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Abstract

This paper develops a novel tree-based algo-

rithm, called Bonsai, for efficient prediction on

IoT devices – such as those based on the Ar-

duino Uno board having an 8 bit ATmega328P

microcontroller operating at 16 MHz with no na-

tive floating point support, 2 KB RAM and 32

KB read-only flash. Bonsai maintains predic-

tion accuracy while minimizing model size and

prediction costs by: (a) developing a tree model

which learns a single, shallow, sparse tree with

powerful nodes; (b) sparsely projecting all data

into a low-dimensional space in which the tree is

learnt; and (c) jointly learning all tree and pro-

jection parameters. Experimental results on mul-

tiple benchmark datasets demonstrate that Bon-

sai can make predictions in milliseconds even on

slow microcontrollers, can fit in KB of memory,

has lower battery consumption than all other al-

gorithms while achieving prediction accuracies

that can be as much as 30% higher than state-

of-the-art methods for resource-efficient machine

learning. Bonsai is also shown to generalize to

other resource constrained settings beyond IoT

by generating significantly better search results

as compared to Bing’s L3 ranker when the model

size is restricted to 300 bytes. Bonsai’s code can

be downloaded from (BonsaiCode).

1. Introduction

Objective: This paper develops a novel tree-based algo-

rithm, called Bonsai, which can be trained on a laptop, or

the cloud, and can then be shipped onto severely resource

constrained Internet of Things (IoT) devices.

Resource constrained devices: The Arduino Uno board

has an 8 bit ATmega328P microcontroller operating at 16

MHz with 2 KB SRAM and 32 KB read-only flash mem-
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ory. The BBC Micro:Bit has a 32 bit ARM Cortex M0 mi-

crocontroller operating at 16 MHz with 16 KB SRAM and

256 KB read-only flash. Neither provides hardware sup-

port for floating point operations. Billions of such tiny IoT

microcontrollers have been deployed in the world (Meunier

et al., 2014). Before deployment, the OS and all application

code and data are burnt onto flash, leaving only a few KB

for storing the trained ML model, prediction code, feature

extraction code and associated data and parameters. Af-

ter deployment, the only writable memory available is the

2 KB (Uno) or 16 KB (Micro:Bit) of SRAM which might

not be sufficient to hold even a single feature vector.

The Internet of Things: A number of applications have

been developed for consumer, enterprise and societal IoT

including predictive maintenance, intelligent healthcare,

smart cities and housing, etc. The dominant paradigm for

these applications, given the severe resource constraints of

IoT devices, has been that the IoT device is dumb – it just

senses its environment and transmits the sensor readings to

the cloud where all the decision making happens.

Motivating scenarios: This paper proposes an alternative

paradigm where the IoT device can make predictions lo-

cally without necessarily connecting to the cloud. This en-

ables many scenarios, beyond the pale of the traditional

paradigm, where it is not possible to transmit data to the

cloud due to latency, bandwidth, privacy and energy con-

cerns. For instance, consider a microcontroller implanted

in the brain which warns patients about impending seizures

so that they can call for help, pull over if they are driving,

etc. Making predictions locally would allow the device to

work everywhere irrespective of cloud connectivity. Fur-

thermore, alerts could be raised more quickly with local

predictions than if all the sensor readings had to be first

transmitted to the cloud. In addition, since the energy re-

quired for executing an instruction might be much lower

than the energy required to transmit a byte, making predic-

tions locally would extend battery life significantly thereby

avoiding repeated brain surgery and might also prevent

brain tissue damage due to excess heat dissipation from the

communicating radio. Finally, people might not be willing

to transmit such sensitive data to the cloud. These charac-

teristics are shared by many other scenarios including im-

plants in the heart, precision agriculture on disconnected

farms, smart spectacles for the visually impaired, etc.
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Tree algorithms: Tree algorithms are general and can be

used for classification, regression, ranking and other prob-

lems commonly found in the IoT setting. Even more impor-

tantly, they are ideally suited to IoT applications as they can

achieve good prediction accuracies with prediction times

and energies that are logarithmic in the number of training

points. Unfortunately, they do not directly fit on tiny IoT

devices as their space complexity is linear rather than log-

arithmic. In particular, learning shallow trees, or aggres-

sively pruning deep trees or large ensembles, to fit in just a

few KB often leads to poor prediction accuracy.

Bonsai: This paper develops a novel tree learner, called

Bonsai, designed specifically for severely resource con-

strained IoT devices based on the following contributions.

