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Extensive impact of non-antibiotic drugs 
on human gut bacteria
Lisa Maier1*, Mihaela Pruteanu1†*, Michael Kuhn2*, Georg Zeller2, Anja Telzerow1, Exene Erin Anderson1, Ana Rita Brochado1, 
Keith Conrad Fernandez1, Hitomi Dose3, Hirotada Mori3, Kiran Raosaheb Patil2, Peer Bork2,4,5,6 & Athanasios Typas1,2

Pharmaceutical agents have both beneficial and undesirable effects. 
Studies on the mechanisms of action and off-target spectra of vari-
ous drugs aim to improve their efficacy and reduce their side effects. 
Although many drugs have gastrointestinal side effects and the gut 
microbiome itself is pivotal for human health1, the role of the gut micro-
biota in these processes is rarely considered. Recently, consumption of 
drugs designed to target human cells and not microbes, such as anti-
diabetics (metformin2), proton pump inhibitors (PPIs)3,4, nonsteroi-
dal anti-inflammatory drugs5 and atypical antipsychotics (AAPs)6, has 
been associated with changes in microbiome composition. A larger 
cohort study suggested that medication can alter gut microbiome com-
position more generally7. As it is unclear whether such effects are direct 
and go beyond the few drug classes studied, we systematically profiled 
interactions between drugs and individual gut bacteria. We aimed to 
generate a comprehensive resource of drug actions on the microbiome, 
which could facilitate more in-depth clinical and mechanistic studies, 
ultimately improving therapy and drug design.

A high-throughput drug screen on gut bacteria
To systematically map interactions between drugs and human gut 
bacteria, we monitored the growth of 40 representative isolates upon 
treatment with 1,197 compounds in modified Gifu anaerobic medium 
(mGAM) broth, which partially recapitulates the species relative abun-
dances in human gut microbiomes8, under anaerobic conditions at 
37 °C (Extended Data Fig. 1a). We used the Prestwick Chemical Library, 
which consists mostly of off-patent Federal Drug Administration 
(FDA)-approved compounds with high chemical and pharmacologi
cal diversity. Most compounds are administered to humans (1,079), 
and they cover all main therapeutic classes (Supplementary Table 1). 
Three quarters (835) of the compounds are human-targeted drugs 
(that is, have molecular targets in human cells), whereas the rest are 
anti-infectives: 156 with antibacterial activity (144 antibiotics, 12 anti-
septics) and 88 effective against fungi, viruses or parasites (Fig. 1a).  

All compounds were screened at 20 μ​M, which is within the range of 
what is commonly used in high-throughput drug screens9.

For our screen to be representative of the gut microbiome of healthy 
individuals, we selected a set of ubiquitous gut bacterial species 
(Supplementary Table 2). Prevalence and abundance in the human gut, 
and phylogenetic diversity, were our main selection criteria (Extended 
Data Fig. 1b), although we were occasionally constrained by strain una-
vailability or irreproducible growth in mGAM. In total, we included 40 
human gut isolates from 38 bacterial species and 21 genera (Escherichia 
coli and Bacteroides fragilis were represented by two strains each), 
accounting together for 78% of the median assignable relative abun-
dance of the human gut microbiome at genus level (60% at species level; 
Extended Data Fig. 1c). Most strains were commensals, covering 31 of 
60 sequenced species detected at a relative abundance of 1% or more 
and prevalence of at least 50% in fecal samples from asymptomatic 
humans from three continents (Extended Data Fig. 1d). In addition, 
the set included four pathobionts (Clostridium difficile, Clostridium 
perfringens, Fusobacterium nucleatum and an enterotoxigenic strain 
of B. fragilis), a probiotic (Lactobacillus paracasei) and two commensal 
Clostridia species (C. ramosum and C. saccharolyticum). All 38 species 
are found in the gut of healthy individuals and are part of a larger strain 
resource panel for the healthy human gut microbiome8.

We screened all compounds in multiwell plates, measuring optical 
density over time to monitor growth, and quantifying the area under 
the growth curve (AUC) up to the time point at which controls with 
unperturbed growth transitioned to stationary phase (see Methods; 
Extended Data Fig. 2). We obtained at least three biological repli-
cates per strain, and these replicates correlated highly (Extended Data  
Fig. 2c). We then tested for significant deviations from the normalized 
AUC distribution of samples with unperturbed growth, combining  
P values across replicates and correcting for multiple hypothesis testing 
on the complete matrix of compounds and strains (see Methods; 
Extended Data Fig. 2). Drugs that significantly reduced the growth of 
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at least one strain (false discovery rate (FDR) <​ 0.01), were classified as 
hits with anticommensal activity (Supplementary Table 3a), reflecting 
their potential to modulate the human gut microbiota.

Of the 156 antibacterials tested, 78% were active against at least one 
species, typically with a broad activity spectrum (Fig. 1a, b). Inactive 
antibiotics belong mainly to the sulfonamides (which are inactive in 
our medium according to the manufacturer’s guidelines), aminoglyco-
sides (which have compromised activity under anaerobic conditions10) 
and specific antimycobacterial drugs. Antibiotics are used to inhibit 
pathogens, but as expected, also target gut commensals. The medi-
cal importance of this collateral damage to the resident microbiome 
has recently been becoming clearer11. Nevertheless, to our knowledge, 
drug–microbiome species relationships have not previously been 
mapped at this scale.

Notably, 27% of the non-antibiotic drugs were also active in 
our screen. More than half of the anti-infectives against viruses or 
eukaryotes exhibited anticommensal activity (47 drugs; Fig. 1a, b). 
Antibacterial activity has been previously reported for many of these 
drugs, including the antifungal imidazoles12 (11 in our screen), but 
not for others (for example, the antivirals saquinavir and trifluridine). 
More noteworthy is the anticommensal activity of 203 (24%) of the 
human-targeted drugs. Most were effective against only a few strains, 
with the exception of 40 drugs that affected at least 10 strains. Fourteen 
of these had, to our knowledge, not been previously reported to have 
direct antibacterial activity (Supplementary Table 3b). Among known 
human-targeted drugs with anticommensal activity, auranofin has 

recently been reported to have broad-spectrum bactericidal activity13, 
and the ovulation stimulant clomiphene inhibits a conserved bacterial 
enzyme in the synthesis of an essential precursor for cell wall carbohy-
drate polymers14. Such drugs or their scaffolds can be used for repur-
posing towards broad-spectrum antibiotics, especially as many have 
minimal inhibitory concentrations (MICs) in the sub-microgram per 
millilitre range (Supplementary Table 4). By contrast, the microbial 
narrow-spectrum specificity of most human-targeted drugs could aid 
the development of microbiome modulators.

Bacterial species showed varied responses to drugs, with the abun-
dant Roseburia intestinalis, Eubacterium rectale and Bacteroides vulgatus 
being the most sensitive, and γ​-proteobacteria representatives being 
the most resistant (Fig. 1a). Overall, species with higher relative abun-
dance across healthy individuals were significantly more susceptible 
to human-targeted drugs (P =​ 0.0012 based on Spearman correlation; 
Fig. 1c). This suggests that human-targeted drugs have an even larger 
impact on the gut microbiome, with key species related to healthy 
status15, such as major butyrate producers (E. rectale, R. intestinalis, 
Coprococcus comes) and propionate producers (B. vulgatus, Prevotella 
copri, Blautia obeum)16, and enterotype drivers (P. copri)17, being  
relatively more affected.

