacket_color 4) (body_shaps 3)}}
({THER {claams 031}

(RULE=T
{IF  {{jacket_color 2} (holding 2) (has_tis 21))
{THEN (class 0)))

{RULE-8
(IF  {{jacket_color 3) {has_tie 1) (holding 333}
(THEF (class 0)))

{RULE-3
{IF ({jacket_coler 3) (holding 2) (hend_shaps 1) (has_tie 23))
(THEN (class 0)))

{RULE~10
(IF  ((jacket_coler 27 C(hesd_shape 1) (body_shapa 3)))
(THEN (clauss 0)})

(RULE-11
(IF  ((jackst_color 4) (body_shape 1) (head_shapa 211}
{THEN (class 0))}}

(RULE-12
(IF  ({jacket.color 3} [has_tie 1} (body_shape 3}}}
(THEN (class 0}))

(RULE-13
(IF  ({jacket_coler 3} (has_tie 1) (head_shaps 2} (body_shape 1)
{THEN (class 0}}}

(RULE-14
(IF  ((jacket.color 2} (is_smiling 2) (helding 3} (hady_shaps 1))
(THEN (class 0))} *

{RULE-15
{1F {{head_shapa 1) (bedy_shape 2} {is_smiling 2}})
(THEN (class 0)))

(BULE-16
(IF  ((jacket_color 3) (is_smiling 2) (head_shaps 2) (body._shape 3)))
{THEN (class 0)})

(BULE=1T
(IF  ([(jackst_color 2) (is_ssiling 2) (hesd_shape 2) {body_shape 1))}
(THEX (clasa 0)))

{BULE=18
(IF  ({jackst_colar 4) {head_shape i} (ia_smiling 1))}
(THEE {class 0}})

{RULE-19
(IF  ({jacket_color 2) (holding %) (body_shaps 3)))
(THEN (clams G)))

{RULE-20
(IF  ({jacket_color 3) {(body_shapas %) (head_shape 1}}}
(THEX (class D))

(RULE=-21
(IF ((fasckar_color 2) (body_shape 2) (head_shape 1))}
{THER (clams 0)2)

{RULE-22
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(IF  (({jagket_color 4} (is_smiling 1)} (body_shape 2} (head shaps 311}
(THER (class 0})}

(RULE-23
{IF  ((jacket_coler 3} (head_shape 3} (body_ shape 1}}}
({THEE (class 0)}})

(RULE=-24
{IF  ({jacket_coler 2} (head_shape 3) (body_shape L))}
{THER (class Qr)}

{RULE-28
{IF  ({jacket_color 3) (holding 1} (head_shaps 3) (body_shape 21))
(THEN (class 0)}))

{RULE-28
(IF  {({jacket_color 4) (holding 3) (has_tie 1} (head_shaps 3)}}
(THEN (class 0})}

(RULE-2T
(IF  ({holding 3} (jacket.color 4) (is_smiling 1) (body_shape 3} (head_shape I}}}
(THEN {class 0})}

(RULE-28
(IF  ({jscket_color 3} {bedy_shapa 1) (head_shaps 21})
{THEN {clasa 0}})

(RULE-79
¢IF  ({jacket_color 7) {is_smiling 2} {holding 3) (has_tie 113}
{THEN {class 0}))

7.8.2 Test Set 2 — Rules

{RULE-1
{IF ((holding 1) {jacket_celor 1) {has_tie 1)))
{THEN tclass Q))}

{RULE-2
{IF  ({jacket_coler 4) (body_shapa 1} (has_tis 1}J)
{THEN (class O}})

(RULE-3
{IF ((head_shape 1) (holding 1) (is_smiling 1))}
{THEN (class 0)))

{AULE-4
(IF ({jacket_coler &) (body_shapa 3) (is_smiling 2)}}
(THEN (clasa 0}1))

(RULE=5
(IF ({jacket.color 3) (is_smiling 2) (holding 2} (has_tie Z}})
(THEN (class ©}})

(RULE-6
(IF ((has_tis 1) (head_shape 1} (is_smiling 1}}}
(THEN (class 0}})

(RULE=T
{IF ((holding 1) (head_shaps 1) Chas_tis 1)})
(THEN (clusa 9)})

(RULE-8
(IF  {(haad_shape 2) (has_tis 2) (body_shaps 2) (is_smiling 2}))
(THEN (class Q)})

{RULE-9
(IF  ({jacket_.coler 1} (is_smiling 1} (bedy_shaps 1}))
(THEN (class 0)))

(RULE-10
{IF  ((jackar_color 3) (is_smiling 2) (holding 3) (has_tia 2}1)
(THEN (ciass Q)})

{RULE-11
€IF  ((holding 1} (jacket_color 1} (is_smiling 1}}}
(THEN {class 0)})

{RULE-12
(IF  ({is_smiling 2} {jacket_color 2} (body_shaps 23
(THEN (clams 0)})°
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({RULE=13
(1F  {{jacket_coler 3} (has_tia 1) (body.shaps 1}}}

(THEN {class 0}})

(RULE-14
(IF {{jacket_celsr 1} (head_shape i} (body shapas 1)1}

(THEN (class 0)))

(RULE-1§

{IF ((head_skaps 27 (holding 2) (jacket_color 411}
{THEN (class 0})})

(AULE-18
(IF ({jacket_color 3} (head_shapa 3} {(body.shaps 3} thas_tia L33}
(THEY {clasa 0}))

{RULE=-1T
{IF  ({nead_shaps 2) (holding 2) (body.shape 3) {jacket_celor 2)}
{THEN (class 0Q}}} 1

(RULE~18
(IF  ((holding 3) (is_smiling 2) (jacket_color 4) (has_tie 2)))
{THEE (class 0)})

(RULE-19
(IF  {{jacket_celor 1) (is_smiling 1) (has_vis 1))}

{THEN (class 0)}}

{RULE-20
{IF ((jacket_color 3} (haad_shape 3) (is_smiling 2} (helding 2}}}
{THEN (class Q}))

{RULE-21
{IF  (({jackar_celer 3) (hand_shaps 2) {has_ties 2} (holding 2}))
{THEF (class O))) ;

{RULE=22
(IF  ({jacket.color 3) (hsad_shape 3) {body_shapa I} (has_tie 2} {holding 333}
(THEN (class 0)1)

(RULE-23
(IF  ({holding i) {is_smiling 1} (has_tie 1))}

(THEN (class 0)))

(RULE-24
(IF  ((holding 3) (is_smiling 2} C(head_shape 2} (jacket_coloer 2)))
{THEN (class Q)))

(RULE-25
(IF  ((jacket_color 1) (head_shaps 1) (is_smiling 103)

(THEN (class 0)))

{RULE-26 !

