
The E�ects of Training Set Sizeon Decision Tree ComplexityTim OatesComputer Science Department, LGRCUniversity of MassachusettsBox 34610Amherst, MA 01003-4610oates@cs.umass.edu David JensenComputer Science Department, LGRCUniversity of MassachusettsBox 34610Amherst, MA 01003-4610jensen@cs.umass.eduAbstractThis paper presents experiments with 19datasets and 5 decision tree pruning algo-rithms that show that increasing trainingset size often results in a linear increase intree size, even when that additional com-plexity results in no signi�cant increase inclassi�cation accuracy. Said di�erently, re-moving randomly selected training instancesoften results in trees that are substantiallysmaller and just as accurate as those builton all available training instances. This im-plies that decreases in tree size obtained bymore sophisticated data reduction techniquesshould be decomposed into two parts: thatwhich is due to reduction of training setsize, and the remainder, which is due to howthe method selects instances to discard. Weperform this decomposition for one recentdata reduction technique, John's robust-c4.5 (John 1995), and show that a large per-centage of its e�ect on tree size is attributableto the fact that it simply reduces the size ofthe training set. We conclude that randomdata reduction is a baseline against whichmore sophisticated data reduction techniquesshould be compared. Finally, we examine onepossible cause of the pathological relationshipbetween tree size and training set size.1 IntroductionData preprocessing is becoming increasingly popularas a way to improve the performance of decision treealgorithms. Often such techniques involve data reduc-tion, the removal of training instances prior to treeconstruction. For example, some techniques identifyinstances that are \bad" and remove them from thetraining set, while others actively build a training setfrom available instances by selecting those that are

\good". Whether the explicit goal of any given tech-nique is increased accuracy or smaller trees, the lat-ter is invariably observed. John's robust-c4.5 treatsmisclassi�ed training instances as outliers, iterativelyremoving them and building a new tree (John 1995).The result over a large number of datasets is trees thatare much smaller than those built by c4.5, but thathave roughly equivalent accuracy. Brodley and Friedldeveloped a method to remove instances deemed mis-labeled (e.g. by transcription errors) in an e�ort toboost accuracy. They observe that such �ltering, as anunanticipated side-e�ect, leads to substantially smallertrees (Brodley & Friedl 1996).In this paper we argue that, under a broad range ofcircumstances, all data reduction techniques will re-sult in some decrease in tree size with little impacton accuracy. Section 2 o�ers detailed empirical evi-dence for the validity of this claim, but an intuitivefeeling for why it might be true can be grasped bylooking at Figure 1. The �gure shows plots of treesize and accuracy as a function of training set size forthe UC Irvine australian dataset. c4.5 was used togenerate the trees (Quinlan 1993) and each plot corre-sponds to a di�erent pruning mechanism: error-based(ebp { the c4.5 default) (Quinlan 1993), reduced er-ror (rep) (Quinlan 1987), minimum description length(mdl) (Quinlan & Rivest 1989), cost-complexity withthe 1se rule (ccp1se) (Breiman et al. 1984), and cost-complexity without the 1se rule (ccp0se). On theleft-hand side of the graphs, no training instances areavailable and the best one can do with test instances isto assign them a class label at random. On the right-hand side of the graph, the entire dataset (excludingtest instances) is available to the tree building process.Movement from the the left to the right correspondsto the addition of randomly selected instances to thetraining set. Alternatively, moving from the right tothe left corresponds to removing randomly selected in-stances from the training set. (See Section 2 for a de-tailed description of how the graphs were generated.)
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SizeFigure 1: Plots of tree size and accuracy as a function of training set size for the australian dataset. All treeswere generated by c4.5, and each plot corresponds to a di�erent pruning mechanism: error-based, reduced error,minimum description length, cost complexity with the 1SE rule, and cost complexity without the 1SE rule (0SE).