Dose relevance and validation of the drug screen
We sought to address how close the screening concentration (20 μ​M)  
was to drug concentrations in the terminal ileum and colon, where 
most gut microbes reside18. However, drug concentrations are 
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Figure 1 | Systematic profiling of marketed drugs on a representative 
panel of human gut microbial species. a, Broad impact of 
pharmaceuticals on the human gut microbiota. Compounds from the 
Prestwick Chemical Library are divided into drugs used in humans, drugs 
used exclusively in animals (vet) and compounds without medical or 
veterinary use (non-drugs). Human-use drugs are further categorized 
according to targeted organism. Strain–drug pairs (that is, instances in 
which a drug significantly reduced the growth of a specific strain; see 
Methods) are highlighted with a vertical coloured bar in the matrix. 
Bacterial strains are sorted by drug sensitivity. The relative abundances of 
each strain in four cohort studies of healthy individuals are displayed on 

the right (boxes correspond to interquartile range (IQR) and central line 
to median relative abundance). b, Fractions of drugs with anticommensal 
activity by sub-category. Grey scale within bars denotes inhibition 
spectrum (the number of affected strains per drug). c, Correlation between 
species abundance in the human microbiome and drug sensitivity. For 
each strain (n =​ 40), the number of drugs that affect its growth is plotted 
against its median relative abundance in the human gut microbiome. Lines 
depict the best linear fit, rS the Spearman correlation and grey shading 
the 95% confidence interval of the linear fit. All drugs, and in particular 
human-targeted drugs, inhibit the growth of more abundant species more 
than that of less abundant species.
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systematically measured only in blood; there, human-targeted drugs 
have on average an order of magnitude lower concentrations than in 
our screen (Fig. 2a, Extended Data Fig. 3). We deduced colon con-
centrations on the basis of drug excretion patterns from published 
work, and small intestine concentrations on the basis of daily doses of 
individual drugs (Supplementary Table 1) and a measured example of 
duodenal concentrations for the well-absorbed drug posaconazole19 
(see Methods). Based on these approximations, 20 μ​M was below the 
median small intestine and colon concentration of the human-targeted 
drugs tested here (Fig. 2a, Extended Data Fig. 3). Notably, human-
targeted drugs that showed anticommensal activity had lower plasma 
and estimated small intestinal concentrations than ones with no such 
activity (Fig. 2a; P =​ 0.0061 and P =​ 0.0035, respectively, two-sided 
Wilcoxon rank sum test; we have fewer colon concentration estimates 
owing to data availability), suggesting that more human-targeted drugs 
would inhibit bacterial growth if probed at higher doses, closer to 
physiological concentrations. A case in point is metformin, which was 
recently identified as the key contributor to changes in the human gut 
microbiome composition of patients with type II diabetes2, but lacked 
anticommensal activity in our screen. Metformin reaches 10–40 μ​M 
in the plasma of treated patients with type II diabetes, but its small 
intestine concentration is 30–300-fold higher20, which matches our 
estimates of small intestine and colon concentrations (1.5 mM). When 
we probed for higher, more physiological intestinal metformin concen-
trations, 3 of 22 tested strains were inhibited at concentrations below 
1.5 mM (Extended Data Fig. 4a).

We also benchmarked our screen with an independent set of 
experiments, measuring IC25 (the drug concentration conferring 25% 
growth inhibition) for 25 selected drugs in a subset of up to 27 strains 
(see Methods). This analysis revealed excellent precision (94%), but 
slightly lower recall (85%) (Extended Data Fig. 5a, b). False negatives, 
that is, drugs with anticommensal activity missed in our screen, were 
due to specific chemicals that probably lost activity during screening 
(Extended Data Fig. 5d), and our stringent FDR cutoff for calling hits. 
Increasing this cutoff to 0.1 would almost double the fraction of drugs 
with anticommensal activity (Extended Data Fig. 5c). In addition, 
we found that more species were inhibited at higher concentrations 
(Extended Data Fig. 5d, Supplementary Table 4), and that IC25 values 

were mainly below the estimated gut concentrations and occasionally 
below plasma concentrations (Extended Data Fig. 6).

Furthermore, we screened only a representative subset of species, 
but the gut microbiome of an individual harbours hundreds of species 
and an even larger strain diversity21. Rarefaction analysis indicates that 
if more gut species were tested, the fraction of human-targeted drugs 
with anticommensal activity would increase (Fig. 2b).

In summary, we probed human-targeted drugs largely within physio-
logically relevant concentrations and our data are likely to under-report 
the impact of human-targeted drugs on gut bacteria.

Concordance with patient data
Having demonstrated that many human-targeted drugs inhibit gut 
bacteria in vitro at relevant doses, we searched for evidence that such 
effects manifest in vivo in the human gut. We reviewed all available 
clinical cohort data from metagenomics association studies and com-
pared it to our screen if studies had enough statistical power and 
affected taxa that overlapped with those tested here. We found suit-
able studies for PPIs, AAPs, and seven further drugs, spanning alto-
gether five different drug classes according to Anatomical Therapeutic 
Chemical (ATC) classification. All three PPI representatives in our 
screen exhibited broad anticommensal activity, similar to the microbi-
ome changes that have been reported in patients taking PPIs3,4 (Fig. 3a):  
taxa with reduced abundance in patients exhibited reduced growth in 
our screen and taxa enriched in patients were rarely inhibited by PPIs  
in vitro (Extended Data Fig. 7a). This suggests that PPIs directly influ-
ence the gut microbiome composition, in addition to changing the stom-
ach pH and thus affecting which bacteria reach the gut3,4. Concordance 
was similarly high for many microbe–drug associations identified in a 
large Flemish cohort7 for the immunosuppressive agent azathioprine, 
the antidepressant venlafaxine, the anti-inflammatory mesalazine, 
aminosalicylate, progesterone, oestrogens and amoxicillin; the only 
exception was another antibiotic, nitrofurantoin (Extended Data  
Fig. 7b, c). We also compared our data to a study that reported a reduc-
tion in Akkermansia levels in the gut of patients treated with AAPs6. 
Our screen included six of the ten AAPs investigated in that study. We 
found that Akkermansia muciniphila was more sensitive than other 
strains to these AAPs (P =​ 0.09; two-sided Wilcoxon rank sum test), 
while being more resistant to other human-targeted drugs (P =​ 0.0005, 
two-sided Wilcoxon rank sum test; Extended Data Fig. 7d). Finally, 
we found high concordance between a longitudinal microbiome study 
of patients taking metformin and our IC25 data for the same drug 
(Extended Data Fig. 4b).

Metagenomics association studies and our in vitro study have 
distinct limitations. We screened a subset of species, mostly one strain 
per species, out of the context of microbial communities and the host. 
Cohort studies can be underpowered or biased by methodological 
approaches and confounding factors, and may detect indirect effects. 
Nonetheless, we find high concordance between the effects of drugs  
in vitro and in humans, confirming clinical relevance and direct anti-
commensal activity for the aforementioned cases.

To assess the physiological relevance of our screen further, we inves-
tigated the registered side effects of these drugs in humans. We first 
identified side effects enriched in antibiotics for systemic use compared 
to those found in all other drugs in the SIDER database22. We iden-
tified 69 side effects that were enriched in antibiotics (see Methods; 
Supplementary Table 5). These antibiotic-related side effects occurred 
more often in clinical trials of human-targeted drugs with anticommen-
sal activity than in trials of compounds that were inactive in our screen 
(P =​ 0.002, two-sided Wilcoxon rank sum test), whereas no significant 
difference was observed for placebo-treated patients (Fig. 3b). This 
suggests that the collateral damage of human-targeted drugs on gut 
bacteria can be detected by higher occurrences of antibiotic-like side 
effects in patients.

We then tested whether this side effect signature predicted anti-
commensal activity of human-targeted drugs, which we could have 

a b

Human-targeted drugs: With anticommensal activity
Inactive

n = 500

n = 153
 P = 0.0035

n = 401

n = 132
 P = 0.0061

n = 78

n = 99
 P = 0.5

Estimated colon concentration

Plasma concentration

Estimated small intestine concentration

1 × 10–4 1 × 10–2 1 × 100 1 × 102 1 × 104

Concentration (μM)

All compounds

Human-targeted drugs

Antibacterial drugs

0

100

200

300

400

0 10 20 30 40

Number of sampled strains
N

um
b

er
 o

f d
ru

gs
 w

ith
 a

nt
ic

om
m

en
sa

l a
ct

iv
ity

Figure 2 | Evaluating human-targeted drugs with anticommensal 
activity. a, Estimated small intestine and colon concentrations and 
measured plasma concentrations of human-targeted drugs with (orange) 
and without (grey) anticommensal activity in our screen (see Methods; 
Extended Data Fig. 3). For both active and inactive compounds, the 
median estimated small intestine and colon concentrations are higher than 
the screened concentration (20 μ​M, black vertical lines), whereas plasma 
concentrations are lower. Non-hits in our screen generally reached higher 
plasma and small intestine concentrations (two-sided Wilcoxon rank sum 
test). Box plots: centre line, median; limits, upper and lower quartiles; 
whiskers, 1.5×​ IQR; points, outliers. b, Rarefaction analysis indicates that 
anticommensal activity would be discovered for more human-targeted 
drugs if we screened additional strains.
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missed owing to the low drug concentration we used. We screened 26 
candidate compounds that showed enrichment of antibiotic-related 
side effects and 16 that did not (control compounds) for effects on the 
growth of 18 bacterial strains (Extended Data Fig. 8), in concentrations 
up to 2.5 mM (Methods). Twenty-eight of these forty-two compounds 
inhibited the growth of at least one strain (Extended Data Fig. 8a–d), 
with both the fraction of active compounds and the number of affected 
strains being similar for both candidate and control compounds. 
However, when we normalized the measured IC25 by the estimated 
intestine concentration (based on the recommended single drug dose) 
to make amounts comparable between drugs, a significant difference 
was evident. Drugs that were predicted to be active had a median IC25 
across all drug–strain pairs that corresponded to 4.3 drug doses, com-
pared to 12 for control drugs (P =​ 5.6 ×​ 10−7, two-sided Wilcoxon rank 
sum test; Fig. 3c). The IC25 corresponds to less than two drug doses in 
34% of drugs with predicted activity, compared to just 8% for control 
drugs. Similarly, the IC25 is below the estimated colon concentration 
for 16/52 (31%) of candidate drug-strain pairs and for only 5/50 (10%) 
of control drug-strain pairs (Extended Data Fig. 8e).

