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A B S T R A C T   

Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegen-
erative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, 
Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua- 
Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of 
neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazox-
ymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid β-N-methylamino-L-alanine, both 
of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in 
life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease 
appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not 
confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, 
epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the 
ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons 
learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across 
generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; 
and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to 
genotoxic chemicals (“slow toxins”) in the early stages of life should be considered in the search for the etiology 
of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear 
palsy and Alzheimer’s disease.   

1. Introduction 

Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism- 
Dementia Complex (ALS-PDC) is a progressive neurodegenerative dis-
ease with multiple clinical phenotypes and of familial or sporadic origin 
that has been highly prevalent in the island communities of the southern 
Marianas (Guam and Rota), Honshu, Japan (Kii Peninsula), and New 
Guinea (Papua, Indonesia). The history of ALS-PDC in Kii-Japan and 

Guam can been traced back several hundred years [1–3] although the 
disease on Guam was earlier thought to have followed the period 
(1668–1898) of Spanish occupation [4]. In New Guinea, clinical ALS and 
atypical parkinsonism with dementia (P-D) existed prior to the foreign 
introduction of domestic animals and manufactured products [5]. 
Following the 1939–1945 Second World War (WWII), the extraordi-
narily high prevalence of ALS, and later of P-D, declined in Guam and 
Kii-Japan, and the disease predictably will soon have disappeared from 
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all three geographic isolates. The disappearance of a hyperendemic 
disease among diverse ethnic genotypes suggests the operation of one or 
more exogenous factors to which the affected populations were formerly 
and commonly exposed. The identity of the culpable environmental 
agent(s), the principal subject addressed here, has been pursued for over 
70 years by clinical and experimental neuroscientists. This review draws 
on diverse sources of information relevant to ALS-PDC to identify the 
probable etiology of this perplexing disease and its relevance to related 
neurodegenerative disorders. The Supplement contains neglected as-
pects of ALS-PDC, including clinically silent developmental cerebellar 
and retinal abnormalities that, in some cases, preceded, anticipated and 
accompanied the adult onset of clinically apparent neurodegenerative 
disease. Attendant dermatological, olfactory and other abnormalities 
suggest a systemic rather than a purely neurologic disorder, analogous 
to the motor and non-motor features of Parkinson’s disease [6]. The 
Supplement also details the results of recent molecular studies of rele-
vance to the pathogenesis of ALS-PDC-related human neurodegenerative 
diseases. 

2. Western Pacific ALS-PDC 

2.1. Neurology 

While there is general agreement that Western Pacific ALS-PDC is a 
single nosological entity [7], the epidemiological history in Guam and 
Kii-Japan post-WWII shows that the ALS phenotype peaked and then 
declined, only to be followed some years later by a similar pattern for the 
P-D form [8–11]. Most of the information comes from 70 years of 
research on Guam. In general, clinical onset of ALS occurred at an earlier 
age than that of P-D, and onset age advanced as disease incidence 
declined [12,13]. On clinical grounds, ALS (known as lytico by Cha-
morros on Guam) was similar to ALS elsewhere, while the extrapyra-
midal phenotype conformed to atypical parkinsonism with cognitive 
decline (P-D, bodig), sometimes in combination with signs of motor 
neuron disease. A dementia (D) form clinically equivalent to Alz-
heimer’s disease (AD) was also later recognized on Guam [14,15]. All 
three phenotypes have occurred spontaneously in individuals or as a 
familial disorder, with examples of ALS in younger siblings (age 20 
onward), P-D in those older (age 34 onward), and D in the oldest [16]. 
Many Guam cases had electromyographic evidence of peripheral neu-
ropathy and multisystem autonomic involvement similar to but less 
severe than in multiple system atrophy [17,18]. By 2000, mean ages at 
onset were 55 years for ALS (n = 10), 68 years for PDC (n = 90) and 74 
years for Guam dementia (n = 83) [14]. First-degree relatives of patients 
with ALS or PDC had a significantly higher risk for disease relative to the 
Guamanian population, whereas relatives of disease-free controls had a 
significantly lower risk [14]. Motor neuron disease in susceptible Cha-
morro sibships was up to 28 times greater than the lifetime risk for the 
general population [19]. 

2.2. Cellular neuropathology 

While the neuropathology of ALS-PDC in Papua-Indonesia is un-
studied, the brains of Guam and Kii-Japan cases show tau- and α-synu-
clein-dominated polyproteinopathies that variably include cellular 
inclusions positive for ubiquitin, Aβ proteins and TAR-DNA binding 
protein-43 (TDP-43) [20–23]. Aggregated paired helical filaments form 
neurofibrillary tangles (NFTs) of aberrant hyperphosphorylated tau very 
similar to those seen in AD [24]. Unlike AD and progressive supra-
nuclear palsy (PSP), α-synuclein also accumulates in the brains of 
Guamanians with ALS-PDC [25]. NFTs characterize not only all three 
Guam phenotypes but also the brains of Chamorro people who were 
considered healthy prior to accidental death [22,26–33]. Discovery of 
the etiology and pathogenesis of Western Pacific ALS-PDC therefore 
promises to illuminate understanding of related sporadic neurodegen-
erative disorders. 

2.3. Molecular neuropathology 

The Guam ALS-PDC brain, like that of other tauopathies (AD, PSP, 
Frontotemporal Dementia linked to chromosome 17, Corticobasal 
Degeneration, Pick disease, Niemann Pick disease type C), shows 
markers of cell-cycle reactivation in neurons with tau pathology 
destined for degeneration [34–36]. Hyperphosphorylated retinoblas-
toma protein (pRb), a cell-cycle G1-to-S phase checkpoint protein, was 
also elevated in Guam ALS-PDC neurons with and without NFTs [36]. 
Evidence of cell-cycle perturbation early in development, in the form of 
hyperploid (i.e. bi- and tri-nuclear) and misaligned neurons, occurs in 
the cerebellum of both Guam and Kii-ALS-PDC brains [37,38]. More-
over, in Kii ALS-PDC brains, there is reduced expression of growth-arrest 
and DNA-damage/binding genes (e.g., GADD-45 and GADD-153) [39]. 
GADD-45 proteins have been associated with numerous cellular mech-
anisms including cell-cycle control, DNA-damage sensing and repair, 
genotoxic stress, neoplasia, and molecular epigenetics [40]. Identifica-
tion of predominant oxidative and nitrative DNA damage in the brains of 
Kii-Japan ALS-PDC [41] is consistent with early genotoxic stress. 
Collectively, these findings suggest that cell-cycle changes contribute to 
the underlying pathogenic mechanisms in ALS-PDC and other 
tauopathies. 

The molecular pathogenesis of Guam and Kii ALS-PDC has also been 
linked to an abnormality in the ubiquitin–proteasome pathway (UPP) 
[42–44], the principal pathway for protein degradation in mammals. 
UPP is central to the regulation of most cellular processes including cell 
cycle and division, DNA transcription and repair, differentiation and 
development, the morphogenesis of neural networks and stress re-
sponses, among other key functions [45]. Ubiquitin-B+1 (UBB+1), a 
frameshift mutant ubiquitin and dose-dependent UPP inhibitor found in 
AD brain [46,47] was also recently reported in Guam and Kii ALS-PDC 
neurons and astrocytes, and in association with NFT-like structures 
[42–44]. 

2.4. Epidemiology 

Dramatic falls in the very high incidence of ALS occurred in associ-
ation with the post-WWII recovery in Guam and Japan. In Japan’s Kii 
peninsula, the 5-year average incidence rate for ALS was almost 110/ 
100,000 in 1950 and < 20/1000,000 in 1990 [10] while, on Guam, the 
incidence of ALS in 1962 was 87/100,000 and 5/100,000 in 1985 [12]. 
In 1989, the annual age-adjusted incidence of Guam ALS and PDC was 
7/100,000 and 22/100,000, respectively [48]. During the post-WWII 
period, westernization and modernization progressively replaced 
traditional sources of food and medicine in Guam, Japan and, later, in 
Papua-Indonesia. 

