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Abstract

This paper presents experiments with 19
datasets and 5 decision tree pruning algo-
rithms that show that increasing training
set size often results in a linear increase in
tree size, even when that additional com-
plexity results in no significant increase in
classification accuracy. Said differently, re-
moving randomly selected training instances
often results in trees that are substantially
smaller and just as accurate as those built
on all available training instances. This im-
plies that decreases in tree size obtained by
more sophisticated data reduction techniques
should be decomposed into two parts: that
which is due to reduction of training set
size, and the remainder, which is due to how
the method selects instances to discard. We
perform this decomposition for one recent
data reduction technique, John’s ROBUST-
c4.5 (John 1995), and show that a large per-
centage of its effect on tree size is attributable
to the fact that it simply reduces the size of
the training set. We conclude that random
data reduction is a baseline against which
more sophisticated data reduction techniques
should be compared. Finally, we examine one
possible cause of the pathological relationship
between tree size and training set size.

1 Introduction

Data preprocessing is becoming increasingly popular
as a way to improve the performance of decision tree
algorithms. Often such techniques involve data reduc-
tion, the removal of training instances prior to tree
construction. For example, some techniques identify
instances that are “bad” and remove them from the
training set, while others actively build a training set
from available instances by selecting those that are
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“good”. Whether the explicit goal of any given tech-
nique is increased accuracy or smaller trees, the lat-
ter is invariably observed. John’s ROBUST-C4.5 treats
misclassified training instances as outliers, iteratively
removing them and building a new tree (John 1995).
The result over a large number of datasets is trees that
are much smaller than those built by c4.5, but that
have roughly equivalent accuracy. Brodley and Friedl
developed a method to remove instances deemed mis-
labeled (e.g. by transcription errors) in an effort to
boost accuracy. They observe that such filtering, as an
unanticipated side-effect, leads to substantially smaller
trees (Brodley & Friedl 1996).

In this paper we argue that, under a broad range of
circumstances, all data reduction techniques will re-
sult in some decrease in tree size with little impact
on accuracy. Section 2 offers detailed empirical evi-
dence for the validity of this claim, but an intuitive
feeling for why it might be true can be grasped by
looking at Figure 1. The figure shows plots of tree
size and accuracy as a function of training set size for
the UC Irvine australian dataset. c4.5 was used to
generate the trees (Quinlan 1993) and each plot corre-
sponds to a different pruning mechanism: error-based
(EBP — the c4.5 default) (Quinlan 1993), reduced er-
ror (REP) (Quinlan 1987), minimum description length
(MpL) (Quinlan & Rivest 1989), cost-complexity with
the 1sE rule (ccp1sE) (Breiman et al. 1984), and cost-
complexity without the 1SE rule (ccpOsE). On the
left-hand side of the graphs, no training instances are
available and the best one can do with test instances is
to assign them a class label at random. On the right-
hand side of the graph, the entire dataset (excluding
test instances) is available to the tree building process.
Movement from the the left to the right corresponds
to the addition of randomly selected instances to the
training set. Alternatively, moving from the right to
the left corresponds to removing randomly selected in-
stances from the training set. (See Section 2 for a de-
tailed description of how the graphs were generated.)
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Figure 1: Plots of tree size and accuracy as a function of training set size for the australian dataset. All trees
were generated by ¢4.5, and each plot corresponds to a different pruning mechanism: error-based, reduced error,
minimum description length, cost complexity with the 1SE rule, and cost complexity without the 1SE rule (0SE).



In all five graphs in Figure 1, accuracy peaks with
small numbers of training instances, thereafter remain-
ing almost constant. Surprisingly, tree size continues
to grow nearly linearly in three of the graphs. Growth
continued despite two important facts: (1) accuracy
has ceased to increase; and (2) c4.5 is pruning the
trees to avoid overfitting. The graphs clearly show that
overfitting is occurring, and it gets worse as the size
of the training set increases. For example, with EBP,
accuracy peaks after only 25% of the available training
instances are seen. The tree at that point contains 22
nodes. When 100% of the available training instances
are used in tree construction, the resulting tree con-
tains 64 nodes. Despite a 3-fold increase in size over
the tree built with 25% of the data, the accuracies of
the two trees are statistically indistinguishable.

