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B. Detecting Two Cups 

‘The Probabilistic Hough Transform is first applied to detect the 
two inner circular boundaries of the cups using a preset poll size. 
The experimental method is similar to the case of detecting one 
object, except that an error is registered if any of the ~ M ’ O  highest 
peaks detected is not sufficiently close (<Ad) to any of the two 
relerence peaks. The dashed curves in Fig. 4(a) and Fig. 4(b) show 
the average error rate in 10000 trials as a function of the (preset) 
percentage of edge points used for the “clean” and noisy edge images, 
respectively. 

.4daptive termination of voting is in  this case based on monitoring 
the stability order of the set of peaks in the peak list that consists of the 
two highest peaks. The definition of an error is as above, i.e., the inner 
circular boundary of both cups must be detected. The solid curves in 
Fig. 4(a) and Fig. 4(b) show the average error rate in 10000 trials 
as a function of the average percentage of edge points used for the 
clean and noisy edge maps respectively. The marks indicate operating 
points in which the stability order (of the set of two peaks) is 10. 

If the number of objects to be detected is not specified, adaptive 
teimination of voting is based on the maximum stability order of 
peak sets, stopping when it reaches a certain value, and taking the 
m~vimum .stubi/ity count as an indication on the number of objects 
reliably detected when voting stopped. In this case, error registration 
depended on the maximum stability count. If it was 2 or more, an 
error was registered as above, i.e., if any of the two highest peaks 
detected was not sufficiently close (<Ad) to any of the two reference 
peaks. If the maximum stability count was I ,  an error was registered 
only if the highest peak detected was not close enough to one of the 
tivo highest reference peaks. The average results of 10000 trials are 
summarized in Table II(a) and Table II(b) for the clean and noisy 
edge images respectively (Fig. I(a) and Fig. l(b)). The dotted curves 
in Fig. 4 show the average error rate as a function of the average poll 
siLe. The very low error rates (in comparison to the dashed and solid 
curves) should be interpreted in light of the different error definition. 

IV. CONCLUSION 
Methods for adaptive setting of the poll size in the Probabilistic 

Circular Hough Transform have been presented. Successful adapta- 
tion in an actual application has been experimentally demonstrated. 
In average, less votes are used than would be needed to achieve the 
same error rate with a fixed poll size. 

The performance of object recognition algorithms in general, and 
of‘ the Probabilistic Hough Transform in particular, depends on the 
task definition. Detecting one appearance of an object is easier than 
correctly detecting two appearances of that object. Detecting an 
unknown number of objects by Hough techniques using partial data is 
difficult in the presence of noise. The approach taken is to stop voting 
N hen any number of appearances of an object seem to have been 
reliably recognized, even though the existence of other appearances 
is not ruled out. 

The suggested stopping rules are based on stability of just the 
rtrnks of the highest peaks in  peak lists derived from the accumulator 
array. This leads to elegant stopping rules and reduces dependence 
on tuning parameters. The potentially valuable information in the 
absolute peak heights is however disregarded. 

Analytic approach to the problem of adaptive termination of voting 
seems difficult, especially if the number of objects to be detected is 
not predefined. The equivalence of the Hough Transform to template 
matching [7] and its relation to model-based vision [3] provide 

valuable insight. Note that relying on detailed models of the image 
content and imaging process yields results that cannot be easily 
generalized. On the other hand, with little use of a priori knowledge 
powerful results are difficult to obtain. Due to the lack of theoretical 
sensitivity analysis, more experimentation is needed in order to 
characterize the performance of the algorithm in other applications. 
Our limited experience indicates that around a reasonable operating 
point, the sensitivity to algorithm internals such as the batch size, peak 
merging threshold and peak lists length, to edge detector properties 
and especially to random noise are sufficiently small to enable steady 
operation. 
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Handwritten Character Classification Using 
Nearest Neighbor in Large Databases 
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Abstract-We show that systems built on a simple statistical technique 
and a large training database can be automatically optimized to produce 
classification accuracies of 99% in the domain of handwritten digits. It 
is also shown that the performance of these systems scale consistently 
with the size of the training database, where the error rate is cut by 
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more than half for every tenfold increase in the size of the training set 
from 10 to 100,000 examples. Three distance metrics for the standard 
Nearest Neighbor classification system are investigated: a simple Ham- 
ming distance metric, a pixel distance metric, and a metric based on 
the extraction of penstroke features. Systems employing these metrics 
were trained and tested on a standard, publicly available, database of 
nearly 225,000 digits provided by the National Institute of Standards 
and Technology. Additionally, a confidence metric is both introduced by 
the authors and also discovered and optimized by the system. The new 
confidence measure proves to be superior to the commonly used Nearest 
Neighbor distance. 