In conclusion, human-targeted drugs with anticommensal activity 
have antibiotic-like side effects in humans, and for the few studies avail-
able, consumption of these drugs led to changes in taxa we also detected 
to be inhibited in vitro, implying that more drugs with anticommensal 
activity reported here will have an impact in vivo.

Features of drugs with anticommensal activity
Drugs from all major ATC indication areas exhibited anticommensal 
activity, with antineoplastics, hormones and compounds that target 
the nervous system inhibiting gut bacteria more than other medica-
tions (Extended Data Figs 9a, 10). Three ATC subclasses (antimetabo-
lites, antipsychotics and calcium-channel blockers) were significantly 
enriched in hits (Extended Data Fig. 9a). Antimetabolites are used as 
chemotherapeutic and immunosuppressant agents, with their incorpo-
ration into RNA or DNA, or their interaction with synthesis enzymes 
being cytotoxic to human cells. Their molecular targets are often con-
served in bacteria23, explaining the observed effects and raising the 
possibility that antibacterial effects may also be directly involved in the 
development of mucositis during chemotherapy24.

The enrichment in antipsychotics is intriguing, given that they target 
dopamine and serotonin receptors in the brain, which are absent in 
bacteria. Although phenothiazines are known to have antibacterial 
effects25, nearly all subclasses of the chemically diverse antipsychotics  
exhibited anticommensal activity (Extended Data Fig. 9b). These drugs 
targeted a significantly more similar pattern of species than expected 
from their chemical similarity (P =​ 2 ×​ 10−19, permutation test; 
Extended Data Fig. 9c). This raises the possibility that direct bacterial 
inhibition may not only manifest as side effect of antipsychotics26, but 
also be part of their mechanism of action.

As different ATC indication areas contain chemically similar drugs, 
we investigated whether the chemical properties of drugs can influence 
their anticommensal activity (Extended Data Fig. 11a). To some degree, 
chemically similar human-targeted drugs had more similar effects in 
the screen than less similar drugs (Extended Data Fig. 11b). We tested 
several compound properties, including complexity, molecular weight, 
topological polar surface area (TPSA), volume and hydrophobicity 
(XLogP). Complex, heavier and larger compounds preferentially tar-
geted Gram-positive bacteria, whereas Gram-negative bacteria were 
protected against such bulkier drugs by their selective outer membrane 
barrier (Extended Data Fig. 12). Owing to the vast number of chemical 
moieties present in drugs with anticommensal activity, we did not 
attempt an exhaustive enrichment analysis. Nevertheless, we did 
observe reactive nitro-groups being enriched in drugs with anticom-
mensal activity (P =​ 6.4 ×​ 10−6, Fisher’s exact test), indicating that local 
chemical properties may confer antibacterial activity.

Human-targeted drugs may boost antibiotic resistance
There is a strong correlation between resistance to antibacterials and 
resistance to human-targeted drugs in our data that cannot be explained 
simply by general cell envelope composition, as there is no clear divi-
sion between Gram-positive and Gram-negative bacteria (Fig. 4a). We 
reasoned that more specific but common mechanisms could confer 
resistance to both drug groups. To test this hypothesis, we selected 
TolC, known to efflux several antibiotics in E. coli and other bacteria27, 
as a prominent representative of a general resistance mechanism against 
antibiotics. We profiled an E. coli Δ​tolC mutant and its parental wild 
type (BW25113) against the Prestwick Chemical Library. E. coli lacking 
TolC not only became more sensitive to antibacterials (22 hits more 
than wild type), but also became equally more sensitive to human-
targeted drugs (19 additional hits; Fig. 4a, Supplementary Table 6).  
This effect is not specific to E. coli or TolC, as a more antibiotic-
resistant B. uniformis strain (HM-715) was also equally more resistant 
to human-targeted drugs (Fig. 4a).

While our data support a strong role for common general resist-
ance mechanisms, there are also outliers to this trend, the most prom-
inent being C. difficile and P. distansonis (Fig. 4a). For both, strong 
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Figure 3 | Anticommensal activity of human-targeted drugs in vitro 
reflects patient data. a, Changes in microbiome composition of patients 
taking PPIs are consistent with drug effects in our screen. Displayed are 
Spearman correlation coefficients between in vitro growth inhibition 
P values and changes in taxonomic relative abundance after PPI 
consumption for corresponding taxa from two studies (Twins UK4 and 
Dutch3 cohorts; 229 of 1,827 and 211 of 1,815 individuals had taken PPIs, 
respectively). The histogram represents the background distribution of 
correlations between the in vitro data for all human-targeted drugs and 
the in vivo response to PPIs; correlations with PPIs are highlighted by 
triangles. b, Human-targeted drugs with anticommensal activity in our 
screen had a significantly higher incidence of antibiotic-related side effects 
(orange trace shows cumulative distribution, n =​ 285 drug–side effect 
pairs) in clinical trials compared to drugs without activity (grey trace, 
n =​ 767; P =​ 0.002, two-sided Wilcoxon rank sum test). Dashed lines 
indicate the incidence of the same side effects upon placebo treatment, 
with no significant difference between active (n =​ 138) and inactive drugs 
(n =​ 474). c, Based on similarity to antibiotic-related side effects, we 
selected 26 candidate and 16 control drugs for testing for anticommensal 
activity. Although both candidate and control drugs inhibited bacterial 
growth at higher concentrations, candidate drugs had anticommensal 
activity at significantly lower doses than control drugs after normalizing 
for estimated intestine concentrations (P =​ 5.6 ×​ 10−7, two-sided Wilcoxon 
rank sum test). Box plots as in Fig. 2a, n denotes number of drug-strain 
pairs.
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antibiotic resistance28 contrasted with relatively weaker resistance 
to human-targeted drugs. Similarly, an antibiotic-resistant B. fragilis 
strain, HM-20, was not equally resistant against human targeted drugs  
(Fig. 4a). These examples make the important distinction between 
specific antibiotic resistance mechanisms, which are irrelevant for 
resistance to human-targeted drugs, and more predominant, general 
mechanisms, which confer resistance to both drug groups.

To elucidate mechanisms conferring resistance against human-
targeted drugs more systematically, we used a chemical genetic 
approach29 and screened a genome-wide overexpression library in 
E. coli against seven non-antibiotics (six human-targeted drugs and 
niclosamide, an antiparasitic) that showed broad anticommensal 
activity in our screen. As wild-type E. coli was one of the most resist-
ant gut species (Fig. 4a), we used the Δ​tolC mutant, which is sensitive 
to most of these drugs, allowing us to probe further resistance mech-
anisms. For all tested drugs except metformin, overexpression of tolC 
rescued E. coli growth, as expected. Furthermore, we identified a num-
ber of diverse transporter families that contributed to resistance against 
these drugs (Fig. 4b). Many of them have previously been linked to anti-
biotic resistance30–33. Resistance was also acquired by overexpression 
of transcription factors (for example, rob, which controls efflux pump 
expression34), the ribosome maturation factor rrmA, which plays a role 
in resistance to the antibiotic viomycin35, and detoxification mech-
anisms (nitroreductases modify nitro-containing antibiotics36). For 
methotrexate, we validated the known primary target in bacteria (E. coli 
dihydrofolate reductase)37, illustrating the potential of this approach 
to identify bacterial mechanism of action of human-targeted drugs29.

All of these results point to an overlap between resistance mecha-
nisms against antibiotics and against human-targeted drugs, implying a 

hitherto unnoticed risk of acquiring antibiotic resistance by consuming 
non-antibiotic drugs.