Evidence consistent with a primary environmental etiology of ALS- 
PDC, and of prolonged latent periods between exposure to the disease 
trigger(s) and the clinical onset of phenotypes, emerge from the expe-
rience of migrants to and from populations hyperendemic for ALS-PDC 
(Fig. 1). Guam Chamorros (n = 18) who lived on-island from birth to 
age 18–63 years developed ALS 1–34 years after migration to the U.S. 
mainland, and a brother and sister aged 16 and 15 years developed 
motor neuron disease in California 7 and 4 years, respectively, after they 
had left Guam [49,50] Adolescence was estimated to be the critical 
exposure period for the acquisition of ALS and P-D risk prior to migra-
tion from Guam [65]. Four additional persons developed ALS within 1 to 
14 years of their return to Guam after a long-term residence in the 
continental United States [50]. Filipino migrants to Guam developed 
ALS 1–29 years or P-D 13–26 years after arrival on the island [59,60]. 
Two Caucasians and two Filipinos who immigrated to Guam at the ages 
of 32, 39, 43 and 29 years (in 1955, 1971, 1969 and 1970) developed 
signs of PDC at the age of 63, 60, 52 and 57 years, respectively (mean 
duration from immigration to disease onset of 21–28 years) [55]. These 
data demonstrate that continuous exposure to the Guamanian environ-
ment (specifically, the Chamorro culture) increased the risk of 
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developing ALS-PDC [60]. Exposure may have been short, as illustrated 
by a Filipino who developed ALS only 36 months after moving to Guam 
[65]. Some non-Chamorro U.S. soldiers stationed on Guam in 1944–45 
for only 1–2 months also developed ALS almost 4 decades later [66], and 
a subset of Gulf War/Era veterans who developed ALS in the late 1990s 
was born or saw military service on Guam, where their diet off-base 
included traditional Chamorro food served at frequent village fiestas 
[54]. 

Migration studies of Japanese in Kii Peninsula have revealed latency 
periods up to seven decades between exposure to the high-risk envi-
ronment and clinical onset of neurodegenerative disease [63], with ev-
idence of acquired risk at a very young age [61]. Four subjects, who 
moved from the high-risk area at ages 4, 5, 24, and 55 years developed 

clinical disease at 45, 63, 65, and 79 years-old, respectively. On the is-
land of New Guinea, ALS developed in one native subject 13 years after 
migration from the epicenter of ALS-PDC in Papua, Indonesia. 

Based on the epidemiology of Western Pacific ALS-PDC, it is logical 
to conclude that: (a) the culpable environmental agent(s) is present in, 
and likely common to, all three geographic foci of this neurodegenera-
tive disease, (b) human contact with the agent(s) progressively reduced 
or ceased years or decades before the decline and eventual disappear-
ance of cases, (c) exposures to the trigger factor(s) sometimes occurred 
early in life, while clinical brain disease emerged years or decades later, 
and (d) the causative agent(s) is capable of inducing both sporadic and 
familial disease, either because of common exposure or susceptibility 
from an heritable trait. 

2.5. Genetic vs. Environmental trigger 

The familial occurrence of hyperendemic neurodegenerative disease 
on Guam is well documented [67] and, in the early years of research 
investigation, this association was interpreted as indicative of a domi-
nantly inherited genetic disorder, albeit with differing degrees of 
penetrance [49,57,68–70]. With evidence of declining disease inci-
dence, both on Guam and in Kii-Japan, undefined gene-environment 
interactions were proposed, some advancing a primary genetic role 
[68,69,71], while others favored the reverse or an equal contribution 
[57,58,72–77]. In 1982, Gajdusek and Salazar [5] concluded a genetic 
etiology for ALS-PDC in New Guinea was unlikely, and later studies 
(2005–2012) of the affected population (Auyu and Jaqai linguistic 
groups) demonstrated declining prevalence of neurodegenerative dis-
ease [11,64] as had occurred on Guam and in Kii-Japan. 

The burden of diverse genetic perturbations among Chamorros living 
on Guam or nearby islands has been reported to be surprisingly high. 
While approximately 80% (51 of 64) of Guam P-D patients had no 
pathogenic mutations, the balance (~20%) included 3 with homozygous 
PTEN-induced putative kinase 1 (PINK1.L347P) mutations linked to 
parkinsonism, 2 heterozygous dynactin (DCTN1 p. T54I) mutations, 1 
fused in sarcoma (FUS p.P431L), and 6 alsin (ALS2) mutations. Clinically 
unaffected controls (n = 30) were twice as likely than patients to have 
mutations in leucine-rich repeat kinase 2 (LRRK2), charged multivesicular 
body protein 2b (CHMP2B) and PINK 1 [78]. No mutations were found in 
progranulin unlike the many found in inherited forms of frontotemporal 
dementia [79]. 

With regard to Kii-Japan ALS-PDC, familial disease (vertical and 
horizontal) was present in approximately three-quarters of patients in the 
northern focus (Hohara) but genetic screening for mutations associated 
with inherited neurodegenerative disorders proved negative [2,80,81]. 
An extensive mutation analysis of three patients from two families with 
pathologically confirmed ALS-PDC found no mutation in 19 genes, 
including 12 ALS-FTLD-related genes, 6 parkinsonism-related genes, and 
glycogen synthase kinase-3β (GSK3β), the gene coding for tau kinase 
implicated in inherited tauopathies such as AD. Additionally, gene dosage 
was normal for MAPT, α-synuclein, GSK3β, parkin and TDP-43, which 
codes for TAR-DNA-binding protein 43 [82,83]. A few ALS patients in Kii- 
Japan had mutations in C9orf72 or optineurin [84]. Other studies yielded 
negative results, missense mutations, single nucleotide polymorphisms, or 
hexanucleotide repeat expansions in a small minority of Guam and/or 
Japanese patients, but without overlap or commonality between the two 
[76,85–97]. No genetic studies have been performed on ALS-PDC cases in 
Papua-Indonesia. 

Research efforts to identify a common genetic explanation for ALS- 
PDC in Kii and Guam continue but none has been found to date (vide 
infra). With the virtual disappearance of ALS-PDC on Guam, and similar 
trends in Kii-Japan and Papua-Indonesia, it seems probable that the cause 
of this disease is primarily if not exclusively exogenous [54]. Since the 
peak birth years for acquisition of ALS-PDC on Guam were between 1910 
and 1929, with risk for disease acquisition disappearing for those born 
after the mid 1950s (J.C. Steele, personal communication), significant 

Fig. 1. Summary of ALS and P-D among migrants to or from populations hy-
perendemic for ALS-PDC. Guam to US Mainland: Through 1980, ALS developed 
in 21 Chamorro migrants (18/21 to California) of mean age 29.4 years (range, 
18–63) after periods of absence from Guam of 1 to 34 years (mean 13.6 years); 
4/21 developed ALS 1–14 years after returning to Guam. Mean ages at onset 
and death of the 21 subjects were 44.8 years (range, 19–66) and 48.8 years 
(range, 29–66), respectively [50]. Migrants of Chamorros born, educated and 
permanently resident on the U.S. mainland are unstudied but are not known to 
have developed ALS or PDC. USA Mainland to Guam. Of >10,000 stateside male 
construction workers who worked on Guam for one year or more from 1945 to 
1954, there was no excess ALS through 1970 [51]; there was no later follow-up 
of these persons. However, some non-Chamorro U.S. soldiers stationed on 
Guam in 1944–45 for 1–2 months developed ALS 40 years later while living in 
New York City and three Gulf War/Era veterans with prior service on Guam 
developed ALS in the late 1990s [52–54]. Two Caucasians who migrated to 
Guam between 1955 and 1971 developed and died from autopsy-proven ALS 
>20 years later at age > 60 years [55]. The last certain case of lytico-bodig was 
ALS in a Caucasian who came to Guam in 1956 and who is the subject of a 
report by D. Perl [J.C. Steele et al., personal communication, 2019]. Philippines 
to Guam: Filipinos from different provinces who migrated to Guam post-WWII 
included three males who arrived in 1947, became friends, lived together in 
central Guam (Sinajana) and were employed as construction workers. Two of 
the three married Chamorro sisters whose family members had ALS. One 
developed ALS, the second PDC and the third PDC (all autopsy-proven) 17, 24 
and 42 years respectively after arrival in Guam [56]. A possible excess of ALS 
among Filipino residents of Guam was evident by 1975 [57,58]. By 1980, ALS 
occurred in 9 Filipino migrants to Guam 1 to 29 years after their arrival and 
PDC in 2 migrants 13 and 26 years after arrival [59,60]. Migration from high-risk 
areas of Kii-Japan: Kii-Kozagawa: Four subjects aged 15–66 years (mean, 22) 
developed ALS up to 1–4 decades after migration [61,62]. Kii-Hohara: One 
subject developed ALS-PDC 73 years after migration from the Kii Peninsula at 
the age of three years [63]. Migration from high-risk are of Papua, Indonesia 
(western New Guinea island): A 35-year-old woman developed ALS 13 years after 
leaving the ALS-PDC epicenter in Osso village on the northern river Ia, and ALS 
affected another subject 14 years after treatment of a large wound with the 
neurotoxic pulp of cycad seed [64]. 
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population contact with the culpable agent(s) must have declined rapidly 
after the end of WWII, when disease incidence was at its peak. A similar 
conclusion can be reached for Kii ALS, the rates for which fell steadily 
from its post-War II peak incidence [10]. 