First, Bonsai learns a single, shallow, sparse tree so as to

reduce model size but with powerful nodes for accurate

prediction. Second, both internal and leaf nodes in Bonsai

make non-linear predictions. Bonsai’s overall prediction

for a point is the sum of the individual node predictions

along the path traversed by the point. Path based predic-

tion allows Bonsai to accurately learn non-linear decision

boundaries while sharing parameters along paths to further

reduce model size. Third, Bonsai learns a sparse matrix

which projects all data points into a low-dimensional space

in which the tree is learnt. This allows Bonsai to fit in a few

KB of flash. Furthermore, the sparse projection is imple-

mented in a streaming fashion thereby allowing Bonsai to

tackle IoT applications where even a single feature vector

might not fit in 2 KB of RAM. Fourth, rather than learning

the Bonsai tree node by node in a greedy fashion, all nodes

are learnt jointly, along with the sparse projection matrix,

so as to optimally allocate memory budgets to each node

while maximising prediction accuracy.

Implementation: Another contribution is an efficient im-

plementation of Bonsai which reduces its prediction costs

on the Arduino and Micro:Bit to be even lower than that of

an unoptimized linear classifier. This allows Bonsai to en-

joy the prediction accuracy of a non-linear classifier while

paying less than linear costs. This paper does not focus on

the system and implementation details due to space limita-

tions but the interested reader is referred to the publically

available source code (BonsaiCode).

Results: These contributions allow Bonsai to make pre-

dictions in milliseconds even on slow microcontrollers, fit

in a few KB of flash and extend battery life beyond all

other algorithms. Furthermore, it is demonstrated on multi-

ple benchmark datasets that Bonsai’s prediction accuracies

can approach those of uncompressed kNN classifiers, RBF-

SVMs, single hidden layer neural networks and gradient

boosted decision tree ensembles whose models might take

many MB of RAM. It is also demonstrated that Bonsai’s

prediction accuracies for a given model size can be as much

as 30% higher than state-of-the-art methods for resource-

efficient machine learning. Finally, Bonsai is shown to gen-

eralize to other resource constrained settings beyond IoT by

producing significantly better search results than Bing’s L3

ranker when the model size is restricted to 300 bytes.

2. Related Work

The literature on resource-efficient machine learning is vast

and specialized solutions have been developed for reduc-

ing the prediction costs of kNN algorithms (Kusner et al.,

2014b; Wang et al., 2016), SVMs (Hsieh et al., 2014; Jose

et al., 2013; Le et al., 2013; Li et al., 2016), deep learn-

ing (Iandola et al., 2016; Han et al., 2016; Yang et al., 2015;

Denton et al., 2014; Wu et al., 2016; Rastegari et al., 2016;

Hubara et al., 2016; Shankar et al., 2016; Ioannou et al.,

2016a), model compression (Bucilua et al., 2006; Ba &

Caruana, 2014), feature selection (Kusner et al., 2014a; Xu

et al., 2013; 2012; Nan et al., 2015; Wang et al., 2015) and

applications such as face detection (Viola & Jones, 2004).

Resource-efficient tree classifiers are particularly germane

to this paper. The standard approach is to greedily grow

the decision tree ensemble node by node until the predic-

tion budget is exhausted. A popular alternative is to first

learn the random forest or gradient boosted decision tree

ensemble to maximize prediction accuracy and then use

pruning techniques to meet the budget constraints (Duda

et al., 2002; Dekel et al., 2016; Nan et al., 2016; Li, 2001;

Breiman et al., 1984; Zhang & Huei-chuen, 2005; Sherali

et al., 2009; Kulkarni & Sinha, 2012; Rokach & Maimon,

2014; Joly et al., 2012). Unfortunately, such techniques are

fundamentally limited as they attempt to approximate com-

plex non-linear decision boundaries using a small number

of axis-aligned hyperplanes. This can lead to poor predic-

tion accuracies as observed in Section 5.

Tree models have also been developed to learn more com-

plex decision boundaries by moving away from learning

axis-aligned hyperplanes at internal nodes and constant

predictors at the leaves. For instance, (Breiman, 2001;

Murthy et al., 1994; Kontschieder et al., 2015) learnt more

powerful branching functions at internal nodes based on

oblique cuts and full hyperplanes while (Utgoff, 1989;

Hsieh et al., 2014) learnt more powerful leaf node predic-

tors based on linear classifiers, kernelized SVMs, etc. Bon-

sai achieves better budget utilization than such models by

learning shorter trees, typically depth 4 or lower, and by

sharing the parameters between leaf node predictors.

The models closest to Bonsai are Decision Jungles (Shot-

ton et al., 2013) and LDKL (Jose et al., 2013). Bon-

sai improves upon LDKL by learning its tree in a low-

dimensional space, learning sparse branching functions and

predictors and generalizing the model to multi-class classi-
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fication, ranking, etc. Decision Jungles are similar to Bon-

sai in that they share node parameters using a DAG struc-

ture. Unfortunately, Decision Jungles need to learn deep

tree ensembles with many nodes as they use weak constant

classifiers as leaf node predictors. Bonsai can have lower

model size and higher accuracy as it learns a single, shallow

tree in a low-dimensional space with non-linear predictors.