One clear implication of the strong relationship be-
tween training set size and tree size is that almost
any scheme for removing training instances prior to
tree construction will, on this dataset, yield smaller
trees with accuracies roughly equivalent to that ob-
tainable from the full training set. Also, the size of
the resulting tree will depend strongly on the frac-
tion of instances that are discarded. The reason is
that removing any instances, even randomly selected
instances (which corresponds to moving from the right-
hand side of the graphs in Figure 1 to the left), has
just that effect, and the magnitude of the effect in-
creases with the number of training instances that are
discarded. Therefore, it seems likely that at least part
of the reduction in tree size observed by those studies
cited earlier is attributable to the nearly linear rela-
tionship between training set size and tree size as ex-
hibited in Figure 1. Manipulating training set size will
have an impact on tree size, regardless of the method
used to rule training instances in or out. This sug-
gests that random data reduction is a baseline against
which more sophisticated data reduction techniques
should be compared. The magnitude of the reduction
in tree size that such techniques obtain by discarding
training instances should be decomposed into two com-
ponents: that which is due to reduction of training set
size (i.e. the reduction that would result from remov-
ing the same number of randomly selected instances),
and the remainder, which is directly attributable to
how the method selects instances to remove.

The linear relationship between training set size and
tree size was identified previously in a limited context.
Catlett (Catlett 1991) found that trees build from ex-
tremely large datasets (e.g., datasets containing thou-
sands of instances) were both significantly larger and
more accurate than trees built on datasets half that
size. The increase in accuracy was attributed, in part,
to better attribute selection made possible by addi-
tional training instances. In this paper, we demon-
strate that the linear relationship between training set

size and tree size holds across datasets of many differ-
ent sizes and for several pruning techniques. In con-
trast to Catlett, we find that small trees built from
subsets of the available data were often just as ac-
curate as larger trees built from all of the available
data. The reason for this difference will be explored in
the future, but may be related to a disparity in train-
ing set sizes. Very large numbers of training instances
may be required to significantly improve attribute se-
lection over what is possible with smaller numbers of
instances.

The rest of the paper is organized as follows. Section
2 explores the relationship between tree size and accu-
racy and training set size for 5 different pruning meth-
ods on 19 datasets taken from the UC Irvine reposi-
tory. Section 3 performs the decomposition mentioned
above for one data reduction technique, and shows that
a substantial percentage of the gains achieved by that
technique are due to reduction of training set size. Fi-
nally, Section 5 concludes with a discussion of addi-
tional implications of this work and future directions.

2 Empirical Results

The experiments in this section test the hypothesis
that, under a broad range of circumstances, there is a
nearly linear relationship between training set size and
tree size, even after accuracy has ceased to increase.
The experiments generate plots of tree size and ac-
curacy as a function of training set size for a given
dataset and pruning algorithm, find the training set
size at which accuracy ceases to increase, and run a
linear regression on the points in the tree size curve
to the right of that training set size. In general, addi-
tional tree structure is welcome as long as it improves
classification accuracy, and it is unwelcome otherwise.
Ideally, there will be no correlation between tree size
and training set size once classification accuracy peaks.
The linear regression of tree size on training set size
indicates the probability, p, of making an error in re-
jecting the null hypothesis that there is no such cor-
relation (that the slope of the regression line is zero),
and the amount of variance in tree size accounted for
by training set size, 72. When p is significant and r?2
is high, changes in training set size have strong and
predictable effects on tree size.