Discussion
We report a systematic drug screen against a reference panel of 
human gut bacteria. Twenty-seven per cent of non-antibiotics (24% 
of human-targeted drugs) inhibited the growth of at least one species. 
As we demonstrated, this is likely to be an underestimate owing to 
stringent thresholds for calling hits and the limited selection of bacterial 
strains screened. Many of the direct in vitro effects described here may 
translate into microbiome shifts in vivo, because (i) we used concen-
trations within the range of what is estimated to be found in the human 
gut for many drugs; (ii) our observations agree with the few clinical 
microbiome studies for which medication has been recorded; and  
(iii) the side effects of anticommensal drugs in humans resemble those 
of antibiotics. Thus, our results underscore the necessity of accounting 
for potential medication-related confounding effects in future micro-
biome disease association studies. Moreover, one could speculate that 
pharmaceuticals, used regularly in our times, may be contributing to a 
decrease in microbiome diversity in modern Western societies38.

Although the antibacterial potential of human-targeted drugs has 
been profiled repeatedly in the quest for new antimicrobials, previ-
ous efforts have focused on pathogenic and often multi-drug-resistant 
(MDR) bacterial species9,13,14. We demonstrate that some of these 
species or their commensal relatives are the most drug-resistant in 
our screen (for example, γ​-proteobacteria: Bilophila wadsworthia and  
E. coli were affected by 2 and 4–7 human targeted drugs, respectively), 
that many human-targeted drugs have species-specific effects, and 
that resistance mechanisms to antibiotics and human-targeted drugs 
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Figure 4 | Antibiotic resistance mechanisms protect against human-
targeted drugs. a, Susceptibility to antibacterial agents and human-
targeted drugs correlates across the 40 tested strains (Spearman 
correlation, rS =​ 0.6 and a line depicting the nonlinear least-squares 
estimate of the odds ratio, OR =​ 0.06), suggesting common resistance 
mechanisms against both drug types. Knockout of a major antibiotic efflux 
pump (tolC) in the laboratory E. coli strain BW25113 (which behaves like 
the other two commensal E. coli strains in the screen) makes E. coli equally 
more sensitive to both antibacterials and human-targeted drugs. Two 
antibiotic-resistant isolates of B. fragilis (black square, HM-20) and  
B. uniformis (black diamond, HM-715) were screened in addition to the 
main screen, with only the latter showing a similar increase in resistance 
towards human-targeted drugs. b, Chemical genetic screen of an E. coli 

genome-wide overexpression library in seven non-antibiotics; all screens 
except for metformin were performed in Δ​tolC background to sensitize 
E. coli to these drugs. Genes that when overexpressed significantly 
improved the growth of E. coli in the presence of at least one of the drugs 
are shown here; genes in bold have been previously associated with 
antibiotic resistance. Among them are genes encoding for transporters 
from different families: DMT (drug metabolite transporter), MFS (major 
facilitator superfamily), MATE (multidrug and toxin extrusion), SMR 
(small multidrug resistance) and ABC (ATP-binding cassette). Growth is 
measured by colony size (median n =​ 4)40, colour depicts the normalized 
size difference from the median growth of all strains in the drug (more 
than sixfold difference), and dot size the significance (FDR-corrected 
P <​ 0.1). Control denotes the growth of the library without drug.
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partially overlap (thus, MDR species may be more resistant to human 
drugs too). Together, these findings explain why previous efforts have 
failed to register how many human-targeted drugs can inhibit bacteria.

Many pharmaceuticals influence the human gut microbiota. As 
gut bacteria, in turn, can also modulate drug efficacy and toxicity39, 
the emerging drug–microbe network could guide therapy and drug 
development. The resource described here opens up new avenues for 
translational applications in mitigating drug side effects, improving 
drug efficacy, repurposing of human-targeted drugs as antibacterials 
or microbiome modulators, and controlling antibiotic resistance (see 
Supplementary Discussion). However, before any translational appli-
cation can be pursued, our in vitro findings need to be tested rigorously 
in vivo (in animal models, pharmacokinetic studies and clinical trials) 
and understood better mechanistically.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Bacterial strains and growth conditions. Bacterial isolates used in this study were 
purchased from DSMZ, BEI Resources, ATCC and Dupont Health & Nutrition, or 
were gifts from the Denamur Laboratory (INSERM). All strains were recovered in 
their recommended rich medium (resource and literature). The screen and valida-
tion experiments were performed in mGAM (HyServe GmbH & Co.KG, Germany, 
produced by Nissui Pharmaceuticals)41, as almost all species could grow robustly 
in this medium in a manner that is reflective of their gut abundance8. Because we 
selected for robust growth, potential positive effects of drugs on growth could not 
be detected. Only one strain was grown in Todd-Hewitt Broth (Sigma-Aldrich), 
one in a 1:1 mixture of mGAM and gut microbiota medium42 and, for one strain, 
mGAM was supplemented with 60 mM sodium formate and 10 mM taurine (see 
also Supplementary Table 2). All media were pre-reduced at least 1 day before use 
under anoxic conditions in an anaerobic chamber (Coy Laboratory Products Inc.) 
(2% H2, 12% CO2, rest N2) and all experiments were performed under anaerobic 
conditions at 37 °C unless specified otherwise. No statistical methods were used 
to predetermine sample size.
Species selection. To select a representative core of species in the human gut 
microbiome, we analysed 364 fecal metagenomes from asymptomatic individuals 
from three continents43–46. Species were defined and their abundance quantified as  
previously described47,48. A core set of 60 microbiome species was defined 
(Extended Data Fig. 1b–d), and from this core, 31 species were selected for this 
screen. Seven additional species were selected for reasons explained in the main text.
Screen of the Prestwick Chemical Library. Preparation of screening plates. The 
Prestwick Chemical Library was purchased from Prestwick Chemical Inc. with 
compounds coming dissolved in dimethyl sulfoxide (DMSO) at a concentration 
of 10 mM. Compounds were re-arrayed to redistribute the DMSO control wells in 
each plate and to minimize the total number of 96- and 384-well plates (4 ×​ 384-
well plates or 14 ×​ 96-well plates). At the same time, drugs were diluted to a con-
centration of 2 mM to facilitate further aliquoting, and these plates were stored at 
−​30 °C. For each experimental batch (10 replicates in 96-well plates; 20 replicates 
in 384-well plates), we prepared drug plates in the respective growth medium  
(2×​ for 96-well plates, 1×​ for 384-well plates), and stored them at −​30 °C until use 
(maximum 2 months). Before inoculation, plates were thawed and pre-reduced in 
the anaerobic chamber overnight. The Biomek FXP (Beckman Coulter) liquid han-
dling system was used for all rearranging and aliquoting of the library compounds.
Inoculation. Strains were grown twice overnight to make sure we had a robustly 
and uniformly growing culture before inoculating the screening plates. For 96-well 
plates, the second overnight culture was diluted to fresh medium in order to reach 
2×​ the desired starting optical density (OD) at 578 nm. Next, 50 μ​l of this diluted 
inoculum was added to wells containing 50 μ​l of 2×​ concentrated drug in the 
respective culture medium using a multichannel pipetter. The final drug concentra-
tion was 20 μ​M and each well contained 1% DMSO. We inoculated 384-well plates 
with a 384 floating pin replicator VP384FP6S (V&P Scientific, Inc.), transferring 
1 μ​l of appropriately diluted overnight culture to wells containing 50 μ​l of growth 
medium, 1% DMSO and 20 μ​M drug. For bacterial species that reached lower OD 
in overnight cultures we transferred twice 1 μ​l of appropriately adjusted OD culture. 
For both 96- and 384-well plates, the starting OD was 0.01 or 0.05, depending on 
the growth preference of the species (Supplementary Table 2).
Screening conditions. After inoculation, plates were sealed with breathable membranes 
(Breathe-Easy) to prevent evaporation and cross-contamination between wells, and 
incubated at 37 °C without shaking. Growth curves were acquired by tracking OD 
at 578 nm with a microplate spectrophotometer (EON, Biotek). Measurements were 
taken every 1–3 h after 30–60 s of linear shaking, initially manually but later automat-
ically using a microplate stacker (Biostack 4, Biotek), fitted inside a custom-made 
incubator (EMBL Mechanical Workshop). We collected measurements for 16–24 h. 
Each strain was screened in at least three biological replicates.
Normalization of growth curves and quantification of growth. Growth curves were 
analysed by plate. All growth curves within a plate were truncated at the time of 
transition from exponential to stationary phase. The end of the exponential phase 
was determined automatically by finding the peak OD (using the median across 
all compounds and control wells, and accounting for a small increase during the 
stationary phase) and verified by inspection. Using this time point allowed us to 
capture the effects of drugs on lag phase, growth rate and stationary phase plateau 
(Extended Data Fig. 2a). Time points with sudden spikes in OD (for example, 
caused by condensation) were removed, and growth curves were discarded com-
pletely if they had too many missing time points (Extended Data Fig. 2a). Similarly, 
growth curves were discarded if the OD fell far outside the normal range (for 
example, caused by coloured compounds). Three compounds had to be completely 
excluded from the analysis, as they caused aberrant growth curves: Chicago sky 
blue 6B, mitoxantrone and verteporfin.