Note that while tree based cost-sensitive feature selection

methods are not directly relevant, their performance is nev-

ertheless empirically compared to Bonsai’s in Section 5.

3. The Bonsai Model for Efficient Prediction

Overview: Bonsai learns a single, shallow sparse tree

whose predictions for a point x are given by

y(x) =
∑

k

Ik(x)W
⊤
k Zx ◦ tanh(σV⊤

k Zx) (1)

where ◦ denotes the elementwise Hadamard product, σ is a

user tunable hyper-parameter, Z is a sparse projection ma-

trix and Bonsai’s tree is parameterized by Ik, Wk and Vk

where Ik(x) is an indicator function taking the value 1 if

node k lies along the path traversed by x and 0 otherwise

and Wk and Vk are sparse predictors learnt at node k. The

prediction function is designed to minimize the model size,

prediction time and prediction energy, while maintaining

prediction accuracy, even at the expense of increased train-

ing costs. The function is also designed to minimize the

working memory required as the Uno provides only 2 KB

of writeable memory for storing the feature vector, pro-

gramme variables and intermediate computations.

Streaming sparse projection: Bonsai projects each

D-dimensional input feature vector x into a low D̂-

dimensional space using a learnt sparse projection matrix

Z
D̂×D

. Bonsai uses fixed point arithmetic for all math

computation, including Zx, when implemented on the IoT

device so as to avoid floating point overheads. Note that D̂

could be as low as 5 for many binary classification applica-

tions. This has the following advantages. First, it reduces

Bonsai’s model size as all tree parameters are now learnt

in the low-dimensional space. Second, when D̂ is small,

Zx could be stored directly in the microcontroller’s regis-

ters thereby reducing prediction time and energy. Third,

learning the projection matrix jointly with the tree param-

eters improves prediction accuracy. Fourth, since Zx can

be computed in a streaming fashion, this allows Bonsai to

tackle IoT applications where even a single feature vector

cannot fit in 2 KB of SRAM. This is critical since stan-

dard tree implementations are unable to handle a stream-

ing feature vector – the entire feature vector needs to be

streamed for the root node to determine whether to pass the

point down to the left or right child and therefore the vector

is unavailable for processing at subsequent nodes. Some

implementations work around this limitation by simultane-

ously evaluating the branching function at all nodes as the

vector is streamed but this increases the prediction costs

from logarithmic to linear which might not be acceptable.

Branching function at internal nodes: Bonsai computes

Ik by learning a sparse vector θ at each internal node such

that the sign of θ⊤Zx determines whether point x should

be branched to the node’s left or right child. Using more

powerful branching functions than the axis-aligned hyper-

planes in standard decision trees allows Bonsai to learn

shallow trees which can fit in a few KB. Of course, this

is not a novel idea, and is insufficient in itself to allow a

single, shallow decision tree to make accurate predictions.

Node predictors: Decision trees, random forests and

boosted tree ensembles are limited to making constant pre-

dictions at just the leaf nodes. This restricts their predic-

tion accuracy when there are very few leaves. In contrast,

for a multi-class, multi-label or regression problem with L

targets, Bonsai learns matrices W
D̂×L

and V
D̂×L

at both

leaf and internal nodes so that each node predicts the vec-

tor W⊤Zx◦tanh(σV⊤Zx). Note that the functional form

of the node predictor was chosen as it was found to work

well empirically (other forms could be chosen if found to

be more appropriate). Further note that W and V will re-

duce to vectors for binary classification, ranking and single-

target regression. Bonsai’s overall predicted vector is given

by (1) and is the sum of the individual vectors predicted

by the nodes lying along the path traversed by x. This al-

lows Bonsai to accurately learn non-linear decision bound-

aries using shallow trees with just a few nodes. Further-

more, path based prediction allows parameter sharing and

therefore reduces model size as compared to putting inde-

pendent classifiers of at least equal complexity in the leaf

nodes alone. For instance, a depth 4 Bonsai tree with 15

internal and 16 leaf nodes stores 31 W and 31 V matrices

with overall predictions being the sum of 4 terms depend-

ing on the path taken. If parameters were not shared and

each leaf node independently learnt 4 W and 4 V matrices

to make predictions of at least equal complexity, then a to-

tal of 16× 4 = 64W and 64 V matrices would need to be

stored thereby exceeding the memory budget. As an imple-

mentation detail, note that Bonsai uses the approximation

tanh(x) ≈ x if |x| < 1 and signum(x) otherwise in order

to avoid floating point computation.