(IF  ({is_smiling 2) (holding 3} (body_shaps 3) (jacket_color 31}}
{THEN (class 0)})

{RULE=2T
(1F  ((head_shaps 3) (body_shaps 3) (jacket_color 2}})

(THER {class 0)})}

{RULE-28
{1F  ({body_shaps 1) (jacket_color 1} (has_tis 1)1}

(THEN {clums 0)))

{RULE-22
(IF ¢(jacket_coler 3} (head_shape 3} (holding 2} (body_shaps 3}})
{THEN (class 0}})

(RULE=30
(IF  ((holding 1) (body_shapa 1) (is_smiling 1)3)

{THEE f(class 0)})

{RULE=31
(IF ({body_shaps 2) (jacket_color 3} (has_tie 2) (is_smiling 2)))
(THEN (class 0}))

(RULE~33
(IF  (Chelding 3) (is_smiling 2) (jacket_color 2} (has_tie 2} (head_shapa 3}})
{THEN (clasa 0}))

{RULE=33
(IF  ((bady.shaps 2} {(helding 3) {jacket_color 1) (head_shaps 1} (has_tie 1}))
(THEN (class O)))

(RULE-34 *
(IF {{jacket_coler 3) (holding 3) (head_shaps 3} Chas_tis 2) (body_shape 2)1)
(THEN {class 0}))

(RULE~35
(IF  {{jacket_color 2} (is_smiling 1) {body_shape 2}}}
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(THER (clasa 1)))
{RULE-36 -
(IFf  ({jacket_goler 2) {body_shape 1) {head _shaps 3} (is_smiling 1}}}
(THEN (class 1)))
(RULE=37
(IF  ({holding 3} {bady_shaps 3) (jacket_color 1}))
(THEN (claas 1))}
(RULE-38
(1Ff  ((jacket_color 2} (body_shapa 1} (is_smiling 2} (has_tie 1}})
(THEN (clasa 1))}
{RULE-32
(IF  ({jmcket_color 3} (is.smiling i} (has_tis 2} (body_shaps 10
(THEN {class 1)))
(RULE-40
(IF  ((body_shape 2} {jacket_color 4) (is_smiling 1) (has_tis 2)))
{THEN {class 1}})
(RULE-41
£IF  ({jacket.coler 3) {bedy_shaps 2} (head_shape 1} (has_tie 2] (is_smiling 1131
{THEN (class 1}))
(RULE=42
(IF  ((bedy_shape 3) (jacket_coler 2} (helding 37 (head_shape 1)1)
{THEN {(class 1})})
(RULE=43
{IF ((head_shaps 2} (has_tis 1) (body_shaps 3) {jecket_color 4)))
{THEN (class 1}))
(RULE-44
{IF {(head_shape 2) {has_tie 1) (body.shaps 3) {(holding 1) (is_smiling 230
(THEN {(=lass 1))}
{RULE-45
(IF {{nhelding 2} (jacket_color 1} {is_smiling Z}}}
(THEF {(clams 111)
(RULE-48
(IF  {{jackst_color 3} (holding 1} (hes_tie 2} (body_shape 1}})
{THEN ({class 111)
(RULE-4T
{IF  ({holding 3) (has_tie 1) (body.shape 2} (jacket_color 3} (is_smiling 2)})
{THEF (class 1)})
(BULE-48
{IF  ((has_tis 2) (body_shape 1} (jacket_color 2) (nelding 23}
{THEN (clasa 1)})
(RULE-4%
{IF ((has_tie 2) (body_shape 1) (jacket_color 2} (is_smiling 2) (holding 1)1}
{THEN (class 1})})
({RULE=-50
{IF {(holding 3) (jacket.coler 1) {ia_smiling 2) (head_shape 3N
{THEN (class 1}})
(RULE=51
(IF  {{jacket_celor 3) (is_smiling 1) {head_shape Z} (holding 2} (has_tie 11})
(THEN (class 1}}) '
{RULE-52
(IF {{has_tie 2} (head_shaps 1) (jacket_color 2} (helding 2)))
(THER (class 1)))
(RULE-53
(IF ({bady_shape 2} (jacket_coler 4) (has_tie 1} (head_shaps 2}})
(THEN (clasas 1)3})
(RULE-54
(IF ({has_tia 2} (head_shapa 1) {jacket_coler 4) (body_shaps 13}}
(THEN (class 1)))
(RULE=55
(IF  ({jacket_calor 3) {holding i) Chas_tis 2} (is_smiling 1} (head_shape 3}}}
(THEN {(class 1}})
(RULE-54
(IF  (thelding 3} (jacket_celer 20 (is_smiling 1) (head_shaps 222}
(THER (class 1)}}
(RULE~5T
(IF  {(body.shapas 2) (has_tie 1) (jacket.color 3) (holding 3) (hsad_shape 2)}}
(THEN (class 1}1)
{RULE-58

29
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(EF  {{has_tie 2} (head_shaps 1} C(holding 3) (jacket_coler 233}
(THEN (class 1)))
(ROULE-69
(IF  ({body.shapa 2} (has_tis 1) (jacker_color 4) (is_smiling 2} (helding 2}1)
(THER (clams 1))}
{RULE~-40
{IF  ({has_tie 2} {body_shaps 3) (head_shapa 1) (holding 33}}
(THEN (class 1}3)
(BULE-81
{IF  {{jacket_color 3} (hsad_shaps 1) (haa_tis 2) (body_shupa 3}
(is_smiling 1) (holding 2}))
(THEN (class 1)})
{RULE=-532
(1¥  ((body_shape 2} {jacket_celor 1) {is_smiling 2) (has_tis 2}))
(THEN (class L))}
{RULE-83
{IF  {{jacket_coler 3} thelding 1} (has_tis 2) (body_shapa 3) (is_smiling 2}))
{THEN (class 1)}
{RULE-84
(IF  ((body_shaps 2) (has_tie 1} (jacket color 3} (ia_smiling 2} (head_shape L)2)
{THEN (class 1))}
{RULE-85
(1F  ({head_shaps 3} (jacket_celer 4) (holdiag 2) (has_tia 2}})
(THEN (class 1))}
(RULE-68
(IF  ((jmcket_color 1) (head_shape 2} (is_smiling 2) (has_tis 23))
(THEN (claas 1)3})
(RULE-8T
(IF  ((bedy_shape 2} (head_shepa 3} {is_smiling 1} (helding 211}
(THEN (class 1))}
(RULE-68
(IF  (({body.shaps 2) (haa_tie 1) (holding 3) (dis_smiling 1) {jacket_color 413}
(THER (class 1))}
(RULE~69
(1F  {({jacket_color 3) (halding 1) (has_tie 2) (is_smiling 1> (head_shape 2)))
(THEN (class 1))}
(AULE-TO
(IF  ((head_shaps 3} {jacket_color 3} (has_tie 1) (holding 33}
(THEF {class 1))}
(RULE-T1
{IF  ((head_shaps 3} {jacket_color 4) (holding 1) (has_tie 2}})
{THEN {(class £))}
(RULE-T2 . .
(IF  ((body_shaps 2} (has_tis t} {is_smiling 2) (jscket_color 3) {helding 1}))
(THEN {class 1))}
(RULE-T3
(IF {(jacket.color 1} (helding 3) {head_shaps 2} {baody_shape 230
(THEN (class 1))}