3. Environmental etiologic hypotheses 

3.1. Infection 

A positive family history of ALS on Guam (and the northern focus of 
Kii-ALS) potentially suggested the operation of a vertically transmitted 
infection [55]. However, there are no known infectious agents that 
selectively acted on the three Western Pacific populations with hyper-
endemic neurodegenerative disease. Van Nuis [98] suggested an avian 
distribution of a neurotropic virus. A link with poliomyelitis on Guam 
was ruled out [99]. In the 1940s, Guam experienced outbreaks of Jap-
anese B encephalitis and mumps encephalitis [74,100] but P-D patients 
did not recall a preceding infection [26,27,56]. There is overlap between 
the neurofibrillary pathology of ALS-PDC and post-encephalitic 
parkinsonism [101], but ALS and synucleinopathy are absent in the 
latter [102]. The possibility of a kuru-like slow virus (prion) was ruled 
out when, in contrast to kuru, experimental transmission of ALS-PDC to 
primates failed [103]. Furthermore, TDP-43 inclusions, a prominent 
feature of Guam and Kii ALS-PDC, are absent from prion diseases [104]. 
TDP-43 and other intracytoplasmic protein deposits found in ALS-PDC 
and other neurodegenerative disorders have occasionally been 
described as ‘prion-like’, but this does not infer they were caused by an 
infection. In the New Guinea (Papua, Indonesia) ALS-PDC focus, the 
distribution of affected and nonaffected villages indicated that a 
communicable infectious etiology was unlikely [5]. In sum, evidence to 
support an infectious etiology in Western Pacific ALS-PDC is lacking. 
Discussed below is the suggestion that a parasitic infection links P-D 
with the concurrent retinal pathology reported in some individuals in 
Guam and Kii-Japan [55]. 

3.2. Minerals 

The contribution of the local geological environment to the genesis 
of ALS-PDC has been of interest to several investigators. Considerable 
effort was invested in the possibility of atypical elemental exposure 
related to geochemical patterns, whether in Kii-Japan, Papua-Indonesia 
or Guam [5,105–111]. Water and plants used for food were reported to 
have a low content of calcium (Ca), magnesium (Mg) and zinc (Zn), and 
a correspondingly high content of manganese (Mn), iron (Fe), silicon 
(Si) and aluminum (Al). Chronic dietary deficiency since birth of Ca, Mg 
and Zn was proposed to induce a parathyroid-mediated increase in the 
gastrointestinal absorption of divalent cations that accelerated oxidant- 
mediated neuronal degeneration in the Guam Chamorro population. 
However, the normal serum parathyroid hormone status and alkaline 
phosphatase levels of Guamanians with and without neurodegenerative 
disease provided no support for this hypothesis [112]. 

Excess bioavailable Al was found post-mortem in the brains of Guam 
and Kii-Japan ALS-PDC cases [108,113], and intraneuronal accumulation 
of Al with or without Ca and Si was present in Guam CNS tissues 
[114,115]. Since Guam soil content of elutable Al was 42-fold higher than 
that of soils of ALS-PDC-free Jamaica or Palau, whereas dietary intake of 
Al and Ca was comparable, excess Al was proposed but not shown to enter 
Guamanians via inhalation [116,117]. Another study on Guam found no 
relationship between motor neuron disease and content of Ca, Mg or Al in 
soil and water, but there was a significant correlation with the concen-
tration of iron (Fe) in water samples [19,65]. Al3+ modulates tau phos-
phorylation, and Fe3+ as well as Al3+ enhance both the formation of 
mixed oligomers and recruitment of α-synuclein in pre-formed tau olig-
omers [118,119]. Brain Fe levels were found in a small number of Guam 
ALS-PDC cases to be higher relative to controls [113] but other studies 
yielded conflicting results [120–122]. High levels of Fe and Mn were 

reported in the top soils and vegetation proximate to the former epicenter 
of ALS-PDC on Guam, and elevated levels of Mn in soil, food and cattle 
hair were found in regions of high-incidence human neurodegenerative 
disease in Kii-Japan [106,123]. Juvenile cynomolgus monkeys placed for 
41–46 months on a low-calcium diet (n = 2), with or without supple-
mental Al and Mn (n = 2), exhibited mild Ca and Al deposition and 
degenerative changes in motor neurons of the spinal cord, brain stem, 
substantia nigra and cerebrum in excess of those seen in a single control 
monkey, but all animals remained clinically healthy without apparent 
behavioral deficits or neurological signs [124]. 

Taken in concert, these observations suggest some association be-
tween ALS-PDC and certain minerals in soil, drinking water, and vege-
tation [125]. However, this association is unlikely to be causal because 
rates of ALS-PDC declined in Papua-Indonesia in the presence of an 
unchanged water supply and a forest-based diet on which the indigenous 
population had long depended [64]. In sum, therefore, while differential 
mineral intake may be a risk factor, Steele and Williams [126] concluded 
the mineral hypothesis does not explain the etiology of ALS-PDC. 

3.3. Autoimmune disease 

A potential role for autoimmune mechanisms in motor neuron 
degeneration was proposed in sporadic ALS [127,128] and in Guam 
ALS-PDC, the latter linked to aluminum [129]. No consistent profile of 
autoimmunity was found in extensive serologic testing of subjects with 
or without Guam ALS-PDC [130]. Differences in serum Ig levels in ALS 
and P-D patients were attributed to repeated infections and abnormal 
immunoregulation accompanying immunodeficiency during the course 
of CNS disease, rather than to a specific antiviral or autoimmune 
response [131]. In sum, therefore, evidence to support an autoimmune 
mechanism in ALS-PDC is lacking, as in ALS [132]. 

3.4. Cycad toxicity 

Reduction in the incidence of ALS-PDC in all three geographic foci of 
the disease has been associated with declining traditional use of a 
neurotoxic plant for both food and medicine, specifically the seed of 
female gymnosperms of the genus Cycas. Seed of these Fe- and Mn- 
dependent cycad plants formerly served as a traditional source of food 
for Guamanians, an oral tonic and folk medicine in Kii-Japan, and a 
topical medicine for the treatment of open wounds in Papua-Indonesia, 
all of which have been linked to the subsequent development of ALS- 
PDC [62,133–139], albeit in single well-documented cases in Kii and 
New Guinea. Ungulates grazing on cycad leaves develop a poorly 
defined neuromuscular disease accompanied by the loss of horns and 
hooves that are considered relevant to the neurological and dermato-
logical changes in ALS-PDC, as discussed in the Supplement. Cycas spp. 
contain azoxyglycosides (notably cycasin and neocycasins) and non- 
protein amino acids (notably β-N-methylamino-L-alanine, L-BMAA), 
both of which have genotoxic and neurotoxic properties (vide infra). 

Several human groups have used cycad seed or sago with differing 
degrees of detoxication as an emergency food source. The Aborigines of 
northern Australia traditionally crushed the seed, sun-dried the toxic 
pulp, loaded the pulp into a dilly bag and then placed the receptacle in 
running water for several days to effect complete detoxication [140,141]. 
Other less effective methods of detoxication may account for instances of 
motorsystem disease in this population [142]. Effective detoxication that 
renders cycad seed/sago harmless is achieved by prolonged fermentation 
and repeated washing, as practiced in the Nansei islands of southern 
Japan [143]. By contrast, some Chamorros of Guam consumed food 
products prepared from flour derived from the gametophyte of water- 
soaked and incompletely detoxified seed. Additionally, the fresh green 
seed cover or sarcotesta (0.2% cycasin content) was used to relieve thirst 
and the dried sarcotesta (0.35% cycasin) served as a confection [134]. Use 
of cycad seed for food on Guam was important during times of food 
shortage, especially following a hurricane or during times of conflict such 
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as WWII [74]. After the end of WWII, with Guam under U.S. Navy 
governance, reliance on cycad seed as a source of food and medicine 
declined progressively with the importation of U.S. products and the 
acculturation of Guamanians to a modern American lifestyle. The tradi-
tional Chamorro diet also included fanihi, a cycad-eating fruit bat (Pter-
opus mariannus mariannus), a once-common but now threatened species 
on Guam. The relevance of the fruit bat to the traditional diet has been 
variably described as “highly salient” to a delicacy, with less than once 
monthly consumption [144,145]. These animals were proposed to eat 
cycad seed, bioconcentrate L-BMAA and thereby intoxicate the Chamorro 
consumer [146,147], but an independent study using a powerful 
analytical technique that measured underivatized L-BMAA found no trace 
of the neurotoxin in comparable fruit bat specimens [148]. 