2.1 Experimental Method

The relationship between training set size and tree
size was explored with 5 pruning methods and 19
datasets taken from the UC Irvine repository.! The

!The datasets are the same ones used in (John 1995)
with two exceptions. The crx dataset was omitted be-
cause it is roughly the same as the australian dataset,



pruning methods are error-based (EBP — the c4.5 de-
fault) (Quinlan 1993), reduced error (REP) (Quinlan
1987), minimum description length (MDL) (Quinlan
& Rivest 1989), cost-complexity with the 1sE rule
(ccplsE) (Breiman et al. 1984), and cost-complexity
without the 1sE rule (ccPOsSE). The majority of ex-
tant pruning methods seem to take one of four gen-
eral approaches: deflating accuracy estimates that are
based on the training set (e.g. EBP); pruning based on
accuracy estimates from a pruning set (e.g. REP); cre-
ating a set of pruned trees based on different values
of a parameter and then selecting the appropriate pa-
rameter value using a pruning set or cross-validation
(e.g. ccp1sE and ccPOSE); and managing the trade-
off between accuracy and complexity (e.g. MDL). The
pruning methods used in this paper were selected to
be representative of these four approaches. CCPOSE
was included to determine the impact of the 1SE rule
in cost-complexity pruning.

The plots of tree size and accuracy as a function of
training set size were generated for each combination
of dataset and pruning algorithm as follows. Typically,
k-fold cross-validation is used to obtain estimates of
the true performance of decision tree algorithms. A
dataset, D, with n instances is divided into k dis-
joint sets, D;, each containing n/k instances. Then
for 1 <1 < k, a tree is built on the instances in D — D;
and tested on the instances in D;, and the results are
averaged over all k folds (Cohen 1995). That proce-
dure was augmented for this paper by building trees
on subsets of D — D; of various sizes, and testing them
on D;. Specifically, 20 subsets were created by re-
taining from 5% to 100% of the instances in D — D;
in increments of 5%; standard k-fold cross-validation
corresponds to the case in which 100% of the instances
in D — D; are retained. The order of the instances in
D was permuted prior to creating the & = 10 folds,
and the instances to be retained were gathered se-
quentially starting with the first instance in D — D; for
each level of data reduction. In this way, 10-fold cross-
validated estimates of tree size and accuracy as a func-
tion of training set size were obtained. (Cohen calls
this incremental cross-validation.) This procedure was
performed twice for each combination of dataset and
pruning method, generating complete size and accu-
racy curves for two different permutations of the data,
and the results were averaged. The goal was to reduce
the inherent variability of cross-validated estimates of
size and accuracy. Note that the same divisions of a
given dataset were used for all of the pruning meth-
ods. With 19 datasets, 5 pruning methods, 20 levels of
training set size, and 2 runs of 10-fold cross-validation

and the horse-colic dataset was omitted because it
was unclear which attribute was used as the class label.
Note that the votel dataset was created by removing the
physician-fee-freeze attribute from the vote dataset.

at each level of training set size, the results reported
in this paper involved running c4.5 38,000 times.

For each plot generated according to the procedure
outlined above, the training set size at which accuracy
ceased to grow was found by scanning the accuracy
curve from left to right, stopping when the mean of
three adjacent accuracy estimates was no more than
1% less than the accuracy of the tree based on all avail-
able training data (the right-most point on the accu-
racy curve, which data reduction techniques typically
use as the standard for comparison). Averaging three
adjacent accuracies makes the stopping criterion ro-
bust against random variations in the accuracy curve.?
Bounding the absolute change in accuracy from below
by 1% ensures that any reduction in tree size costs very
little in terms of accuracy. Then, as described above,
a linear regression of tree size on training set size was
performed on the points in the tree size curve to the
right of the training set size at which accuracy ceased
to grow.

