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SUMMARY

Human health is dependent upon environmental
exposures, yet the diversity and variation in expo-
sures are poorly understood. We developed a sensi-
tive method to monitor personal airborne biological
and chemical exposures and followed the personal
exposomes of 15 individuals for up to 890 days and
over 66 distinct geographical locations. We found
that individuals are potentially exposed to thousands
of pan-domain species and chemical compounds,
including insecticides and carcinogens. Personal
biological and chemical exposomes are highly
dynamic and vary spatiotemporally, even for individ-
uals located in the same general geographical
region. Integrated analysis of biological and chemical
exposomes revealed strong location-dependent rela-
tionships. Finally, construction of an exposome inter-
action network demonstrated the presence of distinct
yet interconnected human- and environment-centric
clouds, comprised of interacting ecosystems such
as human, flora, pets, and arthropods. Overall, we
demonstrate that human exposomes are diverse,
dynamic, spatiotemporally-driven interaction net-
works with the potential to impact human health.

INTRODUCTION

Human health is greatly impacted by genetics, environmental

exposure, and lifestyle. Recently, studies have been performed

to understand how genetics and genomic variation can influence

our health as well as efforts to understand the molecular mech-

anisms underlying the effects of lifestyle components, such as

exercise and food (Laker et al., 2017). These have ushered in

an era of personalized medicine (Chen et al., 2012). However,

our understanding of human environmental exposures, espe-

cially at the personal level, is quite limited. Information about

environmental exposures, both biotics (e.g., fungi, pollen, and

microbes) and abiotics (e.g., chemicals), can be important for

understanding and monitoring numerous diseases such as
respiratory diseases, allergy and asthma, chronic inflammatory

diseases (Fujimura et al., 2014), and even cancer (Pfeifer,

2010; Tomasetti et al., 2017). Thus, studying environmental

exposures will be valuable for understanding human health as

well as how humans interact with their environment.

Historically, airborne environmental exposures have been

studied by collecting chemical/biological particulates and

toxins using immobile sampling stations across distinct

geographical locations. These studies have primarily focused

on broad detection of air pollutants or simple chemicals and

have revealed useful insights into a variety of human environ-

mental exposures and health (Cao et al., 2014; McCreanor

et al., 2007). Studies of personal exposures are much more

rare; contact-based chemical exposures using silicone wrist-

bands have been used to detect personal chemical exposures

(O’Connell et al., 2014). Despite these efforts, our understand-

ing of the biotic and abiotic environmental exposures in humans

is limited, especially at the personal level. We do not know how

vast and dynamic the human biotic and abiotic exposures are

and the relative contributions from various spatiotemporal or

lifestyle components on the exposure dynamics, nor do we

know the relationship among exposure organisms and between

the biological and chemical exposures.

In this study, we aimed to establish a comprehensive under-

standing of human airborne environmental biotic and abiotic

exposures, which we collectively refer to as the environmental

exposome, or ‘‘exposome.’’ Using a novel approach to system-

atically interrogate the human airborne exposome for biotics

and abiotics, we tracked 15 different individuals spatiotempo-

rally, with up to 890 days to provide an extensive personal

profiling of the environmental exposome. We find that humans

are exposed to thousands of species with great intraspecies

diversity and demonstrate that the human exposome is highly

dynamic and influenced by spatial/lifestyle and seasonal

variables. We describe associations between organisms and

chemicals and propose the concept of an exposome network

based on the extensive interactions among the organisms,

which can be partitioned into a stable human-centric cloud

and a more dynamic environment-centric cloud. Both the

data and approach are expected to be valuable for many

scientific fields, including public health, microbiome, environ-

mental science, evolution, and ecology.
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Figure 1. Overview of the Environmental Exposome Study

(A) A wearable device wasmodified to collect biotic (biological) and abiotic (chemical) compounds simultaneously from environmental airborne exposures, which

were analyzed by NGS and LC-MS technologies, respectively. The schematic depicts the size of the employed filter in our study (red dot), relative to a con-

ventional filter (gray).

(B) The yearly trend of four variables measured by the device. Colored arrows denote the 3 month calendar seasons.

(C) The sampling scheme for this study. P1 (green), P2 (dark blue), and P3 (red) were the most tracked. ‘‘Others’’ included samples from several individuals.

(D) The sampling locations of P1, P2, and P3.

(E) Representative SEM images of the sample filters. Top left, control filter; the rest are various particles identified based onmorphology. Scale bars are indicated.

(F) Total diversity of biotics from all samples. The pie chart indicates the total relative abundance of respective kingdoms/subkingdoms. The pan-domain

phylogenetic tree is constructed from all identified species in the dataset. The total CPMs of individual species are plotted in the outer ring.

(G) DNA and RNA viruses, including dsDNA, ssDNA, ssRNA, dsRNA, and retro-transcribing viruses, were identified. Colored outer arc and the branches denote

their respective natural hosts.
RESULTS

A Method to Capture and Decode the Personal
Environmental Exposome
We developed a highly sensitive method to monitor the personal

exposome with a miniaturized device. A wearable device was

modified to actively sample air to capture particulates on a

25 mm sterile filter using optimized filters and sampling methods
278 Cell 175, 277–291, September 20, 2018
for the non-biased collection of particulates (Figures S1A–S1E

and STAR Methods). The device also contains a custom

3D-printed zeolite-adsorbent cartridge at the end of the airflow

that captures large numbers of both hydrophobic and hydro-

philic chemical compounds (Figure S1A). The device is worn

on the upper arm or located within a few feet of the subject

and samples air at a steady rate of 0.5 L/min (Figure 1A). Biolog-

ical agents were detected through optimized isolation and linear



amplification protocols followed by deep sequencing (STAR

Methods). Chemical compounds were extracted by methanol

and identified by liquid chromatography-coupled mass spec-

trometry (LC-MS); this method identifies a large variety of

hydrophobic and hydrophilic compounds with some limitations

(Figure S1A; STAR Methods). Our method is highly sensitive as

we are able to detect less than 10 bacterial cells and 200 viral

particles, depending on the species (Figures S1B and S1C).

The device also continuously measures temperature, humidity,

and particle concentration (Figure 1B).

We deployed the device on 15 individuals over 66 distinct

locations (Figures 1C and 1D; STAR Methods). Three individ-

uals (P1, P2, and P3) were tracked extensively (Figure 1C): P1

for more than 2 years (890 days) and 52 locations (201 data

points, Figures 1D and S1F), P2 for 1 year, and P3 for 3 months

intermittently (Figure 1C). For P1, sampling was performed

such that two filters were typically collected each week (one

for weekdays and one for weekends). P1 traveled frequently,

and each location had a dedicated sampling. Samples from

P2 and P3 were collected over longer intervals (1–2 weeks)

and sometimes multiple locations. Concurrent chemical-

exposure sampling was performed on P1 for a period of

2 months. To visually verify particulates captured by our

device, we performed scanning electron microscopy (SEM)

on representative filters, which revealed diverse biological

and inorganic materials; some of these were tentatively

assigned based on morphology (Figures 1E and S1D) and

were consistent with the sequencing results described below.

For each sample, we obtained a median of 62.2M (DNA) and

45.8M (RNA) unique 2 3 151 bp paired-end reads, resulting in

a dataset of 42.9B and 30.4B total reads for DNA and RNA,

respectively (Figures S1G–S1J), representing the largest per-

sonal environmental biological exposure sampling to date.

6.55M (7.4B unique bases) and 1.02M (492M unique bases)

contigs were co-assembled from all DNA and RNA reads,

respectively. Incorporation of blank filters in each processing

batch revealed that contamination effects were very small

(Figures S2A–S2I; STAR Methods).

To gain insights into the biological environmental exposures,

we built an extensive reference genome database comprised

of more than 40,000 species covering all domains of life (STAR

Methods). The contigs were queried against the database using

discontinuous BLAST and classified using a custom computa-

tional analysis pipeline (Figure S2J and STAR Methods). 56.2%

of the DNA bases and 64.6% of the RNA bases were classified

at the kingdom/subkingdom level using the lowest common

ancestor (LCA) algorithm to achieve high specificity. We quanti-

fied the relative abundance of individual taxa in counts permillion

(CPM), by aggregating the number of bases mapped to each

contig. We used hyperbolic arcsine (arcsinh)-transformed CPM

(aCPM) values for all computational and statistical analyses

unless otherwise noted. The fraction and diversity of classified

contigs are substantially higher than those in existing pipelines,

which are not adapted to pan-domain detection (Figure S2K).

We confirmed that our methods are reproducible and sensitive

(Figures S2L and S3A–S3E). In aggregate, we identified at least

2,560 species (including 232 viral species with pan-domain

hosts), 1,265 genera, and 44 phyla (Figures 1E–1G and S3F).
Individually, P1, P2, and P3 were exposed to 2,378, 1,357, and

1,009 species, for 24, 12, and 3 months of monitoring, respec-

tively, indicating that humans are exposed to more than a

thousand biological species within a short period of time.

The Human Environmental Exposome Is Highly Dynamic
and Diverse
The analysis of DNA samples revealed highly dynamic expo-

some profiles in all three individuals (Figure 2A). Unsupervised

clustering of exposome profiles revealed that samples can be

grouped into fungi-, plant-, bacteria-, and metazoa-dominant

groups, with some samples abounding in two or even three

kingdoms (Figure 2B). In contrast, the RNA exposome profiles

revealed that bacterial RNA predominates in the majority of the

samples (Figures 2C and 2D). This is likely due to several

reasons: (1) Genomic sizes of eukaryotes can be 1000-fold larger

than prokaryotes, whereas the sizes of their transcriptomes differ

�10-fold, thus eukaryotic DNA is relatively more abundant in the

DNA samples. (2) Some plant and fungi species are probably

captured in the form of spore or pollen, rather than active cells

(as evidenced by the SEM; Figures 1E and S1D). Metazoa

(animals) are also less prevalent in the RNA exposome,

indicating that the metazoan DNA signatures may also come

from inactive parts of animals (hair, skin flakes, and brocho-

somes in Figure 1E). Despite the differences, the DNA and

RNA exposome profiles correlate well at the kingdom and

phylum levels; 15 of the top 20 DNA-detected phyla are also

found in the top 20 phyla for RNA (Figures 2E–2H). Similar

correlating patterns have been reported by studies of human

gut microbiome DNA and RNA profiles (Franzosa et al., 2014).

At the phylum level, the top nine phyla in the DNA exposome,

including two fungi, four bacterial, and three plant/animal phyla,

contribute to the majority of total relative abundance (78.4%)

across all samples (Figures 2E and 2F). Within the Chordata

phylum, we detected contigs for household pets including

dogs (0.48% of total aCPM), cats (0.25%), and guinea pigs

(0.01%), which were known to co-inhabit with several of the

participants (Figures 2E and 2F). Interestingly, several other

phyla from the metazoan domain were also captured, especially

the phylum Rotifera, a group of planktonic and microscopic

freshwater/soil organisms able to sustain an asexual lifestyle

over millions of years (Flot et al., 2013). P1 was exposed to a

very high level of putative rotifers in one sample captured during

a holiday period when the subject participated in outdoor sports

activities and tree decorations (Figures S3G and S3H, last panel).

In addition, different putative human/household-associated ar-

thropods were detected, including several dust, skin, and spider

mites, as well as mosquitoes, flies, honeybees, and even cock-

roaches (Figures S3G and S3H). Interestingly, we also detected

viruses associated with these arthropods, such as those related

to the recent honeybee crisis (Figures S3G and S3H), indicating

that our method can capture interacting species in the natural

environment. Furthermore, our untargeted approach also

captured another ubiquitous group of fungi-related eukaryotic

organisms, Oomycetes, which are notorious plant pathogens

(Figures S3G and S3H).

In the RNA exposome, the top ten phyla represent 50.4% of

the RNA exposome across all samples (Figure 2F). It is notable
Cell 175, 277–291, September 20, 2018 279
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Figure 2. The Highly Dynamic and Diverse Human Environmental Exposome

(A and B) Timeline (A) and hierarchical clustered exposome profiles (B) of samples from P1, P2, and P3 (top row) and all samples (bottom row), respectively.

Proportions are calculated at the kingdom/subkingdom level. Ticks on arrows indicate months.

(C and D) Same as (A) and (B) except for RNA exposome profiles.

(E and F) Heatmap of DNA (E) and RNA (F) chronological exposome profiles at the phylum level. Colored bars denote the domains of phylum.

(G and H) Correlation plots between DNA and RNA exposome profiles at the kingdom/subkingdom (G) and the phylum (H) level. Correlations with Adj. p < 0.05

are shown.

(I) Species richness analyses in DNA and RNA exposome profiles.

(J) Functional transcriptomics analyses of the RNA exposome data. Domain-relevant GO terms are denoted by the colored bars next to the heatmap.

280 Cell 175, 277–291, September 20, 2018



that some species in the top four bacterial phyla, Firmicutes,

Proteobacteria, Actinobacteria, and Bacteroidetes, are known

to associate with humans. Species richness analysis indicated

that up to 800 species can be detected during each sampling

period, and more species were identified in RNA samples

compared to their DNA counterparts (Figure 2I). This is presum-

ably because the RNA exposome detects more bacteria, which

have the most species entries in the database. We observed

extensive correlation patterns at the phylum and the genus level,

indicating potential taxa interactions (Figures S4A and S4B).

We found sequences related to opportunistic and putative

pathogens in our DNA and RNA datasets; some share >98%

identity to the reference with >90% coverage of the contig

(R200 bp; Figures S4C and S4D). For bacteria and fungi, 15%

of samples contained sequences highly homologous to opportu-

nistic pathogens such as Acinetobacter baumannii (Figures S4C

and S4D), and many mold species such as Penicillum

capsulatum (Figures S4E and S4F). It is likely that these species

are common in the environmental exposome but only pose

threats to immunocompromised individuals. On rare occasions,

we detected a few putative pathogenic strains, although no

clinical diseases were reported after such exposures (Fig-

ure S4C, red boxes). For viruses, even though our non-targeted

approach can detect a variety of respiratory and blood-borne

RNA viruses (as few as 200 copies; Figures S1C and S4G), we

did not detect notable respiratory viruses in our samples. It is

likely that human RNA viral pathogens are rare in the air

environment relative to the other species. In fact, >150 RNA viral

species that we found were predominantly associated with

plants (Figure 1G).

We further performed functional analysis of the RNA expo-

some by querying 1.02M RNA contigs against the NCBI non-

redundant protein database, and 66% were identified at the

kingdom/subkingdom level (Figure S5A). Based on the respec-

tive top 30 enriched GO annotations (Figures 2J and S5B–S5D;

STAR Methods), we found that each taxonomic group displayed

both specific and general transcriptional activities. For instance,

viral contig sequences were related to capsid, genome integra-

tion, and entry into host cell (Figures 2J and S5B–S5D). To

gain more insight into the RNA sequences, we scanned for

allergy-related proteins in our transcriptomic data (STAR

Methods) and identified 31 potential non-food-allergen proteins

that mostly originated from fungi and plants (Figures S5E–S5G).

Subsequently, we tracked the relative levels of allergens across

different seasons, revealing seasonal patterns of several fungal

and plant families (Figures S5H–S5K).

In summary, our environmental exposome is highly dynamic

and diverse, comprised of thousands of species spanning all

domains of life, pre-dominated by a few phyla.

The Sources of Variation in the Human Environmental
Exposome
We investigated the source of variation in the human environ-

mental exposome and focused on the DNA exposome profiles

because DNA is more stable than RNA. Conceptually, the

exposome can be influenced by at least three major classes

of variables: (1) Environmental (Env) variables such as season,

temperature, humidity, wind speed, and particle density. These
variables are subject to change over time. (2) Spatial/lifestyle-

related (Spa) variables such as locations, location-associated

time-insensitive variables such as population density and

elevation, and behavior variables. (3) Technical artifacts (Tec),

such as batch effects.

To accurately represent the spatial information, we con-

structed Moran’s Eigenvector Map (MEM) variables to extract

broad- and fine-scale spatial structures from the geographic

coordinates of each sampling location (Figure S6A; STAR

Methods). We divided the 64 collected meta-variables (including

the selected MEM variables; complete list in Figure S6B) into the

Env, Spa, and Tec groups and carried out forward-selection

within each group to select best representative variables.