Studies have also shown that preference for traditional Chamorro 
food was significantly associated with an increased risk of P-D on Guam 
[58]. Furthermore, adjusted odds ratios and confidence intervals for 
picking, processing, and eating cycad seed in young adulthood were 
consistently elevated and significant for dementia (n=166), mild 
cognitive impairment (n=50), and P-D (n=21) on Guam [145]. Not 
linked to ALS-PDC was ingestion of the fruit bat (syn. flying fox) or use of 
cycad seed pulp as a topical medicine; ingestion of cycasin-containing 
fresh or dried sarcotesta was not addressed. Prasad and Kurland [4] 
noted that adults may be unable to recall receiving cycad-derived 
medicine that, as children, was administered by male/female indige-
nous healers (surahanos/surahanas) “who used cycad in poultices and as 
tonics”. They also raised the possibility of a link between ALS-PDC and 
inhalation of cycad pollen during seed collection. 

Guam Chamorro folklore associated the practice of handling and 
consuming cycad materials to lytico, many cases of which were diag-
nosed as ALS [133,134,149]. Chamorro children were said to have fallen 
acutely ill after eating cycad food products, and a few died if preparation 
was poor because detoxication was incomplete [150]. Some who ate 
poorly prepared cycad seed products developed sudden onset of nausea 
and vomiting after 1–2 days, followed by liver enlargement, convul-
sions, loss of consciousness, and death or recovery [151,152]. Analysis 
of cycad flour prepared Chamorro-style demonstrated the presence of 
cycasin and ten-fold-equivalent lower concentrations of L-BMAA [153]. 
Importantly, the concentration of cycasin, but not of L-BMAA, was 
significantly correlated with average annual age-adjusted incidence 
rates for ALS and P-D among Guamanian males and females [19,65]. 
Cycasin induces a cycad-like motorsystem disease in ruminants 
[154,155], and the potential role of its DNA-damaging aglycone meth-
ylazoxymethanol (MAM) in Guam ALS-PDC has been recognized earlier 
[156,157]. Comparison of the neurological and other features of ALS- 
PDC with those induced by MAM acetate (MAMac) in laboratory ani-
mals is described in the Supplement. 

4. Cycad components and neurological disease 

4.1. Cycasin and Methylazoxymethanol 

The principal Cycas seed toxin cycasin (up to 2.5% w/w) and a 
number of other azoxyglycosides [158,159] are metabolized to the 
potent genotoxin MAM by β-glucosidase, an enzyme present in plant 
tissue and in the microbiome, skin and other tissues of animals and 
humans [160–162]. MAM is a potent radiomimetic, genotoxin, 
mutagen, teratogen, mitogen, hepatotoxin, pancreotoxin and carcin-
ogen, as well as a developmental neurotoxin that can induce cellular 
injury both by oxidative stress and the alkylation and oxidation of 
guanine [163–166]. MAM alters gene expression in SY5Y human neu-
roblastoma cells and, in the presence of DNA damage and reduced DNA 
repair, enhances glutamate-modulated expression of tau mRNA in rat 
primary neurons [167,168]. 

Cycasin, a glucoside of MAM, can enter cells via glucose transporters 
[169,170] whereupon the sugar moiety is cleaved enzymatically by 
intracellular β-glucosidase [153]. Although β-glucosidase activity in 

intestinal bacteria is known to be responsible for liberating MAM in the 
gut of animals fed cycasin, its activity is reportedly 500-fold higher in 
the brains of rodents and presumably in humans [157]. The metabolism 
of MAM yields the highly reactive methyldiazonium ion that can 
methylate DNA, RNA, protein and other molecules, such as the amino 
acids glutamate and aspartate. An important unresolved question is 
whether MAM can systemically generate L-BMAA or an endogenous L- 
BMAA-like compound from tissue amino acids. Incubation of primate 
serum with MAMac yielded an aspartate derivative (Asp) and a L-BMAA- 
like compound (both uncharacterized) that increased in a concentration- 
dependent manner. As with L-BMAA alone, each of the two novel 
compounds generated by MAMac induced excitotoxic post-synaptic 
swelling in murine cortex cultures, and the aspartate derivative (Asp- 
D) also caused MAMac-like changes in neuronal chromatin. The acute 
neuropathological changes induced by Asp-D suggest that, in addition to 
MAM, both neuronal receptors and intracellular components (notably 
nucleic acids), are potential targets of cycasin derivatives [171]. 

Guam and Kii ALS-PDC brains show evidence of developmental 
perturbation comparable to that induced by MAMac in rodents. The 
response of the immature rodent brain to a single systemic treatment is 
strictly dependent on the stage of development and, secondarily, on the 
administered dose [172]. In rats, a single dose of MAMac given on or 
before gestational day 15 (GD 15) leads to microcephaly with abnormal 
cytoarchitecture of the cerebral cortex, striatum and hippocampus 
[173–175], including nodular heterotopia associated with increased 
susceptibility to convulsive agents [176,177]. Azizi and colleagues 
[165] reported that MAMac reduced the activity of cortical antioxidant 
enzymes (CAT, SOD, GPX) and increased nitric oxide levels in 1-month- 
old mice following injection on GD15, such that oxidative/nitrative 
stress appears to be a latent event in the MAMac rodent model of 
microcephaly. Steullet and colleagues [166] showed that DNA damage 
(i.e, 8-oxoguanine) was increased 164% in the prefrontal cortex of 2–3 
month-old rats following an injection of MAMac on GD 17. Notably, 
predominant oxidative and nitrative DNA damage was shown to be 
frequently co-localized with tau in the brains of Kii-Japan subjects with 
ALS-PDC [41]. Rodents treated with 1,2-dimethylhydrazine or diazo-
methane, both of which produce the common metabolite MAM, induced 
both alkylation (O6-methylguanine) DNA damage in target tissues 
[178,179] and indirectly damage brain DNA (8-oxoguanine) via an 
oxidative stress-mediated mechanism [166,180]. 

MAMac administered to rodents at or shortly after birth produces 
lifelong cerebellar dysplasia [172,181–184], which is directly compa-
rable to sub-clinical structural abnormalities of the cerebellum found in 
a number of Kii and Guam ALS-PDC cases [37,38,185]. A mild bilateral 
cerebellar syndrome was also reported in some members of a motor 
neuron disease cluster of Australian Aborigines in Arnhem Land who 
consumed washed cycad seed [142]. Injection of newborn rats with 
MAMac reduced the weight of the cerebellum by 62%, the olfactory bulb 
by 65%, and the hippocampus by 18% [186]. The cerebellar pathology 
and ataxia in MAMac-treated neonatal mice was more pronounced in 
DNA-repair-deficient animals, and they were reversed in animals that 
overexpress DNA repair [187]. These studies indicate that DNA damage 
plays an important role in the neurodevelopmental changes induced by 
MAM. 

MAMac also induces retinal dysplasia in laboratory animals when 
administered at specific stages of embryonic development. The neuro-
blastic layer folds to produce rosettes that are tubular in cross-section 
and which persist as retinal tracts in adult life [188,189]. These struc-
tures appear to correspond to the linear or vermiform tracts reported in 
Guam and Kii ALS-PDC [190–194] that were previously described in the 
former as “Linear Retinal Pigmentary Epitheliopathy” [195]. Retinal 
and cerebellar dysplasia can occur simultaneously in animals treated 
perinatally with MAM [196,197] but this concurrence has not been 
explored in ALS-PDC. Since the retina of the rat at birth is equivalent in 
developmental stage to the human retina at 4–5 months of gestation 
[198], this implies that human retinal dysplasia could result from fetal 
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cycasin/MAM exposure as early as the second trimester of embryonic 
development, while cerebellar dysplasia might be induced by later 
exposure. 

The Supplement to this paper details the association between the 
experimental effects of MAMac on the developing mammalian brain and 
the cerebellar, retinal, olfactory, mental, skin and other abnormalities 
that have been variably documented to precede and accompany Guam 
and Kii ALS-PDC and related motorsystem disorders. While cause-effect 
proof is unavailable, clinical and experimental observations that support 
various linkages between MAM and ALS-PDC have been known for the 
last half-century but integrated here for the first time. In sum, the above- 
noted studies document anatomical and functional evidence in ALS-PDC 
that is consistent with prenatal, postnatal and adult exposure to the toxic 
actions of cycasin/MAM. 