Growth curves were processed by plate to set the median OD at the start and 
end time points to 0 and 1, respectively. Then we defined reference compounds 

across all replicates as those that did not reduce growth significantly for most drugs, 
had measurements for >​95% of all replicates, and for which the final OD was  
>​0.5 for more than 142 out of 152 replicates. We used these reference compounds 
as representatives of uninhibited growth. As wells containing reference compounds 
outnumbered control wells within a plate, we used control wells only later to  
verify the P value calculation (Extended Data Fig. 2d). After identifying reference 
compounds, we rescaled growth curves such that the median growth of reference 
compounds at the end point was 1.

While growth curves in control wells and most wells with reference compounds 
followed the expected logistic growth pattern, a variety of deviations were observed 
for drugs that influenced growth. To quantify growth without relying on assump-
tions about the shape of the growth curve, we calculated the area under the curve 
(AUC) using the trapezoidal rule. Although we set the median starting OD to 0, the 
ODs of individual wells deviated from this. We used two methods to correct for this 
and determine the baseline for each growth curve (Extended Data Fig. 2a). First, a 
constant shift was assumed, subtracting the same shift from all time points of the 
growth curve such that the minimum is zero. Second, an initial perturbation was 
assumed that affects initial time points more than later time points (for example, 
condensation). To correct this, we first subtracted a constant shift as above, and 
then rescaled the curve such that a time point with an uncorrected OD of 1 also 
had an OD of 1 after correction. AUCs were calculated for both scenarios, rescaled 
such that the AUC of reference compounds was 1, and then for each compound 
the baseline correction that yielded an AUC closest to 1 (that is, normal growth) 
was selected.

AUCs are highly correlated to final ODs, with a Pearson correlation of 0.95 
across all compounds and replicates. Nonetheless, we preferred to use AUCs to 
decrease the influence of the final time point, which will contain more noise than 
a metric based on all time points.
Identification of drugs with anticommensal activity. We detected hits from nor-
malized AUC measurements using a statistical method that controls for multiple 
hypothesis testing and varying data quality. We fitted heavy-tailed distributions 
(scaled Student’s t-distribution49) to the wells containing reference compounds 
for each replicate and, separately, to each individual plate. These distributions 
captured the range of AUCs expected for compounds that did not reduce growth, 
and represented the null hypothesis that a given drug did not cause a growth 
defect in the given replicate or plate. We calculated one-sided P values from the 
cumulative distribution function of the fitted distribution. Within a replicate, each 
compound was associated with two P values: one from the plate on which it was 
measured, and one for the whole replicate. Of those two, the highest P value was 
chosen (conservative estimate) to control for plates with little or high noise, and 
varying levels of noise within the same replicate.

The resulting P values were well-calibrated (that is, the distribution of P values 
was close to uniform with the exception of a peak at low P values, Extended Data 
Fig. 2d) and captured the distribution of controls, which were not used for fitting the 
distribution and kept for validation. We then combined P values for a given drug and 
strain across replicates using Fisher’s method. Lastly, we calculated the FDR using 
the Benjamini–Hochberg method50 over the complete matrix of P values (1,197 
compounds by 40 strains). After inspecting representative AUCs for compound–
strain pairs at different FDR levels, we chose a conservative FDR cut-off of 0.01.
Drug indications, dose, and administration. We annotated drugs by their primary 
target organism on the basis of their WHO ATC classification, or, if there were 
uncertainties, based on manual annotation. Compounds were classified as: antibac-
terial drugs (antibiotics, antiseptics), anti-infective drugs (acting against protozoa, 
fungi, parasites or viruses), human-targeted drugs (that is, drugs whose mechanism 
of action affects human cells), veterinary drugs (used exclusively in animals), and 
finally non-drugs (which can be drug metabolites, drugs used only in research, or 
endogenous substances). If a human-use drug belonged to several classes, the drug 
class was picked according to this order of priority (from high to low): antibacterial, 
anti-infective, and human-targeted drug. This ensured that drugs used also as 
antibacterials were not classified in the other two categories.

Drugs from the Prestwick Chemical Library were matched against STITCH 
4 identifiers51 using CART52. Identifiers that could not be mapped were anno-
tated manually. Information about drug indications, dose and administration was 
extracted from the ATC classification system and Defined Daily Dose (DDD) 
database. Dose and administration data were also extracted from the Drugs@
FDA resource. Doses that were given in grams were converted to mol using the 
molecular weight stated in the Prestwick library information files. When the dose 
guidelines mentioned salt forms, we manually substituted the molecular weight. 
Dose data from Drugs@FDA stated the amount of drug for a single dose (for 
example, a single tablet). Analysing the intersection between Drugs@FDA and 
DDD, we found that the median ratio between the single and daily doses was two. 
To combine the two data sets we therefore estimated the single dose as half of the 
daily dose (Supplementary Table 1).
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In general, it is difficult to estimate effective drug concentrations in the intestine, 
as those depend on the dose, the speed of dissolution, uptake and metabolization by 
human cells and by bacteria, binding to proteins, and excretion mechanisms into 
the gut. To estimate gut concentrations of drugs based on their dose with a simple 
model, we relied on an in situ study for posaconazole19. When 40 mg (57 μ​mol) of 
the drug is delivered to the stomach in either an acidic or a neutral solution, the 
maximum concentration in the duodenum reaches 26.3 ±​ 10.3 or 13.6 ±​ 5.8 μ​M, 
respectively. This is equivalent to dissolving the drug in 300 ml (240 ml of water to 
swallow the pill as recommended for bioavailability/bioequivalence studies plus 
~​43 ml resting water in the small intestine53) and an absorption rate of 90%. We 
collected doses for as many human-targeted drugs as we could find and used the 
above assumption to estimate small intestine concentrations. To estimate colon 
concentrations, we relied on reported fecal excretion data (Supplementary Table 1,  
gathered from DrugBank 5.054 and across the literature) assuming a single 
daily dose, 24 h transit time55 and a volume of distribution in the colon of 0.6 l56 
(Extended Data Fig. 3).
IC25 determination and screen validation. To validate our screen, we selected  
25 drugs including human-targeted drugs (19), antiprotozoals (3), one antipar-
asitic, one antiviral and one ‘non-drug’ compound. The human-targeted drugs 
spanned five therapeutic classes (ATC codes A, G, L, M and N). Our selection com-
prised mostly drugs with extended antibacterial activity in our screen (19 drugs 
hit >​10 strains). This bias ensured that we could also evaluate false positives. We 
chose 15 strains to test IC25s (that is the minimal concentration of drug that causes 
25% growth inhibition), spanning different phyla (5) and including both sensitive  
(E. rectale, R. intestinalis) and resistant species (E. coli ED1a).

Compounds for validation were purchased from independent sources 
(Supplementary Table 1) and dissolved at 100×​ starting concentration in DMSO. 
Twofold serial dilutions were prepared in 96-well U-bottom plates (as for the 
screen). Each row contained a different drug at eleven twofold dilutions and a 
control DMSO well in the middle of the row (in total eight drugs per plate). These 
master plates were diluted to 2×​ assay concentration and 2% DMSO in mGAM 
(50 μ​l) and stored at −​30 °C (<​1 month). For the assay, plates were pre-reduced 
overnight in the anaerobic chamber, and mixed with an equal volume (50 μ​l) 
of appropriately diluted overnight culture (prepared as described for screening  
section) to reach a starting OD578 of 0.01 and a DMSO concentration of 1% across 
all wells. OD578 was measured hourly for 24 h after 1 min of shaking. Experiments 
were performed in two biological replicates.