We used partial distance-based redundancy analysis (dbRDA)

to decompose the variation in the entire dataset at the genus

level (Figure S6C). Notably, 5 out of 6 MEM variables were

selected, indicating that the spatial information is highly relevant

(p < 0.05, Figure S6D). We found that 12.26% of the variation

(squared Bray-Curtis distance) in the total DNA exposome can

be explained by location/lifestyle-related variables, 9.72% by

environmental variables, and only 2.6% of the variation by

technical variables that we recorded (Figures 3A, S6D, and

S6E). In total, 21% of variation can be explained by forward-

selected variables (31% can be explained by all variables;

Figure S6E, bottom). These numbers are comparable to other

ecological studies (Møller and Jennions, 2002).

We next dissected the influence of the environmental, spatial/

lifestyle, and technical variables on the individual genus. We

performed multivariate regression-based variation partitioning

analysis on the 241 genera detected in at least 100 samples.

After filtering genera whose regression models were not statisti-

cally significant after adjustments (Adj. pR 0.05), we performed

hierarchical partition analysis on the remaining 199 genera to

evaluate the relative importance of each group of variables

(STAR Methods). We estimated 90% bootstrap confidence

intervals and the permutation-based p values for the contribution

of each group of variables (N = 9999 for both methods; see

Table S1 and STAR Methods). Notably, 99% of the regression

models explained less than 40% of the variation (median is

17.4%), consistent with our dbRDA analysis. The majority of

these genera are fungi (143/199), followed by bacteria (41/199),

plant (12/199), and animals (3/199).

Overall, genera across different domains of life are mainly

influenced by various combinations of spatial/lifestyle and

environmental variables (Figure 3B).Whereas the spatial/lifestyle

variables can account for up to 80% of total explained variation

in some genera, environmental variables are the dominating

force in the others (Figure 3B). We define that a genus is

subjected to dominating influences from a specific source, if

this source is consistently (R90%) estimated to have more

influence than the other in the bootstrap analysis (Table S1 and

STAR Methods). Interestingly, all 20 fungi genera (p < 0.01)

that are subjected to dominating environmental influences

(blue) are from the phylum Basidiomycota (mushrooms;

diamonds in Figure 3B, first panel), whereas 19 out of 21 genera

(p < 0.01) that are subjected to dominating spatial/lifestyle

influences (dark yellow) belong to the phylum Ascomycota

(molds, plant pathogens, and yeasts; circles in Figure 3B first
Cell 175, 277–291, September 20, 2018 281



Figure 3. Decomposing the Variation in the Human Environmental Exposome

(A) Partial dbRDA variation-partitioning analysis.

(B) Ternary plots of variation-partitioning analysis of highly prevalent genera (detected in R100 samples) in different domains of life. Environmental and

spatial/lifestyle variables account for more than 80% of the explained variation in at least 75% genera. Each dot represents a genus, and the size of the dot

corresponds to the total explained variation. Depending on the genera, either environmental (blue) or spatial/lifestyle (dark yellow) variables may play dominant

roles, or neither (gray). Contours denote 0.1 to 0.9 confidence intervals.

(C) Samples from consecutive time points of P1 in the same location are more similar than those from different locations.

(D) Representative differentially abundant genera between the ‘‘Campus’’ (N = 98) and non-‘‘Campus’’ locations (N = 103). Boxes are color-coded as in Figure 2A

to denote the kingdom/subkingdom of the respective genus.

(E) The location of the four individuals (P1, P3, P5, and P6) in the 3 week parallel study. The size of dot corresponds to the self-reported activity level of each

individual. Arrows indicate commute.

(F) PCA analysis of P1, P3, P5 and P6. The bigger colored dots are geometric centers of respective groups.

(G) Bray-Curtis distance profiles between samples from the same individual are more similar.

(H) Top-contributing genera with respect to the PCA analysis in (F). Color indicates relative contribution of each genus. All ellipses are drawn with axes equal to

the standard deviation of the data. The Adj. p values are either directly displayed or denoted using the following notations * < 0.05, ** < 0.01, *** < 0.001,

and **** < 0.0001.
panel). This suggests that exposures to the twomajor fungi phyla

are influenced by distinct groups of variables (Figure 3B). We

observed similar diverging patterns for bacterial and plant

genera (trees are subjected to environmental influence, whereas

grasses are subjected to spatial/lifestyle influence); animal
282 Cell 175, 277–291, September 20, 2018
genera (pets) are mostly subjected to spatial/lifestyle influence

(Figure 3B and STAR Methods).

In summary, the variation analyses at the sample and thegenus

level revealed that our exposome is influencedheavily byenviron-

mental and spatial/lifestyle variables. Individual genera across



domains are subjected to a combination of quantifiable environ-

mental and spatial/lifestyle influences, which are potentially

relevant to the ecological niches of respective organisms and

their interactions with humans.

Spatial/Lifestyle Influence on the Human Environmental
Exposome
We further investigated the spatial/lifestyle influences on the

DNA exposome. Using the high-resolution P1 DNA data at the

genus level, we first calculated the Bray-Curtis distance between

consecutive sampling points, which should largely remove the

influence of time. As expected, smaller differences (shorter

Bray-Curtis distances) were observed in consecutive samples

collected from the same location when compared to the consec-

utive samples collected from different locations (p < 1e-5)

(Figure 3C). Expanding this analysis to all pairwise comparisons

over time revealed similar patterns: pairs obtained from the same

geographical location (N = 98) have higher similarity compared to

pairs collected at different sites (N = 103; p < 1e-10; Figure S7A).

To control for seasons, we compared P1 ‘‘Campus’’ samples

versus those from other geographical locations over a 2 month

time frame; similar results were observed (Figure S7B and

STAR Methods). Finally, PCA analysis on the DNA exposome

at the genus level revealed that samples from different individ-

uals collected from Asia tend to cluster together (dark blue ellip-

ses; Figures S7C–S7F).

We next examined the genera that have differential abundance

patterns between different locations. We used the P1 ‘‘Campus’’

(N = 98) and non-‘‘Campus’’ (N = 103) sample groups, which are

large (to increase the statistical power) and evenly distributed

across seasons (Figure S7G, inset). After multi-comparison

adjustments (Benjamini & Hochberg, Adj. p < 0.05), 100 of 431

tested genera detected in more than 50 samples showed

statistically significant differential abundances in two groups

(Adj. p < 0.05; Figure S7G); 73 are fungi, and the rest are from

animal (2/100), plants (7/100), and bacteria (18/100). Interest-

ingly, among the 73 fungi genera, only 16 of them are from the

phylum Basidiomycota (mushrooms, p < 1e-3); the rest (57/73)

belong to the phylum Ascomycota (molds, plant pathogens,

and yeasts). This is consistent with our genus-based variation

partitioning analysis using all samples, where we found that

the Ascomycota is subjected to dominating spatial/lifestyle

influences. Interestingly, whereas almost all (79/82) fungi, plant,

and animal genera showed higher abundance in the ‘‘Campus’’

location (Figures 3D and S7G), five bacteria genera showed

exactly the opposite trend: Streptococcus, Staphylococcus,

Corynebacterium, Rothia, and Enhydrobacter (Figures 3D

and S7G) are all human-related and preferentially detected in

the non-‘‘Campus’’ samples.

To further examine the effect of location/lifestyle, we simulta-

neously tracked four participants within the broad San Francisco

Bay Area over 3 weeks, using multiple samplings per individual.

The short time frame limited potential temporal influences. Each

individual had his/her own work-life routines. P6 lived in the San

Francisco metropolitan region, whereas P1, P3, P5 lived in

sub-urban areas. Specifically, P1 had a diverse routine during

this period, including a trip to Washington DC; P3 mostly

commuted back and forth between two locations (�40 km apart)
on opposite sides of the bay for a home-office routine; P5 had a

close commute (<3 km) between home and office; P6 only used

the device indoors (Figures 1D and 3E). Strikingly, the location

and travel pattern had a strong impact on their exposome pro-

files even in close geographical areas. Samples from P5 and

P6, who had geographically constrained home-office routines,

were each very tightly clustered. Samples from P3, who had a

long commute, were more scattered (Figures 3F and S7H). P1

had diverse activities and locations during this period and had

the most diverging exposome in the group (Figures 3F and

S7H). Overall, with the exception of P1, the clustering patterns

of personal exposome profiles were unique and well separated

from those of other individuals (samples were extracted in

the same batch; Figure S7H). Comparing the pairwise Bray-

Curtis distance profiles revealed that samples from the same

individual are significantly more similar than the samples

from different individuals (p = 0.01, Figure 3G); we validated

the result via a graph-based permutation test (McMurdie and

Holmes, 2013) (p = 0.0243; Figure S7I). The difference is even

more pronounced if we remove P1, who has the most variability

(p < 1e-4; Figure S7I). Thus, based on the case study, each indi-

vidual has a distinct environmental exposome with quantifiable

differences, even when located in relatively close geographical

locations.

We next investigated which genera influenced the clustering

patterns (Figure 3H). P6’s device captured signatures of several

urban-associated genera such as bacteria associated with

sludge (Alkanindiges), whereas P1’s device captured significant

amounts of plant and fungi exposures (Figure 3H, navy and green

boxes, respectively; STAR Methods). Overall, these results

demonstrate an important and quantifiable role of spatial/life-

style-related variables in our exposome dynamics.

Seasonal Influence on the Human Environmental
Exposome
Season plays a prominent role in environmental exposures and

leads to changes in temperature, flora density, and even the

presence/absence of different organisms (Luria et al., 2016;

Strand et al., 2011). Similarly, our dbRDA and genus-based

variation partitioning analyses showed that the environmental

variables, including seasons, exhibited significant influences

on the exposome profiles (Figures 3A, 3B, and S6D). We further

examined the seasonal differences by directly determining

whether samples from the same seasons are more similar (loca-

tions are largely random throughout seasons; Figures S7E–S7G).

To this end, we calculated the pairwise Bray-Curtis distancema-

trix among all samples and constructed a nearest neighbor (NN)

tree (Figure 4A). We assign the edge connecting two nodes

(samples) as pure if the samples are from the same season

(otherwise the edge is ‘‘mixed’’). Through graph-based permuta-

tion test (N = 9999), we found that pure edges in intra-seasonal

samples are enriched (p = 0.0001, Figure 4B), indicating that

intra-seasonal samples are more similar. Moreover, when

restricted to specific geographic locations to limit potential

spatial influences, we can also observe seasonal influences on

P1’s ‘‘Campus’’ samples (Figure S8A).

Wenext identifiedorganismswithseasonalpatternsusing fuzzy

c-means clustering on seasonally binned relative abundancedata
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Figure 4. Seasonal Influence on the Human Environmental Exposome

(A) Nearest Neighbor (NN) tree constructed on the Bray-Curtis distance matrix calculated between all samples (nodes). If from the same season, nodes are

connected by solid edges (pure), otherwise they are connected by dashed lines (mixed). Color denotes season.

(B) Graph-based permutation test (N = 9999) on the NN tree generated from (A), p = 0.0001.

(C) Fuzzy c-means clustering of the genera abundance profiles. The four potential seasonal clusters are shown.

(D) PCA analysis of genera abundance profiles, color-coded by clustering information from (C).

(E) The temporal trends of four representative species based either on seasons (left) or months (right).

(F) Heatmap of features selected by the regularized multi-class logistic regression model. Colored boxes highlight seasonal abundance profiles. Lollipop charts

and the percentage information indicate the relative importance of each genus.

(G) Stable internal performance of the season-predictive model (resampling 10 times).

(H) Macro-average performance metrics from the resampling data (10 times).

(I) ROC curves calculated by one-versus-all approach using predictions from the resampling data (10 times).

(J) Abundance profiles of representative genera selected for seasonal prediction. The Adj. p values are either directly displayed or denoted using the following

notations: * < 0.05, ** < 0.01, *** < 0.001, and **** < 0.0001.
(aCPM) at the genus level. Four clusters, including 355 genera,

were derived from the analysis (STAR Methods). Interestingly,

each cluster displays peak abundance in a specific season (Fig-

ure 4C). The ‘‘Winter’’ cluster is the largest with 121 genera,
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whereas the other three clusters have �80 genera each. When

visualized in PCA analysis, the 355 genera display clear season-

based clustering that also follows a clock-wise seasonal progres-

sion pattern (Figure 4D).



We further explored the seasonal influence on organisms at

different taxonomy levels. Even at the phylum level, many taxa

displayed seasonal patterns (Figure S8B). For example, the

Streptophyta phylum (green leaf plants) was most abundant dur-

ing spring and summer, as expected. The fungal phyla Ascomy-

cota (such as yeast and most molds) increased in summer and

fall, whereas Basidiomycota (including all mushrooms) peaked

in winter and spring. Four diverse bacterial phyla, Firmicutes,

Proteobacteria, Actinobacteria, and Bacteroidetes, showed no

significant seasonal patterns, which is consistent with the RNA

analyses (Figure 2F). For animals, the relative abundance of the

phylum Chordata (animals with spine) is elevated during winter.

At the genus level, 124 genera showed significant seasonal

patterns (Figure S8B, bottom; Adj. p < 0.05). Fungi dominates

(81/124) with the majority (61/81) being Basidiomycota (mush-

rooms), and only 18/81 are Ascomycota (molds and plant path-

ogens; p < 1e-3). This is in stark contrast to the spatial differen-

tially abundant genera analysis where the Ascomycota

dominated (57/73, p < 1e-3) and consistent with the earlier

conclusion that Basidiomycota genera are more influenced by

environmental variables (Figure 3B). Seasonal influence was

also evident at the species level: examples include plants (Pinus

taeda, or pine tree) and fungi (such as mushroom Stereum hirsu-

tum and fruit green mold Penicillium citrinum) (Figures 4E and

S8C), which were most abundant in summer, fall, and summer,

respectively. In contrast, seasonal patterns were not displayed

in skin-related species (Figures 4E and S8C, third row), including

Propionibacterium acnes, which is linked to the onset and prog-

ress of acnes,Staphylococcus epidermidis, and a fungal species

Malassezia restricta. This finding indicates that species closely

associated with humans are potentially less susceptible to

macro-environmental changes.

We built a season-predictive model using the exposome pro-

files using theNorth American region data fromP1. A generalized

logistic regression model using the LASSOmethod was used for

feature selection (Figures 4F and S8D), along with nested-cross

validations (103 10-fold) to select the best parameters. Resam-

pling the P1 data 10 times demonstrated that our model is highly

stable with a median multi-class area under curve (mAUC) of

0.75 (Figures 4G–4I). We validated the model with external

data from P2 and found a similar performance (mAUC = 0.74;

Figures S8E and S8F). We identified genera (e.g., mushrooms,

mold, trees, etc.) that contribute to defining each season, with

corresponding seasonal patterns (Figures 4J and S8G; STAR

Methods). Overall, these results demonstrate that season has

a significant influence on human exposome through many

diverse species, which enabled us to construct a season-predic-

tive model from P1’s data and validate it on P20s data. Many of

the species were known previously to be seasonal, whereas a

number of others appear to be new.

The Diverse and Dynamic Abiotic Exposome
To further study the diversity of the personal exposome as well

as explore relationships between biotic and abiotic exposures,

we also tracked the abiotic chemical exposure of individual P1

for 2 months (during the winter-to-spring transition), collecting

15 samples spanning 8 locations. Because the chemical collec-

tion cartridge was placed downstream of the particulate-collect-
ing membrane filter, the collected chemical compounds largely

represent solute compounds in air. The chemical compounds

were profiled through both positive and negative electrospray

ionization (ESI) modes with high reproducibility (Figures S9A–

S9E). We identified 3,299 chemical features (Figure S9A) that

were enriched R10-fold when compared with negative control

samples (STAR Methods; Figure S9B). Using an in silico

approach to exclude mass features that may be isoforms, iso-

topic mass species, or major adducts (-H2O, +Na, +NH4, +Cl),

we found 2,796 unique formulae of the chemical exposome

(STAR Methods). Using the accurate mass/charge (m/z) ratio,

we tentatively annotated 972 compounds by searching against

the Metlin database (Smith et al., 2005) (Figure S9A). Interest-

ingly, the vast majority (>95%) of these 972 annotations were

only found in a toxicant database but not in a database of natural

metabolites.