5. Other cycad chemicals 

As with all plants, cycads such as C. micronesica (Guam) and 
C. revoluta (Japan) are chemical factories that synthesize and harbor 
multiple substances, including non-protein amino acids with neurotoxic 
potential, notably L-BMAA and β-N-oxalylamino-L-alanine (L-BOAA). L- 
BMAA has been heavily investigated in relation to ALS-PDC, while L- 
BOAA is a potent glutamate excitotoxin best known for its presence in 
Grass pea (Lathyrus sativus), prolonged consumption of which induces 
lathyrism, a non-progressive upper motor neuron disorder of humans 
and animals [199]. Gymnosperms like cycads, as well as modern plants 
that are globally used for food, also contain β-sitosterol and its corre-
sponding glucoside, both of which have also been proposed to have 
neurotoxic potential relevant to the etiology of Guam ALS-PDC. 

5.1. BSS-BSSG 

β-Sitosterol (BSS, 24-ethylcholesterol) is the major phytosterol in 
higher plants along with its β-D-glucoside (BSSG) [200]; they are 
abundant in fruits, beans, nuts, seeds and plant-based beverages. While 
BSS and BSSG possess anti-inflammatory, antipyretic, antineoplastic, 
radioprotective and immune-modulating properties, they are generally 
considered to be non-toxic in rodents [201–203], except in mice with 
inactivated liver X receptor beta which itself leads to the pathological 
accumulation of sterols and lipids and motor neuron disease [204,205]. 
Several experimental studies have shown BSS affords significant pro-
tection against the deleterious effects of methylating and other agents 
that induce tumors [206–208]. The therapeutic properties of phytos-
terols have stimulated a number of controlled clinical trials that 
demonstrate BSS-BSSG reduces subtle immunosuppression associated 
with physical stress and promotes urinary flow in prostatic hyperplasia 
[209–212]. After 6 months of treatment with BSS, a follow-up study at 
18 months for symptomatic prostatic hyperplasia found the phytosterol 
maintained efficacy and produced no major side effects [213]. 

Phytosterols interfere with multiple cell-signaling pathways, 
including cell cycle, apoptosis, proliferation, survival, invasion, angio-
genesis, metastasis and inflammation [214] that may be useful for the 
treatment of cancers of the prostate, lung, breast and colon. Two studies 
have shown that BSS and BSSG induce apoptosis in cancer cells that is 
associated with unspecified DNA damage without strand breaks 
[215–217], but plant phytosterols including BSS lacked genotoxic 
properties in several bacterial, mammalian, and in vitro assays [218]. 
BSS-BSSG inhibited DNA polymerase-β lyase activity that is required to 
repair apurinic/apyrimidinic sites in the genome [219]. The therapeutic 
effects of BSS and BSSG might be due to their ability to inhibit repair of 
oxidative DNA damage by the base-excision repair pathway in cancer 
cells [220]. BSSG also promotes IGF-1-associated neural stem cell pro-
liferation [221] and stimulates insulin secretion in isolated rat islets 
[222]. 

Canadian investigators reported CNS changes attributed to phytos-
terols in CD-1 mice fed pellets prepared from water-washed cycad flour 

samples [223]. These mice were considered to have developed an ALS- 
like syndrome, with loss of motor neurons and an eventual reduction of 
dopaminergic innervation of the striatum. Young adult Sprague Dawley 
rats fed washed cycad flour for up to 22 weeks developed locomotor 
changes, altered dopamine metabolism in dorsal striatum and, post- 
treatment, α-synuclein aggregates in substantia nigra pars compacta; 
these changes were also attributed to cycad BSS-BSSG [224]. In addition 
to these motorsystem disorders, cycad seed/flour-fed rats also exhibited 
extended and abnormal sleep periods early in the course of treatment, 
with a reduced number of hypothalamic cells positive for orexin, a 
neuropeptide that regulates arousal, wakefulness and appetite [225]. 
The Canadian investigators subsequently reported that 6–7-month-old, 
male CD-1 mice fed BSSG developed olfactory, motor and cognitive 
dysfunction associated with increased indices of apoptosis and intra-
cellular α-synuclein aggregates appearing first in the olfactory bulb, then 
the striatum, the substantia nigra and, finally, hippocampal and cortical 
regions [223,226,227]. However, these results could not be replicated 
by three cooperating Canadian laboratories that also included the 
original research group [228]. Male CD and SD rats treated orally from 4 
to 5 months of age with pellets with or without 3 mg BSSG failed to 
develop neurological deficits after 10–11 months. No group differences 
were observed with respect to gain of body weight, behavioral measures 
(including open-field and olfactory discrimination tests), motor func-
tion, micropositron emission tomography imaging of labeled dopamine 
terminals, and markers of neuroinflammation in the striatum and sub-
stantia nigra pars compacta. These negative results, coupled with the 
uneventful and widespread human therapeutic use of BSSG, call into 
question the reported neurotoxic properties of BSS-BSSG and their 
proposed relevance to the etiology of ALS-PDC. 

While the induction of a neurological disorder in rodents fed washed 
cycad flour lends strong support for the hypothesis that cycad chemicals 
have primary etiologic importance in ALS-PDC, causal attribution to 
BSS-BSSG is difficult since these phytosterols are components of all 
plants consumed by humans, and their widespread therapeutic use is 
without reported adverse effect on the human CNS. According to the 
Canadian research group, the composition of the washed cycad flour 
that induced motorsystem disease in rodents “failed to show appreciable 
amounts of the cycad toxins, cycasin, MAM, or BMAA” by HPLC-MS 
analysis [223,224,229]. However, the extraction method that was 
used likely failed to remove all toxic azoxyglycosides present in the 
gametophyte of cycad seed formerly used by Chamorros to prepare 
flour. In support, a Guam cycad flour sample [230] that was extracted 
five times with 70% alcohol contained a low concentrations of cycasin 
(4.34 mg/g flour) and a substantially higher amount of an unknown 
β-glucoside that were both susceptible to β-glucoside activity [231]. The 
analysis of flour samples for L-BMAA, MAM and cycasin content also 
requires different HPLC conditions [232,233], but only one was re-
ported by the Canadian research group. Washed cycad flour must be 
subjected to additional analytical procedures (e.g., chromotropic acid, 
addition of β-glucosidase) to establish absence of azoxyglycosides, 
especially since some may be ‘bound’ in cycad plant pulp [231]. For 
example, the cycad species (Cycas revoluta) associated with Kii-Japan 
ALS-PDC contains neocycasin A (β-laminaribioside of MAM) and neo-
cycasin B (β-gentiobioside of MAM) plus a xylose derivative of macro-
zamin, which can undergo conversion to cycasin [234–237]. 

5.2. L-BMAA 

β-N-Methylamino-L-alanine (L-BMAA) is a non-protein neuro-
excitatory amino acid so named by Spencer in 1986 [136] but first 
isolated in the 1960s by Bell and colleagues from the seed of cycads 
associated with Guam ALS-PDC [238]. L-BMAA has been the subject of 
intense research and hundreds of papers which, through 2017, have 
been critically reviewed [239]. While the amino acid is produced by 
cyanobacteria, dinoflagellates and diatoms, the proposed endophytic 
cyanobacterial origin of L-BMAA in cycads [147] has been challenged 
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[240]. The concentration of L-BMAA in the female gametophyte tissue of 
the Japanese C. revoluta (0.32 mg/g dry weight) is lower than that re-
ported (1 g/g dry weight) in seed of C. micronesica collected on Guam. L- 
BMAA was present in small amounts in flour prepared Chamorro-style 
from the washed gametophyte of C. micronesica [153,241] but, in 
marked contrast to residual cycasin, its concentration did not correlate 
with the historical incidence of ALS-PDC [19,65]. Nevertheless, pro-
longed treatment of adult macaques (Macaca fascicularis) with large oral 
doses of L-BMAA (100-315 mg/kg/day for 2-12 weeks) — which is 
highly bioavailable in primates [242] — induced an L-dopa-responsive 
motorsystem disease associated with degenerative or chromatolytic 
changes in cortical and spinal motor neurons plus brain amylaceous 
swellings containing structures resembling paired helical filaments and 
Hirano bodies [137,243]. Moreover, prolonged oral dosing of vervet 
monkeys (Chlorocebus sabaeus) with L-BMAA (210 mg/kg/d for 140 
days) produced subclinical brain neurofibrillary tangles and amyloid 
plaques [244–246]. Neonatal rodents treated with large systemic doses 
of L-BMAA developed hippocampal damage and impaired learning as 
adults [247,248]. Especially in post-natal day 3 (PND3) rat pups, a large 
single subcutaneous dose (400 mg/kg) of L-BMAA induced behavioral 
deficits and ALS-PDC-relevant neuropathology when the animals were 
studied at 6 months of age [249]. Taken in concert, controlled animal 
studies, albeit many lacking the use of a negative control compound 
such as L-BOAA, demonstrate that large single doses or prolonged lower 
dosages of L-BMAA can reproduce features of ALS/PDC in rodents and 
primates, respectively. Since L-BMAA undergoes transplacental transfer 
and is secreted in maternal milk [250–252], the high susceptibility of the 
developing rat brain [253,254], albeit to large doses of L-BMAA, is of 
considerable interest in relationship to the etiology of ALS-PDC. 