Growth curves were converted to AUCs as described above, using in-plate 
control wells (no drug) to define normal growth. For each concentration, we cal-
culated the mean across the two replicates. We further enforced monotonicity to 
conservatively remove noise effects: if the AUC decreased for lower concentrations, 
it was set to the highest AUC measured at higher concentrations. The IC25 was 
defined as the lowest concentration for which a mean AUC of below 0.75 was 
measured. In 68% of cases, IC25s were equal between replicates and in a further 
22%, there was a twofold change between replicates, which is within the twofold 
error margin reported for inhibitory concentrations57. Additionally, MIC as listed 
in Supplementary Table 4 was defined as the lowest concentration for which the 
AUC dropped below 0.1. In the large-scale screen, we detected significant growth 
reductions, which do not necessarily correspond to complete growth inhibition 
(Extended Data Fig. 2b). To ensure comparability between the results of the val-
idation procedure and the screen, we used the IC25 metric for benchmarking. As 
inhibitory concentration calculations are known to have a twofold error margin57, 
we considered an IC25 of 10–40 μM as being in agreement with the screening result 
(Extended Data Fig. 5a, b). A higher number of false negatives implies that more 
human-targeted drugs are likely to have anticommensal activity.
Analysis of side effects. Side effects of drugs were extracted from the SIDER 
4.1 database22 using the mapping between Prestwick compounds and STITCH 4 
identifiers described above. In SIDER, side effects are encoded using the MedDRA 
terminology, which contains lower-level terms and preferred terms. Of these, we 
used the preferred terms, which are more general. We excluded rare side effects 
that occurred for fewer than five drugs from the analysis. Drugs with fewer than 
seven associated side effects were discarded58. In a first pass, we identified side 
effects associated with antibiotics in SIDER, by calculating for each side effect its 
enrichment for systemic antibiotics (ATC code J01) versus all other drugs using 
Fisher’s exact test (P value cut-off: 0.05, correcting for multiple hypothesis testing 
using the Benjamini–Hochberg method). Antibiotics are typically administered 
in relatively high doses, and some of the enriched side effects might therefore 
be caused by a dose-dependent effect (for example, kidney toxicity). We there-
fore used an ANOVA (type II) to test whether the presence of side effects for a 
drug was more strongly associated with it being an antibiotic or with its (log-
transformed) dose. Side effects that were more strongly associated with the dose 
were excluded from the list of antibiotic-related side effects. 

Data on the incidence rates of side effects in patients was also extracted from 
SIDER 4.1. As different clinical trials can report different incidence rates, we com-
puted the median incidence rate per drug–side effect pair. As SIDER also contains 
data on the incidence of side effects upon placebo treatment, we were able to ensure 
the absence of systematic biases.
Experimental validation of side effect-based predictions. Selected candidate and 
control compounds belonged to multiple therapeutic classes (ATC codes A, B, 
C, G, H, L, M, N, S for candidate compounds and A, C, D, G, H, M N, R, S, V for 
control compounds). Compounds of interest were purchased from independent 
sources (Supplementary Table 1) and if possible, dissolved at 5 mM concentra-
tion in mGAM. Lower concentrations were used when the solubility limit was 
reached. Solutions were sterile filtered, and three fourfold serial dilutions were 
arranged in 96-well plates, aiming at covering a broad range of drug concentrations. 
Inoculation and growth curve acquisition was performed as described for the IC25 
determination experiments.
Chemical genetics in E. coli. Conjugation of the TransBac overexpression plasmid 
library into E. coli ΔtolC. The TransBac library, a new E. coli overexpression 
library based on a single-copy vector59 (H.D. and H.M., unpublished resource) 
was conjugated in the BW25113 ΔtolC::Kan strain. The receiver strain (BW25113 
ΔtolC::kan) was grown to stationary phase in LB medium, diluted to an OD578 of 1, 
and 200 μ​l was spread on an LB plate supplemented with 0.3 mM diaminopimelic 
acid (DAP). Plates were dried for 1 h at 37 °C and then a 1536 colony array of the 
library carried within a donor strain (BW38029 Hfr (CIP8 oriT::cat) dap- 60) was 
pinned on top of the lawn. Conjugation was carried out at 37 °C for ~​6 h, and the 
first selection was done by pinning on LB plates supplemented with tetracycline 
only (10 μ​g/ml) and growing overnight. Two more rounds of selection followed 
on LB plates containing both tetracycline (10 μ​g/ml) and kanamycin (30 μ​g/ml) 
to ensure killing of parental strains and select only for tolC mutants carrying the 
different plasmids.
Chemical genetic screen. The screen was carried out under aerobic conditions on 
solid LB Lennox medium (Difco), supplemented with 30 μ​g/ml kanamycin, 10 μ​g/ml  
tetracycline, the appropriate drug, and 0 or 100 μ​M IPTG. Drugs were used at 
the following sub-inhibitory concentrations for the tolC mutant: diacerein 20 μ​M,  
ethopropazine hydrochloride 160 μ​M, tamoxifen citrate 20 μ​M, niclosamide 1.25 μ​M,  
thioridazine hydrochloride 40 μ​M, methotrexate 320 μ​M, or for the wild type: 
metformin 100 mM. The 1536 colony array of BW25113 ΔtolC::kan mutant car-
rying the TransBac collection was pinned on the drug-containing plates, and plates 
were incubated for 16–38 h at 37 °C. In the case of metformin we used the version 
of the TransBac library in which each plasmid complements its corresponding 
barcoded single-gene deletion mutant59, since we did not need to use the ΔtolC 
background to sensitize the cell. Growth of this library was determined at 0 and 
100 mM metformin (both in the presence of 0, 50 and 100 μ​M IPTG). All plates 
were imaged using an 18-megapixel Canon Rebel T3i and images were processed 
using the Iris software40.
Data analysis. We used colony size to measure the fitness of the mutants on the 
plate. For standardization of colony sizes, we subtracted the median colony size 
and then divided by a robust estimate of the s.d. (removing outliers below the 
1st and above the 99th percentile). We found edge effects affecting up to five 
rows and columns around the perimeter of the plate. We therefore first stand-
ardized colony sizes across the whole plate using only colony sizes from the 
inner part of the plate as reference. To remove the edge effects, we subtracted 
from each column its median colony size, and then from each row its median 
colony size. Finally, we standardized the adjusted colony sizes using the whole 
plate as reference. The distribution of adjusted colony sizes was right-skewed 
(that is, more outlier colonies with larger sizes), suggesting a log-normal distri-
bution. At the same time, the presence of outliers suggested that a logarithmic 
equivalent of the Student’s t-distribution with variable degree of freedom49 
would be more suitable. We fitted such a distribution for each plate and cal-
culated P values for both tails of the distribution. This approach assumes that 
the overexpression of most genes does not affect growth in response to drug 
treatment. P values were combined using Fisher’s method across replicates and 
IPTG concentrations (since we noticed that different IPTG concentrations 
resulted in largely the same results—that is, plasmids are leaky). We corrected 
for multiple hypothesis testing for each drug individually using the Benjamini–
Hochberg method50.
Analysis of common resistance mechanisms. To determine a relationship between 
the number of human-targeted drugs (h) and the number of antibacterial drugs 
(a) that affect each strain, we determined the odds ratio (OR):

= −

−

OR
h

H h
a

A a
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where H =​ 203 and A =​ 122 are the numbers of human-targeted and antibacterial 
drugs that show activity against any strain, respectively. We computed the nonlinear 
least-squares estimate for OR using the following equation:

−
= ×

−
h

H h
a

A a
OR

Data availability. Data are available from FigShare: http://dx.doi.org/10.6084/
m9.figshare.4813882. All data generated during this study are included in this 
published article and its Supplementary Information files.
Code availability. Scripts for analysing data and generating figures are available at 
https://git.embl.de/mkuhn/drug_impact_gut_bacteria. A snapshot of the reposi-
tory has been deposited together with the data.
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Extended Data Figure 1 | See next page for caption.
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Extended Data Figure 1 | Screen set-up and species selection. a, Drugs 
from the Prestwick Chemical Library (arranged in either 96- or 384-well 
format) were diluted in growth medium (usually mGAM) and pre-reduced 
in a Coy anaerobic chamber before inoculation with one of forty different 
human gut microbes. Bacterial growth was monitored for 16–24 h at 37 °C. 
Growth curves were acquired at least in triplicate for each drug–microbe 
interaction (see Methods). b, Species with a minimum relative abundance 
of 1% in at least one sample and a prevalence of 50% across samples 
(the latter estimated by rarefying to 10,000 reads mapping to taxonomic 
markers) were included in the set of core species. Boxplots show relative 
abundances of core species grouped by genus (according to NCBI 
taxonomy) and coloured by phylum (see key). The inner box indicates 
the IQR, with the median as black vertical line; the outer bars extend to 
the 5th and 95th percentiles; circles, outliers. To the right of the boxplots, 
prevalence is depicted by bars, and next to this the species diversity is 