4. Training Bonsai

Notation: Bonsai learns a balanced tree of user specified

height h with 2h − 1 internal nodes and 2h leaf nodes. The

parameters that need to be learnt include: (a) Z: the sparse

projection matrix; (b) θ = [θ1, . . . ,θ2h−1]: the parame-

ters of the branching function at each internal node; and (c)

W = [W1, . . . ,W2h+1−1] and V = [V1, . . . ,V2h+1−1]:
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the predictor parameters at each node. Let Θ = [θ,W,V]
denote a matrix obtained by stacking all the parameters to-

gether except for Z. Finally, it is assumed that N train-

ing points {(xi, y
¯
i
)Ni=1} have been provided and that bud-

get constraints BZ and BΘ on the projection matrix and

tree parameters have been specified depending on the flash

memory available on the IoT device.

Optimization problem: Bonsai’s parameters are learnt as

min
Z,Θ

J (Z,Θ) =
λθ

2
Tr(θ⊤

θ) +
λW

2
Tr(W⊤W)

+
λV

2
Tr(V⊤V) +

λZ

2
Tr(ZZ⊤)

+
1

N

N
∑

i=1

L(xi,yi,y(xi);Z,Θ)

s. t. ‖Z‖0 ≤ BZ, ‖Θ‖0 ≤ BΘ

(2)

where y(xi) is Bonsai’s prediction for point xi as given

in (1) and L is an appropriately chosen loss function for

classification, regression, ranking, etc. For instance, L =
max(0, 1 − yiy(xi)) with yi ∈ {−1,+1} for binary clas-

sification and L = maxy∈Y((yi − y)⊤y(xi) + 1 − y⊤
i y)

with Y = {y|y ∈ {0, 1}L,1⊤y = 1} and yi ∈ Y for

multi-class classification. It is worth emphasizing that the

optimization problem is formulated such that all parame-

ters are learnt jointly subject to the budget constraints. This

leads to significantly higher prediction accuracies than if Z

were first learnt independently, say using sparse PCA, and

then Θ was learnt afterwards (see Section 5).

Algorithm: Optimizing (2) over the space of all balanced

trees of height h is a hard, non-convex problem. Tree grow-

ing algorithms typically optimize such problems by greed-

ily growing the tree a node at a time starting from the root.

Unfortunately, this leads to a suboptimal utilization of the

memory budget in Bonsai’s case as it is not clear a priori

how much budget to allocate to each node. For instance,

it is not apparent whether the budget should be distributed

equally between all nodes or whether the root node should

be allocated more budget and, if so, by how much.

Algorithm - Joint learning of nodes: Bonsai therefore

learns all node parameters jointly with the memory bud-

get for each node being determined automatically as part

of the optimization. The difficulty with joint learning is

that a node’s ancestors need to be learnt before it can

be determined which training points will reach the node.

Furthermore, the path traversed by a training point is a

sharply discontinuous function of θ and Z thereby ren-

dering gradient based techniques ineffective. Various ap-

proaches have been proposed in the literature for tackling

these difficulties (Jose et al., 2013; Kontschieder et al.,

2015; Norouzi et al., 2015; Xu et al., 2013; Ioannou et al.,

2016b). Bonsai follows the approach of (Jose et al., 2013)

and smooths the objective function by initially allowing

points to traverse multiple paths in the tree. In particu-

lar, the indicator function Ik(x) is relaxed to Ik>1(x) =
1
2Ij(x)

(

1 + (−1)k−2j tanh(σIθ
⊤
j Zx)

)

where j =
⌊

k
2

⌋

is

k’s parent node in a balanced tree, I1(x) = 1 and the pa-

rameter σI controls the fidelity of the approximation. Gra-

dients can now be computed as

∇θl
Ik(x) = σIIk(x)P

l
k(x)Zx (3)

∇ZIk(x) =
∑

l

σIIk(x)P
l
k(x)θlx

⊤ (4)

where P l
k(x) = δlk((−1)Ck(l) − tanh(σIθ

⊤
l Zx)), δ

l
k = 1

if node l is an ancestor of node k and 0 otherwise and

Ck(l) = 1 if node k is in the right subtree of node l and 0

otherwise. Of course, allowing a point to traverse multiple

paths increases prediction costs. Some approaches there-

fore allow multiple paths during training but select a sin-

gle path during prediction (Xu et al., 2013; Ioannou et al.,

2016b). At each node, a point x is greedily branched to the

child node having the greatest Ik(x). Unfortunately, this

can lead to a drop in accuracy as the model learnt during

training is different from the one used for prediction.