We investigated the dynamics of these compounds by fuzzy

c-meansclusteringof thecompoundabundancesprofiles across

the 15 samples (Figure S9F). Overall, three clusters with unique

patterns were observed (of five clusters, using quality filter on

membership R 0.65; Figures 5A, 5B, and S9F). Cluster ‘‘Cyan’’

(N = 84) and cluster ‘‘Red’’ (N = 228) appear location dependent,

whereas the cluster ‘‘Green’’ (N = 456) has a sharp transition from

the first 10 to the last 5 samples, which coincides with a seasonal

transition in March (Figure 5B), raising the possibility that these

chemicals may be partially season driven. Due to the large size

of cluster Green (N = 456), this transition is directly reflected in

the PCA analysis (Figures 5C and S10A). We searched for chem-

icals that anti-correlated with the cluster ‘‘Green,’’ which led to

the discovery of a small group of compounds in the cluster

‘‘Navy’’ (N = 26, Figure 5B; R <�0.85, Adj. p < 0.05). For example,

PM3177 and PM3175, both of which are tentatively plant related,

belong to cluster ‘‘Green’’ and cluster ‘‘Navy,’’ respectively (Fig-

ure 5D). Therefore, the chemical exposome is also potentially

influenced by spatiotemporal variables.

We confirmed eight compounds using reference standards

(Figure S9G). These included the insect repellent diethyltolua-

mide (DEET), the pesticide omethoate, and the carcinogen dieth-

ylene glycol (DEG), which were present in every sample. DEET is

widely used outdoors and not recommended by the Environ-

mental Protection Agency (EPA) for under-cloth or near-mouth

application. We also detected and verified several body-scent-

related features (some of which have other industrial applica-

tions, see below), such as caproic/caprylic/capric acids (Figures

S9G and S10).

We explored the dynamics of some of the annotated chemical

compounds. We found that geosmin (the ‘‘earthy’’ smell com-

pound present when it rains), caprylic acid (commonly found in

different types of disinfectant), and omethoate (a pesticide) were

highly positively correlated with each other (all belong to the

cluster ‘‘Red’’; R > 0.9, Adj. p < 1e-4); these samples were

collected during raining periods, which is suggesting that geo-

smin, caprylic acid, and omethoate can accumulate on the ground

surfaces and are released during periods of rain (Figure 5E).

Interestingly, these compounds were negatively correlated with

phthalate (cluster ‘‘Cyan’’), a synthetic plastic component, which

is deposited by adsorbing on suspended particulate matter

(SPM) in air and would be expected to decrease during rainy
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Figure 5. The Abiotic Exposome and Its Correlation with the Biotic Exposome

(A) Line plots of the abundance profiles of chemicals of the location-related cluster ‘‘Cyan’’ (left, N = 84) and cluster ‘‘Red’’ (right, N = 228) as classified by the fuzzy

c-means clustering. Each line represents a chemical feature.

(B) Line plots of the abundance profiles of chemicals of the putative season-related clusters ‘‘Green’’ (N = 456) and ‘‘Navy’’ (N = 26). Transparency of each line

(chemical feature) in (A) and (B) corresponds to the membership (R0.65).

(C) PCA analysis of the abiotic exposome, colored by season. Note that as time progresses, a major shift occurs for samples collected in the spring season.

(D) Two anti-correlating chemicals potentially corresponding to different seasons.

(E) Phthalate (cluster ‘‘Cyan’’) is anti-correlated with geosmin, caprylic acid, and omethoate.

(F) Several chemicals of interest show unique location-dependent patterns.

(G) A chemical feature is positively correlated with several fungal species.

(H) Pyridine, an organic solvent, is anti-correlated with multiple fungal species in a location-dependent manner. Colored boxes around chemicals denote their

respective clusters.

(I) PCA bi-plot of the sCCA-selected biotic and abiotic features. Samples collected from the ‘‘Campus’’ location are tightly clustered. Colored arrows denote the

relative importance of contributing features. All correlations have Adj. p < 0.05.
periods (Figure 5E). DEET was enriched in the Davis-CA sample,

whereas DEG was enriched in Bethesda-MD and some of the

‘‘Campus’’ locations (Figure 5F). Overall, our results suggest that

we are exposed to thousands of expected and unexpected

chemicals on a frequent basis, often at specific locations.

Integration of Biotic and Abiotic Exposomes
We examined the relationship of the biotic and abiotic exposures

using the DNA exposome data (Figures S10A–S10C). Interest-
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ingly, in PCA analyses, geographically close Davis-CA and

SF-CA samples showed a much higher similarity to ‘‘Campus’’

samples in the biotic exposome (Figure S10B, navy box),

but they were well separated in the chemical exposome

(Figure S10A, navy boxes). This suggests that the biotic and

abiotic exposomes differ spatiotemporally.

Several significant and interesting correlation patterns were

found between the biotic and abiotic profiles (Figures 5G, 5H,

and S10D). For example, caproic acid (body scent and



Figure 6. Extensive Pan-Domain Intraspecies Variation in the Exposome

Population genetics analyses on top-abundant species (N = 108) from bacteria, fungi, and viruses domains. Archaeon Halococcus thailandensis and Oomycetes

Phytophthora lateralis are also included. First row, SNP density, dashed lines denote 100, 10 SNPs/Kbp, respectively; second row, nucleotide diversity ðpÞ; third
row, reference genome size, dashed line denotes 1e6 bps; and fourth row, average coverage of reference genomes. Dashed lines denote 100- and 500-fold

coverage, respectively. All values are in log scale (base 10).
elsewhere) is correlated with a few fungal genera (R > 0.7, Adj.

p < 0.05, Figure 5G); pyridine, a ubiquitous organic solvent

used in many industry products such as paint and dye, is highly

anti-correlated with a number of fungal species (R < �0.7, Adj.

p < 0.05). Notably, we detected significantly less pyridine in

‘‘Campus’’ samples than in those from travel locations such as

Boston, Michigan, and Montana (Figure 5H). Together, the com-

bination of biotic and abiotic measurements potentially consti-

tute spatial signatures that distinguish samples collected from

the ‘‘Campus’’ location from those of the other non-‘‘Campus’’

locations, consistent with our earlier analyses (Figure 3D).

Intrigued by the pyridine-fungal species correlations, we sys-

tematically examined the correlations between the biotic and

abiotic exposomes. First we showed that significant correlations

exist between biotic and abiotic datasets (p = 0.02, 499 repli-

cates; STAR Methods). We then used sparse canonical correla-

tion analysis (sCCA) to extract features that best explain such

correlations (STARMethods). Of 146 biological and 1,565 chem-

ical features, 13 and 47 correlated features were extracted,

respectively. PCA analysis using these 60 features revealed

strong location-based patterns compared to analyzing biological

or chemical datasets alone (Figures 5I and S10A–S10C). Specif-

ically, all ‘‘Campus’’ samples, including a geographically close

sample ‘‘SF-CA’’ (San Francisco), form a tight cluster. Interest-

ingly, the biological and chemical features were anti-correlated,

at least partially due to a large group of fungal genera anti-

correlating with pyridine in a location-dependent manner (Fig-

ure 5H). Indeed, three of the four genera that anti-correlated

with pyridine were also extracted in the sCCA analysis (Figures

5I and S10E). We repeated the sCCA and PCA analyses at the

species level and observed highly similar patterns (Figures

S10C andS10F). In summary, despite the fact that both chemical
and biological exposomes are influenced by spatiotemporal

variables, integrated analysis indicates that the correlations

between the biological and chemical exposomes are mostly

location dependent.

Extensive Intraspecies Variations in the Biotic
Exposome
The deep-sequencing data enabled us to examine intraspecies

variation at single-nucleotide resolution. Using the uniquely

mapped sequencing reads, we investigated the genomic evolu-

tionary landscapes of the top-ranked abundant species for

several kingdom/subkingdoms in the exposome profiles. We

calculated the single-nucleotide polymorphism (SNP) density

and nucleotide diversity (p) across all filtered genomic positions

across species from different domains of life, including bacteria,

fungi, viruses, archaea, and Oomycetes (Figure 6; STAR

Methods) and identified 5.11M SNPs in the selected 108

pan-domain species across all samples.

As expected, we found that SNP density is highly concordant

with nucleotide diversity (R = 0.98, p < 1e-3) (Figures 6 and

S11A), and that, except for viruses, there is a greater genomic

diversity across all domains with higher coverage (p < 1e-5;

Figures 6 and S11B). Genomic diversity began to saturate at

500-fold coverage, consistent with previous findings (Schloiss-

nig et al., 2013). Nucleotide diversity and SNP density are

inversely correlated with the genome size across different

domains of life after taking coverage variation into consideration

(p < 1e-4; Figures S11C–S11E). Specifically, with sufficient

coverage (e.g., >1003, second dashed line in Figure 6 bottom),

fungal species, which usually have larger genomes than bacteria

and viruses, also have lower SNP density and lower nucleotide

diversity (except for a plant pathogen). On the other hand,
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viruses, which have smaller genomes by three orders of magni-

tude, have the highest SNP density and nucleotide diversity (Fig-

ures S11F and S11G). In particular, two viruses, white clover

mosaic viruses and clover yellow mosaic viruses, have more

than 150 SNPs/kbp (Figure S10G). Interestingly, several bacte-

rial plasmids that have virus-like genomic sizes also display

comparable high genomic variation (Figure 6, top 5 bacterial

data points; Figure S11H). Most plasmids showed elevated

SNP density, nucleotide diversity, and coverage compared to

their host species, except for the cyanobacterial species Nostoc

punctiforme (Figure S11H). The observed extensive intraspecies

variations across domains of microorganisms indicate that the

traditional definition of species may not be very relevant in the

exposome setting, since even a few genomic mutations could

lead to a multitude of phenotypic changes in diverse organisms

(Carroll, 2008; Jiang et al., 2014).

The Environmental and Human Exposome Clouds
To explore the interspecies relationships of the organisms in the

human biotic exposome, we queried all identified species

against the integrated species-interaction databases from

published sources (Poelen et al., 2014; Wardeh et al., 2015)

and generated a comprehensive species-interaction network

(600 nodes and 1,418 interactions; STAR Methods). From this

interaction network, we identified two major overlapping clouds:

a plant-centric environmental cloud comprised of plants, fungi,

arthropods, and bacteria and a human-centric cloud comprised

of pets, human-related bacteria, fungi, parasites, and a few

protozoan species (Figure 7A). These two clouds reflect two con-

nected, but relatively independent ecological systems. Intrigu-

ingly, many bacterial and fungal species interact with both

human and plants/animals, creating numerous links between

these two clouds (Figure 7A, dark yellow shade area). The obser-

vation of a human-centric cloud is consistent with recent

discoveries of a human-centric microbial cloud (Lax et al.,

2014; Meadow et al., 2015).

We hypothesized that human-related species would be less

variable than environment-related species in our dataset

because they are less susceptible to the macro-temporal

changes (Figures 2E, 2F, 4E, S8B, and S8C). To test this, we

divided the implicated species (found inR50 samples) in the ex-

posome network into three groups, namely ‘‘Plant/Arthropods’’

(representing the environmental cloud), ‘‘Human/Animals’’

(representing the human cloud), and the ‘‘Intersection’’ group

with species that connect the two groups. We found that the

‘‘Human/Aanimals’’ group has significantly less variance than

both the ‘‘Plant/Arthropods’’ and ‘‘Intersection’’ groups (Fig-

ure 7A, inset). In contrast, we did not observe significant differ-

ences between the ‘‘Plant/Arthropods’’ and the ‘‘Intersection’’

group. We also observed similar results when arthropods and

animals were excluded from our analyses (Figure S11I). We

further demonstrated the reproducibility of the exposome

network configuration using the data of P1, P2, and P3 and found

that each individual has a human-centric and an environmental-

centric cloud (Figures S11J and S11K).

To explore the utility of exposome networks at the individual

level, we applied this technique to three different individuals in

the case study (P1, P3, and P5; Figure 3E–3H), which had the
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same number of samplings. Based on these individuals, we

observed that the complexity of personal exposome clouds are

directly correlated with personal lifestyles and work-home

routines. Specifically, the more active individual who traveled

to multiple locations, P1, had the highest number of nodes/

edges/average interactions (AI) among the three, whereas P3

and P5 had decreasing complexity corresponding to their

lifestyles (Figure 7B), consistent with our earlier PCA analyses

(Figures 3E–3H). Taken together, our exposome depicts a

dynamic network of diverse species derived from at least two

distinct ecosystems.

DISCUSSION

Other metagenomics studies have investigated the microbiome

in soil, extreme environments, and the ocean (Rinke et al., 2013;

Sunagawa et al., 2015; Thompson et al., 2017). Although highly

important for human health, airborne metagenomics are

disproportionally understudied due to technological difficulties

such as (1) low density of microorganisms in the air, (2) lack of

an efficient method of retrieving information from such microor-

ganisms, and (3) bioinformatics challenges (Behzad et al., 2015).

We have addressed these difficulties and produced a unique

dataset that (1) extends beyond the microbiome and also in-

cludes chemical exposures, (2) is longitudinal andmulti-location,

and (3) directly maps personal exposures. Our findings greatly

extend the human microbial cloud to a human exposome cloud

by including numerous organisms from different domains of life

(Figure 7A). Finally, the wearable device can easily be deployed

as a portable miniaturized sampling station to monitor any

geographical location.

In our chemical exposome, many of the potentially hazardous

compounds were collected by sorbent adsorption from an air

flow that already passed through a 0.8 mm pore-sized filter (for

biological analyses). This indicates the possibility that the

compounds could reach into the deep lower-respiratory tract,

including respiratory bronchioles and alveoli, and directly

interact with the moist mucosa in lungs. However, neither the

EPA nor the Center for Disease Control and prevention (CDC)

has evaluated possible health risks associated with inhalation

of these non-biological compounds, such as DEET. Our findings

thus revealed a previously unrecognized type of potentially

hazardous exposure that is commonly detected in the air.

Among the potential applications of our study, the putative

location/lifestyle signatures are of high interest. Both biotic and

abiotic exposures, as well as their correlations, show a strong

location/lifestyle-driven pattern (Figures 3 and 5), which can

potentially define location-specific exposure profiles (‘‘Campus’’

versus non-‘‘Campus’’). An archive with more individuals/

locations could reveal more location-specific health-related sub-

stances, such as allergens, potential pathogens, and harmful

chemicals, in human exposures. The understanding of loca-

tion/lifestyle-specific exposures may benefit the population

health at large, especially the immuno-compromised individuals.

Our study also provides invaluable data for ecological and

evolutionary studies with the deeply sequenced metagenomics

data. Most environment-related sequencing projects have

targeted marker genes such as 16S/18S rDNA/rRNA (Barberán
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Figure 7. The Bi-modal Exposome-Interacting Cloud

(A) The interaction network includes a plant-centric environmental cloud and a human-centric cloud. The intersection region between the two clouds is labeled by

the dark yellow shade. The inset boxplots show that the species (detected in R50 samples) belonging to the ‘‘Human/Animal’’ group (human cloud) have

significantly less variance when compared to either the ‘‘Plant/Arthropods’’ group (environmental cloud) or the ‘‘Intersection’’ group. y axis, log value of the

variances of the aCPM values of analyzed individual species across all samples.

(B) The individual exposome clouds of P1, P3, and P5 show diversity/complexity corresponding to their activity level. The number of average interactions (AI)

is calculated at per node basis. The average path length (APL) is calculated by averaging the length of paths connecting any two nodes in the network.

The Adj. p values are indicated as follows: N.S. not significant, * < 0.05, ** < 0.01, *** < 0.001, and **** < 0.0001.
et al., 2015) and thus provide limited intraspecies diversity infor-

mation and no functional information. In comparison, ourmethod

is able to detect species across all domains of life, provide

functional insights, and reveal intraspecies diversity at single-

nucleotide resolution. The variation-partitioning analyses re-

vealed that different genera are subjected to drastically different

influences from environmental and/or spatial/lifestyle sources

(Figure 3B), potentially relevant to their potential ecological

niches. In addition, the capture and detection of rare taxa such

as rotifer, various mites, and insects are impractical with

targeted approaches (Figure S4).