Index Terms- Optical character recognition, machine learning, ma- 
chine vision, parameter optimization, Nearest Neighbor classification. 

TABLE I 
SELECTED NIST DIGIT RESULTS ON HIGH SCHOOL TEST DATABASE 

Error Rate 0% Error Rate 50% 
Method Reject (rank) Reject (rank) 

Human 
Proprietary 

k-NN 
k-NN 

Proprietary 
Neural Net 
Penstroke** 

Pixel Distance** 

1.5% * 
1.56% ( I )  * 
3.16% (2) 0.11% (7) 
3.35% (3) * 

0.32% (17) 3.43% (5) 
3.49% (6) 0.38% (19) 
3.85% (8) 0.08% (6) 

0.06% (2) 4.89% (22) 

I. INTRODUCTION 
Some recent trends in machine intelligence and learning are 

based on the belief that statistical techniques may achieve superior 
performance on a wide range of perceptual tasks, compared to the 
artificial intelligence (AI) approaches of reasoning, expert systems, 
and model building [ I ] ,  [6], [8]. Statistical techniques were used 
long before the advent of AI. What is it then that makes them 
more attractive today? We believe that one of the main reasons is 
the new possibility of processing very large amounts of data using 
supercomputers, especially massively parallel ones. 

We have taken this statistical approach to learning by building 
simple k-Nearest Neighbor classification systems (k-NN) [3], [7], [9], 
[30] on large training databases and then providing these systems 
U ith the ability to optimize their own performance. By keeping 
these systems simple and running them on a supercomputer we are 
able to perform the many iterations of testing necessary for their 
optimization. These methods include gradient descent search for 
the relative weightings of penstroke features and usable terms in a 
confidence measure. As a result we have produced systems that have 
required a minimum of hand coding and that have been shown to be 
of nearly equal performance to the best currently available systems 
for handwritten digit recognition [22]. 

A .  Results f rom the NIST OCR Conference 

Though much work has been done on the automatic recognition of 
handwritten characters it has often been difficult to compare perfor- 
mance results [2], [13], [19]. To address this problem a conference 
was sponsored by the National Institute of Standards and Technology 
(NIST) at which twenty-nine groups from Europe and North America 
came together to compare the performance of their OCR systems on 
a common set of segmented handwritten characters. Both commercial 
and research systems were compared. The discriminant functions used 
ranged from neural networks to k-NN classifiers and included many 
proprietary algorithms that were not disclosed. 

Many of the systems were trained on a database of segmented 
characters collected from 2,100 U.S. Census employees [12], which 
consisted of 223,125 classified digits, 44,951 upper-case alphas, and 
45,313 lower case alphas. All systems were tested on a database 
collected from 500 high school students. The high school database 
proved to be a fairly difficult test set, as even human readers could 
do no better than a 1.5% error rate (e.g., this would correspond to 
75 character errors on this page). 

The results of the NIST test showed that systems that were 
trained solely on the Census database had poorer performance than 
those that were trained on data sets incorporating large additional 
databases. One possible reason for this was that the high school 
database appeared to be both more difficult than and significantly 
different from the Census database. The proportion of crossed sevens, 
ft.x instance, was much higher in the high school database than 

* No confidence measure supplied. 
** Techniques described in this correspondence 

in the Census database. It must also be pointed out that, though 
the performance analysis was rigorous, the actual collection of 
classification categories was unproctored by NIST (a full description 
of the experimental setup and test results can be found in [22]). Thus 
specific performance results in this conference may not completely 
reflect performance on other databases or in other domains. 

The I;-NN metrics presented in this paper (penstroke and pixel 
distance) were used in the NIST conference and were trained solely 
on the Census database. They nonetheless showed good performance 
compared with the other 46 systems represented. The penstroke 
extraction algorithm placed 8th overall with an error rate of 3.85% 
at zero rejection and the pixel distance algorithm was 22nd with an 
error rate of 4.89% at zero rejection. The confidence measures for the 
penstroke and pixel distance metrics proved to be among the best, 
however, as the penstroke metric moved from 8th to 6th and the pixel 
distance metric improved from 22nd to 2nd as the rejection criterion 
was increased to 50% (see Table I). 