Bonsai therefore follows an alternative strategy where σI

is tuned during training to ensure that points gradually start

traversing at most a single path as optimization progresses.

In particular, σI is initialized to a small value, such as 0.01,

so as to ensure that tanh values are not saturated. As opti-

mization progresses, σI is gradually increased so that tanh
tends to the signum function and Ik(x) goes back to being

an indicator function by the time convergence is reached.

This allows Bonsai to directly use the learnt model for pre-

diction and was found to empirically lead to good results.

Algorithm - Gradient descent with iterative hard

thresholding: Various gradient based approaches, includ-

ing those based on alternating minimization, were tried for

optimizing (2). A gradient descent based algorithm with

iterative hard thresholding (IHT) was empirically found

to yield the best solutions. Gradient descent was chosen

over stochastic gradient descent as it removed the burden of

step size tuning, led to slightly better prediction accuracies

while keeping training time acceptable. For instance, train-

ing times range from 2 minutes for USPS-2 to 15 minutes

for MNIST-2 on a single core of a laptop with an Intel Core

i7-3667U processor at 2 GHz with 8 GB of RAM. Stochas-

tic gradient descent could be utilized for larger datasets or

if training costs also needed to be minimized. The algo-

rithm proceeds iteratively based on the following gradient

and IHT steps in each iteration.

Algorithm - Gradient step: Given feasible Zt and Θt

with a feasible allocation of the memory budget to various

nodes at time step t, Bonsai applies M updates of gradi-

ent descent keeping the support of Z and Θ fixed so that
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the budget allocations to nodes remain unchanged and the

memory constraints are never violated. The update equa-

tions at each time step are

Zt+1 = Zt − ηtZ∇ZJ (Zt,Θt)|supp(Zt)
(5)

Θt+1 = Θt − ηtΘ∇ΘJ (Zt,Θt)|supp(Θt)
(6)

with step sizes ηZ and ηΘ being chosen according to the

Armijo rule and |supp
indicating that the gradient was be-

ing computed only for the non-zero entries. M = 5 and

M = 15 iterations were found to work well for binary and

multi-class classification respectively. This allows Bonsai

to decrease the objective function value without changing

the budget allocation of various nodes.

Algorithm - IHT step: In order to improve the budget allo-

cation, Bonsai performs a single gradient update with unre-

stricted support. This violates the memory constraints and

Bonsai therefore projects the solution onto the feasible set

by retaining the parameters with the largest magnitudes

Zt+M+1 = TBZ
(Zt+M − ηt+M

Z ∇ZJ (Zt+M ,Θt+M ))

Θt+M+1 = TBΘ
(Θt+M − ηt+M

Θ ∇ΘJ (Zt+M ,Θt+M ))

where Tk is an operator returning k of its arguments which

have the largest magnitudes while setting the rest to 0. This

allows Bonsai to move to another feasible solution with

even lower objective function value by improving the mem-

ory budget distribution across nodes.

Algorithm - Convergence: In general, projected gradient

descent based algorithms might oscillate for non-convex

problems. However, (Blumensath & Davies, 2008) prove

that for smooth objective functions, gradient descent algo-

rithms with IHT do indeed converge to a saddle point solu-

tion. Furthermore, if the objective function satisfies the Re-

stricted Strong Convexity (RSC) property in a local region,

then projected gradient descent with IHT will converge to

the local minimum in that region (Jain et al., 2014). In prac-

tice, it was observed that the algorithm generally converged

to a good solution soon and therefore was terminated after

T = 300 iterations were reached.

Algorithm - Initialization & re-training: Z0 and Θ0

could be set randomly. Prediction accuracy gains of up to

1.5% could be observed if Bonsai was initialized by taking

T steps of gradient descent without any budget constraints

followed by a hard thresholding step. Further gains of 1.5%

could be observed by taking another T steps of gradient de-

scent with fixed support after termination. This helped in

fine-tuning Bonsai’s parameters once the memory budget

allocation had been finalized across the tree nodes.

More details about the optimization can be found in the

supplementary material by clicking here.

5. Experiments

Datasets: Experiments were carried out on a number of

publically available binary and multi-class datasets includ-

ing Chars4K (Campos et al., 2009), CIFAR10 (Krizhevsky,

2009), MNIST (LeCun et al., 1998), WARD (Yang et al.,

2009), USPS (Hull, 1994), Eye (Kasprowski & Ober,

2004), RTWhale (RTW), and CUReT (Varma & Zisser-

man, 2005). Binary versions of these datasets were down-

loaded from (Jose et al., 2013). Bing’s L3 Ranking is a pro-

prietary dataset where ground truth annotations specifying

the relevance of query-document pairs have been provided

on a scale of 0-4. Table 1 lists these datasets’ statistics.