Free and protein-associated L-BMAA was reported in the brains of 
Guam ALS-PDC and Canadians with AD [255], but these observations 
were not confirmed in an independent study of Guam Chamorro P-D and 
AD brains [256,257]. L-BMAA was also not detectible by LC-MS-MS in 
the brains of Kii-Japanese subjects with ALS, ALS-PDC or ALS with de-
mentia [258]. Elsewhere, links have been sought between clusters of 
sporadic ALS and exposure to cyanobacterial L-BMAA in water bodies 
and/or shellfish. One study identified an ALS cluster surrounding the 
Thau lagoon in France, the most important area of shellfish production 
and consumption along the Mediterranean coast, where mussels and 
oysters contained L-BMAA, especially during summer months [259]. A 
potential ALS cluster was also described among persons living near a 
water body with a history of L-BMAA-positive cyanobacterial algal 
blooms (Lake Mascoma) in New Hampshire, USA [260–262]. Other 
studies in New England linked poor lake water quality and phycocyanin 
concentration with increased odds of belonging to an ALS cluster 
[263,264] with positive association with water sports, particularly 
water skiing [265]. None of these studies has provided evidence of 
cause-effect relationships between L-BMAA exposure and ALS. Also not 
considered in the North American studies is the possible food use of ALS- 
associated False Morels [266] that harbor MAM-like compounds (hy-
drazines) and, in New England, these foodstuffs tend to grow on sandy 
soils near pine trees around lakes [267]. 

The neurotoxic mechanisms by which L-BMAA induces experimental 
neurodegenerative disease are not fully understood. While this methyl-
ated amino acid is a mixed ionotropic-metabotropic glutamate receptor 
agonist that induces oxidative stress [268–272], it is difficult to relate 
these excitotoxic properties to chronic progressive neurodegeneration. 
Some have suggested L-BMAA is misincorporated into neuroproteins 
(including synthetic β-amyloid) resulting in protein misfolding [273,274] 
but cell culture, rodent and primate studies have failed to detect L-BMAA 
in neuroprotein(s) [275–279]. The controversial proposal that L-serine is 
misincorporated into CNS protein [239] stimulated study of the effects of 
L-serine supplementation of L-BMAA-treated vervets and, based on a re-
ported reduction of treatment-induced spinal cord pathology [246], a 
phase-1 trial of L-serine in patients with ALS proceeded with apparent 
absence of adverse drug effects [280]. 

Others have reported the genotoxic potential of L-BMAA to mussel 
and mouse cells [281–283] and, after nitrosation, to human cells [284]. 
Nitrosation of L-BMAA (N-BMAA) might occur in vivo from the reaction 
with nitrite to produce an alkylating agent with similar DNA-damaging 
properties to those of MAM. The latter mechanism might explain how L- 
BMAA induced cell-cycle dysregulation and heritable changes in em-
bryonic rat striatal neurons [285]. While millimolar concentrations of L- 
BMAA induced apoptosis, much lower concentrations (50–100 μM) 
reduced the differentiation of rat striatal neural stem cells (NSCs) into 
astrocytes, oligodendrocytes and neurons, and altered the morphology 
of neurons [285]. In addition, L-BMAA did not alter the cell cycle of 
corresponding post-mitotic striatal neurons, but it did reduce the per-
centage of NSCs in G0/1 phase and increased the percentage of those in 
G2/M phase. The effect of BMAA on the NSC cell cycle was heritable (D1 
and D2 daughter cells) indicating that L-BMAA can induce permanent 
cell-cycle changes. Such changes in daughter NSCs did not reduce their 
viability, an observation consistent with results from previous in vitro 
and in vivo studies when neurons are forced into cell-cycle reentry 
[286,287]. At comparable concentrations (16–128 μM), L-BMAA 
induced genomic instability in human peripheral blood cells without 
production of DNA strand breaks or oxidative stress [283]. In contrast, 
higher concentrations of L-BMAA (>500 μM) induced both oxidative 
stress and DNA strand breaks in mixed cultures of human neurons and 
glia [288] or murine neural stem cells [282], suggesting that lower 
concentrations of the methylated amino acid disrupt the cell cycle and 
induce genotoxicity by a different mechanism, possibly by production of 
a nitrosylated derivative [284]. These observations are consistent with 
the notion that L-BMAA induces cell-cycle changes in neurons compa-
rable to those observed in the brains of Guam PDC patients and related 
tauopathies. Such changes could be related to the genotoxic effects of L- 
BMAA [282–284], especially following early-life exposure to low con-
centrations of the cycad toxin. These same properties are shared by the 
principal cycad genotoxin MAM [289,290]. Additional studies are 
required to sort out the relative importance of L-BMAA- and MAM- 
induced cell-cycle changes to those in ALS-PDC [see Supplement]. 

6. Mechanisms of cycad toxicity 

6.1. Genomic instability 

While the roles of L-BMAA, MAM, or their metabolites are individu-
ally, together, or with other factors, plausibly responsible for triggering 
ALS-PDC, it appears highly probable that this occurs primarily through 
the induction of genomic instability. There is wide acceptance that MAM 
is a potent genotoxin that induces alkyl and oxidative DNA lesions (O6- 
mG, N7-mG, 8-oxoG) in many murine organs, including the brain 
[166,180,290–292]. MAM induces oxidative DNA damage most likely via 
hydroxy radicals that form during autooxidation in the presence of metals 
such as iron [293] or by inhibiting antioxidant enzymes [165]. While both 
occur in cancer and neurodegenerative diseases, interest focuses on O6- 
mG and 8-oxoG DNA lesions because they are pro-mutagenic for cycling 
cells and appear to be pro-cytotoxic in non-cycling cells, notably neurons 
[294,295]. Human and murine O6-mG lesions are subject to direct repair 
by O6-mG methyltransferase (MGMT) [296]. Failure to repair O6-mG le-
sions in cells undergoing division increases risk of mispairing with 
thymine during DNA replication, resulting in GC➔AT transitions and 
frameshift mutations in bacteria [297]. MGMT enzyme activity is espe-
cially required during cell division but, in post-mitotic nerve cells, activity 
appears to be very low such that neurons should be highly susceptible to 
MAM. Given the low capacity of brain vs. liver tissue to repair O6-mG 
lesions [298–300], repeated exposure to alkylating agents such as MAM 
would result in mounting DNA damage and genomic instability 
[157,290]. This may explain why proteins involved in DNA repair, such as 
TDP-43, accumulate over time. Even cells with mitotic potential, such as 
renal cells, accumulate MAM-induced pro-mutagenic/carcinogenic O6- 
mG lesions because transcriptional activation of Mgmt or any other DNA- 

P.S. Spencer et al.                                                                                                                                                                                                                              



Journal of the Neurological Sciences 419 (2020) 117185

8

repair enzymes fails to occur [301], perhaps because the MAM metabolite 
formaldehyde epigenetically silences Mgmt expression [302,303]. 
Oxidative DNA damage has also been observed in the liver and colon of 
rodents following administration of the MAM precursors 1,2 dimethyl-
hydrazine (DMH) and azoxymethane [180]. 8-oxoG levels were elevated 
dose-dependently in the colon of young rats (~1 month old) 24 h after 
administration of a single subcutaneous injection of DMH (25 m/kg, 50 
mg/kg, 100 mg/kg) [180]. 8-oxoG levels were also elevated in the colon 
of adult mice after twice weekly intraperitoneal injections of azoxy-
methane (25 mg/kg) [292]. These studies demonstrate that MAM indi-
rectly induces oxidative DNA damage in non-neural tissues through a 
transition metal-catalyzed mechanism [293] or by reducing antioxidant 
enzymes [165]. Such mechanisms may explain the elevated levels of 8- 
oxoG detected in the prefrontal cortex of the MAMac animal model of 
schizophrenia [166]. 