2.2 Results

The results for EBP are summarized in Table 1. We
report the percentage of available training instances
at which accuracy ceased to grow (% Kept), re-
sults of the linear regression of tree size on train-
ing set size (p and R?), the percentage decrease in
tree size (A size) and the absolute difference in ac-
curacy (A accuracy) between the tree built from all
available training instances and the tree built from
the number of instances at which accuracy ceased
to grow. Given tree Ty built from the full training
set and tree 7, built from the reduced training set,
A size = 100 « (size(Ty) — size(T;))/size(T}),

and A accuracy = accuracy(Ty) — accuracy(T;). Lin-
ear regression requires at least 3 data points, so no
results are reported for a dataset if accuracy contin-
ued to grow with training set sizes larger than 90% of
the available data. Also, if there is no relationship be-
tween tree size and training set size (i.e. if p > 0.10),
then p is listed as ns (not significant) and no other
results are given for that dataset. The final row of the
table gives the number of datasets for which accuracy
peaked prior to seeing 100% of the available training
instances, the number of datasets for which the rela-
tionship between tree size and training set size is sig-
nificant, and the means of R?, A size and A accuracy
for those datasets with significant p values.

Summary information for all of the pruning methods

2We did not use the mean of the final three points on
the accuracy curve minus 1% as the accuracy threshold be-
cause those points represent different training set sizes, and
their mean is therefore not an estimate (robust or other-
wise) of the accuracy of trees built on all available training
instances.



(i.e. the information contained in the last row of Table
1) in given in Table 2.

Consider Table 1, which shows the results for EBP.
Accuracy peaked prior to seeing 100% of the available
training instances for 16 of the 19 datasets. Every one
of those 16 datasets exhibited a significant relation-
ship between tree size and training set size beyond the
point at which accuracy stopped growing, and 12 of
them were highly significant (at the 0.001 level). In
spite of the fact that accuracy remains basically con-
stant, tree size continues to grow as training set size
does (the slope of the regression line is positive in all
cases). The most remarkable feature of the table is the
R? column. Recall that 100 % r? is the percentage of
variance in tree size accounted for by training set size.
Across 16 datasets, the average R? is 0.90. This result
is interesting for two reasons. First, it says that train-
ing set size has an extremely strong and predictable
effect on tree size. Increasing training set size invari-
ably leads to larger trees; decreasing training set size
invariably leads to smaller trees. Second, this effect
is robust over a large group of datasets with widely
varying characteristics. Regardless of the default ac-
curacy, the number and types of attributes, the pres-
ence or absence of class and attribute noise, and dif-
ferences in a number of other features along which the
datasets vary, EBP does not appropriately limit tree
size as training set size increases.

The A size column of Table 1 shows the percent re-
duction in size from trees built on all available training
instances to trees built on the number of instances in
the % Kept column. The A accuracy column shows
the absolute difference in accuracy between those same
trees. In Table 1 the mean reduction in tree size for the
16 datasets with significant p values is 38.29%, and the
mean difference in absolute accuracy is —0.14%. By
reducing training set sizes through the removal of ran-
domly selected instances, it is possible, on average, to
obtain trees that are 38.29% smaller, with a sacrifice in
accuracy of less than two tenths of one percent. Note
that accuracy was higher with reduced training sets in
8 cases, and it was lower in 8 cases.

The results for REP and MDL (Table 2) are qualita-
tively the same as those for EBP. For REP, 17 datasets
show a significant relationship between tree size and
training set size (12 at the 0.001 level) and the mean
R? is 0.75. The average reduction in tree size obtain-
able via random data reduction is 39.32% with an av-
erage loss in accuracy of less than four tenths of one
percent. Accuracy was higher with reduced training
sets in 12 of the 17 cases. For MDL, 17 datasets had
significant p values (14 at the 0.001 level), the aver-
age R? was 0.88, and trees based on reduced training
sets were on average 44.03% smaller and less than four
tenths of one percent less accurate. Note that for one

dataset, hypothyroid, there is no significant relation-
ship between tree size and training set size past the
point at which accuracy stopped growing. In this one
case, MDL appropriately limits tree size by not adding
structure to the tree unless a concomitant increase in
classification accuracy occurs.