T7.8.3 Test Set 3 — Rules

(RULE=1
(IF  (f{body_shaps 2) (jacket_calar 1))}
(THEN (class 1))}
{RAULE-2
(IF {({jacket_color 3) (body_shapa 11))
(THEN {clasmas 1))}
{RULE-3
(IF  {{body_shaps 2} (jacket_color 2) {(head_shaps 1}})
(THEN {class 1}))
(RULE-4
(IF  ({jacket_coler 3} (holding 1) (body_shaps }))
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{THEF {class 1))}
(RULE=5
{IF  {(body_shapa 1) (jacket_color 11))
{THER {class 1))}
{RULE~8§ .
{IF  {{jackes_caler 3) fbedy_shape 1) (has_tis 2)))
(THER (clase 1))}
{RULE-T
{1F {(body_shapas 7) (jacket_color 1) (has_tis 2))})
(THEN (class 1}))
(RULE-8
¢IF  ({jacket_coeler 3) (holding 1) (body_shaps 3}3)
{THEN (class 1)))
(RULE-89
(IF  (({jzckat.coler 3) {body_shape 1} (ta_amiling 2}1)
{THEN (class 1))}
(RULE-10
{IF  ({jacket_color 3) (body_shape 2} {is_amiling 2)})
(THEN (class 1}})
(RULE-11
(IF  ((jacket_color 3} (head_shaps 3) {is_smiling 1}})
{THEN (class 1}}} )
{RULE-12
({IF  (ibedy_shapa 2) (head_.shapa 1) (hag_tie 1) (is_smiling L)})2
(THEN (class i}})
(RULE-13
{IF  (Chead_shape 3) (heolding 1) (ds_smiling 1} (body_shaps 3)1}
(THEN (class 1}})
{(RULE-14
{IF ({jacket_color 4} (has_tie 2)))
(THEN (clase 0}))
{RULE-15
(IF ({jacket_color 4) (head.shapa 1}}}
(THEF (claas 0)))
{RULE-16
(IF  {((body_shaps 3) {(is_smiling 2}})
(THEF (clasgs @)}
{RULE-17
{IF {({jacket.coler 4) (holding 3)1)
(THER (clams O}}}
(RULE=-18
{IF  ({bedy.shaps 3} (holding 3)})
{THEN (claas Q))}
{RULE-19
(IF ({facketr_color 4} (body_shape 1))}
{THER (class 0})}
{RULE-20
{IF  ((body_shapa 3] (holding 2)})
(THEN (class O3)}
{RULE-21
{IF ((jacket_coler 4) (body_shaps 2}}}
(THEF (claas 0)))
{RULE-22
{IF  ((body_shaps 3) (head_shaps 1))}
{THEN (clasa 0))}
{RULE-23
{IF  ({jacket_color 3} (is_smiling 1} (head_shape L} (body_shape L))}
{THER (class O)}}}
{RULE-24
{IF  ((jacket_coler 3} (helding 3} (head_shaps 2} (body_shapas 2}}}
{THEN (class 2}))
{RULE-25
(IF  (thelding 2) (has.tia 1) C(is_smiling 1) (bady_shaps 2) (head_shape 2)))
(THEN (class 9))})
(RULE=-26
(IF ((jacket_color 3} (helding 2} (head_shapa 1}))
{THEN (class O0})})

a1
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7.9 Classification diagrams

(a) Result of PRISM on test set No. 1, Accuracy: 86.3%
(b) Result of PRISM on test set No. 2, Accuracy: 72.7%
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Result of PRISM on test set No. 3, Accuracy; 90.3%
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06 Y. Reich, and D. Fisher
8.1 CoBWEB: A brief overview

This chapter describes the results of applying a variant of the CoBWEB system (Fisher, 1087a) called EcoBwea
(Reich, 1991; Reich and Fenves, 1891) to the MONK problems.!

‘CoBWER differs significantly from other systems described in this report. Most notably, the system is wnsu-
pervised: it does not assume that observations are preclassified (e.g., as positive or negative examples of some
concept). Rather, the objective of a clustering system such as COBWEB is to discover ‘useful’ or ‘interesting’
categories in & set of observations. CoBWER is also incremental like [D4 {Schlimmer and Fisher, 1936), its de-
scendents, and AQ15 (Michalski, Mozetie, Hong, & Lavrac, 1978), which were described earlier. Observations
are not processed en masse, but are processed as they are presented to the system.

In particular, COBWEB is an incremental concept formation system that creates hierarchical classification trees
over a stream of observations. COBWEB operates on examples described by a list of attribute-value paics. If
examples are classified a priori as in supervised systems, and ineluded in an ocbject’s description, then this
classification is simply treated as another attribute.?