There are several notable limitations of our study: (1) We only

followed three individuals extensively, hence some findings,
such as the location-specific signatures, would benefit from the

analysis of data from more individuals. Such information would

help identify generalizable and individual-specific exposure

dynamics. (2) Organismal sequence databases are still incom-

plete; hence mis-classifications and false-negatives will occur.

(3) For chemicals, the exact number and the nature of molecules

are not known. Of the total of 2,796 putative chemical features,

only 972 can be tentatively annotated, most of which are potential

toxins (Figure S9). Future research using purified standards is

necessary to confirm the numerous anonymous peaks.

Despite the limitations, the extent of diversity we observed in

this study is enormous; In addition to over 2,500 species identi-

fied, 5.11M SNPs in 108 pan-domain species across all samples
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were identified. This number is comparable to the number of

SNPs evaluated in the human gutmicrobiome (101 bacterial spe-

cies; 3.98M SNPs at the individual level, 10.3M for all samples)

(Schloissnig et al., 2013). However, in spite of the great

sequencing depth, the number of SNPs we found still severely

underrepresents the true diversity in the human exposome (Fig-

ure 6). In the biotic exposome, most contigs shared 70%–90%

identity to reference genomes, again suggesting that our knowl-

edge on intra- and interspecies diversity is limited (Figures S3

and S4). 43.74% of DNA information cannot be classified even

with our pan-domain and computationally intensive classifica-

tion strategy (Figure 1F). These results indicate that a huge gap

exists between the complexity of our environmental exposures

and what is presently in our knowledge database.

In the future, it will be important to systematically expand the

depth and breadth of our exposure knowledge. These efforts

will enable a comprehensive understanding of the diversity in

our environmental exposures that eventually leads to actionable

exposure-risk guidelines for general and personal human health.
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https://doi.org/10.1016/j.cell.2018.08.060
https://doi.org/10.1016/j.cell.2018.08.060
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref1
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref1
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref1
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref2
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref2
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref3
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref3
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref3
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref4
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref4
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref4
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref5
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref5
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref6
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref6
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref6
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref6
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref7
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref7


Community ecology in the age of multivariate multiscale spatial analysis. Ecol.

Monogr. 82, 257–275.

Flot, J.-F., Hespeels, B., Li, X., Noel, B., Arkhipova, I., Danchin, E.G.J., Hejnol,

A., Henrissat, B., Koszul, R., Aury, J.-M., et al. (2013). Genomic evidence for

ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500, 453–457.

Franzosa, E.A., Morgan, X.C., Segata, N., Waldron, L., Reyes, J., Earl, A.M.,

Giannoukos, G., Boylan, M.R., Ciulla, D., Gevers, D., et al. (2014). Relating

the metatranscriptome and metagenome of the human gut. Proc. Natl.

Acad. Sci. USA 111, E2329–E2338.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for

generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22.

Fujimura, K.E., Demoor, T., Rauch, M., Faruqi, A.A., Jang, S., Johnson, C.C.,

Boushey, H.A., Zoratti, E., Ownby, D., Lukacs, N.W., and Lynch, S.V. (2014).

House dust exposure mediates gut microbiome Lactobacillus enrichment

and airway immune defense against allergens and virus infection. Proc. Natl.

Acad. Sci. USA 111, 805–810.

Guan, S., Price, J.C., Prusiner, S.B., Ghaemmaghami, S., and Burlingame, A.L.

(2011). A data processing pipeline for mammalian proteome dynamics studies

using stable isotope metabolic labeling. Mol. Cell. Proteomics 10, 010728.

Jiang, C., Brown, P.J.B., Ducret, A., and Brun, Y.V. (2014). Sequential evolu-

tion of bacterial morphology by co-option of a developmental regulator. Nature

506, 489–493.

Kuleshov, V., Jiang, C., Zhou,W., Jahanbani, F., Batzoglou, S., and Snyder, M.

(2016). Synthetic long-read sequencing reveals intraspecies diversity in the

human microbiome. Nat. Biotechnol. 34, 64–69.

Laker, R.C., Garde, C., Camera, D.M., Smiles,W.J., Zierath, J.R., Hawley, J.A.,

and Barrès, R. (2017). Transcriptomic and epigenetic responses to short-term

nutrient-exercise stress in humans. Sci. Rep. 7, 15134.

Lax, S., Smith, D.P., Hampton-Marcell, J., Owens, S.M., Handley, K.M., Scott,

N.M., Gibbons, S.M., Larsen, P., Shogan, B.D., Weiss, S., et al. (2014). Longi-

tudinal analysis of microbial interaction between humans and the indoor envi-

ronment. Science 345, 1048–1052.

Letunic, I., and Bork, P. (2011). Interactive Tree Of Life v2: online annotation

and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475-8.

Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT: an

ultra-fast single-node solution for large and complex metagenomics assembly

via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Luria, C.M., Amaral-Zettler, L.A., Ducklow, H.W., and Rich, J.J. (2016).

Seasonal succession of free-living bacterial communities in coastal waters

of the Western Antarctic Peninsula. Front. Microbiol. 7, 1731.

McCreanor, J., Cullinan, P., Nieuwenhuijsen, M.J., Stewart-Evans, J.,

Malliarou, E., Jarup, L., Harrington, R., Svartengren, M., Han, I.-K., Ohman-

Strickland, P., et al. (2007). Respiratory effects of exposure to diesel traffic in

persons with asthma. N. Engl. J. Med. 357, 2348–2358.
McMurdie, P.J., and Holmes, S. (2013). phyloseq: an R package for reproduc-

ible interactive analysis and graphics of microbiome census data. PLoS ONE

8, e61217.

McMurdie, P.J., and Holmes, S. (2014). Waste not, want not: why rarefying

microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531.

Meadow, J.F., Altrichter, A.E., Bateman, A.C., Stenson, J., Brown, G.Z.,

Green, J.L., and Bohannan, B.J.M. (2015). Humans differ in their personal

microbial cloud. PeerJ 3, e1258.

Møller, A., and Jennions, M.D. (2002). Howmuch variance can be explained by

ecologists and evolutionary biologists? Oecologia 132, 492–500.

O’Connell, S.G., Kincl, L.D., and Anderson, K.A. (2014). Silicone wristbands as

personal passive samplers. Environ. Sci. Technol. 48, 3327–3335.

Pfeifer, G.P. (2010). Environmental exposures and mutational patterns of

cancer genomes. Genome Med. 2, 54.

Poelen, J.H., Simons, J.D., andMungall, C.J. (2014). Global biotic interactions:

An open infrastructure to share and analyze species-interaction datasets.

Ecol. Inform. 24, 148–159.

Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng,

J.-F., Darling, A., Malfatti, S., Swan, B.K., Gies, E.A., et al. (2013). Insights

into the phylogeny and coding potential of microbial dark matter. Nature

499, 431–437.

Schloissnig, S., Arumugam, M., Sunagawa, S., Mitreva, M., Tap, J., Zhu, A.,

Waller, A., Mende, D.R., Kultima, J.R., Martin, J., et al. (2013). Genomic

variation landscape of the human gut microbiome. Nature 493, 45–50.

Smilauer, P., and Lep�s, J. (2014). Multivariate Analysis of Ecological Data using

CANOCO 5 (Cambridge University Press).

Smith, C.A., O’Maille, G., Want, E.J., Qin, C., Trauger, S.A., Brandon, T.R.,

Custodio, D.E., Abagyan, R., and Siuzdak, G. (2005). METLIN: a metabolite

mass spectral database. Ther. Drug Monit. 27, 747–751.

Strand, L.B., Barnett, A.G., and Tong, S. (2011). Methodological challenges

when estimating the effects of season and seasonal exposures on birth

outcomes. BMC Med. Res. Methodol. 11, 49.

Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar,

G., Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A., et al.; Tara Oceans

coordinators (2015). Ocean plankton. Structure and function of the global

ocean microbiome. Science 348, 1261359.

Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J.,

Prill, R.J., Tripathi, A., Gibbons, S.M., Ackermann, G., et al.; Earth Microbiome

Project Consortium (2017). A communal catalogue reveals Earth’s multiscale

microbial diversity. Nature 551, 457–463.

Tomasetti, C., Li, L., and Vogelstein, B. (2017). Stem cell divisions, somatic

mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334.

Wardeh, M., Risley, C., McIntyre, M.K., Setzkorn, C., and Baylis, M. (2015).

Database of host-pathogen and related species interactions, and their global

distribution. Sci. Data 2, 150049.
Cell 175, 277–291, September 20, 2018 291

http://refhub.elsevier.com/S0092-8674(18)31121-8/sref7
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref7
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref8
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref8
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref8
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref9
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref9
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref9
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref9
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref10
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref10
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref11
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref11
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref11
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref11
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref11
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref12
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref12
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref12
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref13
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref13
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref13
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref14
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref14
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref14
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref15
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref15
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref15
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref16
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref16
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref16
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref16
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref17
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref17
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref18
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref18
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref18
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref19
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref19
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref20
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref20
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref20
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref21
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref21
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref21
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref21
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref22
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref22
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref22
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref23
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref23
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref24
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref24
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref24
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref25
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref25
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref26
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref26
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref27
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref27
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref28
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref28
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref28
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref29
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref29
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref29
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref29
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref30
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref30
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref30
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref31
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref31
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref31
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref32
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref32
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref32
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref33
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref33
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref33
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref34
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref34
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref34
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref34
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref35
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref35
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref35
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref35
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref36
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref36
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref37
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref37
http://refhub.elsevier.com/S0092-8674(18)31121-8/sref37


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and Virus Strains

Cowpea mosaic virus Dr. Dinesh Kumar, UC Davis N/A

Biological Samples

NATtrol Respiratory Validation Panel

(RVP) (Qualitative)

ZeptoMetrix Corporation NATRVP-3

Chemicals, Peptides, and Recombinant Proteins

Pyridine FISHER SCIENTIFIC AC131780500

Octanoic acid Sigma C2875-10ML

Hexanoic acid Sigma 53745-2.5G

Decanoic acid Sigma C1875-100G

N,N-diethyl-m-toluamide (DEET) Fisher Scientific AC114571000

Tangeretin Fisher Scientific 505943

Nobiletin (Hexamethoxyflavone) Fisher Scientific 505360

Phthalate Sigma 90677-100ML

Diethylene glycol Sigma 03128-5ML-F

Omethoate Sigma 36181-100MG

Critical Commercial Assays

The Ovation RNA-Seq System V2 NuGEN 7102-32

PowerWater DNA kit QIAGEN-Mo Bio 14900-100-NF

PowerWater RNA kit QIAGEN-Mo Bio 14700-100-NF

REPLI-g Single Cell Kit QIAGEN 150343; 150345

HyperPlus library kit Roche-Kapa Biosystems KK8514

Deposited Data

Raw sequencing reads for DNA and RNA this study NCBI Bioproject PRJNA421162

Co-assembled contigs for DNA and RNA this study NCBI Bioproject PRJNA421162

Software and Algorithms

Moves App ProtoGeo Oy N/A

R analysis script this study Data File 1

PAVA PMID: 21937731 https://www.ncbi.nlm.nih.gov/pubmed/

21937731

Rstudio https://www.rstudio.com RRID: SCR_000432

Bioconductor package https://www.bioconductor.org/ RRID: SCR_006442

DESeq2 PMID: 25516281 RRID: SCR_015687

phyloseq PMID: 23630581 RRID: SCR_013080

reshape2 https://www.rdocumentation.org/

packages/reshape2/versions/1.4.3

https://www.rdocumentation.org/packages/

reshape2/versions/1.4.3

ggplot2 https://github.com/hadley/ggplot2-book RRID: SCR_014601

edgeR PMID: 19910308 RRID: SCR_012802

NMF PMID: 20598126 https://www.ncbi.nlm.nih.gov/pubmed/20598126

RcolorBrewer https://cran.r-project.org/web/packages/

RColorBrewer/index.html

https://cran.r-project.org/web/packages/

RColorBrewer/index.html

vegan https://cran.r-project.org/web/packages/

vegan/index.html

RRID: SCR_011950

(Continued on next page)

e1 Cell 175, 277–291.e1–e10, September 20, 2018

https://www.ncbi.nlm.nih.gov/pubmed/21937731
https://www.ncbi.nlm.nih.gov/pubmed/21937731
https://www.rstudio.com
https://www.bioconductor.org/
https://www.rdocumentation.org/packages/reshape2/versions/1.4.3
https://www.rdocumentation.org/packages/reshape2/versions/1.4.3
https://www.rdocumentation.org/packages/reshape2/versions/1.4.3
https://www.rdocumentation.org/packages/reshape2/versions/1.4.3
https://github.com/hadley/ggplot2-book
https://www.ncbi.nlm.nih.gov/pubmed/20598126
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/vegan/index.html


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

factoextra https://cran.r-project.org/web/packages/

factoextra/index.html

https://cran.r-project.org/web/packages/

factoextra/index.html

glmnet PMID: 20808728 RRID: SCR_015505

e1071 https://cran.r-project.org/web/packages/

e1071/index.html

https://cran.r-project.org/web/packages/

e1071/index.html

relaimpo https://cran.r-project.org/web/packages/

relaimpo/index.html

https://cran.r-project.org/web/packages/

relaimpo/index.html

ade4 https://www.jstatsoft.org/article/view/

v022i04

https://www.jstatsoft.org/article/view/v022i04

ViromeScan PMID: 29492895 https://www.ncbi.nlm.nih.gov/m/pubmed/

29492895/

PubChem PMID: 15879180 RRID: SCR_004284

phyloT PMID: 27095192 https://phylot.biobyte.de

iTOL PMID: 27095192 https://itol.embl.de

megahit PMID: 25609793 https://github.com/voutcn/megahit

bbtools https://jgi.doe.gov/data-and-tools/bbtools/ https://jgi.doe.gov/data-and-tools/bbtools/

Bwa-mem https://arxiv.org/abs/1303.3997 http://bio-bwa.sourceforge.net

Gephi https://www.aaai.org/ocs/index.php/

ICWSM/09/paper/view/154

RRID: SCR_004293

XCalibur Thermo- Fisher Scientific RRID: SCR_014593

SIMCA Umetric RRID: SCR_014688

Other

ODP2 HP-4B (LC column) Shodex F009121

OPD2 HPG-4A (LC guard column) Shodex G207063

Information and statistics on classified

contigs of Rotifer and Apicomplexa

this Study Data File 2

MicroPEM Personal Aerosol

Exposure Monitor v3.2A

RTI International N/A

Teflo Air Sampling Filters PALL Life Science R2P1025

Polyethersulfone Membrane Filters STERLITECH Corporation PES0825100

The TSI Mass Flowmeter TSI Inc Model 4143 D

Bioanalyzer Agilent G2939BA

Illumina HiSeq 4000 platform Illumina Inc. https://www.illumina.com/systems/sequencing-

platforms/hiseq-3000-4000.html

Molecular Sieve Adsorben Sigma 20304 Sigma-Aldrich Corp.,

St. Louis, MO, USA

https://www.sigmaaldrich.com/catalog/product/

supelco/20304?lang=en&region=US

Structural database of allergenic

proteins (SDAP)

PMID: 12520022 RRID: SCR_012806

Protein Family database (Pfam) PMID: 26673716 RRID: SCR_004726

Gene Ontology database (GO) PMID: 10802651 RRID: SCR_002811

Cluster of orthologous groups

database (COG)

PMID: 10592175 RRID: SCR_007139

Metlin database PMID: 16404815 RRID: SCR_010500
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Michael

Snyder (mpsnyder@stanford.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Personal environmental exposure sample collection
To measure personal environmental airborne exposures, 15 adult participants were recruited; all lived in the Northern California

Greater Bay Area and some traveled to other locations, depending on the individuals. The participants enrolled in this study under

the IRB protocols IRB-23602 and IRB-34907 at Stanford University. All participants are age 18 or older, self-reported healthy and

consented in writing (See table below). All clinic measurements were covered by IRB-23602, with the enrollment criteria as age

18 or older. An RTI MicroPEM V3.2 personal exposure monitor (RTI international, Research Triangle Park, NC, USA) was modified

and used to simultaneously collect biotic and abiotic samples of personal aerosol exposure for the period of August 2014 to January

2017. TheMicroPEM allows for integrated sampling while simultaneously collecting real time particulate measurements (PM) using a

780 nm IR laser nephelometer operating on a 30 s cycling time. The original sequential oiled frit impactors were remove to maximize

the biotic aerosol particulates collection. Before sampling and data collection, a 3.0 mm pore-size polytetrafluoroethylene (PTFE)

25 mm Teflon filter (PALL Corporation, Port Washington, NY, USA) or a 0.8 mm pore-size polyethersulfone (PES) 25 mm

filter (Sterlitech, Kent, WA, USA) was placed in MicroPEM filter cassettes to collect aerosol particulates for biotics extraction. A

homemade cartridge filled with 200 mg zeolite adsorbent beads (Sigma 2-0304) was also placed at the end of airflow to collect

hydrophobic and hydrophilic chemical compounds. Before participants were given theMicroPEMmonitor, theMicroPEMnephelom-

eter was calibrated with an in-line HEPA filter, and pump flow rate was pre-calculated at 0.5 L per minute with a TSI model 4140mass

flowmeter (TSI, Shoreview, MN, USA) using Docking Station software (RTI international).