The results for ccP1sE and ccPOsE (Table 2) indicate
that they appropriately limit tree growth much more
frequently than the previous three pruning methods.
Consider ccP1sE. Accuracy peaked for all 19 datasets
prior to seeing 100% of the available training instances.
However, only about half of the time (10 out of 19
datasets) was there a significant relationship between
tree size and training set size after accuracy stopped
growing. CCP1SE appropriately limits tree growth for
9 datasets, whereas EBP and REP never did so, and
MDL did so once. For the 10 datasets that exhibited
significant relationships between tree size and training
set size, random data reduction still leads to substan-
tially smaller trees (30.11% on average) with little loss
in accuracy (less than one tenth of one percent on av-
erage). The results for cCPOSE are qualitatively the
same.

3 A Case Study

The results of the previous section show that there is
often a strong relationship between tree size and train-
ing set size, even when there is no such relationship
between accuracy and training set size. Furthermore,
reducing tree size by randomly removing training in-
stances costs little or nothing in terms of accuracy over
some (often large) range of training set sizes. This sug-
gests that all data reduction techniques will see some
decrease in tree size simply because they are reducing
the size of the training set. Clearly, one would like to
know how much of the decrease in tree size obtained
by a given data reduction method is due to how the
method selects instances to remove, and how much of
the decrease is due to the fact that the method is re-
ducing the size of the training set. In this section, we
investigate that question for one of the data reduc-
tion methods mentioned earlier, John’s ROBUST-C4.5
(rc4.5) (John 1995).

The idea behind rRc4.5 is that when a pruning algo-
rithm turns a test node into a leaf, it is in effect making
alocal decision to ignore those instances that don’t be-
long to the majority class. John reasoned that if those
instances are not informative locally, at the node where
the decision to prune is made, they may also be unin-
formative globally, higher up in the tree. This insight
is incorporated into the rRc4.5 algorithm by removing
training instances that the pruned tree misclassifies,
and rebuilding the tree on the new, reduced training
set. This procedure is repeated, removing additional



Dataset % Kept p R? | A size | A accuracy
australian 25 | 0.001 | 0.93 65.44 1.50
breast-cancer 100
breast-cancer-wisc 50 | 0.001 | 0.90 32.72 0.36
kr-vs-kp 45 | 0.001 | 0.77 19.18 0.58
cleveland 40 | 0.001 | 0.92 39.45 -0.81
diabetes 30 | 0.001 | 0.99 71.38 -1.92
german 50 | 0.001 | 0.98 47.86 -1.53
glass 45 | 0.001 | 0.99 50.76 -0.22
heart 100
hepatitis 40 | 0.001 | 0.84 38.93 -1.06
hypothyroid 20 | 0.001 | 0.64 | 36.00 0.45
iris 85 | 0.061 | 0.88 16.48 0.31
labor-neg 100
lymphography 85 | 0.061 | 0.88 16.70 -0.60
segment 75 | 0.001 | 0.94 16.71 0.61
sick-euthyroid 20 | 0.001 | 0.88 55.87 0.43
tic-tac-toe 85 | 0.017 | 0.97 8.04 -0.67
vote 20 | 0.001 | 0.85 32.38 0.45
votel 20 | 0.001 | 0.97 64.81 -0.11
16 16 | 0.90 38.29 -0.14

Table 1: The effects of random data reduction on c4.5 with error-based pruning (c4.5’s default pruning method).

Pruning | % Kept Mean | Mean Mean

Method <100 | p<O0.1 R? A size | A accuracy
EBP 16 16 0.90 38.29 -0.14
REP 17 17 0.75 39.32 -0.32
MDL 18 17 0.88 44.03 -0.37
CCP1SE 19 10 0.62 30.11 -0.06
CCPOSE 17 11 0.58 47.84 -0.06

Table 2: Summary of the effects of random data reduction for all of the pruning methods.

instances and rebuilding the tree, until a tree is created
the correctly classifies all of the remaining training in-
stances. The result over a large number of datasets
(using c4.5 with EBP to build and prune trees) is trees
that are much smaller than those built by the standard
c4.5 algorithm, but that have roughly equivalent ac-
curacy.