Unsupervised clustering systems are guided by some ‘internal’ metric of quality - some categories must be pre:
ferred over others, In CoBWEB, a classification is ‘good’ if an observation's features can be guessed with high
acciracy, given that it belongs to a specific (discoverad) class, For example, the standard bioiogical classes of
mammals, reptiles, birds, etc. are deemed good because knowing that an animal is a mammal {for example) al-
lows many high-confidenee predictions about 1is features (e.g., has-hair, varm-blooded, bears-living-young,
ste.). COBWEB makes use of a statistical function that partitions a set of examples into mutually-exclusive classes
€1, 0, ..., Cn. The function used by CoBWER is category utifity {Gluck & Corter, 19885):

Tiet PIC) T K, PlA = WyICh)? = T, T; Pldi = Wy)?

n

(8.1)

where Cy is a class, 4; = W; is a property-value pair, P(x) is the probability of r, and n is the number of
classes, The first term in the numerator measures the expected number of property-value pairs that can be
guessed correctly by using the classification, The second term measures the same quantity without using the
classes. Thus, the category utility measures the increase of property-value paits that can be guessed above the
guess based on frequency alone. The measurement is normalized with respect to the number of classes,

When a new example is introduced, COBWEB tries to accommodate it into an existing hierarchy starting at the
root. The system performs one of the following operators:

1. expanding the root, if it does not have any sub-classes, by creating a new class and attaching the root
and the new example as its sub-classes;

2. adding the new example as a new sub-class of the root;
3. adding the new example to one of the sub-classes of the root;
4. merging the two best sub-classes and putting the new example into the merged sub-class; or

5. splitting the best sub-class and again considering all the alternatives,

11n that reference the name ECOBWES is not used. A larger system that includes it, called BRIDGER, is discussed.

2¢3ne way of testing the abilities of an unsupervised sysiem like COBWES Is to see if @ priori known classifications can be
‘reciscovered’ in the data, This can be informative for purposes of benchmarking a clustering system, but as Fisher and Paszani
{1391) point out, it is of lmited wtility.
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If the example has been assimilated into an existing sub-class, the process recurses with this class as the top of
a new hierarchy. COBWEB again uses category utility to determine the next operator to apply.

CoswEs makes predictions using a mechanism similar to the one used for augmenting the hierarchy by new
examples but allowing only operator 3 to apply. COBWEB sorts a partial example deseription down the hierarchy
to find the best host for the partial description. The best host is a leaf node (i.e., a training example) that is
used to complete the partial description. It is important to note at this point that the performance task used to
evaluate COBWEB and other unsupervised systems (e.g., AUTOCLASS) is different from the performance task for
supervised systems. In the latter case, a sei of learned rules is used to predict membership relative to an a prior
known set of classes. In clustering systems, prediction accuracy is measured relative to all descriptive attributes
- how well does the classification scheme support prediction of any unknown atiribute value? CoswEB seeks
to improve classification along all attributes, not simply the single dimension of ‘class membership’, Moreover,
the system's strategies for classification and prediction bear interesting relationships to other systems. Notably
COBWEB sifts objects down trees like [D3 and related systems, but does so based on the object’s known values
along many attributes at each node in the tree. Thus, CoBWEB is a polythefic classification system. not a
monothetic classification system like [D3, which classifies objects based on their value along a single attribute
at each decision node;

8.2 ECOBWEB

This section briefly reviews variants on some of COBWES’s mechanisms that are tested within EcoBwes.

8.2.1 Characteristies prediction

Initial versions of CoBWER sorted chservations to a leaf of a ¢lassification tree, At this point predictions about
the new object’s missing values were made, by appealing to this ‘best matching’ leaf's (iie., a previcusly-seen
obsarvation) attribute values. However, this strategy can ‘overfit' the data, in much the same way that overfitting
occurs in supervised systems that maintain overly-specific (i.e., idiosyncratic) rules for class prediction. In the
characteristics prediction method ECOBWEB sorts a partial description in the same way as CoBWEB does (i.e.,
using the category utility funetion to select the class that is the best host for the partial description). The
only difference between the current and CoBWES’s operation is that if ECOBWEB encounters a characteristic®
property-value pair that is missing from the partial description, it assigns it to the partial description. If the
characteristic is the class attribute, the classification process can terminate. Similarly intented methods were
also investigated in Fisher (1989), though we will only experiment with ECOBWEB's strategy here.

8.2.2 Hierarchy correction mechanism

A characteristic of both supervised and unsupervised incremental learning systems is that the rules and/or
¢lassification schemes that are developed depend on the order in which training data is encountered. This is best
demonstrated in experiments reported by Fisher et al (1991); they tested different orderings and characterized
somie as ‘best-case’ orderings (i.e., those leading to ‘good’ classification schemes'), and others as ‘worst-case’
srderings. A primary research objective is to mitigate ordering effects in incremental systems.

In EcoBwes, a hierarchy-correction scheme was designed to mitigate some of the order effects introduced in

3 Charscteristics are property values that satisfy: P{4, = V,;[C%) > threshold and P{Ci|Ai = Vi;) > threshold, whers thresfiold
is a pre-determined fixed valie. ;
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(CoBWER's incremental learning operation. The scheme follows three steps. First, properties that are deemed
critical by a domain expert are manually selected as ‘triggers’. Second, the hierarchy is traversed top-down.
Each class with a characteristic property value that differs from a characteristic in one of the class’ ancestors, is
removed along with its subtree from the hierarchy. Third, the examples at the leaves of all the removed subtrees
are reclassified inte the hierarchy. The process can iterate several times until no change of the hierarchy is

obtained,

A second mechanism was designed to generate an ordering of examples that will result in a better classification
hierarchy than the classification generated by random ordering of examples (e.g., Fisher et al, 1991). There
are several variants of this technique. A simple and promising one used by ECOBWEB is created by following
the next three steps until the training example set is exhausted. First, calculate the property-value pairs that
are most frequent in the examples that were already learned, This can be easily done by locking at the root
of COBWEB's classification hierarchy. Second, find an example, in the training examples that have not been
learned, that is most distant from the frequent description calculated in the first step. Third, use this example
as the next training example.

8.2.3 Information utlity function

ECOBWEB uses the usual category utility function in its operation. In addition, it allows the use of an alternate
measure of category quality function. In this function the term P{A; = Vi;|Ci)* in Equation 8.1 is replaced
by P(A; = Vij|Cu)log P(A: = V;;|Ci). This messure was also developed by Gluck and Corter (1985), and has
similar, though not identical, biases in the classes that are favored.

8.3 Results

Upon examining the concepts in the MONK problem, it is clear that CoBWER will encounter difficulties in
learning them. For example, consider the first concept:

(head.shape = bodyshape) or (jacket_color = red)

involves relations between different attributes, Fisher (1987b) notes that probabilistic classification trees con-
tain all the information for calculating correlation probabilities between attributes. This, however, requires
using multiple paths of the hierarchy for making ‘ideal’ predictions. CoBwEB, however, makes predictions by
ascending in a single path to a leaf node and uses the classification of this leaf to make predictions. Variants of
CoBWEB that descended multiple paths would undoubtedly perform better in this domain.