Participantswere instructed to either carry themonitor on their armor place themonitor near themwithin a 2-m radius at all timesduring

the sampling period. Once the participants turned the monitor on, sampling and monitoring would last for 1 to 14 days according to the

participant’s activity. Three participants (P1, P2, P3) were sampled extensively; P1 for more than 2 years, P2 for approximately 1 year and

P3 for 3 months intermittently. For P1, sampling was performed such that two filters were typically collected each week (one during the

weekdaysandoneduring theweekends). P1 traveled frequently andduring each trip/location adedicatedMicroPEMmonitorwas used to

collect the sample. If several locations were visited during one trip, a dedicated monitor and filter/cartridge would be used for each

location separately and the filters were collect at the end of the trip. Samples from P2 and P3 were collected over longer intervals and

samples often coveredmore than one location (1�2 weeks each time). At the end of the sampling and monitoring period, filters and car-

tridges were removed frommonitor and stored at�80�C until analysis. To minimize environmental contaminations, filters and cartridges

were deployed and recovered fromMicroPEM in a sterilizedbiosafety cabinet. The aerosol andquality control datawerealsodownloaded

from the MicroPEM monitor after each sampling through the Docking Station program. MicroPEM flow rate was post-calibrated after

each sampling period using TSI 4140 mass flowmeter. All post-calibration flow rates were within ± 5% of pre-calibration values. Three

participants (P1, P2, P3) also using MOVES App to track their geographic locations with GPS coordinates and daily activity.
Individual Age Gender/Sex

P1 61 Male

P2 45 Male

P3 61 Female

P4 40 Female

P5 36 Male

P6 60 Male

P7 31 Female

P8 43 Male

P9 36 Male

P10 31 Male

P11 28 Female

P12 29 Female

P13 43 Female

P14 56 Male

P15 42 Male
METHOD DETAILS

DNA and RNA sample extraction and library preparation
After testing many extraction and amplification protocols we found the following protocol optimal for our studies. DNA and RNAwere

extracted from the filter using a modified protocol combining the PowerWater DNA and RNA Extraction kits (Mo Bio, CA, USA)
e3 Cell 175, 277–291.e1–e10, September 20, 2018



according to the manufacturer’s instructions. The amount of nucleic acid materials extracted from a typical sample filter is similar to

that of 1-10 mammalian cell(s) (Figure S1). The DNA and RNA extracts were then subjected to linear amplifications prior to library

preparation for next-generation sequencing. Specifically, the DNA amplification was achieved through Multiple Displacement

Amplification (MDA) with REPLI-g Single Cell Kit (QIAGEN, Hilden, Germany). The RNA samples were linearly amplified by

Ovation RNA-seq system V2 (NuGEN Technologies, Inc., San Carlos, CA, USA) following the manufacturer’s instructions. All pre-

amplification steps were performed in a biosafety cabinet to minimize biotic aerosol particulate contamination from lab

environment. Pre-amplification and post-amplification steps were carried out in physically separated locations. DNA and cDNA

libraries were then prepared using the KAPA HyperPlus library kit (Kapa Biosystems, Wilmington, MA, USA) with Illumina� adaptors

as described by the manufacturer. The size and quality of libraries were assessed on a Bioanalyzer instrument from Agilent (Agilent

Technologies, Santa Clara, CA), and sequenced using Illumina HiSeq 4000 platform (23 151 bp) (Illumina Inc., San Diego, CA), with

four samples pooled for each lane.

Through control experiments, we found that our approach produces reproducible results and is capable of detectingmany species

across domains of life (Figure S2). Specifically, we carried out a control experiment where we employed two devices side by side at

the same location to collect samples for 3 days and analyzed their filters through the pipeline in parallel. The taxonomy classification

results for the two filters are highly concordant even at the species level (Figure S2). Through comparisons with the other mainstream

taxonomy classification pipelines, we found that our pipeline can classify significantly more contigs/reads across multiple domains,

among which fungi, plants, and animals are not well covered by the default databases of other classification pipelines. Interestingly,

due our unique pan-domain approach in species detection, we noticed that 18.3% and 20.7% of bases from DNA and RNA are

classified as ambiguous even at the kingdom/subkingdom level, meaning they are similar to species belonging to different kingdoms.

For example, a contig can be classified as an insect species as well as a bacterial or viral species. This either indicates contamination

of reference sequences in existing databases or genuine host-cargo (pathogen) relationships.

Scanning Electron Microscopy
The representative sample filters collected for SEM were dried using a vacuum desiccator (Bel-Art-SP Scienceware, Wayne,

NJ, USA) overnight at room temperature. The dehydrated filters were then mounted onto a 12 mm SEM stainless steel stub using

double stick copper tape for maximum conductivity, followed by 50–100 Angstrom coating in an Au/Pd sputter coater for

2 minutes. The images were then visualized and taken by Hitachi S-3400N VP SEM (Hitachi High Technologies, Japan) and

affiliated software.

Contamination considerations
Since our experimental protocol was adapted to low input nucleotide materials from environmental sources via unbiased linear

amplification steps, we carefully evaluated the potential impact of contamination by including a blank filter for every batch of

extraction-amplification-library preparations (28 batches). For each batch, we selected samples using the stratified random

sampling method. Briefly, we divided our total samples into 15 groups each containing similar number of samples, which were

collected during similar periods of time (e.g., #1-20, #20-40 etc.). We considered that the time of collection should play an impor-

tant role in data variation and would likely represent the temporal variation in each batch. Unfortunately, we could not directly

quantitate the absolute abundance of organisms following MDA amplifications. We evaluated the potential impact of contamina-

tion via the following approaches: 1. The quantitation of pre-amplified DNA and post-amplified cDNA (RNA could not be quantified

without amplification) showed that there is at least a 8-fold difference in median concentration between blank/control filters and

sample filters (Figures S2A and S2B); this number is likely an overestimate of background since the single-cell amplification

protocols were usually designed for samples with the very low amounts of material, giving the blank samples an opportunity to

catch up; 2. The fact that the sequencing reads generated from the DNA blank/control filter is far less complex that those from

the sample filters (Figure S2C), based on the assembly results; 3. Through the UFC classification pipeline, the blank/control filters

(Bacteria-heavy) show significantly different taxonomy profiles when compared to the sample filters (Fungi-heavy); 4. The fact that

the batch effects play a very small role in our variation partition analysis (Figures 3A and 3B) supports the notion that contamination

is not a significant issue in our datasets; 5. Finally, population genetics analysis on blank/control filters and sample filters in parallel

demonstrates orders of magnitude larger species intra-diversity on the samples filters relative to control filters (Figures S2E–S2I;

mapped reads were sub-sampled to the same coverage for sample and control filters). Further analysis indicates that while

species identified in both blank/control and sample filters may share a portion of SNP sites (�60% of control SNPs), their actual

allele profiles at such sites are drastically different (only share 3.7%). This result implies that for those species that can be detected

in blank/control and sample filters, they are basically two distinct populations of the same species. Taken together, we believe the

contamination plays an insignificant role in our dataset.

Chemical Compound Collection and Preparation
A homemade 3D-printed cartridge filled with 200 mg 13 Å (A) pore-size Molecular Sieve Adsorbent Sigma 20304 (Sigma-Aldrich

Corp., St. Louis, MO USA) was attached to the end of the particle-free air flow in the portable device to collect abiotic chemical

air solvent concomitantly with the collection of biotic biological particulates in personal environment exposure.
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The adsorbent zeolite beads were later recovered in a clean Eppendorf LoBind tube, where 1mLmethanol (Mass Spec grade) was

added. The mixture was incubated for 20 min at room temperature (RT). Then separated at 22,000 x g for 20 min at RT. The super-

natant was transferred to 150 ml deactivated glass insert housed in Waters 2 mL brown MS vials for LC/MS analysis, or stored

at �20 �C for later use.

For chemical compounds, we used zeolite adsorbent to collect air-dissolved compounds from particle-free air flow that was

concomitantly generated with the collection of biotic samples. Zeolite is widely used asmolecular sieve to removemolecular impurity

in industry. Among our different sample testing, zeolite was able to readily capture two flavor compounds emanated by an orange

peel placed in close vicinity (Figures S3D and S3E).

Liquid Chromatography-Coupled Mass Spectrometry
LC-MS analysis was performed in a platform that consists of Waters UPLC-coupled Exactive Orbitrap Mass Spectrometer (Thermo,

Waltham, MA, USA), using a mix-mode OPD2 HP-4B column (4.6 3 50 mm) with a 4.6 3 10 mm guard column (Shodex, Showa

Denko, Tokyo, Japan). The column temperature was maintained at 45 �C. The sample chamber was maintained at 4 �C.
The binary mobile phase solvents were: A, 10 mMAmmonium acetate (NH4OAc) in 50:50 Acetonitrile:water; B, 10 mMNH4OAc in

90:10 Acetonitrile:water. Both solvents were modified with 10 mM Acetic acid (HOAc) (pH 4.75) for positive mode acquisition, or

10 mM NH4OH (pH 7.25) for negative mode.

The flow was set as follows: flow rate, 0.1 ml/min; gradient, 0-15 min, 99% A, 15–18 min, 99% to 1% A; 18-24 min, 1% A;

24–25 min, 1% to 99% A; 25–30 min, 99% A.

The MS acquisition was in profile mode and performed with an ESI probe, operating with capillary temperature at 275 �C, sheath
gas at 40 units, spray voltage at 3.5 kV for positive mode and 3.1 kV for negative mode, Capillary voltage at 30 V, tube lens voltage at

120 V and Skimmer voltage at 20 V. The mass scanning used 100,000 mass resolution, high dynamic range for AGC Target, 500 ms

as Maximum Inject Time and 70–1,000 m/z as the scan range.

QUANTIFICATION AND STATISTICAL ANALYSIS

General statistical analysis and data visualization
The majority of statistical analyses and visualizations were done in Rstudio and R (at the time of writing, 1.0143 for Rstudio and 3.4.0

for R), with necessary aid from customized python scripts (2.7.4) and shell scripts (Linux). The primary R packages are mostly

maintained by the Bioconductor project (https://www.bioconductor.org/, along with all their dependencies). The essential ones

used are ggplot2 (2.2.1), reshape2 (1.4.3), edgeR (3.18.1), NMF (0.23.6), phyloseq (McMurdie and Holmes, 2013) (1.20.0),

RColorBrewer (1.1-2), scales (0.5.0), corrplot (0.84), Hmisc (4.1-1), ggrepel (0.7.0), vegan (2.4-5), cluster (2.0.6), factoextra (1.0.5),

plyr (1.8.4), dplyr (0.7.4), psych (1.7.8), glmnet (Friedman et al., 2010) (2.0-13), devtools (1.13.4), ggpubr (0.1.6), tidyverse

(1.2.1), ade4 (1.7-10), caret (6.0-78), e1071 (1.6-8), pROC (1.10.0), gridExtra (2.3), ggnetwork (0.5.1), ggsci (2.8), ggbeeswarm

(0.6.0), ggpmisc (0.2.16), ggmap (2.7), colorspace (1.3-2), adespatial (0.1-1), limma (3.32.10), and relaimpo (2.2-2), PMA (1.0.9).

The main analysis script is attached as Data S1.

In general, non-parametric statistical tests (Wilcoxon test, Kruskal-Wallis, and Spearman correlation) were used over the para-

metric counterparts due to the non-normality of our datasets. We adjust the p values using the Benjamini & Hochberg (BH) method

to control for False Discovery Rate (FDR), when multiple comparisons are concerned, including p value matrix constructed when

calculating correlations matrix among different features or samples. We chose not to rarify our data because we do not want to

lose any data (McMurdie and Holmes, 2014). For inter-sample normalization, we chose to not use the standard negative binomial

or rlog modeling approaches (implemented in edgeR and DEseq2 (Love et al., 2014)) because our exposome data violates the funda-

mental assumption that most features should not change drastically in-between samples. Instead, we used Counts Per Million (CPM)

method (Love et al., 2014) for inter-sample normalization followed by hyperbolic arcsine (arcsinh) transformation (asinh() in R) for

within sample normalization (Callahan et al., 2016). We used log10ðn+ 1Þ transformation for chemical abundances. The arcsinh trans-

formed CPM values (aCPM) were used in all statistical/computational analyses and visualizations unless otherwise noted (e.g., area

plots of relative abundances of kingdom/subkingdom in Figures 2A–2D and pathogen analysis). We did not adjust relative abundance

value based on genome sizes of different organisms because a lot of species in our database are represented by incomplete

genomes (a collection of contigs), therefore precise estimates of their genome sizes cannot be achieved. We used the F1000 micro-

biome workflow paper as a reference in designing many of the downstream analyses (Callahan et al., 2016). Annotated phylogenetic

trees were generated using phyloT and iTOL (Letunic and Bork, 2011).

Moran’s Eigenvector Map (MEM) is a statistical method to extract spatial structure information from geographic coordinates of

samples collected from different locations, typically used in the ecological studies. Statistically, Moran’s Eigenvector Map (MEM)

variables are orthogonal vectors maximizing the spatial autocorrelation (Dray et al., 2012) (measured byMoran’s I of autocorrelation).

MEM variables are calculated from the spatial neighborhood matrix and spatial weighting matrix, both of which are derived from the

raw spatial data of the sampling sites. Each MEM variable independently represents broad- or fine-scale spatial structure in the

geographic data, and can be directly super-imposed on the geographic coordinates for visual interpretation of spatial patterns

(Figure S6A). In this study, we used adespatial, ade4, and spdep packages to construct the MEM variables using the geographic

coordinates of collected exposome samples. The MEM variables were forward-selected on the taxonomy abundance data using
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redundancy analysis (RDA) to filter insignificant MEM variables. We then used the selected MEMs to provide explicit spatial informa-

tion in the downstream variation partitioning analysis.

For differential abundant genera/phyla/species analyses between the ‘‘Campus’’ and non-‘‘Campus’’ locations and across four

seasons, we only considered organisms (at different taxonomy level) that were detected in more than 50 of 283 samples. We

used the Wilcox test for two group comparisons and the Kruskal-Wallis test for multi-group comparisons. For ad hoc comparisons

we used the Wilcox test. P values for multiple comparisons (including ad hoc comparisons) were adjusted using the BH method.

Comparisons with Adj. p < 0.05 were reported accordingly.