To determine how much of RC4.5’s effect on tree size
for a given dataset is due to reduction of training
set size alone, we need to know four items of infor-
mation: the size of the tree that c4.5 builds on the
entire dataset (c4.5 Size); the size of the tree that
€4.5 builds on the reduced dataset generated by rc4.5
(rc4.5 Size); the percentage of training instances re-
tained by Rc4.5 (% Kept); and the size of the tree that
¢4.5 builds when the same percentage of randomly se-
lected training instances are retained (RDR Size). The
percentage of RC4.5’s effect on tree which is due to
reduction in training set size can then be computed as
100 % (c4.5 Size — RDR Size)/(c4.5 Size — RC4.5 Size).

To obtain estimates of c4.5 Size, RC4.5 Size and
% Kept for a given dataset, we generated 10-fold cross-

validated estimates of those quantities on 20 different
permutations of the data, and averaged the results over
the 20 permutations. The goal of averaging the results
over multiple runs of cross-validation was to reduce
the variance in our estimates. Given an estimate of
the number of training instances that rRc4.5 can be
expected to discard for a dataset, RDR Size was esti-
mated via 10-fold cross-validation on 20 new permu-
tations of the data where each of the 10 training sets
in each run of cross-validation were reduced by ran-
domly discarding the same number of instances that
Rc4.5 would discard.

Table 3 shows the results for datasets for which rc4.5
achieved a 5% or greater reduction in tree size over
¢c4.5. On the hepatitis dataset, random data reduc-
tion actually results in a larger tree than the one that
€4.5 builds on the full dataset. Reduction of training
set size accounts for only about 10% of Rc4.5’s ef-
fect on two of the datasets (breast-cancer-wisc and
segment), and it accounts for 100% of RC4.5’s effect on
two other datasets (Lymphography and tic-tac-toe).
On average, 41.67% of the decrease in tree size that



% of RC4.5 Effect
Dataset C4.5 Size | RC4.5 Size | % Kept | RDR Size Due to RDR
australian 61.58 48.48 92.19 58.89 20.53
breast-cancer-wisc 20.25 18.25 97.48 20.08 8.5
cleveland 44.61 35.13 88.58 41.70 30.70
diabetes 124.96 65.99 83.11 107.24 30.05
german 157.37 108.65 84.01 131.11 53.90
glass 50.21 41.33 89.34 46.02 47.18
heart 44.26 36.28 90.68 41.31 36.97
hepatitis 14.02 11.5 90.32 14.27 -9.92
lymphography 26.10 23.98 90.14 23.62 116.98
segment 83.05 78.47 98.48 82.48 12.45
tic-tac-toe 131.55 119.67 89.44 119.35 102.69
votel 21.96 18.32 93.17 20.14 50.00

Table 3: A decomposition of the effect of RC4.5 on tree size into components attributable to reduction in training
set size and to the method for choosing which training instances to discard.

RC4.5 obtains is attributable to the fact that it is sim-
ply reducing the size of the training set.

What do these results mean? First, it is clear that tree
sizes obtained through random data reduction should
serve as a baseline against which other data reduc-
tion techniques measure their success, much as default
accuracy or Holte’s one-rules serve as a baseline for
classification accuracy (Holte 1993). If a data reduc-
tion technique improves accuracy, or obtains smaller
trees relative to trees built by eliminating a compara-
ble number of randomly selected instances, then our
confidence in that technique’s ability to identify “bad”
instances is boosted. Second, these results by them-
selves do not shed any additional light on the merits
of rc4.5. We know that for the 12 datasets listed
in Table 3, an average of 42% of Rc4.5’s effect is
due to reduction of training set size, and 58% is due
to RC4.5’s method of selecting instances to remove.
Clearly, substantial reductions in tree size are directly
attributable to the method. Rc4.5’s approach to se-
lecting training instances is highly effective in some
cases (e.g. segment), and highly ineffective in others
(e.g. tic-tac-toe). Note that the algorithm’s lack
of success with the tic-tac-toe dataset is not unex-
pected because that dataset is noise-free, and anything
removed as an “outlier” is probably an infrequent pat-
tern rather than an anomalous instance. We cannot
Jjudge whether decreases in tree size achieved by rCc4.5
after accounting for the effect of reducing training set
size are better or worse than those achieved by other
data reduction techniques until those other techniques
undergo experiments similar to the one reported in this
section.