Secondly, it is important to note that CoBWEB and ECOBWER are unsupervised systems. The intent of these
systems in tasks like data analysis is to discover classes that are interesting and important for purposes of
predicting all unknown attribute values; discovered categories ran then be examined by human analysts to help
them search for the interesting aspects on a new domain. It is difficult to imagine a set of rules that imply
less natural and less informative categories from the standpoint of most data analysis tasks than those in the
MONK suite of problems. Thus, while these problems represent extreme cases that are useful for benchmarking
supervised systems, their utility for evaluating unsupervised systema is limited. Nonetheless, CoBwEB and iis
descendents have been evaluated in terms of prediction accuracy. These problems can be used to highlight
some of the differences between supervised and unsupervised systems, and the limitations of using unsupervised
systems in cases where supervised systems are more appropriate (i.e., in those cases where a priori classes are
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known and the focus of prediction).?

Table 8.1 provides the results of Ecoswes on the MONK's problems. Each of the entries was caleulated
by running 10 experiments with random orderings of the training examples. The average and the standard
deviation of the runs are provided.

Table 8.1: Results of EcoBwEB

FPrediction method #1 #2 #3

Ave. STD | Ave. STD | Ave. STD
leaf prediction 0718 0.042 | 0.674 0.028 | 0.682 0.031
leaf prediction 0.683 0.020 | 0.686 0.026 | 0.881 D.038
with hierarchy correction
leaf prediction with 0.732 0.030 | 0660 0038 | 0.676 0.018

ordering (most distant)
characteristic prediction | 0.672 0.027 | 0.674 0.037 | 0.685 0.057
characteristic prediction | 0.674 0.036 | 0,651 0.053 | 0.683 0.033
with hierarchy correction
Leaf pradiction 0827 0077 | 0.713  0.026 | 0.680 0.020

information utility |

Overall, ECoBWEB's performance on this database is inferior to the performance of the other programs. It
should be noted that neither the hierarchy correction scheme nor the ordering scheme are sufficient to mitigate
arder effects; for example, in some of the runs performance as good as 98.8% accuracy were observed for problem
#1. No such performance levels were abserved, on the other hand, for problems #2 or #3. Figure 8.1 shows one
of the classification {rees generated from the training examples of the first problem. Similar trees are generated
for the ather problems as well. The most characteristic attribute is the class. The rest are not so important
at the top level. This is probably one of the reasons for the inferior performance of CosweB. [n particular,
the hierarchy shows that the characteristic prediction always stops at the first classification level since it finds
a characteristic value of the class attribute at that level,

Clasa description {# of EXa: 124)
Property Value P(vicl)

has_tias 2 0.548

is_smiling 1 0.524

class 1 0,500

body_shape 3 0.379

head_shaps 1 0.383

holding 3 0.347

jacket_color 4 0.274
Clasa description (# of EXa: 63) Class description (# of EXs: 81)
Property Valua Piv|cl) Plcliv) Property Value Plwlecl) Picliv)
class 1] 0.984 1.000 class 1 1,000 0.984
has_tie 2 p.57T1 0.529 is_smiling 1 0.887 0.523
head_shapa 1 0.508 0.711 has_tie 2 0.5325 0.471
is_smiling 2 0.508 0.542 jacket _color 1 0.475 1.000
holding 2 0.381 0.8i5 head_shape 3 0.426 0.703
jacket_coeleor 4 0.366 0.876 helding 1 Q.426 0.61%
body_shapa 3 0.34% 0.468 body_shapa 3 0.410 0.532

Figure 8.1: Two top levels of the classification hierarchy of the first problem

*There are also other differences in the biases used to select the MONK problems, and the biases that motivate Coswes's
design. For example, COBWEB's use of probabilistic, polythetic classification is sither not exploited by or in sharp contrast to the
representation biases implicitly behind the MONK problems.



8.4 Summary

In sum, we have applied ECOBWEB to the MONK problems. This system is unsupervised, and thus results
should be interpreted carefully. Our experiments show that the system does not perform as well as supervised
alternatives. This highlights the distinction between supervised and unsupervised systems and the different
performance tasks that should be used to evaluate systems of each paradigm.
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9.1 Introduction

This paper briefly describes the results of the plain backpropagation algorithm [1] obtained on the three MONK's
problems. Backpropagation is a function approximation algorithm for multilayer feed-forward perceptrons based
on gradient descent. Conversely to many symbolic learning algorithms, backpropagation learns functions by
nonlinear Ly-approximations. This technique has been successfully applied to a variety of real-world problems
like speech recognition, bomb detection, stock market prediction ete.

Although muliilayer networks represent continuous functions, they are frequently restricted to binary classi-
fication tasks as the MONK's problems. In all thres cases we used the following architscture; There were
17 input units, all having either value 0 or | corresponding to which attribute-value was set. All input units
had a connection to 3 (first MONK's problem), 2 (second problem) or 4 {third problem) hidden units, which
itself were fully connected to the output unit. An input was classified as class member if the cutput, which
is naturally restricted to (0, 1), was > .5. Training took between ten and thirty seconds on a SUN Sparc Sta-
tion for each of the three problems. On-a parallel computer, namely the Connection Machine CM-2, training
time was further reduced to less than 5 seconds for each problem. The following results are obtained by the
plain, unmodified backpropagation algorithm, These results reflect what an unexperienced user would obtain
by running backpropagation on the MONK’s problems.

| training epochs | accuracy

MONK's # 1 390 100%
MONK's # 2 20 100%
MONK's # 3 190 93.1%

However, in the third training set, the error did never approach zero in all runs we performed, which indicated
the presence of noise-and/or a local minimmm. This important ohservation led us to refine the results for the
third problem using weight decay’ [1,2]. This wideley used technique often prevents backpropagation nets fram
overfitting the training data and thus improves the generalization. With weight decay & = 0.01 we improved
the classification accuracy on this third =et significantly and, moreover, the concept learned was the same for
all architectures we tested (i,e; 2, 3, or 4 hidden units).

| training epochs | accuracy
MONK’s 3 3 with weight decay | 105 | 97.2%

Backpropagation with weight decay learned the correct concepts for the first two MONK’s problems again
with 100% accuracy. These classification results clearly demonstrate the appropriatenes of the backpropagation
algorithm on problems as the MONK's problems.
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'In our implementation, weight decay was realized by minimizing the complexity term & - (37, w, + 37, 81) in addition to
the conventional Ls-error term over the training set. Here o is & constant factor, wi; denotes the weight fram unit 5 to unit ¢, and
& the threshold {bias) of unit . :
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9.2 Classification diagrams