In all �ve graphs in Figure 1, accuracy peaks withsmall numbers of training instances, thereafter remain-ing almost constant. Surprisingly, tree size continuesto grow nearly linearly in three of the graphs. Growthcontinued despite two important facts: (1) accuracyhas ceased to increase; and (2) c4.5 is pruning thetrees to avoid over�tting. The graphs clearly show thatover�tting is occurring, and it gets worse as the sizeof the training set increases. For example, with ebp,accuracy peaks after only 25% of the available traininginstances are seen. The tree at that point contains 22nodes. When 100% of the available training instancesare used in tree construction, the resulting tree con-tains 64 nodes. Despite a 3-fold increase in size overthe tree built with 25% of the data, the accuracies ofthe two trees are statistically indistinguishable.One clear implication of the strong relationship be-tween training set size and tree size is that almostany scheme for removing training instances prior totree construction will, on this dataset, yield smallertrees with accuracies roughly equivalent to that ob-tainable from the full training set. Also, the size ofthe resulting tree will depend strongly on the frac-tion of instances that are discarded. The reason isthat removing any instances, even randomly selectedinstances (which corresponds to moving from the right-hand side of the graphs in Figure 1 to the left), hasjust that e�ect, and the magnitude of the e�ect in-creases with the number of training instances that arediscarded. Therefore, it seems likely that at least partof the reduction in tree size observed by those studiescited earlier is attributable to the nearly linear rela-tionship between training set size and tree size as ex-hibited in Figure 1. Manipulating training set size willhave an impact on tree size, regardless of the methodused to rule training instances in or out. This sug-gests that random data reduction is a baseline againstwhich more sophisticated data reduction techniquesshould be compared. The magnitude of the reductionin tree size that such techniques obtain by discardingtraining instances should be decomposed into two com-ponents: that which is due to reduction of training setsize (i.e. the reduction that would result from remov-ing the same number of randomly selected instances),and the remainder, which is directly attributable tohow the method selects instances to remove.The linear relationship between training set size andtree size was identi�ed previously in a limited context.Catlett (Catlett 1991) found that trees build from ex-tremely large datasets (e.g., datasets containing thou-sands of instances) were both signi�cantly larger andmore accurate than trees built on datasets half thatsize. The increase in accuracy was attributed, in part,to better attribute selection made possible by addi-tional training instances. In this paper, we demon-strate that the linear relationship between training set

size and tree size holds across datasets of many di�er-ent sizes and for several pruning techniques. In con-trast to Catlett, we �nd that small trees built fromsubsets of the available data were often just as ac-curate as larger trees built from all of the availabledata. The reason for this di�erence will be explored inthe future, but may be related to a disparity in train-ing set sizes. Very large numbers of training instancesmay be required to signi�cantly improve attribute se-lection over what is possible with smaller numbers ofinstances.The rest of the paper is organized as follows. Section2 explores the relationship between tree size and accu-racy and training set size for 5 di�erent pruning meth-ods on 19 datasets taken from the UC Irvine reposi-tory. Section 3 performs the decomposition mentionedabove for one data reduction technique, and shows thata substantial percentage of the gains achieved by thattechnique are due to reduction of training set size. Fi-nally, Section 5 concludes with a discussion of addi-tional implications of this work and future directions.2 Empirical ResultsThe experiments in this section test the hypothesisthat, under a broad range of circumstances, there is anearly linear relationship between training set size andtree size, even after accuracy has ceased to increase.The experiments generate plots of tree size and ac-curacy as a function of training set size for a givendataset and pruning algorithm, �nd the training setsize at which accuracy ceases to increase, and run alinear regression on the points in the tree size curveto the right of that training set size. In general, addi-tional tree structure is welcome as long as it improvesclassi�cation accuracy, and it is unwelcome otherwise.Ideally, there will be no correlation between tree sizeand training set size once classi�cation accuracy peaks.The linear regression of tree size on training set sizeindicates the probability, p, of making an error in re-jecting the null hypothesis that there is no such cor-relation (that the slope of the regression line is zero),and the amount of variance in tree size accounted forby training set size, r2. When p is signi�cant and r2is high, changes in training set size have strong andpredictable e�ects on tree size.2.1 Experimental MethodThe relationship between training set size and treesize was explored with 5 pruning methods and 19datasets taken from the UC Irvine repository.1 The1The datasets are the same ones used in (John 1995)with two exceptions. The crx dataset was omitted be-cause it is roughly the same as the australian dataset,