4 Bias in Reduced Error Pruning

Why would any of the five pruning methods explored
earlier exhibit a pathological relationship between tree

size and training set size? This section examines one
form of bias inherent in several pruning methods that
explains part of that relationship. This bias is dis-
cussed in the context of REP for concreteness and
clarity, and an empirical demonstration of its effects
is presented.

Recall that REP builds a tree with a set of growing
instances, and then prunes the tree bottom-up with
a disjoint set of pruning instances. The number of
classification errors that a subtree rooted at node N
makes on the pruning set, Ex(N), is compared to the
number of errors made when the subtree is collapsed to
a leaf, EL(N). If Ex(N) > EL(N), then N is turned
into a leaf.

Note that E1(N) is independent of the structure of the
subtree rooted at N. To compute EL(N), all of the
instances in the pruning set that match the attribute
tests on the path from the root of the tree to N are
treated as a set. The number of instances in this set
that do not belong to the majority class of the set is the
number of errors that the subtree would make as a leaf.
For a given pruning set, Er(N) depends only on the
structure of the tree above N, and therefore does not
depend on how pruning set instances are partitioned
by additional tests below N. As a consequence, Er(N)
remains constant as the structure beneath N changes
due to the effects of bottom-up pruning.

In contrast to Ey, Er(N) is highly dependent on the
structure of the subtree rooted at N. Er(N) is de-
fined to be the number of errors made by that sub-
tree on the pruning set, and its value can change as
pruning takes place beneath N. Consider a subtree
rooted at N’', where N’ is a descendant of N. If
Er(N') < EL(N') then N’ is not pruned, and be-
cause the structure beneath N remains unchanged,
Er(N) also remains unchanged. The alternative is
that Ex(N') > EL(N'), in which case N' is turned



into aleaf. This structural change either causes Ex(N)
to remain unchanged (when Er(N') = EL(N")) or to
decrease (when Er(N') > EL(N")).

F; and E7 can be used to estimate the error rate of
a subtree, as a leaf and as a tree respectively, on the
population of instances from which the pruning set was
drawn. Each time pruning occurs beneath N, EL(N)
remains invariant and E7(N) usually decreases. This
systematic deflation of E7, a statistical bias inherent
in REP, produces two effects: (1) pruning beneath N
increases the probability that Er(N) < Er(N) and
that N will therefore not be pruned; (2) Er for the
final pruned tree tends to be an underestimate. These
effects should be larger for large unpruned trees, be-
cause they afford many opportunities to prune and
to deflate Er. These effects should also be larger
for small pruning sets because they increase the vari-
ance in estimates of £y and Er. Highly variable es-
timates make it more likely that, by random chance,
Er(N) > EL(N) and the subtree rooted at N will
be pruned, thereby lowering Er for all parents of N.
Note that it is also more likely that, by random chance,
Er(N) < Er(N), resulting in no change in Er for the
parents of N and the retention of the structure beneath
N. In either case, the net result is larger trees, either
from the explicit retention of structure or systematic
deflation of Er which often leads to the retention of
structure higher in the tree.