(a) Results of BACKPROP (with/without weight decay) on test set 1, Accuracy: 100.0%
(b) Results of BACKPROP (with/without weight decay) on test set 2, Accuracy: 100.0%
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S.B. Thrun

(a) Results of BACKPROP without weight decay on test set 3, Accuracy: 93.1%

(b) Results of BACKPROP with weight decay on test set 3, Accuracy: 97.2%
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9.3 Resulting weight matrices

MOMNKS's problem # 1: weights and biases

] to-node

“from-node hidden_1 hidden.Z hidden.3 output
input1 [head shape round) -6.503145 0.618412 -1.66040%

input. 2 (head shape square) 1.210703  1.939613 2972552

input 3 (head _shape octagon) 5.156444 -3.597301 -1.266992

input_4 (body-shape round) -6.692434  2.129635  -2.032242

input_5 [body_shape square) 6.457639  (.B64312  4.2607635

input 6 (body.shape octagon) || 0.225053  -2.428098 -1.B30603

input.7 (issmiling yes) 0.096395  0.131133  0.053480

input_& (is_smiling no) S0.011328  0.135277  0.107302

input.9 (holding sword) -0.07TER48  0.459903 © -0.008368

input_10 (holding balloon] «.016940 0.151738  0.148953

inputdl (holding flag} -0.087288  0.198521  0.023334

input 12 {jacket_color red) 5.735210  4.337359 -0.863479

input 13 {jacketcolor yellow) || -2.25T168 -1.410376  0.494681

input.14 (jacket.color green) -2.232257  -1.109825 0.3182T17

mmput 15 (jacket_colar blue) -1.710842 -1.432455 0.479513

input.16 (has.tie yes) -0.109696  0.434166  0.276487

input 17T (has_tie no) 0111667 0.3131797 0.310714

bias 0486541 01423583 0.325371

hidden.1 9.249339
hidden_2 8.639715
hidden .3 | -8.419891
bias | -3.670920

MONKS's problem # 2: weights and biases
to-node

from-node hidden 1  hidden.2 | output

input.l {head shape round) -4.230213  2.637149

input 2 (head shape square) 1.400753 -2.577242

input.3 (head.shape octagon) || 1.479852 -2.482254

input 4 (body shape round) -4,363966  3.835199

input.5 (body shape squaré) 1154510  -2.34T483

input € (body_shape octagon) || 1.542938 -2.227530

input.T (is_smiling yes) -3.396133  1.984736

input$ (i5smiling no) 1868955 -2.904525

input.9 (liolding sword) -4,041057  4.239548

input.10 (holding balloon) 1263933  -2,195403

input.11 (holding flag) 1.160514  -2.272035

input_12 (jacket_color red) -4, 462360  4.451742

input 13 (jacket color yellow) 0.7T4928T -1.860545

input.l4 (jacket.color green) 0.640353  -1.727654

input_ 13 {jacket_color blue) 1116349 -1.332842

input.16 (has.tie yes) -3.7T3187  3.290757

input 17 (has_tie no) 1.786105  -3.206139

bias -1.07T5762  -0.274%80

hidden_1 -11.033625

hidden 2 -9.448544

bias 5.0313935
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MONKS's problem 3 3: weights and biases (without weight decay)
to-node

from-node hiddenl  hidden.? hidden_3 hidden.d output
input_1 {head_‘rhape muudf 0277334 -0.673423  -0.345008 3.121908
input 2 (head shape square) 1.758524  1.15011%  0.083689  (.329486
input .3 (head_shape octagon) || -1.328410  0.941278  0.059910  0.017674
input.4 (body.shape round) -3.4668870 -0.0227TBT D.222484  0.214138
input.S (body shape square} || -2.460525 3.988668 -0.021681  0.235813
input.§ (body shape octagon) 6.622062 -3.196938 0.125944 -D.134378
input.7 (issmiling yes) 1615026  0.224221 -0.317908  -0.594920
input & (is.smiling no) -1.433791  -0.183452 -0.326339  0.361683
input.9 (holding sword) -0. 780008 -0.786854 0.0T2768  0.50T108
input.1® {holding balloon) 0733984 -0.260836 0.004670  0.422573
input.1l (holding flag} 0.415208 1.410443 -0.023262  0,325T66
input 12 (jacket_color red) -3.263737  1.324415  0.025837  -0.154449
input.13 [jacket.coler yellow) -1.806538 1518800  0.351912  0.044775
input_14 (jacket.color green) -0.432256 -0.183302 0057546 -1 0543255
input_15 {jacket_color blue) 5.080627 -3.448529 -0.0824727 0131738
input 16 [has_tie yes) 0.887500 -0.717389 0.314088  0.099872
input 17 (has_tie no} -0.502348  0.954327 -0.074583 -0.3309295
bias 0.364889  0.248841  -0.484047 -0.227007
hidden.1 -11.348968 —‘
hidden 2 B.567443
hidden_3 -0.117112
hidden .4 -0.064650
blas 0.121083

MONKS"s problem # 3: weights and biases

{with weight decay)

to-node
from-node hidden 1  hidden_2 onkput
input_1 (head shape round) -0.029477  -0.0GBY86
input-2 (head shaps square) -0.376094  -0.364778
input 3 (head shape octagon) || -0.051924 -0.028672
input_4 (body shape round) 0.991728  0.991750
input.3 (body shape square) 1.031170  1.027708
input.§ {body._shape octagon) || -1.284263 -1.270808
input.? {issmiling yes) -0.303940 -0.314212
input 8 (issmiling no) -0L.216766 -0.221040
input.9 (holding sword) -0,064305  -0.052110
input_10 (holding balloon) 0257165  -0.243088
input.11 {holding flag) -0.131509  -0.122790
input 12 (jacket_color red) 1001415  1.004192
input 13 (jacket.color yellow) 0.898066  0.396869
input_l14 (jacket_color green) 0.570929  0.673218
input_15 {jacket color blue) -1:280272  -1.2T2798
input_16 (has_tie yes) -0.354472  -D.355268
input.d7 {has.tie no) 0.040073  0.03T7927
bias -0.319686 -0.343492
hidden .1 1.T62523
hidden 2 1. 759077
hias -1.5014%2




Chapter 10

The Cascade-Correlation Learning
Algorithm on the MONK’s Problems
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Figure L0.1: see text for details

10.1 The Cascade-Correlation algorithm

Cascade-Correlation [Fahlman, 1990] is a supervised neural network learning architecture that builds a near-
minimal multi-layer network topology in the course of training. Initially the network contains cnly inputs,
output units, and the connections between them. This single layer of connections is trained {using the Quickprop
algorithm [Fahlman, 1988]) to minimize the error. When no further improvement is seen in the level of error,
the network’s performance is evaluated. If the error is small enough, we stop. Otherwise we add a new hidden
unit te the network in an attempt to reduce the residual error.