pruning methods are error-based (ebp { the c4.5 de-fault) (Quinlan 1993), reduced error (rep) (Quinlan1987), minimum description length (mdl) (Quinlan& Rivest 1989), cost-complexity with the 1se rule(ccp1se) (Breiman et al. 1984), and cost-complexitywithout the 1se rule (ccp0se). The majority of ex-tant pruning methods seem to take one of four gen-eral approaches: de
ating accuracy estimates that arebased on the training set (e.g. ebp); pruning based onaccuracy estimates from a pruning set (e.g. rep); cre-ating a set of pruned trees based on di�erent valuesof a parameter and then selecting the appropriate pa-rameter value using a pruning set or cross-validation(e.g. ccp1se and ccp0se); and managing the trade-o� between accuracy and complexity (e.g. mdl). Thepruning methods used in this paper were selected tobe representative of these four approaches. ccp0sewas included to determine the impact of the 1se rulein cost-complexity pruning.The plots of tree size and accuracy as a function oftraining set size were generated for each combinationof dataset and pruning algorithm as follows. Typically,k-fold cross-validation is used to obtain estimates ofthe true performance of decision tree algorithms. Adataset, D, with n instances is divided into k dis-joint sets, Di, each containing n=k instances. Thenfor 1 � i � k, a tree is built on the instances in D�Diand tested on the instances in Di, and the results areaveraged over all k folds (Cohen 1995). That proce-dure was augmented for this paper by building treeson subsets of D�Di of various sizes, and testing themon Di. Speci�cally, 20 subsets were created by re-taining from 5% to 100% of the instances in D � Diin increments of 5%; standard k-fold cross-validationcorresponds to the case in which 100% of the instancesin D �Di are retained. The order of the instances inD was permuted prior to creating the k = 10 folds,and the instances to be retained were gathered se-quentially starting with the �rst instance in D�Di foreach level of data reduction. In this way, 10-fold cross-validated estimates of tree size and accuracy as a func-tion of training set size were obtained. (Cohen callsthis incremental cross-validation.) This procedure wasperformed twice for each combination of dataset andpruning method, generating complete size and accu-racy curves for two di�erent permutations of the data,and the results were averaged. The goal was to reducethe inherent variability of cross-validated estimates ofsize and accuracy. Note that the same divisions of agiven dataset were used for all of the pruning meth-ods. With 19 datasets, 5 pruning methods, 20 levels oftraining set size, and 2 runs of 10-fold cross-validationand the horse-colic dataset was omitted because itwas unclear which attribute was used as the class label.Note that the vote1 dataset was created by removing thephysician-fee-freeze attribute from the vote dataset.

at each level of training set size, the results reportedin this paper involved running c4.5 38,000 times.For each plot generated according to the procedureoutlined above, the training set size at which accuracyceased to grow was found by scanning the accuracycurve from left to right, stopping when the mean ofthree adjacent accuracy estimates was no more than1% less than the accuracy of the tree based on all avail-able training data (the right-most point on the accu-racy curve, which data reduction techniques typicallyuse as the standard for comparison). Averaging threeadjacent accuracies makes the stopping criterion ro-bust against random variations in the accuracy curve.2Bounding the absolute change in accuracy from belowby 1% ensures that any reduction in tree size costs verylittle in terms of accuracy. Then, as described above,a linear regression of tree size on training set size wasperformed on the points in the tree size curve to theright of the training set size at which accuracy ceasedto grow.2.2 ResultsThe results for ebp are summarized in Table 1. Wereport the percentage of available training instancesat which accuracy ceased to grow (% Kept), re-sults of the linear regression of tree size on train-ing set size (p and R2), the percentage decrease intree size (� size) and the absolute di�erence in ac-curacy (� accuracy) between the tree built from allavailable training instances and the tree built fromthe number of instances at which accuracy ceasedto grow. Given tree Tf built from the full trainingset and tree Tr built from the reduced training set,� size = 100 � (size(Tf )� size(Tr ))=size(Tf ),and � accuracy = accuracy(Tf )� accuracy(Tr). Lin-ear regression requires at least 3 data points, so noresults are reported for a dataset if accuracy contin-ued to grow with training set sizes larger than 90% ofthe available data. Also, if there is no relationship be-tween tree size and training set size (i.e. if p > 0:10),then p is listed as ns (not signi�cant) and no otherresults are given for that dataset. The �nal row of thetable gives the number of datasets for which accuracypeaked prior to seeing 100% of the available traininginstances, the number of datasets for which the rela-tionship between tree size and training set size is sig-ni�cant, and the means of R2, � size and � accuracyfor those datasets with signi�cant p values.Summary information for all of the pruning methods2We did not use the mean of the �nal three points onthe accuracy curve minus 1% as the accuracy threshold be-cause those points represent di�erent training set sizes, andtheir mean is therefore not an estimate (robust or other-wise) of the accuracy of trees built on all available traininginstances.