We empirically explored the effects of the bias de-
scribed above in a series of experiments with arti-
ficial data. All datasets contained instances with
30 binary attributes with uniformly distributed val-
ues. The class label for each instance was the value
of the first attribute, and the class label was com-
plemented to simulate noise with probability p €
{0.0,0.1,0.2,0.3,0.4,0.5}. Trees were built by c4.5
and pruned with REP, and their accuracy on the prun-
ing set was measured. The size of the growing set
was varied from 100 to 1000 instances in increments
of 100, as was the size of the pruning set. This led
to 100 distinct experimental conditions (a fully facto-
rial experiment). For each experimental condition, 15
replicates were performed. As might be expected from
the experiments in Section 2, training set size is an
almost perfect proxy for the size of the unpruned tree.
The correlation between the two for all levels of noise
exceeded 0.99.

With no noise in the data (p = 0.0), all trees contained
3 nodes (a test on the value of the first attribute and
two leaves) and made no errors on the pruning set,
regardless of the size of the growing and pruning sets.
However, for all other noise levels, a two-way analysis
of variance (ANOVA) revealed main effects of growing
set size and pruning set size, and an interaction effect,
all significant at the 0.01 level. The theoretical lower

bound on the error rate of the trees is p, which was
always attained with the smallest growing set (100 in-
stances) and the largest pruning set (1000 instances).
To the extent that the error rate on the pruning set
falls below p, Er yields a biased estimate of the error
rate of the tree on the population. Inspection of the
group means generated by the ANOVA revealed that
increasing the size of the growing set increased bias,
as did decreasing the size of the pruning set (the main

effects found by the ANOVA).

The experiments in this section confirmed our hy-
potheses that larger trees and smaller pruning sets
each lead to increased bias. Bias peaked (i.e. the un-
derestimate of Er was the greatest) with the largest
training set size and the smallest pruning set size (the
interaction effect found by the ANOVA).

5 Discussion

Experiments with 5 pruning methods and 19 datasets
demonstrated that tree size is strongly dependent on
training set size. As the percentage of available in-
stances used to build the tree is increased from 0% to
100%, accuracy often peaks quickly. Despite the fact
that adding more training instances has little effect on
accuracy, doing so has a large effect on tree size. Trees
built with 100% percent of the available training in-
stances are often much larger, and no more accurate,
than trees built on a small subset of the training in-
stances. Given the strong relationship between tree
size and training set size, any technique that removes
training instances prior to tree construction could re-
sult in smaller trees just because it is reducing the size
of the training set.

The realization that small numbers of training in-
stances suffice to build small, accurate trees, in addi-
tion to yielding a useful tree-simplification tool, frees
data previously used in tree construction for other pur-
poses. For example, many pruning techniques divide
the training set into two disjoint subsets, one for build-
ing the tree and another for pruning (Quinlan 1987;
Cestnik & Bratko 1991; Mingers 1989). Larger prun-
ing sets result in better estimates of classification accu-
racy and, therefore, more effective pruning. Random
data reduction simultaneously produces smaller trees
and makes mores data available for pruning.

Random data reduction can also serve as a method for
evaluating new pruning techniques. Continued growth
in tree size with no associated increase in accuracy
points to a problem with overfitting, and experiments
such as the one described in Section 2 can be used to
determine the extent of the problem for a given prun-
ing method. In addition, random data reduction can
be used to estimate the size of the “right” tree. One
can assess whether a pruning method results in trees



of appropriate size on artificial datasets by comparing
the trees to tree-based representations of the function
used to compute the class label. However, that ap-
proach is not possible for real-world data, where the
function used to assign class labels is unknown (thus
the need to construct decision trees). Random data
reduction can be used to find the smallest tree that
results in accuracy equivalent to that possible with
the full dataset, yielding an estimate of the size of the
“right” tree.

Future research will include additional investigation
of why three of the pruning methods tested in this
paper do not avoid overfitting as training set size in-
creases. One of the authors has identified multiple
testing in tree construction and pruning as one source
of problems, and has implemented a promising solu-
tion (Jensen 1997). Also, decision trees are but one
type of model, and we intend to investigate the ex-
tent to which other model construction algorithms fall
victim to a pathological relationship between model
complexity and the amount of data used to build the
model.
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