To create a new hidden unit, we begin with a pool of candidate unils, each of which receives weighted connections
from the network’s inputs and from any hidden units already present in the net. The outputs of these candidate
units are not yet connected into the active network. Multiple passes through the training set are run, and each
candidate unit adjusts its incoming weights to maximize the correlation between its output and the residual
error in the active net. When the correlation scores stop improving, we choose the best candidate, [recze its
incoming weights, and add it to the network. This process is called “tenure.” Afier tenure, a unit becomes a
permanent new feature detector in the net. We then re-train all the weights going to the output units, including
those from the new hidden unit. This process of adding a new hidden unit and re-training the output layer is
repeated until the error is negligible or we give up. Since the new hidden unit receives connections from the old
ones, each hidden unit effectively adds a new layer to the net. (See figure 1.)

{Cascade-correlation eliminates the need for the user to guess in advance the network’s size, depth, and topology
A reasonsbly small (though not minimal) network is built automatically Because a hidden-unit feature detector,
once built, is never altered or cannibalized, the network can be trained incrementally, A large data set can be
broken up into smaller “lessons,” and feature-building will be cumulative.

Cascade-Correlation learns much faster than backprop for several reasons: First only a single laver of weights
iz being trained at any given time. There is never any need to propagate error information backwards through
the connections, and we avoid the dramatic slowdown that is typical when training backprop nets with many
layers. Second, this is a “greedy” algorithm: each new unit grabs as much of the remaining error as it can. Ina
standard backprep net, the all the hidden units are changing at once, competing for the various jobs that must
be done—=a slow and sometimes unreliable process.
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10.2 Results

For all these problems [ used the standard Common Lisp implementation of Cascade-Correlation on a Decstation
3100, This code is public-domain and is available to outside users via anonymous FTP. Contact sef@cs . cmu. edu
for details,

I used the same parameters in all of these testa. Here is the printout of those parameters:

[ SigOf 010 WiHng 1.00 Winul 1.00
OMu 2.00 OEps 1.00 ODey 0.0000  OPat 20 OChange 0.010
[N Z2.00 IEps 1.00 [Dicy 0.0000 IPat 15 [Chanlge 0030

Ueype :GAUSSIAN  Otype :SIGMOID RawBErr NIL Fool 8
[train 100 100 10}

Monk #1:

After 95 epochs, | hidden unii: 0 Errora on training set. 0 Errors on test set.
Elapsed real time: 5.11 seconds

Monk #2:

After 82 epochs, 1 hidden unit: (t Ereoes on training set. 0 Errors on test set,
Elapsed real time: 7.75 seconds

Monk #3:

After 259 epochs, 3 hidden units: 0 Errors on training set. 40 errors on test set (Le. accuracy 95.4%).
Elapsed real time 12.27 seconds.

Training and test-set performance was tested after each outpui-training phase. The minimum test-set error
was observed after the initial output-training phase, before any hidden units were added. {Not surprising, since
with no noise this problem is linearly separable.) Using any sort of cross-validation system, this is where the
algorithm would stop,

At that point, the results were as follows:
Training: 7 of 122 wrong:

Head: BND'  Body: RND  Smile:
Head: RND  Body: SQR Smile:
Head: SGR  Body: SGR Smile:

Holding: SWD'  Jacket: GRN Tie: ¥ Cutput:
Holding: BAL  Jacket; GRN  Tie: ¥ Clutput:
Holding: BAL  Jacket: YEL Tie: ¥ Output:
Head; SQR Body: SQR Smile: Holding: LG Jacket: GRN  Tie: N Catput:
Head: 50R  Body: OCT  Smile: Holding: SWD  Jacket: GAN  Tie: ¥ Outpug: NIL
Head: OCT Body: OCT Smile: Y Haolding: SWD  Jocket: GRN  Tie: N Cutput: NIL
Head: OCT Baody: OCT  Smile: Y Holding: SWD  Jacket: BLU  Tie: ¥ Dutput: NIL

" e o o e
M ed

Test: 14 of 432 wrong:



110 S.E. Fahiman

Head: RND  Bady: OCT Smile: ¥ Holding: SWD Jacket: GRAMN  Tie: Y Outpur: NIL
Head: RND  Body: OCT  Smile: ¥ Holding: SWD  Jacket: GRN Tie: N Crutput: NIL
Head: RND Bady: OCT  Smile: N Holding: SWD  Jacket: GEN Tie: Y Output: NIL
Head: RND  Body: OCT  Smile: N Holding: SWD  Jacket: GRN Tie: N Outpue: NIL
Head: SQR  Body: SQR  Smile: ¥ Holding: BAL Jacket: GRN  Tie: ¥ Qutput: NIL
Head: SQR  Body: SQR Smile: ¥ Holding: FLG Jacket: GAN  Tie: Y Ouepuer NIL
Head: SQR Body: OCT  Smile: ¥  Holding: SWD  Jacket: GRN  Tis: ¥ Outpuois NIL
Head: SQR Body: OCT  Smile: ¥  Holding: 3WD  Jacket: GRN  Tie: N Crutput: NIL
Head: SQR  Body: OCT  Smile: ¥ Holding: 3SWD  Jacket: GRN  Tie: ¥ Output: NIL
Head: SQR  Body: OCT  Smile: M Holding: 3WD  Jacket: GRN  Tie: N Gutput: NIL
Head: OCT Body: OCT Smile: ¥ Holding: 5WD  Jacket: GRN Tie: Y Output: NIL
Head: OCT Body:; Q2T Smile: ¥ Holding: SWD  Jacket; GAN  Tie: N Cutpui: NIL
Head: OCT Body: OCT Smile: N Holding: SWD  Jacket: GRN  Tie: ¥ Output: NIL
Head: OCT Body: OCT Smile: N Holding: 5WD  Jacket: GRN  Tie: N Ouepue: NIL