(i.e. the information contained in the last row of Table1) in given in Table 2.Consider Table 1, which shows the results for ebp.Accuracy peaked prior to seeing 100% of the availabletraining instances for 16 of the 19 datasets. Every oneof those 16 datasets exhibited a signi�cant relation-ship between tree size and training set size beyond thepoint at which accuracy stopped growing, and 12 ofthem were highly signi�cant (at the 0.001 level). Inspite of the fact that accuracy remains basically con-stant, tree size continues to grow as training set sizedoes (the slope of the regression line is positive in allcases). The most remarkable feature of the table is theR2 column. Recall that 100 � r2 is the percentage ofvariance in tree size accounted for by training set size.Across 16 datasets, the average R2 is 0.90. This resultis interesting for two reasons. First, it says that train-ing set size has an extremely strong and predictablee�ect on tree size. Increasing training set size invari-ably leads to larger trees; decreasing training set sizeinvariably leads to smaller trees. Second, this e�ectis robust over a large group of datasets with widelyvarying characteristics. Regardless of the default ac-curacy, the number and types of attributes, the pres-ence or absence of class and attribute noise, and dif-ferences in a number of other features along which thedatasets vary, ebp does not appropriately limit treesize as training set size increases.The � size column of Table 1 shows the percent re-duction in size from trees built on all available traininginstances to trees built on the number of instances inthe % Kept column. The � accuracy column showsthe absolute di�erence in accuracy between those sametrees. In Table 1 the mean reduction in tree size for the16 datasets with signi�cant p values is 38.29%, and themean di�erence in absolute accuracy is �0:14%. Byreducing training set sizes through the removal of ran-domly selected instances, it is possible, on average, toobtain trees that are 38.29% smaller, with a sacri�ce inaccuracy of less than two tenths of one percent. Notethat accuracy was higher with reduced training sets in8 cases, and it was lower in 8 cases.The results for rep and mdl (Table 2) are qualita-tively the same as those for ebp. For rep, 17 datasetsshow a signi�cant relationship between tree size andtraining set size (12 at the 0.001 level) and the meanR2 is 0.75. The average reduction in tree size obtain-able via random data reduction is 39.32% with an av-erage loss in accuracy of less than four tenths of onepercent. Accuracy was higher with reduced trainingsets in 12 of the 17 cases. For mdl, 17 datasets hadsigni�cant p values (14 at the 0.001 level), the aver-age R2 was 0.88, and trees based on reduced trainingsets were on average 44.03% smaller and less than fourtenths of one percent less accurate. Note that for one

dataset, hypothyroid, there is no signi�cant relation-ship between tree size and training set size past thepoint at which accuracy stopped growing. In this onecase, mdl appropriately limits tree size by not addingstructure to the tree unless a concomitant increase inclassi�cation accuracy occurs.The results for ccp1se and ccp0se (Table 2) indicatethat they appropriately limit tree growth much morefrequently than the previous three pruning methods.Consider ccp1se. Accuracy peaked for all 19 datasetsprior to seeing 100% of the available training instances.However, only about half of the time (10 out of 19datasets) was there a signi�cant relationship betweentree size and training set size after accuracy stoppedgrowing. ccp1se appropriately limits tree growth for9 datasets, whereas ebp and rep never did so, andmdl did so once. For the 10 datasets that exhibitedsigni�cant relationships between tree size and trainingset size, random data reduction still leads to substan-tially smaller trees (30.11% on average) with little lossin accuracy (less than one tenth of one percent on av-erage). The results for ccp0se are qualitatively thesame.3 A Case StudyThe results of the previous section show that there isoften a strong relationship between tree size and train-ing set size, even when there is no such relationshipbetween accuracy and training set size. Furthermore,reducing tree size by randomly removing training in-stances costs little or nothing in terms of accuracy oversome (often large) range of training set sizes. This sug-gests that all data reduction techniques will see somedecrease in tree size simply because they are reducingthe size of the training set. Clearly, one would like toknow how much of the decrease in tree size obtainedby a given data reduction method is due to how themethod