shown; grey boxes indicate species represented in the screen with box 
widths corresponding to mean relative abundance within the genus.  
c, Relative abundance of genera of which at least one species was 
represented in the screen cumulates to 78% of the assignable fraction of 
reads (median across all samples, upper panel); first four boxplots show 
abundance within each study identified by country codes underneath 
(DK: Denmark; ES: Spain; US: United States; CN: China) 43–46. When 
directly cumulating the relative abundance of represented species the 
corresponding median is 60% (lower panel). Boxes span the IQR and 
whiskers extend to the most extreme data points up to a maximum 
of 1.5 times the IQR. d, Core species are shown in the order of their 
median abundances across all samples. Relative abundance boxplots and 
prevalence bars are defined as in b and grey boxes underneath indicate 
species screened in this study. Numbers in brackets correspond to specI 
cluster identifiers (version 1)47.
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Extended Data Figure 2 | See next page for caption.
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Extended Data Figure 2 | Data analysis pipeline for identifying 
compounds with anticommensal activity. a, Schematic overview of the 
data analysis pipeline. All steps (determination of time cutoff and removal 
of noisy points; normalization and selection of reference compounds; 
baseline correction and AUC calculation; and hit calling) are explained in 
detail in the Methods. On the first panel, dashed curves in the righthand 
plot depict the three possible effects that a drug can have on the growth 
of a microbe: increase the lag phase, decrease the growth rate or the 
stationary phase plateau. All effects are captured by cutting off the growth 
curves upon transition to stationary phase for most compounds (most 
drugs do not affect growth). On second panel, median growth rates for 
two drugs on same plate are depicted and normalized, whereas baseline 
correction (third panel) is applied at the individual wells. b, Growth curves 
(top, normalized OD) of Bacteroides ovatus in three exemplary drug cases 

for the three biological replicates (meclofenamic acid (red), moricizine 
(green) and diacerein (blue)). Light and dark grey shades represent 
the 50% and 90% confidence intervals for normal growth, respectively. 
Bottom, normalized AUC histograms for all drugs in the three biological 
replicates for B. ovatus. Meclofenamic acid is just below the hit threshold, 
moricizine is a hit with partial but strong growth inhibition, and diacerein 
almost completely inhibits the growth of B. ovatus. c, For most species, 
correlation between replicates is very high (median: 0.88). d, For both 
controls and reference compounds, P values were approximately uniformly 
distributed. Determining the background distribution of uninhibited 
growth using reference compounds is validated by their very similar 
behaviour with control wells. Other drugs (that is, drugs not used as 
reference compounds) show clear enrichment of low P values.
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Extended Data Figure 3 | See next page for caption.
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Extended Data Figure 3 | Anticommensal activity relative to 
compound- and compartment-specific drug concentrations. We made 
a simplified pharmacokinetic estimation of small intestine and colon 
concentrations by assuming that one dose of an orally administered drug 
(extracted from Drugs@FDA and Daily Defined Dose (DDD) of the ATC) 
reaches the intestine and is dissolved or absorbed similarly to the well-
absorbed drug posaconazole19 (Supplementary Table 1). After absorption 
into the liver via the portal circulation, the drug enters circulation through 
the hepatic veins and reaches its characteristic plasma concentration. The 
two main routes of drug elimination are either secretion via kidneys and 
urine or secretion into the intestine via the biliary duct. In the intestine, 
drugs can be reabsorbed in a circuit called the enterohepatic cycle or 
excreted in stools. Compounds that are either poorly absorbed in the 
small intestine or secreted by bile reach the large intestine. Considering 
the measured excreted fraction of the drug in faeces (both changed and 
unchanged compound, as we do not know whether drug is metabolized 

in liver or gut), and assuming a large intestinal transit time of 24 h55 and 
a volume of distribution in the colon of 0.6 l56, we estimated the colon 
concentrations of the human-targeted drugs in our screen (Supplementary 
Table 1). Histograms for drug dose, plasma concentration, estimated small 
intestine concentration, urinary and fecal excretion and estimated colon 
concentration depict the respective distributions for human-targeted 
drugs, colour coded according to their anticommensal behaviour in our 
screen. Dashed lines indicate medians and vertical lines highlight the drug 
concentration used in our screen (20 μ​M). Interactions between drugs 
and microbiota are possible throughout the entire gastrointestinal tract, 
with microbial load having a gradient-like distribution (ileum and colon 
containing the largest numbers); this can be disturbed during disease18. 
In addition, drugs can be modified at several stages: by host digestive and 
intestinal epithelial enzymes, by phase I and phase II metabolism in the 
liver and by microbial enzymes. Some of these processes neutralize each 
other, resulting in reconversion into the original compound.
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Extended Data Figure 4 | Effects of metformin in gut microbiota  
in vivo correlate with its in vitro activity. a, IC25s of the antidiabetic 
drug metformin for a selection of 22 strains. Metformin did not inhibit 
any species in our screen as the concentration used, 20 μ​M (red line), is 
below the IC25 of all strains. However, at its estimated small intestinal and 
colon concentration of 1.5 mM (blue line), metformin would inhibit 3 of 
22 tested strains. This exemplifies that more human-targeted drugs would 

interfere with bacterial growth if doses were to be increased towards drug- 
and body-site-specific concentrations. b, IC25s of metformin correlate 
well with its observed effects in humans61, based on the four species 
that overlapped between the two studies. Significant treatment effects 
on the species level were mapped to our set of strains for which we had 
determined IC25s.
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Extended Data Figure 5 | Validation of the screen and conservative 
hit-calling. a, b, Validation of our screen by IC25 determination for 25 
selected drugs in a subset of up to 27 strains reveals high precision (94%) 
and recall (85%). We considered IC25 as the lowest concentration that 
reduces growth by at least 25% (see Methods). Breakdown into active and 
inactive compounds for drugs concentrations at the 20 μ​M concentration, 
used in our screen. True positives (TP), green; false positives (FP), red; 
true negatives (TN), grey; false negatives (FN), blue. c, Number of drugs 
with anticommensal activity versus the applied FDR threshold for all 
compounds (left) and human-targeted drugs (right). Increasing the FDR 
threshold from 0.01 to 0.1 (vertical grey lines) would nearly double the 

fraction of drugs that affect human gut microbes. d, IC25s of 25 drugs in 
up to 27 individual strains (see also a, b). The white area indicates the drug 
concentration range tested for each drug. Symbol sizes depict the number 
of strains with a particular IC25, symbol colours indicate categorization 
into false negative, false positive, true negative and true positive, and 
symbol shapes qualify whether actual IC25s were determined or IC25 was 
deemed to be higher or lower than the highest or lowest concentration 
tested, respectively. Vertical line indicates the drug concentration used in 
screen (20 μ​M). IC25s for all drug–strain pairs are listed in Supplementary 
Table 4. Particular drugs were responsible for false negatives in our screen 
(acarbose, loperamide, thioridazine), presumably owing to drug decay.
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Extended Data Figure 6 | IC25 relation to drug concentrations in human 
body. For drug–strain pairs with measured IC25s (see also Extended Data 
Fig. 5), we compared IC25s with plasma and estimated small intestine and 
colon concentrations by plotting the number of strains that are affected in 
relation to whether they are above or below relevant body concentrations 

(colour code). With the exception of oestradiol valerate and 5-FU  
(only plasma concentrations available), all other drugs with available body 
concentrations reach concentrations high enough in the body to reach 
their IC25 for at least one gut microbial species (out of up to 27 species 
tested for IC25s).
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Extended Data Figure 7 | Concordance of drug in vitro species 
susceptibilities and drug-mediated shifts in microbiome composition 
of patients. a, Association coefficients between PPI usage and relative 
taxonomical abundance in faecal microbiomes of PPI users from two 
studies (twins, UK cohort, green4; three independent cohorts from the 
Netherlands3, blue) (left) are compared to in vitro growth inhibition of 
isolates with same taxonomic rank in the presence of PPIs (omeprazole, 
lansoprazole and rabeprazole) as assessed by FDR-adjusted P values  
(q values) in our screen (right). Point size in the left panel corresponds 
to the q value as reported in the original study. Taxa that were reduced in 
patients (negative association coefficient, left of vertical black line) were 
mostly inhibited by PPIs in our screen (q value below 0.01, left of vertical 
black line), whereas enriched taxa were insensitive to PPIs. Box plots show: 
centre line, median; box limits, upper and lower quartiles; whiskers,  
1.5×​ IQR; points, outliers. For fewer than 10 data points, all points 
are shown individually. b, Spearman correlation coefficients between 
association coefficients of faecal microbiome composition after 