For ordination methods, we chose principal component analysis (PCA) instead of the correspondence analysis (CA) because we

were able to observe a environmental gradient axis shorter than 2 in the detrended correspondence analysis (DCA) (Figure S6C). This

indicates that the environmental gradients in our dataset are rather short and linear instead of unimodal for which CA is designed

(Smilauer and Lep�s, 2014). All ellipses are drawn with axes equal to the standard deviation of the data unless noted otherwise.

For variable plots, contributions of individual variables are calculated from the weighted average of the square of their coefficients

(loading score) for top three principal components (weighted by principal components’ eigenvalues). As a validation of our PCA

analysis results, we also calculated pairwise in-group and out-of-group Bray-Curtis distances of respective groups and show that

the differences are statistically significant.

For overall variation partitioning, we used dbRDA (distance based redundancy analysis) to decompose the variation in our datasets

influenced by various variables, we gathered and prepared 64 metadata variables for each sample; we divided them into ‘‘environ-

mental,’’ ‘‘spatial/lifestyle,’’ and ‘‘technical’’ groups and carried out forward-selection of variables within each group (this is to retain

the overlapping between different groups). We then partitioned the variation (squared Bray-Curtis distances) of our dataset based on

the definitions of these groups of variables using the varpart() function from the vegan package. Adonis (improved PERMANOVA)

analysis was used to evaluate how variation can be explained by individual variable.

For genus-based variation partitioning, we selected genera that were detected in more than 100 samples, 241 genera satisfied this

criterion. We then performed forward-selection on all 64 variables over the entire exposome DNA dataset to select the best

representative variables. Multivariate linear regression models were then constructed for each of the 241 genera and based on

the adjusted p value (p < 0.05, BH) of these models, we selected 199 genera for the downstream variation decomposition analyses.

To evaluate the contributions of each variable, we used a hierarchical partitioning method implemented in the relaimpo package,

which loops through all potential ways of adding the terms in regression models (instead of evaluating the R2 based on one particular

regression model). After the contribution of each variable was evaluated in conjunction with all other variables, we calculated the

contributions of each group (environmental, spatial/lifestyle, and technical) by summing up the contributions of the variables of

each group. Note that the total percentage of contributions of each group is based on the total explained variation of each individual

model, not the total variation.

The formula used for the multivariate regression model constructed for individual genus (see Figure S6 for an explanation on these

variables):

asinhðCPMÞ �batch+ longitude+Mean TemperatureC+mFPAR+MEM1+ spring+Overall:AQI:Value+MEM91+winter +P1

+date:month+popdensity +MEM69+dNO2+P2+MEM83+ is there rain
For sparse canonical correlation analysis (sCCA), we first evalua
ted the correlations between the biological (biotics) and chemical

(abiotics) dataset and show that these two datasets have extensive correlations among their features (p < 0.05, 499 permutations,

implemented as the RV.rtest() function from the ade4 package, Monte-Carlo Test on the sum of eigenvalues of a co-inertia analysis).

We then performed sparse canonical correlation analysis using the penalized matrix decomposition (implemented as the CCA()

function from the PMA package) on the two datasets with penaltyx = 0.20, penaltyz = 0.20. We combined biological/chemical

features with non-zero coefficients and performed PCA analysis on the combined data frame to visualize the driving force behind

the correlations (Callahan et al., 2016).

UFC classification pipeline
Raw reads in fastq format were first removed of duplicates using an in-house developed python script. We removed only exact

paired-end duplicates (meaning both forward and reverse reads need to be identical, although the ordering of which can be

swapped). We expected most of pair-ended duplicates represent technical artifacts as we applied linear amplification step to

both DNA and RNA during sequencing library preparations. The de-duplicated reads were then trimmed using Trim_galore (0.4.4)

wrapper with default parameters (https://github.com/FelixKrueger/TrimGalore),which essentially combines the adaptor removal

tool Cutadapt (1.14) and NGS quality control tool Fastqc (0.11.5). These reads were then mapped to hg19 human genome using

BWA-mem algorithm with default parameters. After removing human-mapped reads, a de novo assembly step was executed by

Megahit (Li et al., 2015) (1.1.1), a popular de bruijn graph assembler for short NGS sequencing reads. This step assembled millions

or more reads into a much smaller collection of information-dense contigs (> 200 bp).

These contigs were queried against the UFC database using a BLASTN (2.3.0+) wrapper, which takes NCBI BLAST algorithm as its

core and added a few modified functionalities that are essential to the pipeline. The choice of database(s) is the most crucial compo-

nent when it comes to nucleic acids detection and classification. A poorly chosen database always leads to under-classification and
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sometimes evenmiss-classification. For the accurate identification of organisms, a broad database encompassing all domains of life

is essential. In short, our in-house UFC database is constructed by a union of NCBI Refseq project and the GenBank representative

genomes, containing nucleic acid information that represents all domains of life. This curated database includes all domains of life

known to humans, which are broadly divided into the following categories: plants, protozoa, invertebrates, bacteria, archaea, fungi,

virus, non-mammal vertebrates and some selected animals (82M entries, 40,000 species).

The BLAST results were further analyzed by a customized implementation of Lowest Common Ancestor (LCA) algorithm, along

with special considerations to certain domains of life that do not conform to the usual taxonomy database structures. The UFC

taxonomy database was constructed by leveraging the NCBI taxonomy database to provide a unique taxonomy label for each entry

in theUFCdatabase, which enables fast and accurate evaluation of taxonomy in the LCA step. The inferred taxonomy results from the

LCA stepwas compiled and displayed in a text format. Specifically, the report followed the hierarchical taxonomy rank conventions of

NCBI and displayed the sequencing abundance of each taxonomy rank in aggregate. We would like to emphasize that although

classification down to the species level is possible, the conservative LCA algorithmwill rigorously classify contigs at higher taxonomy

level due to ambiguity in the sequence alignments. Abundance estimation was handled as aggregated sequencing amount (appli-

cable to all taxonomic levels). The sequencing amount (in base pairs) was estimated by mapping sequencing reads that were

used for assembly onto the assembled contigs, each with assigned taxonomy label. The final report also included a special section

where species belonging to different groups of interests were listed separately.

Although our pipeline classifies contigs at the species level, we noticed that frequently those contigs would share 70%–90% iden-

tity with target reference genome (Figure S4). This indicates that while a taxonomic label is assigned, the contig is actually only

classified by its most closely related species in the database. Although our UFC database is substantially larger than most, if not

all, known fragment classification pipelines, the actual diversity in nature still dwarfs our current knowledge database of species.

This observation is also reflected in the results of population genetics analysis where substantial intraspecies diversity was observed

for almost all involved species across different domains (Figure 6). Effectively, environmental species should be viewed as a dynamic

species complex defined by the aggregate functional capacity and intraspecies diversity of each member of the complex. As

examples, the information on contigs classified as Rotifera and Apicomplexa organisms is attached in Data S2.

Coassembly of DNA and RNA data
To gain an overview understanding of our data, we co-assembled 42.9 and 30.4 billion reads for DNA and RNA exposomes, respec-

tively (totaling 6.43 and 4.56 Tbp). Due to the sheer amount of data, even megahit that was optimized for assembling large amount of

metagenome data could not handle the job given the limitations on computing resources. To overcome this, we used a digital normal-

ization module implemented in bbnorm (37.02), a part of the bbtool package (https://jgi.doe.gov/data-and-tools/bbtools/), to

significantly reduce the amount of input reads. We then used megahit (Li et al., 2015) (1.1.1) with the preset–sensitive option for

the co-assembly. For DNA, the co-assembly comprised of 6,545,607 contigs, totaling 7,409,478,621 bp, with cutoff set at

200 bp, a max contig size of 111,652 bp, an average contig size of 1132 bp, and a N50 of 1896 bp. For RNA, the co-assembly

comprised of 1,023,712 contigs, totaling 492,353,963 bp, with cutoff set at 200 bp, a max contig size of 169,362 bp, an average

contig size of 481 bp, and a N50 of 486 bp. We ran the co-assembled contigs through our UFC pipeline and the classification results

are consistent with the aggregate results from analyzing individual samples incrementally (The N+1 problem).

Bootstrap confidence interval estimation, bootstrap-based dominating force definition, and the permutation-based p
value estimations
For each genus, we consider it is subjected to the dominating influence from either the environmental variables (Env) or spatial/

lifestyle (Spa) variables, if the calculated relative importance of one group is consistently greater than the other in at least 90% of

all 9999 bootstrap samples, namely S
0
1;S

0
2;.S

0
9999: For example, for genus A, if the calculated relative importance of the environ-

mental variables env is greater than the calculated relative importance of the spatial/lifestyle variables spa in 93% of the bootstrap

samples, we define that the genus A is subjected to the dominating force from the environmental variables env in our dataset.

For permutation test, we permutated the meta-data associations with the taxonomy abundance profiles randomly 9999 times and

recalculated the relative importance of each group of variables (as well as other statistics) for each genus in the 9999 permutated

datasets. We then derived the p values by calculating 1 – q, where q is the quantile value of the observed value of the statistics in

the background distribution of the permutated statistics, as evaluated by the 9999 permutated datasets.

Analysis of the source of dominating influence in bacteria, plants, and animals
Using the same criteria in the fungi variation partitioning analysis, 5 bacterial genera, 4 of them being Firmicutes, are subjected to

dominating environmental forces (blue), including Bacillus, Flavobacterium, Enterococcus, and Dolosigranulum (Figure 3B, second

panel). 6 bacterial genera are subjected to dominating spatial/lifestyle influence (dark yellow, some are overlapping), including

Corynebacterium (skin bacteria), Acinetobacter (soil bacteria, but also found in hospital infections), Dyadobacter, and Geobacillus

(Figure 3B, second panel). The plant genera with dominating environmental influences (blue) are Quercus (oak tree), Fraxinus (ash

tree), and Musa (banana tree). In contrast, Betula (small tree/shrubs), Triticum (wheat/grass), and Aegilops (grass) have dominating

influences from Spatial/lifestyle variables (dark yellow). Thus, it appears that, based on our data, larger plants such as trees

(diamonds in Figure 3B, third panel) aremore likely to be influenced by environmental variables (such as seasons, see below) whereas
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the exposures to smaller plants such as grass (circles in Figure 3B, third panel) may be more Spatial/lifestyle-dependent. Finally,

animal genera Canis (dogs) and Felis (cats) are both strongly spatial/lifestyle-dependent (> 60%), reflecting their presence at

distinct geographical locations (Figure 3B, last panel). We also noted that the abundance of a fly genus, Rhagoletis, is subjected

to substantial technical influence.

Graph-based permutation test
To demonstrate the seasonal influence on the exposome, we first calculated the Bray-Curtis distances between all DNA exposome

samples at the genus level. We then constructed nearest neighbor (NN) tree with the number of neighbor set as 1 (knn = 1).

We colored each node in the resulting tree based on the sampling seasons. If two nodes (samples) are of the same season,

the edge connecting them is ‘‘pure.’’ Otherwise, the edge connecting them is ‘‘mixed.’’ We then counted how many pure edges

there are in the initial tree. To test whether this number is statistically significant above background distribution, we permutated the

season labels of all nodes while maintaining the initial tree structure (Callahan et al., 2016). For each permutation, we count the

number of pure edges and mixed edges. As a result, we generated a background distribution of the number of pure edges

(andmixed edges) for the original tree (N = 9999 in this study). We then calculated the chance of observing the number of observed

pure edges (or greater) in the original tree based on this background distribution. Due to the limitation of permutation-based

p value estimation method, we cannot derive a p value less than 1/N (or p = 0.0001) in this study, hence the actual probability

may be lower.

Fuzzy c-means clustering
We used the fuzzy c-means clustering algorithm (package e1071) to explore the seasonal and location-related patterns in our biotic

and abiotic data, respectively. For seasonal clustering, we binned the DNA relative abundance (aCPM) data by seasons for all

samples (arcsinh transformed CPM at the genus level). This produced a N � 4 data matrix where N is the number of genera in the

dataset. For chemical data, we directly used the log transformed, logðn + 1Þ, chemical abundance data over 15 locations

ðN � 15Þ. We used default parameters (except for iter.max = 2000). The optimal cluster number was determined based on a combi-

nation of three methods (Elbow, Silhouette, and Gap statistic). The clustering results were then optimized by visualizations of the

results (PCA and line plots). For line plots, only features (both biotics and abiotics) with a membership score > 0.65 were considered,

we chose this high stringency so that we can explore the dynamics of the core members of each cluster. In fuzzy c-means clustering,

the membership score is the probability of a feature belonging to any cluster, each feature is assigned a cluster based on its top

membership score (as opposed to k-means clustering, where the membership score is binary). The alpha (transparency) of each

feature is directly based on the membership score. The output results were not smoothed.

Season-predictive modeling
To predict seasons based on the DNA taxonomic profile across different domains of life, we developed a customized R script pipeline

using the glmnet package. Specifically, we used the LASSO logistic regression classifier implemented in the glmnet package,

because it generates a classifier with a small number of selected features from the thousands of genera in our data. These features

are biologically interpretable as the linear combinations of variables in the logistic regression. Since the feature selection process is

built into the LASSO classifier, it is straightforward to obtain not only the prediction model, but also a realistic estimate of the gener-

alized error during cross-validations. This is superior to a two-step approach, where a supervised feature selection step is performed

prior to cross-validation, which can lead to over-optimistic accuracy estimates. In addition, this approach prevents information

leakage from highly correlated features between training and testing dataset. As only one of the highly correlating features will be

selected before model training/testing.

Specifically, the steps are:

(1) Applying arcsinh transformation to our dataset, which performs nearly linearly for small values, but near log transformation for

larger values.

(2) Selecting the data of P1 in North America (N = 179) because the variabilities in other continents with limited sample sizes did

not allow adequate in depth analysis. We use the genus level datasets because they provide the best balance between

resolution and accuracy.

(3) Partitioning data for ten-fold (outer loop) times ten folds (inner loop) nested cross-validations. In the outer loop, one fold of data

is progressively assigned as the testing data, the remaining nine folds of data are then progressively partitioned into one plus

nine folds in the inner loop. The nine folds of data are used for training the model to get a hyperparameter for selected model

(in this case, the penalizing parameter lambda for feature selection) and the one fold of data is used for evaluating the

hyperparameter for selected model (in this case, the penalizing parameter lambda for feature selection). The resulting model

from the internal loop is then tested on the one fold in the external loop, this step generates a series of model performances

parameters including multi-class area under curve (mAUC), accuracy, specificity, F1 score etc. We resample the whole

dataset 10 times to generate 100 internal model performance parameters to assess its stability. Weights for samples in

each season are adjusted for every training to account for sample size variations in four seasons.
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(4) We obtained season prediction scores for each sample based on the average prediction scores of the resampled 10x10

internal testing, from which we generated the multi-class ROC curve using one versus all approach for each season, using

mean predicting scores of each season.

(5) For model interpretation and feature extraction, we examined features with non-zero coefficients for each season and

visualized them on a heatmap. For importance of features, we use square of coefficient normalized by total sum of squared

coefficient for each season to denote its contribution to the prediction model. Bar length of lollipop plot corresponds to the

log-odds ratios of respective feature.

(6) For external validation, we used the data from P2, who stayed in the North America region throughout the entire sampling

period, making it a great external validation dataset. The result is comparable to the performance metrics through cross-vali-

dation on P1’s data.

Of note, this algorithm does not retain certain genera due tomulticollinearity issues (if several genera are highly correlated, only one

of them will be selected for model training purposes), which are fairly ubiquitous due to seasonal patterns of many genera as

previously discussed. However, as we demonstrated in the results, the selected features indeed reflect the seasonal patterns

consistent with the season predicting model.

Season-predictive model identified species with corresponding seasonal patterns
Examples include: a) the winter-contributing genus Tricholoma, a type of edible mushroom that grows in winter; b) the spring-

contributing genus Azadirachta, a type of tree that blooms during the spring; c) the summer-contributing genus Sclerotinia, or

white mold, which sheds spores during summer (Figure 4J). Interestingly, the aquatic Flavobacterium was identified as a winter-

contributing genus (Luria et al., 2016) (Figure S8G, right), indicating that we captured organisms that are not previously considered

as airborne.