selects instances to remove, and how much ofthe decrease is due to the fact that the method is re-ducing the size of the training set. In this section, weinvestigate that question for one of the data reduc-tion methods mentioned earlier, John's robust-c4.5(rc4.5) (John 1995).The idea behind rc4.5 is that when a pruning algo-rithm turns a test node into a leaf, it is in e�ect makinga local decision to ignore those instances that don't be-long to the majority class. John reasoned that if thoseinstances are not informative locally, at the node wherethe decision to prune is made, they may also be unin-formative globally, higher up in the tree. This insightis incorporated into the rc4.5 algorithm by removingtraining instances that the pruned tree misclassi�es,and rebuilding the tree on the new, reduced trainingset. This procedure is repeated, removing additional



Dataset % Kept p R2 � size � accuracyaustralian 25 0.001 0.93 65.44 1.50breast-cancer 100breast-cancer-wisc 50 0.001 0.90 32.72 0.36kr-vs-kp 45 0.001 0.77 19.18 0.58cleveland 40 0.001 0.92 39.45 -0.81diabetes 30 0.001 0.99 71.38 -1.92german 50 0.001 0.98 47.86 -1.53glass 45 0.001 0.99 50.76 -0.22heart 100hepatitis 40 0.001 0.84 38.93 -1.06hypothyroid 20 0.001 0.64 36.00 0.45iris 85 0.061 0.88 16.48 0.31labor-neg 100lymphography 85 0.061 0.88 16.70 -0.60segment 75 0.001 0.94 16.71 0.61sick-euthyroid 20 0.001 0.88 55.87 0.43tic-tac-toe 85 0.017 0.97 8.04 -0.67vote 20 0.001 0.85 32.38 0.45vote1 20 0.001 0.97 64.81 -0.1116 16 0.90 38.29 -0.14Table 1: The e�ects of random data reduction on c4.5 with error-based pruning (c4.5's default pruning method).Pruning % Kept Mean Mean MeanMethod < 100 p < 0:1 R2 � size � accuracyEBP 16 16 0.90 38.29 -0.14REP 17 17 0.75 39.32 -0.32MDL 18 17 0.88 44.03 -0.37CCP1SE 19 10 0.62 30.11 -0.06CCP0SE 17 11 0.58 47.84 -0.06Table 2: Summary of the e�ects of random data reduction for all of the pruning methods.instances and rebuilding the tree, until a tree is createdthe correctly classi�es all of the remaining training in-stances. The result over a large number of datasets(using c4.5 with ebp to build and prune trees) is treesthat are much smaller than those built by the standardc4.5 algorithm, but that have roughly equivalent ac-curacy.To determine how much of rc4.5's e�ect on tree sizefor a given dataset is due to reduction of trainingset size alone, we need to know four items of infor-mation: the size of the tree that c4.5 builds on theentire dataset (c4.5 Size); the size of the tree thatc4.5 builds on the reduced dataset generated by rc4.5(rc4.5 Size); the percentage of training instances re-tained by rc4.5 (% Kept); and the size of the tree thatc4.5 builds when the same percentage of randomly se-lected training instances are retained (rdr Size). Thepercentage of rc4.5's e�ect on tree which is due toreduction in training set size can then be computed as100� (c4.5 Size�rdr Size)=(c4.5 Size�rc4.5 Size).To obtain estimates of c4.5 Size, rc4.5 Size and% Kept for a given dataset, we generated 10-fold cross-
validated estimates of those quantities on 20 di�erentpermutations of the data, and averaged the results overthe 20 permutations. The goal of averaging the resultsover multiple runs of cross-validation was to reducethe variance in our estimates. Given an estimate ofthe number of training instances that rc4.5 can beexpected to discard for a dataset, rdr Size was esti-mated via 10-fold cross-validation on 20 new permu-tations of the data where each of the 10 training setsin each run of cross-validation were reduced by ran-domly discarding the same number of instances thatrc4.5 would discard.Table 3 shows the results for datasets for which rc4.5achieved a 5% or greater reduction in tree size overc4.5. On the hepatitis dataset, random data reduc-tion actually results in a larger tree than the one thatc4.5 builds on the full dataset. Reduction of trainingset size accounts for only about 10% of rc4.5's ef-fect on two of the datasets (breast-cancer-wisc andsegment), and it accounts for 100% of rc4.5's e�ect ontwo other datasets (lymphography and tic-tac-toe).On average, 41.67% of the decrease in tree size that