B. Preprocessing and Normalization 

In the experiments reported here only the NIST digit database 
collected from Census workers was used. The original database 
consisted of 128x 128 one bit, unnormalized images along with a 
classification of the image (not necessarily the correct one) and the 
ID of the author. On average the automatic segmentation system used 
to extract the character images from the image blocks was able to 
extract only 106 out of the 133 possible digit images per author. To 
normalize the original images by size, a minimal square bounding box 
was fit to the set of nonzero pixels in each image, and the containing 
area was downsampled to a 32x32  pixel bitmap. No attempt was 
made to normalize for aspect ratio, shear, rotational variations, or 
pen thickness, nor to filter out random noise, since our experiments 
concerned the effect of database size rather than preprocessing. 

C. Testing Procedures 

The performance results described in this paper were obtained via 
a validation test where the testing and training data sets were always 
disjoint. For the penstroke metric, test set validation was done using 
held-aside data. For the Hamming and pixel distance metrics, S - w a y  
cross-validation was used. In the latter case, for each example in the 
database, the example and all other examples from the same author 
were removed from the database and the remaining examples were 
used as the training set. Nearly the entire database could thus be used 
for both testing and training without any contamination of the test 
set from the training set. Examples from the same author as the test 
example were removed from the training database because it was 
found that their inclusion unfairly increased the tested performance 
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Bitmap B Distance Map D(B) 
Fig. 1. 
for clarity). 

Example Distance Map (Distance values are rounded up to integers, 

of the system. All performance tests among the three systems were 
conducted by using at least 30,000 test examples. 

11. &NEAREST NEIGHBOR DISTANCE METRICS 

Three classification metrics were used in our experiments. All were 
built on a simple k-NN classification scheme. Using a massively 
parallel supercomputer (the Connection Machine CM-2), the distance 
metric is computed in parallel between a test image and all training 
examples, which are distributed across the processing elements. For 
single neighbor ( k  = 1) classification, the example with the smallest 
distance is selected using a reduction operator, and its associated 
classification determines the classification of the test image. 

A. Hamming Metric 

The Hamming metric is the simplest of the three we tested; it 
counts the number of mismatched pixels. On the CM-2, this is trivially 
computed in parallel as the sum of the pixel-wise exclusive or of the 
two bitmaps B I  and B2: 

Bl + Lh. (1) 

B .  Pixel Distance Metric 

The second metric tested, pixel distance, is slightly more sophisti- 
cated. For mismatched pixels between the test and training images, it 
takes into account the distance to the nearest pixel of the same color 
(i.e., foreground or background). We use an integral approximation 
to the Euclidean distance between pixel centers, truncated to 4 bits 
to conserve memory. The total difference between two bitmaps B1 
and B2 is: 

C ( B 1  .f-Bz)(D(B1) + D ( B n ) )  (2) 

where D (  B, ) is the distance map representing distances to the nearest 
pixel of a different color (Fig. 1). Descriptions of similar techniques 
can be found in [4], [SI, [ lo],  [ l l ] ,  [18], [21]. 

C Penstroke Metric 

The third metric tested, penstroke, makes use of a priori informa- 
tion regarding the manner in which the digit images were formed, by 
extracting a set of penstroke features from each bitmap. The distance 
is computed using a weighted value of penstroke feature parameters. 

Penstroke features are extracted by thinning the image [17], 
segmenting the resulting skeleton at intersections, and breaking the 
resulting contours at significant maxima of curvature. The curvature 
threshold is made proportional to the length of the contour, so 
that longer strokes are more easily broken, and the results are less 
scale dependent. In practice, several penstroke features may end up 
representing a single real penstroke due to spurious intersections 
or kinks; we made no attempt to smooth or rejoin the computed 
penstroke features. 

Each penstroke feature is abstracted into an “arc” representation, 
characterized by the following parameters: length. center point of 

TABLE I1 
DATABASE SIZE VS. PERFORMANCE 

Training Examples Hamming Error 7% Pixel Distance Error % 

10 49.05 39.34 
30 40.96 32.13 

100 29.78 23.44 
300 22.19 15.79 

1,000 13.71 9.26 
3,000 8.38 5. I8 

10,000 5.05 3.12 
30,000 3.37 2.08 

100,000 2.29 1.39 
223,125 1.86 1.12 

contour, direction vectors from center point to each endpoint, and 
number of endpoint connections: 0 (free endpoint), 1 (kink), or 2+ 
(intersection). 