Baseline algorithms: Bonsai was compared to state-

of-the-art algorithms for resource-efficient ML spanning

tree, kNN, SVM and single hidden layer neural network

algorithms including Decision Jungles (Shotton et al.,

2013; Pohlen), Feature Budgeted Random Forests (Bud-

getRF) (Nan et al., 2015), Gradient Boosted Decision Tree

Ensemble Pruning (Tree Pruning) (Dekel et al., 2016),

Pruned Random Forests (BudgetPrune) (Nan et al., 2016),

Local Deep Kernel Learning (LDKL) (Jose et al., 2013),

Neural Network Pruning (NeuralNet Pruning) (Han et al.,

2016) and Stochastic Neighbor Compression (SNC) (Kus-

ner et al., 2014b). The differences between some of these

algorithms and Bonsai is briefly discussed in Section 2.

Publically available implementations of all algorithms were

used taking care to ensure that published results could be

reproduced thereby verifying the code and hyper-parameter

settings. Note that Bonsai is not compared to deep convo-

lutional neural networks as they have not yet been demon-

strated to fit on such tiny IoT devices. In particular, con-

volutions are computationally expensive, drain batteries

and produce intermediate results which do not fit in 2 KB

RAM. Implementing them on tiny microcontrollers is still

Table 1: Dataset statistics - the number after the dataset

name represents the number of classes so as to distinguish

between the binary and multi-class versions of the dataset.

Dataset # Train # Test # Features

L3 Ranking 704,841 123,268 50

Chars4K-2 4,397 1,886 400

CIFAR10-2 50,000 10,000 400

WARD-2 4,503 1,931 1,000

USPS-2 7,291 2,007 256

MNIST-2 60,000 10,000 784

Eye-2 456 196 8,192

RTWhale-2 5,265 5,264 2,000

CUReT-61 4,204 1,403 610

MNIST-10 60,000 10,000 784

Chars4K-62 4,397 1,886 400
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Figure 1: Multi-class & Ranking Datasets - Bonsai dominates over the state-of-the-art resource-efficient ML algorithms

by as much as 30.7% on Chars4K-62 and 28.9% on CUReT-61. BonsaiOpt’s gains are even higher. Some methods do not

appear on the graphs as their accuracies were not high enough to fall within the y-axis limits. Bonsai also dominates Bing’s

FastRank L3 ranker. Figure best viewed magnified.
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Figure 2: Binary Datasets - Bonsai dominates over state-of-the-art resource-efficient ML algorithms with gains of 8.6% on

RTWhale-2 and 8.2% on Eye-2 in the 0-2 KB range. BonsaiOpt’s gains are even higher. Figure best viewed magnified.

an open research problem. Bonsai’s performance was how-

ever compared to that of uncompressed single hidden layer

neural networks without convolutions, Gradient Boosted

Decision Trees (GBDT), kNN classifiers and RBF-SVMs.

Hyper-parameters: The publically provided training set

for each dataset was subdivided into 80% for training and

20% for validation. The hyper-parameters of all algo-

rithms were tuned on the validation set. Once the hyper-

parameters had been fixed, the algorithms were trained on

the full training set and results were reported on the publi-

cally available test set.

Evaluation: IoT applications would like to maximize their

prediction accuracies using the best model that might fit

within the available flash memory while minimizing their

prediction times and energies. Accuracies of all algorithms

are therefore presented for a range of model sizes. Some

of the algorithms were implemented on the Uno and their

prediction times and energies were compared to Bonsai’s.

Implementation: Results are presented throughout for an

unoptimized implementation of Bonsai for a fair compar-

ison with the other methods. For instance, 4 bytes were

used to store floating point numbers for all algorithms, all

floating point operations were simulated in software, etc.

However, results are also presented for an optimized im-

plementation of Bonsai, called BonsaiOpt, where numbers

were stored in a 1 byte fixed point format, tanh was ap-

proximated, all floating point operations were avoided, etc.

Comparison to uncompressed methods: The results in

Tables 2 and 3 demonstrate that Bonsai’s prediction ac-

curacies could compete with those of uncompressed kNN,

GBDT, RBF-SVM and neural network classifiers with sig-

nificantly larger model sizes. On RTWhale-2, Chars4K-62
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Table 2: Binary Datasets - Bonsai can sometimes outperform uncompressed methods with significantly larger models.