consumption of amoxicillin or azathioprine7 and the screen P values.  
The histogram represents the background distribution of correlations 
between the in vitro data for all human-targeted drugs and the in vivo 
response to these drugs; correlations with amoxicillin or azathioprine are 
highlighted by triangles c, Comparisons between association coefficients 
and drugs from different therapeutic classes as assessed by Falony  
et al.7 and our in vitro data. d, A study of a cohort of patients with bipolar 
disease6 reported a significant decrease in abundance of Akkermansia 
upon treatment with atypical antipsychotics (AAP). When we compared 
distributions of adjusted P values from our screen for different strains, 
Akkermansia muciniphila was significantly more sensitive than all other 
strains to antipsychotics in general and APP in particular (P =​ 0.02 and 
P =​ 0.09, two-sided Wilcoxon rank sum test). By contrast, A. muciniphila 
is relatively more resistant than other strains across all human-targeted 
drugs (P =​ 0.0005, two-sided Wilcoxon rank sum test). Violin plot shows 
estimated density of points with the estimated median as vertical bar. For 
fewer than 10 data points, all points are also shown individually.
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Extended Data Figure 8 | Evaluation of anticommensal activity 
predictions based on side-effects. a, IC25s of 26 candidate compounds  
(P value for enrichment of antibiotic-related side effects <​1 ×​ 10−4, using a 
one-sided Fisher’s exact test) and 16 control compounds (see also d of this 
Figure) were determined for 18 representative strains; results are depicted 
as an IC25 heatmap. Drugs are ordered according to their similarity in side 
effects to antibiotics from left to right (for antibiotic-related side effects 
see Supplementary Table 5). Qualifiers indicate whether IC25s are higher 
or lower than the indicated concentration; if no symbol, the box depicts 
the exact IC25. If highest tested concentrations did not reduce growth 
of any of the tested strains, the compound was classified as inactive (for 
example, Topiramate). b, Dose of the tested compounds according to the 
Defined Daily Dose and Drugs@FDA databases (see also Supplementary 
Table 1). c, Based on a compound’s recommended dose and its median 
IC25 for different bacterial strains, we estimated the number of doses need 
to reach this IC25. This number was plotted against the drug’s P value 
for enrichment of antibiotic-related side effects. For direct comparison 
between the two groups, see Fig. 3c. Circles in magenta depict drug–strain 
pairs for which growth was reduced, showing a clear correlation between 
P values and the estimated number of doses (magenta line). To rule out the 

possibility that the tested concentration range is causing this correlation, 
we also depict the estimated number of doses corresponding to the highest 
tested concentration (grey line), which exhibits no clear dependency 
between P value and number of doses. A vertical line across all panels 
connects all parameters attributable to a particular drug. d, Recommended 
single drug doses of human-targeted drugs with no anticommensal 
activity in our screen plotted against enrichment in antibiotic-related side 
effects (n =​ 339). Candidate and control drugs selection for testing for 
anticommensal activity at higher concentrations were selected on the basis 
of similarity to antibiotic-related side effects (vertical black line depicts 
prediction threshold) and aiming at drugs used at higher doses than 
concentration in our screen (horizontal dashed line). Purple and dark grey 
triangles indicate hits and non-hits from this validation effort, respectively. 
e, Ratios between IC25 and estimated colon concentrations are significantly 
lower (P =​ 0.017, two-sided Wilcoxon rank sum test) for candidate drugs 
than for control drugs. For candidate drugs, 16 of 52 (31%) IC25s were 
below the estimated colon concentrations while for control drugs this 
fraction was only 5 of 50 (10%). Box plots show: centre line, median; box 
limits, upper and lower quartiles; whiskers, 1.5×​ IQR; points, outliers.
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Extended Data Figure 9 | Drug therapeutic classes with anticommensal 
activity. a, Fraction of drugs with anticommensal activity by ATC 
indication area (bars). All first-level indication areas and significantly 
enriched lower levels are shown (see also Extended Data Fig. 10). 
Significance (P value, one-sided Fischer’s exact test) is controlled for 
multiple hypothesis testing (Benjamini–Hochberg) independently at each 
ATC hierarchy level. b, Heat map of anticommensal activity and chemical 
similarities of human-targeted drugs within the three significantly ATC 
indication levels from a (indicated by circled numbers). Colours represent 
the median of drug pairwise Spearman correlations within and between 
subgroups depicted, calculated from the growth profiles of the 40 strains 
in each drug (P values) or their chemical similarity (Tanimoto scores62). 
Examples of structurally similar (phenothiazines; N05AA-AC) and diverse 
(N05AF-AX) antipsychotics that elicit similar responses in our screen 
are marked. c, Antipsychotics exhibit higher similarity in gut microbes 
they target than that expected on the basis of their structural similarity 
(P =​ 2 ×​ 10−19 estimated from random permutations; other classes 
depicted show no significance difference). Box plots show: centre line, 
median; box limits, upper and lower quartiles; whiskers, 1.5×​ IQR; points, 
outliers. Notches correspond roughly to a 95% confidence interval for 
comparing medians.
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Extended Data Figure 10 | Drugs with anticommensal activity for all 
hierarchy levels of the ATC classification system. Fraction of drugs with 
anticommensal activity for all indication areas of the ATC classification 
scheme with a high fraction of active compounds. Shown are indication 
areas that contain at least two active compounds and a fraction of at least 
50% active compounds, their parent terms and all top-level indication 
areas. Significance (P value, one-sided Fischer’s exact test) is indicated by 

the bar colour and corrected for multiple hypothesis testing (Benjamini–
Hochberg) independently at each hierarchy level of the ATC. Many smaller 
classes, including PPIs (A02BC), non-selective calcium channel blockers 
(C08E), synthetic oestrogens (G03CB), leukotriene receptor antagonists 
(R03DC) and phenothiazine and other antihistamines (R06AD and 
R06AX) are enriched, but owing to multiple testing and the small numbers 
of drugs tested in each group, they do not reach a significant P value.
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Extended Data Figure 11 | Comparing chemical similarity of drugs 
and similarity of hit profiles across gut microbes. a, Heat map of 
anticommensal activity and chemical similarities for all active human-
targeted drugs in our screen. Drugs are clustered according to chemical 
similarity. Colours represent the median of drug pairwise Spearman 
correlations within and between subgroups depicted, calculated from 
the growth profiles of the 40 strains in each drug (P values) or their 
chemical similarity (Tanimoto scores62). Several prominent groups are 
colour coded. Only drugs of some classes both share chemical similarity 

and have similar effects on the 40 strains—for example, phenothiazine 
antipsychotics and antihistamines (N05A and R06AD), structurally 
similar dibenzothiazepines and dibenzoxazepines for antipsychotics and 
antidepressants (N05AH and N06AA), PPIs (A02BC), anti-oestrogens 
(L02BA), synthetic oestrogens (G03CB) and anti-inflammatory fenamates 
(M01AG and M02AA06). b, A mild correlation exists between chemical 
similarity (Tanimoto scores) and anticommensal activity similarity (drug 
pairwise Spearman correlations): rs =​ 0.12 (P value of Spearman’s test  
<​2 ×​ 10−16).
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Extended Data Figure 12 | More complex, bulkier and heavier human-
targeted drugs are more effective against Gram-positive bacteria. 
Fraction of inhibited Gram-positive (blue, n =​ 22) or Gram-negative (red, 
n =​ 18) strains per drug plotted against different chemical properties of 
the drugs. Chemical properties, such as complexity (based on atom types, 
symmetry, computed using the Bertz/Hendrickson/Ihlenfeldt formula), 
molecular weight, TPSA (an estimate of the area, in Å2), volume (in Å3)  
and XLogP (distribution coefficient that is a measure of differential 

solubility in octanol and water) were obtained from PubChem63. For each 
chemical property, we used a type II ANOVA to test for linear dependency 
between the fraction of affected species and the chemical property (slope). 
Additionally, we tested whether this dependency depended on the Gram 
stain (slope difference). It is possible that there is no significant slope 
without considering Gram stain, but that there is a significant difference 
between the slopes for the two Gram stains. Lines show a linear fit to the 
data, with 95% confidence intervals as shaded area.
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    Experimental design
1.   Sample size

Describe how sample size was determined. No prior assumptions were made regarding effect sizes. 

2.   Data exclusions

Describe any data exclusions. Replicates with inconsistent growth behavior were excluded from our analysis. 

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

We have three to five biological replicates for each strain in the Prestwick library screen, 
(median replicate correlation is 0.88 (ED Fig. 2c)) and two biological replicates for the IC25 
determinations (in 68% of cases, IC25s are equal between replicates and in further 22%, 
there is a two-fold change between replicates.)) 

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

All sample allocation was used from previously published data.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

in vitro experiments/no blinding required

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Data was processed using R (version 3.4.2) using scripts deposited at https://git.embl.de/
mkuhn/drug_impact_gut_bacteria, Iris (doi:10.1038/nmicrobiol.2017.14)

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

There were no unique materials used in this study. 

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used. 

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used in this study. 
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Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used. 

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The study did not involve human research participants. 
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