The distance between two digits represented as sets of arcs is 
computed as the minimum sum of the difference between each 
possible pairing of arc features between the two sets (since only 3 to 
4 arcs are extracted from each image, on average, an exhaustive al- 
gorithm is feasible). The difference between two arcs is the weighted 
sum of squares of the attribute differences; the actual weights were 
determined by gradient descent, as described in Section IV-A. Since 
a given arc may match better in one orientation than another, the 
endpoints of the arcs are compared in both the original and reversed 
order and the minimum distance of the two is retained. 

111. PERFORMANCE 

The three distance metrics achieved zero-rejection error rates of 
1.9% for Hamming, 1.1% for pixel distance and 1.0% for penstroke 
on the test data with the full training database of 223,125 examples. 
Though the Hamming metric had nearly twice the error rate of the 
other methods, it ran nearly ten times faster than and in only l/lOth 
the memory space of the other algorithms. It is may thus still be of 
interest for commercial systems. 

A .  Performance and Database Size 

Since these three systems performed remarkably well for the 
simplicity of their algorithms, it was considered that the training 
database itself and its size were of critical importance to their overall 
performance. This issue was investigated and the results are presented 
in Table 11. 

The smaller-sized training sets were created by taking the first n 
examples (where n is the size of the database) in the full training set 
that were not of the same author as the test example, and such that 
each class was equally represented (e.g., if the database size was 100 
there would be exactly 10 zeros, 10 ones, etc.). The training databases 
were constructed in this way so that new authors were also added to 
the database as the database grew, thus the diversity of the database 
increased as well as its size (up to 2,100 authors or approximately 
100 examples per author). The same test database of approximately 
50,000 examples was used for all the experiments. 

For every tenfold increase in database size the error rate is cut by 
half or more though the performance seems to be leveling off slightly 
for the larger database sizes. Although we lacked the data to do so, it 
would be interesting to see whether performance effectively reaches 
a plateau as the database size is increased further; this level would 
serve as a measure of a given metric’s peak performance. It is also 
interesting to note the power of very small database sizes. With only 
a single randomly selected example representing each class the pixel 
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Fig. 2. NN confidence--correct examples. 

Histogram for NN Confidence Metric 
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Fig. 3. NN confidence-incorrect examples 

distance metric achieves over 60% correct (surprising, since random 
guessing would yield only 10% correct). 

B .  Confidence Measures 

It was initially assumed that the distance between the test and 
the nearest training example would be a good indication of the 
confidence in the classification (i.e. the larger the distance the lower 
the confidence). Though there is a relationship between the confidence 
and the k-NN distance, it was surprisingly weak. Figures 2 and 3 show 
the confidence distributions of the correctly and incorrectly classified 
examples, based on k-NN distance. The k-NN confidence measure 
was calculated as: 

D1 1 - -  
I< (3) 

where D I  is the distance to the nearest neighbor, computed using the 
pixel distance metric, and K is a constant, greater than the maximum 
distance (we used 1 ,OOO), to insure that the measure lies on the range 
0 to 1. If this were a good measure of confidence, correctly classified 
examples would be distributed around a higher confidence value than 
incorrect examples. In fact, the two distributions are quite similar. 

Inspection of the data on nearest neighbors and distances revealed 
that the 15 nearest neighbors to a correctly classified test example 
were often all of the same class as the nearest neighbor and that the 
distance to the nearest neighbor did not seem to be a particularly 
good predictor of errors. The test cases that were most likely to be 
iricorrectly classified were better represented by closeness between 
competing categories. For instance if the first and second nearest 
neighbors of an image are distances of 100 and 101 away but 
represent different classes we would have less confidence in our 
classification than for an image whose nearest neighbor was a distance 
of 900 away yet all of the 15 nearest neighbors predicted the same 
category. 

To incorporate this knowledge of closely competing categories 
into our confidence measure, we considered the following confidence 

8.00 

6.00 

4.00 

2.00 

0.00 I 
0SK) 0.50 1.00 

Fig. 4. Ratio confidence correct examples. 
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Fig. 5 .  Ratio confidence incorrect examples 

measure: 
D1 I - =  
D1 

(4) 

where D1 is again the distance to the nearest neighbor, and where 01 
represents the distance to the nearest neighbor of a class other than 
the class of the nearest neighbor. We call this the ratio confidence 
measure. 