6.2. Cell-cycle changes 

Although neurons undergo terminal differentiation by withdrawing 
from the cell cycle to remain quiescent in the G0 phase [304], aberrant 
cell-cycle activation of post-mitotic neurons is a key molecular mecha-
nism in AD and other human neurodegenerative disorders and animal 
models thereof [[304–308], Supplement]. Remarkably, cell-cycle events 
can be maintained [307] in vivo in affected neurons for weeks to years 
before apoptosis (regulated by the E3 ubiquitin ligase Itch), such that 
activation of the DNA-damage response might be able to hold cell cycle- 
induced death (apoptosis) in check for prolonged periods [309,310]. 
The Guam ALS-PDC brain shows evidence of cell-cycle reactivation of 
neurons with tau pathology destined for degeneration [35,36,311]. The 
MAMac animal model [312–314] is also characterized by latent cell- 
cycle changes [315] and epigenetic changes in the rat hippocampus 
[316–319]. MAM disrupts the cell cycle presumably by inducing DNA 
damage via methylation of guanine (i.e., N-7 methyl or O6-methyl) that 
inhibits DNA duplication during S phase [320] and disrupts neuro-
epithelial cells undergoing their final mitosis [321]. Some of the early 
changes induced by MAMac in somatic cells include nucleoprotein 
structural alterations, mitotic abnormalities, and induction of poly-
ploidy [322] as well as retinoblastoma (Rb) gene mutations, which lead 
to the development of intraocular neoplasms [323,324]. Expression of 
the retinoblastoma gene is also altered in the prefrontal cortex of rats 
treated developmentally with MAMac [315] and in human neuro-
progenitor cells (hNPCs) after acute treatment (24 h) with the genotoxin 
[325]. Studies with hNPCs indicate that the MAMac-induced cell-cycle 
changes are triggered by DNA methylation (Supplement Fig. S1), a 
finding consistent with the DNA methylation changes reported in the 
GD17 MAMac animal model of schizophrenia [312,316,326,327], 
which may occur before or after the appearance of motor systems in 
sporadic ALS and ALS-PDC (see Supplement Section 2.1). In addition to 
DNA methylation, histone deacetylase (HDAC I & II) activity was also 
reduced by MAMac in hNPCs (Supplement Fig. S2). The DNA methyl-
ation and HDAC changes observed in these recent in vivo and in vitro 
studies with MAMac suggest that the cycad genotoxin MAM, in contrast 
to L-BMAA, induces early epigenetic changes that coincide with both the 
DNA damage and cell-cycle changes. 

Whether the MAM-induced DNA damage and/or epigenetic changes 
are the initial event(s) that trigger the cell-cycle changes is presently 
unknown, but conditional deletion of HDAC1 in transgenic mice suggests 
that epigenetic dysregulation (i.e., HDAC1 deficiency) is the initial event 
because it reduced DNA repair that led to the accumulation of DNA 
damage at the promoters of susceptible genes and their transcriptional 
repression [328]. Moreover, the 5xFAD transgenic mouse model of AD 
also exhibits impaired HDAC1 activity, elevated oxidative DNA damage 
and significant overlap with the genes downregulated in aged HDAC1 
cKO mice with T cell-specific deletion of HDAC1. Since the repair of 
MAM-induced alkylated DNA damage is also regulated by HDAC [329] 
and the promoters of genes that contain guanine-rich sequences were 

targeted in HDAC1 cKO mice, similar genes might be equally targeted by 
MAM-induced DNA alkylation damage. This notion is consistent with the 
increased HDAC levels recently reported in the hippocampus of 20-week- 
old rats following prenatal (GD13) MAMac treatment [319], the reduced 
HDAC activity of MAMac-treated hNPCs and the ability of alkylated and 
oxidative DNA lesions to prevent the binding of transcription factors to 
their consensus sequences [289]. These studies suggest that MAM induces 
early and persistent epigenetic changes that could reduce the ability of the 
brain to repair alkylation or oxidative DNA damage, which would impair 
transcription of genes in cell-cycle and other neuronal pathways. 

6.3. MAM Perturbs Brain UPP and Tau 

Transcriptional mutagenesis has been proposed as the underlying 
mechanism for MAM neurotoxicity [289] and for the ubiquitin- 
proteasome pathway (UPP) dysfunction in Guam and Kii ALS-PDC 
brains [42]. Since MAM induces frameshift mutations in mammalian 
and other cells [297], this mutagen might plausibly induce frameshift 
mutations in ubiquitin (UBB) to produce the mutant UPP inhibitor 
UBB+1. MAMac treatment of neonatal mice persistently perturbs the 
brain UPP and changes the expression of brain proteins that are also 
abnormally expressed in ALS-PDC [330]. The cerebellum of mice 
examined 1–19 days following a single subcutaneous dose of MAMac 
administered on PND3 showed persistent DNA damage, evidence of 
DNA strand breaks and, at 22 days, immunocytochemical evidence of 3R 
tau accumulation. Among the plethora of transcriptional changes, 
approximately 60% of UPP-related genes in the mouse cerebellum were 
dysregulated (mostly downregulated) relative to the cerebellum of 
control animals treated with saline [331]. MAMac treatment of M17 
human neuroblastoma cells also resulted in a concentration-dependent 
increase in levels of 3R tau and phosphotau (AT8) [332], which com-
pares with the cerebellar tau pathology in Kii ALS/PDC [38]. MAMac 
also induced DNA-damage-associated increased tau expression in rat 
neuronal cultures [167]. Previous studies have shown that the protein 
expression of tau, α-synuclein and ubiquitin is also altered in the brains 
of MAM-treated mice [333] and Guam ALS/PDC [334]. 

6.4. Timing of toxin exposure 

Prenatal administration of MAMac to timed-pregnant rats (GD17) 
alters the modification of histone proteins during postnatal life; notably, 
the methylation (i.e., H3K4me3, H3K9me3, H3K27me3) and acetylation 
(i.e., H3K9ac) of histones are decreased in the prefrontal cortex of adults 
[317,335,336]. Histone dimethylation (H3Kme2) was significantly 
reduced in the prefrontal cortex of MAMac-treated PND15 and PND45 
rats [335] whereas histone trimethylation and histone acetylation were 
reduced in adulthood (PND60 and 70), and the latter changes were 
associated with the decreased expression of glutamic acid decarboxylase 
(Gad1) in adulthood [336]. Abnormal histone-mediated epigenetic 
silencing of the Grin2b gene was associated with N-methyl-D-aspartate 
receptor hypofunction in the premotor cortex of juvenile rats treated 
gestationally on day E17 with MAMac, changes that may be related to 
cognitive impairment [317]. Perhaps a related epigenetic mechanism 
explains how gestational exposure to MAMac in the E17 rat induces 
postnatal, age-dependent GSK3β hyperactivity associated with signifi-
cant reduction in dendritic spines, deficient long-term potentiation and 
facilitation of long-term depression in prefrontal cortex pyramidal 
neurons, together with working memory deficits [337]. Thus, histone 
methylation is an early event whereas histone acetylation is a late event 
following in utero treatment with MAMac. 

The critical conclusion from these recent rodent studies is that time- 
specific in utero exposure to MAMac induces persistent changes in brain 
molecular function, including overexpression of tau kinase (GSK3β), 
that surfaces clinically during later life in the form of neurofibrillary 
degeneration [318]. Importantly, the epigenetic vulnerability of the 
developing rodent brain to MAMac, which spans other molecular 
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pathways such as the GABA transcriptome [338], are potentially heri-
table for generations. This principle has been demonstrated by the 
presence of aberrant methylation of transcription factor Sp5, coupled 
with enhanced dopamine neuron activity in the ventral tegmentum area 
in second (F2) and third (F3) filial generations of embryonic F1 rats 
treated with MAMac on E17 [316]. This study also raised the possibility 
of genetic alterations in E17 gonocytes of male or female embryos that 
contributed to the abnormal adult brain phenotype. Indeed, it has long 
been recognized that MAMac induces genetic alterations in various test 
systems in bacteria, yeast, plants, Drosophila melanogaster, and 
mammalian cells [339]. Moreover, adolescent F2 rats were more sus-
ceptible than controls to chemical (cannabinoid) challenge, an example 
of gene-environment interactions responsible for brain dysfunction 
[340]. In sum, the brain DNA damage and persistent epigenomic mod-
ifications produced by MAMac appear to modulate the expression of 
genes that regulate the cell cycle, neurodevelopment and contribute to 
neurodegeneration [331]. Based on recent studies with human neuro-
progenitor cells described in the Supplement, there is no reason to 
expect a different outcome from human exposure to cycasin/MAM 
during a comparable critical period in utero, namely the second/third 
trimester when we propose cerebellar and retinal dysplasia also occurs. 