% of RC4.5 E�ectDataset C4.5 Size RC4.5 Size % Kept RDR Size Due to RDRaustralian 61.58 48.48 92.19 58.89 20.53breast-cancer-wisc 20.25 18.25 97.48 20.08 8.5cleveland 44.61 35.13 88.58 41.70 30.70diabetes 124.96 65.99 83.11 107.24 30.05german 157.37 108.65 84.01 131.11 53.90glass 50.21 41.33 89.34 46.02 47.18heart 44.26 36.28 90.68 41.31 36.97hepatitis 14.02 11.5 90.32 14.27 -9.92lymphography 26.10 23.98 90.14 23.62 116.98segment 83.05 78.47 98.48 82.48 12.45tic-tac-toe 131.55 119.67 89.44 119.35 102.69vote1 21.96 18.32 93.17 20.14 50.00Table 3: A decomposition of the e�ect of rc4.5 on tree size into components attributable to reduction in trainingset size and to the method for choosing which training instances to discard.rc4.5 obtains is attributable to the fact that it is sim-ply reducing the size of the training set.What do these results mean? First, it is clear that treesizes obtained through random data reduction shouldserve as a baseline against which other data reduc-tion techniques measure their success, much as defaultaccuracy or Holte's one-rules serve as a baseline forclassi�cation accuracy (Holte 1993). If a data reduc-tion technique improves accuracy, or obtains smallertrees relative to trees built by eliminating a compara-ble number of randomly selected instances, then ourcon�dence in that technique's ability to identify \bad"instances is boosted. Second, these results by them-selves do not shed any additional light on the meritsof rc4.5. We know that for the 12 datasets listedin Table 3, an average of 42% of rc4.5's e�ect isdue to reduction of training set size, and 58% is dueto rc4.5's method of selecting instances to remove.Clearly, substantial reductions in tree size are directlyattributable to the method. rc4.5's approach to se-lecting training instances is highly e�ective in somecases (e.g. segment), and highly ine�ective in others(e.g. tic-tac-toe). Note that the algorithm's lackof success with the tic-tac-toe dataset is not unex-pected because that dataset is noise-free, and anythingremoved as an \outlier" is probably an infrequent pat-tern rather than an anomalous instance. We cannotjudge whether decreases in tree size achieved by rc4.5after accounting for the e�ect of reducing training setsize are better or worse than those achieved by otherdata reduction techniques until those other techniquesundergo experiments similar to the one reported in thissection.4 Bias in Reduced Error PruningWhy would any of the �ve pruning methods exploredearlier exhibit a pathological relationship between tree

size and training set size? This section examines oneform of bias inherent in several pruning methods thatexplains part of that relationship. This bias is dis-cussed in the context of REP for concreteness andclarity, and an empirical demonstration of its e�ectsis presented.Recall that REP builds a tree with a set of growinginstances, and then prunes the tree bottom-up witha disjoint set of pruning instances. The number ofclassi�cation errors that a subtree rooted at node Nmakes on the pruning set, ET (N ), is compared to thenumber of errors made when the subtree is collapsed toa leaf, EL(N ). If ET (N ) � EL(N ), then N is turnedinto a leaf.Note that EL(N ) is independent of the structure of thesubtree rooted at N . To compute EL(N ), all of theinstances in the pruning set that match the attributetests on the path from the root of the tree to N aretreated as a set. The number of instances in this setthat do not belong to the majority class of the set is thenumber of errors that the subtree would make as a leaf.For a given pruning set, EL(N ) depends only on thestructure of the tree above N , and therefore does notdepend on how pruning set instances are partitionedby additional tests below N . As a consequence, EL(N )remains constant as the structure beneath N changesdue to the e�ects of bottom-up pruning.In contrast to EL, ET (N ) is highly dependent on thestructure of the subtree rooted at N . ET (N ) is de-�ned to be the number of errors made by that sub-tree on the pruning set, and its value can change aspruning takes place beneath N . Consider a subtreerooted at N 0, where N 0 is a descendant of N . IfET (N 0) < EL(N 0) then N 0 is not pruned, and be-cause the structure beneath N remains unchanged,ET (N ) also remains unchanged. The alternative isthat ET (N 0) � EL(N 0), in which case N 0 is turned



into a leaf. This structural change either causes ET (N )to remain unchanged (when ET (N 0) = EL(N 0)) or todecrease (when ET (N 0) > EL(N 0)).EL and ET can be used to estimate the error rate ofa subtree, as a leaf and as a tree respectively, on thepopulation of instances from which the pruning set wasdrawn. Each time pruning occurs beneath N , EL(N )remains invariant and ET (N ) usually decreases. Thissystematic de
ation of ET , a statistical bias inherentin REP, produces two e�ects: (1) pruning beneath Nincreases the probability that ET (N ) < EL(N ) andthat N will therefore not be pruned; (2) ET for the�nal pruned tree tends to be an underestimate. Thesee�ects should be larger for large unpruned trees, be-cause they a�ord many opportunities to prune andto de