Since D I  can never be less than 0 1  the confidence varies between 
0 (when there is a tie between two competing classes) and 1 (when 
the nearest competing class is an infinite distance away from the test 
example). 

Figures 4 and 5 display the distributions of the correctly and 
incorrectly classified test examples with respect to the ratio conti- 
dence measure, again computed using the pixel distance metric. In 
this case, the two distributions are well separated, providing much 
better discrimination than the k-NN confidence measure. In fact, the 
performance of our system relative to others, as reported in the right 
hand column of Table I, suggests that this may indeed by a valuable 
measure of confidence. 

Iv. MACHINE LEARNING AND OPTIMIZATION 

Because our systems were simple we were able to turn the 
complicated task of “leaming” into one of optimization and self 
adaptation in a parameter space. We did this in a number of areas 
including finding optimal weights for each feature in the penstroke 
metric and finding a confidence metric that is slightly improved over 
the ratio metric. 

A .  Adapting Feature Weights for Classification 

The adaptation of weights in the penstroke metric was accom- 
plished using a gradient descent technique. At each iteration, a 
parameter was adjusted, and the resulting performance of the system 
was measured by performing classifications on a selected subset of 
the training database. If the performance improved, the new value 
was kept. Several passes of scaling each parameter up and down 



IE€E TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO 9, SEPTEMBER 1994 919 

by successively smaller amounts were performed until the system 
reached a stable optimum. 

Though this was a computationally expensive approach, in that a 
classification run had to be made to test each new set of parameters, 
it could be accomplished in a reasonable amount of time in parallel 
on the Connection Machine and resulted in a significant performance 
increase over either uniform or hand coded values. When the feature 
weight optimization was run on a subset of 270 particularly difficult 
examples the error rate was decreased from 42% to 27%. Similar 
work has been performed on optimization of feature weights for X -  
NN classification systems for both classical datasets [14], [I51 and 
free text [16]. 

B.  Optimizing a Confidence Metric 

Since the ratio confidence metric outperformed the X-NN confi- 
dence metric it was hypothesized that including even further infor- 
mation about the nearness of other different class neighbors might 
be even better. To test this, an experiment was performed on the 
penstroke metric to optimize the contributions of the X-NN distance 
and the ratios of the nearest five examples of the same as well as 
different classes. We used a confidence measure comprised of the 
following terms: 

5 

where w . ~ , ,  and y,  are weights corresponding to the following 
confidence components: 

I )  I;-NN confidence described in Section 111-B; 
2) ratios of the distance of the nearest neighbor to the other five 

nearest neighbors of a different class. 
3 )  ratios of the distance of the nearest neighbor to the other five 

nearest neighbors of the same class. 
Initially each of these elements of the total confidence was as- 

signed an equivalent weight. Using gradient descent, the following 
sets of weights were determined: 11’ = O..ri = 1.0. z , ( i  = 
2. . . . . 5  j and y, ( i  = 2. . . . , G j were all approximately 0.15. 

The experiment confirms ours previous results that the k-NN 
distance is not a useful component of the confidence metric, while the 
rat io measure, D1 / E l ,  is particularly useful. While the incorporation 
of the additional nonzero weighted terms improved performance 
slightly, it is possible that this second order effect is particular to 
our training database. 

V. CONCLUSION 
Our initial hope for this research was to show that acceptable 

classification performance could be achieved through large train- 
ing databases, I;-NN classification and the simple optimization of 
parameterized feature spaces. What we have found is that trivial 
dihtance metrics (Hamming distance) for I;-NN classification and 
a large database alone provide high performance in the domain of 
handwritten digit recognition. Beyond that, we have shown that there 
is good reason to believe that performance will continue to improve 
as the training database grows even larger. 

Ln some ways, this is an obvious result. If the database is large 
enough it will eventually saturate the space of all possible bitmaps and 
thc system could only fall short of perfect performance due to errors 
or noise in the training database. What is remarkable is that such high 
performance is achieved not with the example database required to 
saturate the search space, but rather with less than 225,000 examples. 
This result suggests, at least in this domain, that researchers might 
better spend their time collecting data than writing code. 

With that said it is also clear that further increases in performance 
can be had by improved distance metrics (pixel distance and pen- 
stroke) and by adapting feature weights and confidence metrics to 
the task at hand. Fortunately the latter can be done automatically. 
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