So on the test set, performance is 98.7%

By turning up the OUTPUT-DECAY parameter to 0.1 (an odd thing to do, but sometimes useful when the
training set is too small for good generalization), we can do a Little better. After the initial output-training
phase:

Training: 8 of 122 wrong:

Head: RWD  Body: RND  Smile: Y Holding: SWD  Jacket: GRN  Tie: Y Output: T

Head: RND  Bedy: SQR  Smile: ¥  Holding: BAL  Jacket: GRN  Tie: ¥ Chutput: T

Head: 53R Body: S3QR  Smile: ¥ Holding: BAL Jacket: YEL = Tie: ¥ Cutpue: T

Head: SQR Body: SQR  Smile: ¥ Holding: FLG  Jacket: GRN  Tie: Y Cutput:; T

Head: SQR  Body: SQB  Smile: ¥  Holding: FLG Jacket: GRN Ti:: N Output: T

Head: SQR  Body: OCT Smile: ¥ Holding: SWD  Jacket: GRN = Tie: Y Output: NIL
Head: OCT Body: OCT  Smile: ¥  Holding: 3WD  Jacket; GRN  Tie: N Cueput: NIL
Head: OCT Body: OCT  Smile: Y Holding: SWD  Jacket: BLU  Tie: Y Cutput:; NIL

Test: 12 of 432 wrong:

Head: RND  Body: OCT Smile: ¥ Helding: SWD  Jacke:: GRN  Tie: Y Ourput: MIL
Head: RND  Body: OCT  Smile: ¥  Holding: SWD'  Jacket: GRN Tie: N Cukput: NIL
Head: RAND Body: OOT  Smile: N Holding: BWD  Jacker: GRMN  Tie: ¥ Cueput: MIL
Head: RND  Body: O©CT  Smile: N Holding: SWD  Jacket: GRN  Tim: N Output: NIL
Head: SQR Body: OCT Smile: ¥ Holding: SWD  Jacket: GRN  Tie: ¥ Output: NIL
Head: SQR  Body: OCT  Smile: Y Holding: SWD  Jacket: GRN Tie: N Ouepuat: NIL
Head: 5QR  Body: OCT Smile: N Holding: SWD  Jacket: GAN = Tie: Y Cuatput: NIL
Head: SQR  Body: OCT Smile: N Holding: 5WD  Jacket: GAN  Tie: N Chutput: NIL
Head: OCT Body: OCT Smile: ¥ Holding: SWD  Jacket: GRN  Tie: ¥ Output: NIL
Head: OCT Body: OCT Smile: ¥ Holding: SWD  Jacket: GRN  Tie: N Catput: NIL
Head: OCT Body: OCT Smile: N Holding: WD Jacket: GRN Tie: ¥ Cutpue: NIL

Head: OCT Body: OCT Smile: N Holding: 8WD  Jacket: GRN  Tie: N Output: NIL
Score on test set: 97.2%

We can see here what the problem is: All the bad test-set cases are Green and holding a sword, so they should
be true. But this positive value is not strong enough to offset the negative weight from Ocsagonal body.

In the training set, there are only twe examples showing the green-sword combination overpowering an-octagonal
body, and that is apparently not enough to make the point. There are 11 cases showing that octagonal /sword
should be negative and 8 cases showing that octagonal/green should be negative,

If we switch the training and test set, we see how easy it is to solve this problem in the absence of noise and



small-sample fluctuations.
Switching the training and test set: After 16 epochs and 0 hidden units:

Training: 0 of 432 wrong. Test: 6 of 122 wrong.

Head: RND Body: RND' Smile: ¥ Holding: SWD  Jacket: GRN  Tie: Y Cacput: T
Head: RND  Beody: SQR Smile: ¥ Holding: BAL  Jacket: GRN  Tie: ¥ Cuatpat: T
Head: SQR  Body: SQR  Smile: Y Holding: BAL  Jacket: YEL  Tie: Y Output: T
Head: SR Body: SQR  Smile: ¥ Holding: FLG Jacket: GRN  Tie: Y Outpue: T
Head: SQR  Body: SQR Smile: ¥  Holding: FLG  Jacket: GAN  Tie: I Output: T
Head! OCT  Body; CCOT  Smile: ¥  Holding: WD Jacket: BLU  Tie: ¥ Output; NIL

These, I believe, are exactly the noise cases deliberately inserted in the original training set. Note that three of
these noise cases are

Square/Square/Yes = NIL (when T is correct)

This explains the other two error cases observed in the first run of this problem. If we look at square/square/ ves
cases in the training set, NIL cases outnumber T cases, 5 to 3.
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10.3 Classification diagrams

(a} Training set #3 first run, Accuracy: 96.3%

97.2%

(b) Training set #3 second run, Accuracy

rom

[T

(T

(LT

ey

zet

&
2El

head
shape

g

qu
ot
ot

o

L]

g

ray

[

bady

L4

r

W |
amiiing ' l AmAaps
k

-

=

R

L B B

iy om

®
-

)

Ll .

Ll Bl N .

# | o# | .
-

# | # | &

*® | R

-
-

oo A
-

o | | | oW

w

-
-

1
1

® el e | w
LA e
"

Balloon

Eoiding
flag

mard

rad | ypallow | grasm | blue !

Iscket colac
¥ 1

-

Lo |y |l w b sgloly]|es

]

i

sl rl =] ¥l

lalels=strl

i

SRR R R
ik

1|2 p|esfs ele s ofa g ofe o] 34
o2

.-_..,T_h—rur—lrlr?ﬂw-)_lurluf—ﬂ—'_lm.l.w

LR RE EAE SR IR LIRS E R

=nn|a alnnln alalata

A EESEY tlulxls I ) B

EAE R ES R LAE BE NE | EAESE IR

LA EIEIETE) miw[ww

e s *njnle | nlnlw

AEIERE 2nlnle sialele

IEIENE wlnlels B ) 59 7

Y EYES L P . . wilals

b i e LAE YRR wln|n|n

LR RS R a(Rln|n alnlsls

IEAEE alnlnle ] i R

wiwlwiw [N Ne |||« |O0=|=l=|= |00

el ls[Ods =+ [+ [0g=[+[*[*|0D

IEIEES #lwlwlw wlafa|w

bl Pl e Ll B BB R wlw|n

il sl i i L Bl R AEEY ]

A ERERERES wln|n|n