ate ET . These e�ects should also be largerfor small pruning sets because they increase the vari-ance in estimates of EL and ET . Highly variable es-timates make it more likely that, by random chance,ET (N ) � EL(N ) and the subtree rooted at N willbe pruned, thereby lowering ET for all parents of N .Note that it is also more likely that, by random chance,ET (N ) < EL(N ), resulting in no change in ET for theparents ofN and the retention of the structure beneathN . In either case, the net result is larger trees, eitherfrom the explicit retention of structure or systematicde
ation of ET which often leads to the retention ofstructure higher in the tree.We empirically explored the e�ects of the bias de-scribed above in a series of experiments with arti-�cial data. All datasets contained instances with30 binary attributes with uniformly distributed val-ues. The class label for each instance was the valueof the �rst attribute, and the class label was com-plemented to simulate noise with probability p 2f0:0; 0:1; 0:2;0:3; 0:4;0:5g. Trees were built by c4.5and pruned with REP, and their accuracy on the prun-ing set was measured. The size of the growing setwas varied from 100 to 1000 instances in incrementsof 100, as was the size of the pruning set. This ledto 100 distinct experimental conditions (a fully facto-rial experiment). For each experimental condition, 15replicates were performed. As might be expected fromthe experiments in Section 2, training set size is analmost perfect proxy for the size of the unpruned tree.The correlation between the two for all levels of noiseexceeded 0.99.With no noise in the data (p = 0:0), all trees contained3 nodes (a test on the value of the �rst attribute andtwo leaves) and made no errors on the pruning set,regardless of the size of the growing and pruning sets.However, for all other noise levels, a two-way analysisof variance (ANOVA) revealed main e�ects of growingset size and pruning set size, and an interaction e�ect,all signi�cant at the 0.01 level. The theoretical lower

bound on the error rate of the trees is p, which wasalways attained with the smallest growing set (100 in-stances) and the largest pruning set (1000 instances).To the extent that the error rate on the pruning setfalls below p, ET yields a biased estimate of the errorrate of the tree on the population. Inspection of thegroup means generated by the ANOVA revealed thatincreasing the size of the growing set increased bias,as did decreasing the size of the pruning set (the maine�ects found by the ANOVA).The experiments in this section con�rmed our hy-potheses that larger trees and smaller pruning setseach lead to increased bias. Bias peaked (i.e. the un-derestimate of ET was the greatest) with the largesttraining set size and the smallest pruning set size (theinteraction e�ect found by the ANOVA).5 DiscussionExperiments with 5 pruning methods and 19 datasetsdemonstrated that tree size is strongly dependent ontraining set size. As the percentage of available in-stances used to build the tree is increased from 0% to100%, accuracy often peaks quickly. Despite the factthat adding more training instances has little e�ect onaccuracy, doing so has a large e�ect on tree size. Treesbuilt with 100% percent of the available training in-stances are often much larger, and no more accurate,than trees built on a small subset of the training in-stances. Given the strong relationship between treesize and training set size, any technique that removestraining instances prior to tree construction could re-sult in smaller trees just because it is reducing the sizeof the training set.The realization that small numbers of training in-stances su�ce to build small, accurate trees, in addi-tion to yielding a useful tree-simpli�cation tool, freesdata previously used in tree construction for other pur-poses. For example, many pruning techniques dividethe training set into two disjoint subsets, one for build-ing the tree and another for pruning (Quinlan 1987;Cestnik & Bratko 1991; Mingers 1989). Larger prun-ing sets result in better estimates of classi�cation accu-racy and, therefore, more e�ective pruning. Randomdata reduction simultaneously produces smaller treesand makes mores data available for pruning.Random data reduction can also serve as a method forevaluating new pruning techniques. Continued growthin tree size with no associated increase in accuracypoints to a problem with over�tting, and experimentssuch as the one described in Section 2 can be used todetermine the extent of the problem for a given prun-ing method. In addition, random data reduction canbe used to estimate the size of the \right" tree. Onecan assess whether a pruning method results in trees
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