Dataset
Bonsai (%)

GBDT (%) kNN (%) RBF-SVM (%) NeuralNet (%)
2KB 16KB

RTWhale-2 61.74 61.74 56.95 (1172 KB) 51.75 ( 41143 KB) 53.82 (39905 KB) 52.26 (3910 KB)

Chars4K-2 74.28 76.67 72.38 ( 625 KB) 67.28 ( 6870 KB) 75.60 ( 6062 KB) 72.53 ( 314 KB)

Eye-2 88.26 90.31 83.16 ( 234 KB) 76.02 ( 14592 KB) 93.88 ( 7937 KB) 90.31 (6402 KB)

WARD-2 95.85 96.89 97.77 (1172 KB) 94.98 ( 17590 KB) 96.42 ( 7222 KB) 92.75 (3914 KB)

CIFAR10-2 73.02 76.64 77.19 (1562 KB) 73.70 ( 78125 KB) 81.68 (63934 KB) 75.90 ( 314 KB)

USPS-2 94.42 95.72 95.91 ( 234 KB) 96.70 ( 7291 KB) 96.86 ( 1660 KB) 95.86 ( 504 KB)

MNIST-2 94.38 96.47 98.36 (1172 KB) 96.90 (183750 KB) 98.08 (35159 KB) 98.33 (3070 KB)

Table 3: Multi-class Datasets - Bonsai can sometimes outperform uncompressed methods with significantly larger models.

Dataset Bonsai (%) GBDT (%) kNN (%) RBF-SVM (%) NeuralNet (%)

Chars4K-62 58.59 (101 KB) 43.34 (9687 KB) 39.32 ( 6833 KB) 48.04 ( 7738 KB) 55.35 (1266 KB)

CUReT-61 95.23 (115 KB) 90.81 (2383 KB) 89.81 ( 10037 KB) 97.43 ( 8941 KB) 95.51 (1310 KB)

MNIST-10 97.01 ( 84 KB) 97.90 (5859 KB) 94.34 (183984 KB) 97.30 (39084 KB) 98.44 (4652 KB)

Table 4: The effect of Bonsai’s components - Performing

sparse PCA independently before training is not as effec-

tive as Bonsai’s joint optimization of the projection matrix.

Method Accuracy

Model

(%)

size

(KB)

Bonsai with random initialization
74.12 16

and without re-training

Bonsai without re-training 75.19 16

Bonsai 76.67 16

Bonsai with sparse PCA 58.32 16

Tree Pruning with sparse PCA 63.57 16

Decision Jungle with sparse PCA 61.67 16

RBF-SVM with sparse PCA 71.10 136

and Chars4K-2, Bonsai’s accuracies were higher than all

other methods by 4.8%, 3.2% and 1.1% while its model

size was lower by 977x, 13x and 157x respectively. Bon-

sai’s accuracies were lower by 1.0% - 5.0% on the other

datasets with model size gains varying from 55x to 3996x.

Note that, while BonsaiOpt’s accuracies were similar to

Bonsai’s, its model sizes would be even lower.

Comparison to resource-efficient ML algorithms: The

results in Figures 2 and 3 demonstrate that Bonsai’s predic-

tion accuracies dominate those of state-of-the-art resource-

efficient ML algorithms for all model sizes. In fact, Bonsai

could outperform all other algorithms, including tree algo-

rithms by as much as 30.7% on Char4K-62 and 28.9% on

CUReT-61 for a given model size. For binary datasets, the

largest gains were observed in the 0-2 KB regime includ-

ing 8.6% on RTWhale-2 and 8.2% on Eye-2. Of course,

BonsaiOpt’s gains were even higher on both binary and

multi-class datasets. These results validate Bonsai’s model,

showing it to be accurate and compact and demonstrate that

Bonsai’s optimization algorithm yields good solutions.

L3 ranking: Bonsai was shown to generalise to other

resource-constrained scenarios beyond IoT by ranking doc-

uments in response to queries on Bing. Bonsai was trained

by replacing the classification gradients with rank-sensitive

gradients approximating nDCG (Burges, 2010). As can be

seen in Figure 1, using a 300 byte model, Bonsai could

outperform Bing’s FastRank L3 ranker by 8.3%. In fact,

Bonsai could achieve almost the same ranking accuracy as

FastRank but with a 660x smaller model.

Prediction on the Arduino Uno: Table 5 presents the pre-

diction costs per test point for the highest accuracy models

with size less than 2 KB for a few methods that were imple-

mented on the Arduino Uno. The BonsaiOpt model was a

more efficient implementation of the chosen Bonsai model.

The results indicate that BonsaiOpt could be significantly

more accurate, faster and energy-efficient as compared to

other algorithms including an unoptimized linear classifier.

Transmitting the test feature vector to the cloud, whenever

possible, and running uncompressed GBDT might some-

times yield higher accuracies but would also consume 47x-

497x more energy which might not be feasible.