Population genetics analysis
For population genetics analysis, we adapted the method from previous humanmicrobiome studies (Kuleshov et al., 2016; Schloiss-

nig et al., 2013). Specifically, we first generated a list of reference genomes with > 10x aggregate coverage among all samples. We

chose the reference genomes based on clinical and scientific interests for each domain. For bacteria, the focus was placed on

pathogens, opportunistic pathogens, and human related species, in that order. For fungi, the focus was placed on mold species.

For viruses, we chose the top 21 species as all of their coverage are quite high among samples. For species with draft genomes

comprised of assembled contigs instead of complete chromosomes, we only considered contigs longer than 1000 bp in our analysis.

Reference genomes/contigs with less than 10%coverage were discarded from the final analysis. An assembly of reference genomes

and contigs was used as the reference to map total pooled DNA reads (for RNA viruses, total RNA reads were used). We followed the

BROAD Institute variant calling best practices until the actual variant calling step, for which we developed a custom SNP calling

pipeline based on previous studies (Kuleshov et al., 2016; Schloissnig et al., 2013) and only considered bases with a quality

scoreR 15. We required SNPs to be supported byR4 reads and to occur with a frequency of at least 1%. This rules out sequencing

errors. We opted to use custom variant caller because the variant calling in our dataset require special considerations in the number

of haplotypes existed for a particular species which is an unknown number, therefore all optimizations in the existing variant calling

procedures for human genome are not applicable. We also detected indel variations but the results was not used in population

genetics analysis.

We estimated SNP density (number of SNPs/kbps) and nucleotide diversity ðpÞ based on the SNP profiles. The nucleotide diversity

ðpÞ for each SNP site is calculated using the following formula:

p=
X

ij

xixjpij = 2 �
Xn

i = 2

Xi =1

j =1

xixjpij

where xi and xj are the respective frequencies of the i th and j th sequences (each ‘‘sequence’’ is only one base here) at each site,

pij is the number of nucleotide differences between the i th and j th sequences (either 0 or 1), and n is the number of coverage at each

site. The calculated nucleotide diversity of each site is then aggregated over entire reference genome or contigs to calculate the

nucleotide diversity of the respective species. For species with unfinished genomes (collection of contigs), we calculated weighted

versions of themetrics using their effective genome sizes (proportion of genome that haveR4x coverage) asweights. To validate, our

results are consistent with population-level estimation published previously for bacteria (Kuleshov et al., 2016; Schloissnig et al.,

2013). In addition, our results show that even multiple chromosomes from the same viral species have similar SNP density and

nucleotide diversity even if the coverages are different (Figure S11).

Transcriptomics analysis
Contigs from the co-assembled RNA were mapped using BlastX to the non-redundant (nr) protein database from NCBI. RPS-BLAST

was used to annotate protein functions based on Conserved Domain Database. Gene products were annotated using gene ontology
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(GO), cluster of orthologous groups (COG), protein family (Pfam) and protein clan databases. Enrichment was calculated relative to

the observed GO annotations across all taxonomic groups in the transcriptomic dataset. Results were visualized using R.

Allergen characterization
Taxonomy categorization of the co-assembled RNA contigs was performed using the in-house UFC pipeline. This information, along

with Pfam annotations, were further used to identify potential allergens using the structural database of allergenic proteins (SDAP).

We were able to identify 42 potential allergen proteins, 31 of which are non-food related. To calculate allergen abundance, we

mapped the RNA sequencing reads from each filter to the identified allergen contigs. Sequence mapping was performed using

Burrows-Wheeler Aligner (BWA). Gene expression levels were calculated in CPM.

Species interaction network (exposome clouds)
To generate the species interaction network, we first acquired a list of species of interests from either all samples or samples of

individuals in case studies. We integrated two species interaction databases to generate a comprehensive species-interaction

database that cover pathogen-host and other natural interactions between species of different domains (Poelen et al., 2014; Wardeh

et al., 2015). We then queried our species list against the species-interaction database. Only interactions with both species found in

our query list are retained. The results were parsed using customized scripts to comply to the import format of Gephi (0.9.2). The

layout algorithm (Yifan Hu) was chosen with customized parameters to optimize the visualization of the exposome clouds of interest

in Gephi.

Chemicals post-acquisition analysis
The raw LC-MS data files were centroided with PAVA (Guan et al., 2011) and converted to mzXML format by a customized R script.

Mass feature extraction was performed with XCMS v1.30.3. The mass features were then manually searched against the Metlin

metabolite database using 5 p.p.m. mass accuracy, with Toxicant search turned on. A portion of the metabolite hits were validated

using standards that were analyzed in an identical fashion (e.g., Figure S9). The scored mass features were clustered with SIMCA

v14.1(Umetric, Malmö, Sweden). For a conservative assessment of the number of unique chemical features, we developed a custom-

ized Python script to remove potential isoforms, isotopes, and adducts from the 3,299 xcms-extracted putative chemical features

that were enriched at least 10-fold as compared with the blank control. Filter windows of m/z differences (± 0:0015, corresponding

to 6 p.p.m at 500 m/z or 10 p.p.m at 300 m/z) and retention time (± 0:1 min) were applied. We estimated the total number of at least

2,796 unique chemical features that cannot be considered as isoforms (e.g., the same mass within the same retention time window),

isotopic mass species (13C for M+1, 34S or 18O for M+2), or adducts (-H2O, +Na, +NH4, +Cl) of another feature in the data. We note

however that all adducts and modifications of compounds are not known so this estimation is tentative. The predicted accurate

masses for isotopic peaks and adducts were obtained from XCalibur (V2.2 Thermo), the same software used to acquire all mass

spectrometry data in this study.

Identification of genera that influence sample clustering patterns in the four-people tracking study
We investigated which genera influenced the clustering patterns (Figure 3H). P6’s device captured signatures of Alkanindiges,

Metaseiulus, Propionibacterium, and Mogibacterium genera (Figure 3H navy boxes). Alkanindiges is a genus of bacteria typically

found in an urban environment, usually in sludge;Metaseiulus is a type of mite frequently found indoors; Propionibacterium, a genus

of bacteria, is usually found on human skin; Mogibacterium is an obligate anaerobic bacterial genus that is associated with human

periodontitis. These genera are expected in urban/indoor/human environment, consistent with P6’s location. In contrast, P1’s more

active schedule led to significant amounts of plant and fungi exposures (Figure 3H, green boxes). Overall, these results demonstrate

an important role of spatial/lifestyle-related variables in our exposome dynamics.

DATA AND SOFTWARE AVAILABILITY

The raw sequencing reads for DNA and RNA, as well as the co-assembled contigs from the DNA andRNA reads, are deposited under

the NCBI Bioproject PRJNA421162. The main analysis script was written in the Rmarkdown format and is attached as Data S1. The

detailed information for contigs assigned as Rotifer and Apicomplexa is included in the Data S2. Please see the Key Resources Table

for availability of other software.
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Supplemental Figures

Figure S1. A Highly Sensitive Non-Targeted Method to Track Personal Exposomes, Related to Figure 1

(A) A representative 22 mm circular filter (left) after collecting samples (gray area); a representative zeolite adsorbent cartridge (right) collecting chemical

compounds. The 1.5 mL Eppendorf tube is positioned next to the cartridge as a reference.

(B and C) The pipeline is capable of detecting as few as 10 spiked-in E. coli cells on the filter (B) and detecting a wide variety of viruses (C), including several

respiratory viral species at the 200-400 copies level. All listed viruses were mixed together and then spotted onto a filter prior to the extraction.

(D) Selected SEM images of captured biological/inorganic substances. Top row, front (left) and back (right) side of the filter; Second row, unknown

biological substances; Third row, close-up of the stem rust spore (left), brochosomes (right); Fourth row, both panels show pollens of a Eucalyptus

species; Fifth row, inorganic substances (left) and unknown substances (right); Sixth row, potential dander (left) and potential hair (right). All scales are

indicated on the images.

(legend continued on next page)



(E) Spike-in tests showing that the amount of DNA and RNA materials are at the level of 500-5000 fg/sample. Serial dilutions (50, 500, 5000 fg) of PhiX174 DNA

were mixed in prior to linear amplifications. However, since only 1/10 of the extracted volume is used for amplification, the total amount on the original filter is ten

times higher.

(F) Tracked locations of P1, P2, and P3 in the North America region. P1 (green), P2 (dark blue), and P3 (red). P1 traveled to diverse locations.

(G) Density plot of read counts per sample for DNA and RNA, respectively. Read counts are calculated after reference-free pair-ended reads deduplication.

(H) Fraction of genera with zero relative abundance in each sample, drawn separately for DNA and RNA. This distribution is referred to as the zero-inflated

distribution, typical to microbiome and single-cell studies.

(I) Density plot of log(total arcsinh transformed CPM) of each genus. There is a very broad dynamic range of abundance level (more than 15 orders of magnitude)

for both DNA and RNA data.

(J) Mean-variance relationship for each genus in DNA and RNA dataset, both in log scale. The linear relationship is typically observed inmicrobiome and RNA-seq

data; hence variance-stabilization transformation is needed prior to further analysis.



Figure S2. A Robust and Reproducible Method to Extract Information from Personal Environmental Exposures, Related to Figure 1

(A) Amplified cDNA concentration (ng/ml) of extractions from control filters (red) and sample filters (blue), respectively. cDNA concentrations were measured after

single primer isothermal linear amplification of synthesized double-strand cDNA from extracted RNA samples. A significant difference between the two groups

can be observed, indicating that the amount of contamination is orders of magnitude lower (plotted in log scale) than that of sample filters.

(B) qPCR results using universal bacterial primers (16 s rDNA) demonstrate that the DNAmaterials on the sample filters are estimated to be 9–17 times more than

that of the blank/control filter. Note that various mock samples using a mixture of E. coli, B. subtilis, and yeast cells were also included in the graph.

(C) DNA sequencing reads generated from blank/control filters tend to have much less complexity than that of sample filters, as illustrated by the number of

assembled fragments (right y axis) as well as the number of assembled bases (left y axis, out of 300M bases for each filter). The Blank, Sample filter #1 (S #1),

Sample filter #2 (S #2), and the Mock filter correspond to the same filters in (B).

(legend continued on next page)



(D) Overall, the sample filters and control filters showed very distinct composition profiles. Briefly, the sample filters were dominated by fungal signatures and the

blank/control filters were dominated by bacterial signatures.

(E) Putative contaminating species on blank/control filters (red) have much less SNP density, nucleotide diversity (PI), and coverage width (percentage of

genomes covered) than their counterparts identified on the sample filters (blue). Reads from control and sample filters were sub-sampled to the same coverage

for each species respectively for population genetics analysis. Except for E. coli, which probably is a true contaminating species, due to its role in the production

of various reagents kits, all other species show orders of magnitude higher SNP density, nucleotide diversity (PI), and percentage of genome covered in sample

filters compared to control filters. This indicates that although certain species can be detected in both control filters and sample filters, the significant difference in

their SNP density and nucleotide diversity given the same sequencing coverage suggests that they came from completely different sources.

(F) Nucleotide diversity versus sequencing coverage plot for the species Propionibacterium acnes. As the coverage increases, we do not observe an increase in

nucleotide diversity, which may arise because of the pre-library amplification steps to overcome the low input materials. The ‘‘0.5 barrier’’ observed is a result of

theoretical limit of nucleotide diversity for positions in which only two alleles were observed. This result indicates that our amplification protocols do not introduce

artificial nucleotide diversity despite with high coverage.

(G) Visualization of SNP positions and nucleotide diversity in the species Propionibacterium acnes identified from control filters (blue) and sample filters (red).

Second row shows the relative positions of these SNP sites in the genome. Third row provides a zoomed-in view of a region of the genome.

(H) While the same species detected in the samples and control filters may share 7709 SNP sites, they only share similar 460 SNP profiles across the entire

genome (SNP profiles are defined by the compositions of individual alleles observed at each SNP site). This indicates that the same species detected in the

sample and control filters share little genomic mutation profiles at the population level.

(I) Same analysis as in (G), except now applied to Streptococcus pneumoniae, producing very similar results.

(J) The detailed bioinformatics pipeline for processing raw reads into contigs, taxonomy profile, as well as for population genetics analyses. Contigs can be used

for functional analyses, viral detection, and contig-based population genetics analyses.

(K) A comparison of the performance of Universal Fragment Classification (UFC) pipeline against other commonly used reads/fragments classification pipelines.

UFC significantly outperforms both. Of special note, UFC package was capable of detecting large portions of Viridiplantae (plants) and Metazoa (animals),

whereas other pipelines could not. This is mostly due to that fact that UFC pipelines leverages on the expansive pan-domain database and the highly sensitive

BLASTN algorithm.

(L) A pipeline test with side by side parallel sample collection-extraction-amplification-library preparation-sequencing was done to demonstrate that our

approach is highly reproducible and consistent, down to the abundance at the species level (R = 0.9085).



Figure S3. Development and Additional Characteristics of the Method, Related to Figure 1

(A) The stability test of cowpeamosaic virus 2 (CPMV2) viral particles (1000 copies) in solution or loaded on a filter with 0.5L/min flow in the device for up to 6 days

at room temperature. Viral particles in PBS solution outperforms those on filter, but no obvious decay of signal was observed in either case over the time course of

six days. This indicates that the initial loss of signal was purely due to the usage of the filter, which adheres to viral particles and resulting in less efficient nucleic

acids extraction.

(B) The amount of cDNA amplified from the RNA extraction is linearly correlated with the number of days of collection. In general, more collection days led tomore

nucleotide materials extracted from the filter, as expected.

(legend continued on next page)



(C) Rarefication curve of the number of species detected using sequencing reads data from a particular sample filter. Sampling coefficient 1 denotes the median

number of reads per sample (�62M reads). This particular sample was sequenced three times hence a sampling coefficient larger than 1 is possible. Overall, more

species were detected as more reads were included in the analysis, although there is a diminishing return as the sampling coefficient increases.

(D and E) Chemical extraction and detection pipeline is highly sensitive (D) and can be validated (E). In order to test the detection capacity of the chemical pipeline,

a small slice of orange peel was placed inside a 50 mL falcon tube in which the chemical compound capturing beads were also present (purple). A control tube

was set up the same way without the orange peel (D, bottom). Two representative chemicals, among others, were extracted from the beads in the experimental

tube but not from the beads in the control tube. Both chemicals are related to the orange peel. One of the chemicals, Nobiletin, was validated independently with

purchased Nobiletin compound (E).

(F) An alternative visualization of the phylogenetic tree (Figure 1F) featuring identified species in all samples.

(G and H) The detection of various kinds of arthropods and one Oomycetes species in our samples (G) and their validations (H). Briefly, the Oomycetes species

Phytophthora lateraliswas frequently detected in samples over time. In addition, we detected fair amount of signatures fromRhagoletis zephyria (a type of fly; may

be a techinical artifact as shown in the variation decomposition analysis) and Aedes albopictus (a type of mosquito) in our samples. The putative Rotifera species

Adineta vaga was detected with very high abundance in one particular sample collected during a thanksgiving period as described in the main text (last plot).

Metaseiulus occidentalis, Dermatophagoides farinae, and Tetranychus urticae are different types of mites; Pediculus humanus is a type of louse; Apis mellifera is

the honeybee;Blattella germanica is a type of cockroach; the rest are fly species. For each species, only samples with relative abundances higher than 10%of the

maximum relative abundance (CPM) are labeled. The percentage identity, alignment percentage and log(bit scores) of all contigs for corresponding species are

plotted in (H).

(I) Validation statistics for the Apicomplexa phylum. Note for different species, the metrics could vary significantly, indicating that the actual detected species for

most cases are phylogenetically closely related organism. For bit scores, a log median score higher than 2.5 is considered rigorous enough.



Figure S4. Taxa Correlations and Pathogen Analyses of the Exposome, Related to Figure 2

(A and B) Extensive taxa correlations were observed at the genus (A) and the phylum (B) level. Notably, large blocks of correlating genera were observed,

indicating potentially similar environmental niches of the said genera. Interestingly, four bacterial phyla–Proteobacteria, Firmicutes, Bacteriodetes, and

Actinobacteria—all of which lacked seasonal dynamics, formed their own block in (B), reflecting their potential role in the human-related exposome cloud. On the

other hand, the more environment-oriented bacterial phyla–Cyanobacteria, Acidobacteria, and Chloroflexi—form a trans-domain block with the fungal phylum

Ascomycota, the animal phylum Chordata and the archaeal phylum Thaumarchaeota in (B); all of which are relevant to environmental exposures. Only

correlations with adjusted p value < 0.05 are shown, the BH method was used to adjust p values matrix from correlation calculation.