Bonsai’s components: The contribution of Bonsai’s com-

ponents on the Chars4K-2 dataset is presented in Ta-

ble 4. Modest reductions in accuracy were observed with-

out proper initialization or re-training. Learning a pro-

jection matrix independently via sparse PCA before train-

ing reduced accuracy significantly as compared to Bonsai’s

joint training of the projection matrix and tree parameters.

Other tree and uncompressed methods also did not benefit

much by training in the sparse PCA space.
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Table 5: Prediction costs per test point on the Arduino Uno with the highest accuracy model of size less than 2 KB – The

BonsaiOpt model was a more efficient implementation of the chosen Bonsai model. BonsaiOpt was significantly more

accurate, faster and energy-efficient than all other methods. Transmitting the test feature vector to the cloud, whenever

possible, and running uncompressed GBDT might sometimes yield higher accuracies but would also consume 47x-497x

more energy which might not be feasible in many IoT applications.

Dataset BonsaiOpt Bonsai Linear LDKL
NeuralNet

Cloud GBDT
Pruning

Eye-2

Model Size (KB) 0.30 1.20 2.00 1.88 1.96 234.00

Accuracy (%) 88.78 88.26 80.10 66.33 80.45 83.16

Prediction Time (ms) 10.75 12.26 15.13 15.80 15.48 2186.59

Prediction Energy (mJ) 2.64 3.01 3.72 3.89 3.81 1311.95

RTWhale-2

Model Size (KB) 0.33 1.32 0.86 1.00 1.17 1172.00

Accuracy (%) 60.94 61.74 50.76 50.24 52.44 56.95

Prediction Time (ms) 5.24 7.11 4.68 6.16 8.86 521.27

Prediction Energy (mJ) 1.29 1.75 1.15 1.52 2.18 312.76

Chars4K-2

Model Size (KB) 0.50 2.00 1.56 1.95 1.96 625.00

Accuracy (%) 74.71 74.28 51.06 67.29 63.90 72.38

Prediction Time (ms) 4.21 8.55 7.39 8.61 14.09 160.40

Prediction Energy (mJ) 1.03 2.10 1.81 2.13 3.48 63.52

WARD-2

Model Size (KB) 0.47 1.86 1.99 1.99 1.91 1172.00

Accuracy (%) 95.70 95.86 87.57 89.64 91.76 97.77

Prediction Time (ms) 4.85 8.13 7.48 9.99 14.22 293.13

Prediction Energy (mJ) 1.18 1.99 1.84 2.47 3.49 116.08

CIFAR10-2

Model Size (KB) 0.50 1.98 1.56 1.88 1.96 1562.00

Accuracy (%) 73.05 73.02 69.11 67.54 67.01 77.19

Prediction Time (ms) 4.55 8.16 7.73 8.12 13.87 160.40

Prediction Energy (mJ) 1.11 2.01 1.90 2.00 3.43 63.52

USPS-2

Model Size (KB) 0.50 2.00 1.02 1.87 2.00 234.00

Accuracy (%) 94.42 94.42 83.11 91.96 88.68 95.91

Prediction Time (ms) 2.93 5.57 4.15 5.59 9.51 83.45

Prediction Energy (mJ) 0.71 1.37 1.02 1.37 2.33 33.05

MNIST-2

Model Size (KB) 0.49 1.96 1.93 1.87 1.90 1172.00

Accuracy (%) 94.28 94.38 86.16 87.01 88.65 98.36

Prediction Time (ms) 5.17 8.90 6.72 8.72 14.67 264.96

Prediction Energy (mJ) 1.27 2.18 1.65 2.16 3.59 104.92

6. Conclusions

This paper proposed an alternative IoT paradigm, centric

to the device rather than the cloud, where ML models run

on tiny IoT devices without necessarily connecting to the

cloud thereby engendering local decision making capabili-

ties. The Bonsai tree learner was developed towards this

end and demonstrated to be fast, accurate, compact and

energy-efficient at prediction time. Bonsai was deployed

on the Arduino Uno board as it could fit in a few KB of

flash, required only 70 bytes of writable memory for bi-

nary classification and 500 bytes for a 62 class problem,

handled streaming features and made predictions in mil-

liseconds taking only milliJoules of energy. Bonsai’s pre-

diction accuracies could be as much as 30% higher as com-

pared to state-of-the-art resource-efficient ML algorithms

for a fixed model size and could even approach and outper-

form those of uncompressed models taking many MB of

RAM. Bonsai achieved these gains by developing a novel

model based on a single, shallow, sparse tree learnt in a

low-dimensional space. Predictions made by both inter-

nal and leaf nodes and the sharing of parameters along

paths allowed Bonsai to learn complex non-linear decision

boundaries using a compact representation. Bonsai’s code

is available from (BonsaiCode) and is part of Microsoft’s

ELL machine learning compiler for IoT devices.
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