(legend continued on next page)



(C and D) Exposure to opportunistic bacterial pathogens are common; exposures to potential real bacterial pathogens (red boxes) are sporadic and relatively low

abundance. Species affecting human respiratory and gastrointestinal systemswere identified from samples. Some of the notable species (median identity > 95%)

are Streptococcus pneumoniae, Bacillus anthracis, Clostridium perfringens, Haemophilus influenzae, and Haemophilus parainfluenzae. For each species, only

samples with relative abundances higher than 10% of the maximum relative abundance are labeled. The percentage identity, alignment percentage and log(bit

scores) of all contigs for corresponding bacterial species in (C) are plotted in (D). It is notable that quite a few species have relatively high percentage identity and

alignment coverage when compared to the reference genomes (two dashes lines correspond to 95% (top) and 90% (bottom) percentage identity, respectively).

This suggests that their taxonomy assignments are potentially real, although this does not validate the pathogenicity of the involved strains.

(E and F) Extensive exposures to various molds were detected. Frequency of exposures range from infrequent (Stachybotrys chartarum, also known as black

mold) to very common (Penicillium capsulatum and Aureobasidium pullulans, which can cause ‘‘humidifier lung’’). Similar to bacterial opportunistic pathogens,

the frequently exposed mold species are usually not harmful to population unless immunocompromised. For each species, only samples with relative abun-

dances higher than 10% of the maximum relative abundance are labeled. The percentage identity, alignment percentage and log(bit scores) of all contigs for

corresponding fungal species in (E) are plotted in (F).

(G) AlthoughUFCpackagewas not built to specifically detect viral species, its performance is equivalent or better than dedicated virus detection package such as

Viromescan, which failed to detect 8–10 top viral species in the exposome data. For bit scores, a log median score higher than 2.5 is considered rigorous.



Figure S5. Functional Transcriptomic and Allergen Analysis, Related to Figure 2
(A) Pie-chart showing the taxonomy composition of RNA contigs classified at the kingdom/sub-kingdom level. Consistent with Figures 2C–2F and as expected,

Bacteria predominates, a stark contrast to the DNA contigs results (Figure 1F, pie chart).

(B–D) The functional analyses of RNA transcriptome based on protein clans database (B), Pfam database (C), and COG database (D). These databases are in

addition to the GO term database we described in the main text and reflected different functional aspects of the exposome dataset. Overall, the functional

analyses reveal very domain-specific annotations. For example, in COG annotations, the kingdom viruses are found to have way more proportions of genes

dedicated to replication, recombination and repair mechanisms, aswell as nucleotide transport andmetabolism. Interestingly, the kingdomArchaea also seem to

(legend continued on next page)



have increased proportions of genes dedicated to these mechanisms. In Pfam annotations, both viruses and archaea also have many exclusive functional

domains, such as 7kD_coat, mRNAcap, Viral methyltransferase for the viruses domain; FtsZ_C, PAS_3, and HSP20 for the Archaea domain.

(E) Relative proportions of different types of allergens identified in the samples. (F) The relative proportions of different types of allergens at the family level.

(G) Thirty-one allergens identified across Fungi, Viridiplantae, and Metazoa kingdoms. Several allergen proteins can be identified from the same species.

(H) Allergens in Cupressaceae and Aspergillaceae families are influenced by season in various geographic locations.

(I–K) Families of allergens that show seasonal patterns in all P1’s samples (I), P1’s samples collected fromUSWest (J), and P1 samples collected fromUSEast (K).

Non-parametric statistical method Kruskal Wallis test is used due to the non-normal distribution of the data. All p values are adjusted using the BH method for

multiple comparisons.



Figure S6. Summary of Collected Meta-Variables and the Construction of Moran Eigenvalue Map Variables for Variation Partition of the

Exposome Data, Related to Figure 3

(A) Plotting of Moran Eigenvalue Map (MEM) variables on world map. Briefly, GPS coordinates of each sample are evaluated based on actual tracking data or

travel log. These coordinates are then used for constructing Moran Eigenvalue Map variables which essentially deconstruct the geographic coordinates to

represent the broad and fine scale spatial structures in provided spatial information. For example, MEM1 has the highest value in Asia/Australia and the lowest

value in USA (with Europe in-between), suggesting that MEM1 represents the geographic differences on continental scale.

(B) The correlation map of all collected meta-variables (64 variables). Multi-level categorical variables are recoded into binary tables with each level represented

independently. Many correlating variables can be observed. Only correlations with adjusted p values < 0.05 are shown.

(legend continued on next page)



(C) Detrended Correspondence Analysis (DCA) of all exposome data. The axis lengths for DCA1 and DCA2 are 1.795 and 1.396, respectively. This indicates that

the environmental gradients are short and linear in the exposome data. Henceforth PCA, RDA, or dbRDA methods can be used in analysis.

(D) The Adonis analysis of forward-selected variables used in the dbRDA analysis in this study. Adonis is an improved version of permutational multivariate

analysis of variance (PERMANOVA). Different color indicates membership of corresponding groups: cyan, environment-related; yellow, location-related; purple,

batch-related. The adonis analysis is also capable of partitioning variation at the individual variable level. Most variables are self-explanatory; mLAI, mFPAR, and

mNDVI are different forms of vegetation index. MEM variables are listed as shown in (A); Overall.AQI.Value is the air quality index; popdensity is the population

density of respective location; urban.bi is a binary variable indicating whether the location can be considered as urban/rural; in_in_a_day is a variable to describe

how much time relatively has the individual spent indoor during each sampling period.

(E) Results of variation partition of all samples with forward-selected variables (top) or all variables (bottom) using dbRDA after grouping variables into categories;

these numbers were used to plot Figure 3A. Theoretically, including all variables in dbRDA analysis would provide themost optimistic estimation of total explained

variation, at the cost of statistical power to assess contributions of individual group/variable due to multicollinearity.



Figure S7. Spatial/Lifestyle Influence on Human Exposome, Related to Figure 3

(A) Samples from P1’s ‘‘Campus’’ location (within campus) are more similar to one another than samples from non-‘‘Campus’’ (other) sites across all sampling

period.

(B) PCA analysis of samples of P1 during two-month period (2016-06 to 2016-08). Left, samples collected from the ‘‘Campus’’ location (orange) are clustered

compared to other locations. P1 frequently travels from (red dashed arrows) and to (blue dashed arrows) the ‘‘Campus’’ location. Dark blue dashed arrows

indicate movements either within the ‘‘Campus’’ cluster or between traveling locations. Middle, Bray-Curtis distance profiles show that two samples are more

similar when they are from the ‘‘Campus’’ location (within Campus), compared to when they are from different locations. Right, Variable plot showing the

contributing genera with respect to the PCA analysis. Color indicates relative contribution of each genus. All ellipses are drawn with axes equal to the standard

deviation of the data unless noted otherwise.

(legend continued on next page)



(C) Analyses of all samples’ DNA data at the genus level. Panels from left to right: scree plot, PCA result colored by geography, and variable plot of the PCA

analysis.

(D) Analyses of P1 samples’ DNA data at the genus level. Panels from left to right: same as in (B). Samples from Asia form its own cluster in both cases. Color of

variable plots indicate relative contribution of individual variables to the PCA analysis.

(E and F) Sampling scheme of all individuals in this study, colored by geography (E) or seasons (F). Note that the samples collected from Asia belonged to multiple

individuals, including P1, P7, P8, and others. The season-colored plot is an exact duplicate of Figure 1C for the purpose to demonstrate that there are no intrinsic

location/geography – season biases.

(G) Plot of the Adj. p values of all 100 differentially abundant genera between P1’s ‘‘Campus’’ and non-‘‘Campus’’ locations. All of the Adj. p values are less than

0.05. The color indicates the difference between themean of relative abundances in the ‘‘Campus’’ and non-‘‘Campus’’ location for respective genus. Briefly, blue

color indicates that the genus is more abundant in the ‘‘Campus’’ location and red color indicates the opposite. Arrowsmark the genera with higher abundance in

non-‘‘Campus’’ location. Inset table show that samples from the ‘‘Campus’’ and non-‘‘Campus’’ locations are evenly distributed across seasons, no seasonal bias

was observed.

(H) Personal exposome is influenced by individual’s work-home routines and activity level. Left panel, PCA result of four individual’s exposome data with added

location labels; note that P3 took a short trip to New York City (NYC) during one of the sampling period. Right panel, all samples were extracted in the same

batch 24.

(I) Intra-individual samples are more similar. Left panel, graph-based permutation test (N = 9999) showing that intra-individual samples are significantly more

similar. Right panel, Bray-Curtis distance analysis of samples belonging to the same individual against samples belonging to the different individuals. P1 samples

were removed from the analysis due to the large variations.



Figure S8. Seasonal Influence on Human Exposome, Related to Figure 4

(A) Analysis of P1’s samples at the ‘‘Campus’’ location to demonstrate seasonal effects when location influence is removed. Panels are PCA analysis (1st),

variable plot (2nd), and Bray-Curtis distance analysis (3rd), as well as the graph-based permutation test (4th) demonstrating the seasonal differences and what

genera drive such differences.

(B) Top, The seasonal trends of the top 9 phyla detected the in DNA exposome profiles. Bottom, the plotting of Adj. p values of differential abundant genera across

four seasons in all samples. All Adj. p values are less than 0.05.

(C) Seasonal influences on various fungal, bacterial (Staphylococcus epidermis), and plant species (Betula nana).

(D) A representative plot showing how hyper-parameter lambda for feature selection is selected during the internal training process of the machine learning

algorithm; the lambda is chosen based on the minimum value of multinomial deviance.

(legend continued on next page)



(E and F) The ROC curve (E) and the confusion table (F) of the predictive results on P20s exposome data using the model trained on P1’s

exposome data.

(G) Additional season-predicting genera selected by the machine learning algorithm, all of which exhibit relevant seasonal patterns. Specifically, flavobacterium,

which is also highlighted in the main text, is a bacteria aquatic genus that is found in water bodies and typically peaks during winter season.



Figure S9. The Abiotic Exposome Is Diverse, Related to Figure 5

(A) Overview of chemical features detected in positive and negative modes of LC-MS. Briefly, around 3,300 chemical features were detected, and only

972 features could be annotated when querying against the METLIN database.

(B) Frequency plot of features with different folds’ enrichment, cutoff is set at 10 for downstream analysis.

(C) Density plot ofm/z ratios for features detected in the positivemode (yellow) and the negativemode (blue). Of note, features detected in the negativemode have

a much smaller m/z ratios and an unimodal distribution, whereas features detected in the positive mode are more uniformly distributed across the spectrum.

(D) Max feature abundance detected in the positive (left) and the negative (right) mode, plotted against background abundance in the blank control. Most features

have low abundance in samples and blanks.

(E) The theoretical limit for feature abundance is between 5e7 and 5e6 (hence the ‘‘dashed line’’). The insect repellent DEET is labeled on the plot, which is

significantly enriched (E) The ordination of 15 chemical examples in triplicates, using the O2PLS-DA model. Tight clustering of triplicates is observed,

demonstrating the reproducibility and reliability of the chemical detection pipeline.

(legend continued on next page)



(F) The PCA analysis on fuzzy c-means clustered chemical features. Each cluster is named after their color. Specifically, ‘‘Green,’’ ‘‘Cyan,’’ and ‘‘Red’’ are the three

high quality clustered referred in the main text. The ‘‘Navy’’ and ‘‘Salmon’’ clusters are more scattered.

(G) LC-MS validation of selected chemicals detected in the exposome samples. Specifically, DEET is the commercially available insect repellent; Hexanoic acid,

Octanoic acid, and Decanoic acid are various kinds of body scent chemicals or industrial ingredients in household products such as disinfectants; Phthalate is a

plastic-related chemical; Diethylene glycol (DEG) is a carcinogen; and Omethoate is a pesticide; Pyridine is a common organic solvent for industrial use (e.g.,

found in paint). The XlogP3 values are calculated hydrophobicity values for each compound retrieved from PubChem. Positive values indicate that the chemicals

are hydrophobic while negative values indicate that the chemicals are hydrophilic. For references, the XLogP3 values of some common chemicals are: ATP,�5.7;

glycerol, �1.8; water, �0.5; methanol, �0.5; phenol, 1.5; benzene, 2.1; Oleic acid, 6.5; and cholesterol, 8.7.



Figure S10. Integrated Analysis of the Biotic (Biological) and Abiotic (Chemical) Exposomes, Related to Figure 5

(A–C) from left to right–scree plots, PCA results with location labels and ellipses based on season, bi-plots, and variable plots–of chemical exposome (A),

biological exposome at the genus level (B), and biological exposome at the species level (C). Specifically, the SF-CA and Davis-CA samples which are

geographically close are separated out in the chemical profiles analysis but not in the biological profiles analysis. Colored arrows depict relative importance of

each feature to the PCA analysis.

(D) List of chemicals of interests (left) and the correlationmap (right) of these chemicals with biological features (genus level). See Figure 5 for examples. A short list

of potential carcinogens is also included. Only correlations with a R > 0.7 and an adjusted p value < 0.05 are shown. Underscored chemical names were

experimentally validated in Figure S9G.

(E) sCCA analysis at the genus level. Top, scree plot; bottom, variable plot showing how biological and chemical features are negatively correlated.

(F) sCCA analysis at the species level. The results are very similar to sCCA analysis at the genus level, however individual species are identified instead.

Colored arrows in (E) and (F) depict the relative importance of each feature to the PCA analysis.



Figure S11. The Divergent and Interconnected Exposome Cloud, Related to Figures 6 and 7

(A) SNP density is highly correlated with the nucleotide diversity p across different domains of life.

(B) Sequencing coverage is correlated with SNP density in bacteria and fungi but not in viruses, presumably because of saturation of SNP detection in the viral

domain. Left, correlation plots by domain; right, correlation plot for all domains.

(C and D) Reference genome size is negatively correlated with SNP density (C), this effect cannot be explained by coverage variation alone (D), using the multi-

variate linear regression model.

(E) Reference genome size is highly correlated with effective genome size (number of positions with higher than 4x coverage), indicating that genomic positions

are randomly sequenced in the reference genomes, instead of being concentrated on a few highly amplified genomic fragments.

(legend continued on next page)



(F) SNP density is not correlated with the coverage depth (left) andwidth (right) in viruses, indicating that extremely high coverage as a result of either amplification

or natural abundance does not necessarily lead to extremely high SNP density. In addition, viruses with multiple chromosomes are also colored accordingly. We

observe that different chromosomes of the same viral species often share very similar SNP density even if their sequencing coverages differ.

(G) SNP density and nucleotide diversity of top viral species. Similar to the viruses plots in Figure 6, the difference here is that multiple chromosomes of the same

viral species are plotted separately. We observe that multiple chromosomes of the same viral species often share similar SNP density and nucleotide diversity,

further validating our SNP calling pipeline.

(H) Bacteria and its plasmids display different SNP density and nucleotide diversity. Plasmids (diamond shape) of three bacterial species (circle shape) were

included in the population genetics analysis. Notably, plasmids tend to have elevated SNP density, nucleotide diversity, and coverage, except for the

cyanobacterium Nostoc punctiforme. The elevated SNP density and nucleotide diversity cannot be explained by elevated coverage alone, suggesting that

plasmids may evolve faster.

(I) Variances of human-related species is significantly lower than that of plant-related, and plant/human-related species. Only species detected in more than

50 samples are included in the analysis.

(J–L) Personal exposome clouds of P1 (J), P2 (K) and P3 (L), all of which share the same basic configuration: environment-centric cloud versus human-centric

cloud. More samplings led to significant more diversity in the case of P1, yet all individuals were exposed to large amount of interacting species. For color legends

please see Figure 7.
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