There is also strong evidence that the neonatal rodent brain is sen-
sitive to L-BMAA. A single subcutaneous injection rat pups with L-BMAA 
(50 and 200 mg/kg) on PND 9–10 produced deficits in spatial learning 
and memory in adult animals; a larger dose (600/mg) induced rapid 
neuronal cell death in the hippocampus and, to a lesser degree, in the 
retrosplenial and cingulate cortices [341]. Rats injected with 400 mg/ 
kg L-BMAA on PND3–10 (especially PND 3) later developed behavioral 
and cognitive deficits, gait and postural abnormalities, with reduced 
neuronal density in the CA1 and CA3 regions of the hippocampus, 
dentate gyrus, caudate, putamen and anterior horn of the spinal cord, 
coupled with brain deposits of β-amyloid, α-synuclein and TDP-43 
[254]. The rodent brain at PND1–3, which corresponds to 23–32 
weeks of human fetal gestation, undergoes oligodendrocyte maturation, 
immune system development and establishment of the blood-brain 
barrier. A brain growth spurt peaks at PND7 (36–40 week human 
fetus) and, by PND21 (2–3 year-old infant), the brain has 90–95% of its 
adult weight, peak synaptic density and peak rate of myelination 
[342,343]. In sum, therefore, the developing rodent (PND3) appears to 
be most sensitive to L-BMAA at a time corresponding to the third human 
trimester (28–40 weeks), the reason for which has yet to be determined, 

6.5. Molecular pathogenesis of ALS-PDC 

MAMac reproducibly induces brain maldevelopment via DNA dam-
age [187] and epigenetic mechanisms [316,335,336], but how this 
genotoxin induces chronic neurodegenerative disease is not understood. 
One possibility is that MAM perturbs the brain insulin-signaling 
pathway, as do the chemically related genotoxins streptozotocin (STZ) 
[344] and nitrosamines [345]. STZ, a glucosamine of N-methylni-
trososurea, induces a rodent model of dementia characterized by pro-
gressive deterioration of memory, energy metabolism [346], and tau 
pathology [347,348]. The tau pathology in the STZ rodent model of 
dementia is preceded by early changes in the phosphatidylinositol-3- 
kinase (i.e., PI3K, phospho-Akt, GSK3β) insulin/IGF-signaling pathway 
[349]. STZ-induced hyperglycemia also triggered cell-cycle changes (e. 
g., cyclin D1) in the hippocampus of young adult mice (4-month old) 
following an intraperitoneal injection of the genotoxin [350].MAMac 
also significantly altered (p < 0.05) brain tissue levels of PI3K (phos-
phatidylinositol 3-kinase), pAkt (phosphorylated serine/threonine ki-
nase Akt), and GSK3β (activated glycogen synthetase kinase 3β) in 90- 
day-old htau mice after neonatal animals (PND3) were administered a 
single injection of the cycad toxin [351]. Whether MAMac, like STZ, can 
produce an animal model of dementia when given by intra-
cerebroventricular injection should be explored, as should the question 
of whether the associated pathological and behavioral changes are tied 

to the accumulation of DNA lesions and/or epigenetic changes (e.g., 
DNA methylation, modified histones). 

A second possibility is that the persistent brain DNA lesions induced 
by MAM trigger transcriptional mutagenesis, a mechanism shown to 
produce abnormal proteins and transcripts following the placement of 
DNA lesions in the coding regions of genes [352,353]. In cells where 
repair of O6-mG DNA lesions was reduced by the MGMT inhibitor O6- 
benzylguanine (BG), approximately half of the transcripts contained a 
uridine misincorporation opposite the DNA lesion, and this was associ-
ated with changes in protein function. Recent studies also showed that 
BG increases O6-mG DNA lesions in human neural stem cells (G.K., un-
published data), which might explain the latent effect of MAMac on the 
development of human neuroprogenitor cells into cortical neurons 
[325]. These MAM-induced effects on developing human neural cells 
were also associated with changes in the DNA methylation of genes 
involved in the differentiation of human neurons. Additional studies 
with human neural stem cells could provide clues as to the influence of 
DNA lesions and epigenetic changes that might contribute to the 
neurodegenerative changes observed in ALS-PDC. The recent develop-
ment of human neural stem cells, neuroprogenitors, neurons and as-
trocytes from both healthy and PDC subjects from Guam [325,354] 
offers the opportunity to determine the underlying differences between 
neural cells of diseased patients and further assess the role of cycad 
toxins in ALS-PDC. 

Lastly, DNA lesions may also persist in the promoter of genes (i.e., 
transcriptional disruption) resulting in altered expression of the associ-
ated proteins. Bonfanti and colleagues [355] showed that O6-mG, one of 
the DNA lesions produced by MAMac, inhibited the binding of tran-
scription factors to their cognate DNA sequences in a position-dependent 
manner. The O6-mG lesion blocked DNA binding of NF-kB, Sp1 and SRF 
(see Keywords). Binding of NF-kB to its cognate sequence was also dis-
rupted in a position-dependent manner by the presence of O6-mG or 8- 
oxoG in DNA [290]. The importance of these observations is that DNA 
lesions within the promoter (vs. the coding) regions of genes may pro-
duce persistent up- or down-regulation of gene expression that is 
dependent upon both the sequence location and type of lesion. This may 
explain why NF-kB was a prominent hub in the brains of MAMac-treated 
mice, and why low doses of MAMac disrupted the expression of genes 
enriched in differentially methylated regions that regulate the differ-
entiation of human neuroprogenitor cells into cortical neurons [325]. 

7. Relevance to other neurodegenerative disorders 

Whether any genetic modifications arise as a result of exposure to 
cycad toxins has not been assessed, but the possibility certainly exists. 
Beyond Western Pacific ALS-PDC, the foregoing discussion is relevant to 
ALS with frontotemporal dementia (ALS-FTD), with which it has been 
compared [356,357]. Hexanucleotide expansion of C9orf72 is found in 
50–70% of familial and 15–20% of sporadic ALS-FTD cases [358,359] 
and has also been linked to atypical parkinsonian syndromes, including: 
Corticobasal Syndrome, Progressive Supranuclear Palsy (PSP), and 
Multiple System Atrophy [360], as has AD [361]. Based on the present 
examination of the link between MAM and ALS-PDC, it is logical to 
explore whether related neurodegenerative disorders associated with 
nucleotide repeats arise from the effects of exposure to environmental 
mutagens that interfere with DNA repair. Indeed, nitrosamines and 
hydrazines, which are related to MAM by chemistry and molecular 
mechanism, have been considered elsewhere for possible etiological 
links with ALS, PSP and AD [289,362]. 

The proposed genotoxic origin of ALS-PDC is broadly consistent with 
the suggested role of (mostly oxidative) DNA damage, cell-cycle dysre-
gulation and abnormalities of DNA repair in related diseases, including 
ALS [156,363–370] and other neurodegenerative and psychiatric dis-
orders [371,372]. This includes schizophrenia although there was no 
significant link with the later onset of ALS in an unbiased hospital record 
linkage study [373]. The genotoxic properties of cycad toxins suggest 
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relationships between Western Pacific ALS-PDC and the genesis of car-
cinogenicity, notably colon cancer [285,289]. Links between ALS and 
cancer have been reviewed recently [374] although an earlier record 
linkage study failed to find an association [375]. With respect to the 
association between brain pathology and skin abnormalities in ALS- 
PDC, it is noteworthy that multisystem proteinopathy may be linked 
with ALS, frontotemporal dementia, and Paget’s disease [376]. In regard 
to type-2-diabetes mellitus, both positive and negative associations with 
ALS risk have been made [377–382]. These topics are addressed in the 
Supplement. 

8. Conclusion 

The foregoing has highlighted evidence supporting the proposal that 
cycad-derived MAM is the primary etiologic agent in Western Pacific 
ALS-PDC acting through a DNA-damage and epigenetic mechanism that 
subsequently leads to cell-cycle disturbances and associated patholog-
ical changes. The minor cycad toxin L-BMAA, together with the as-yet 
undefined endogenous molecules that MAM methylates, likely contrib-
utes to disease etiology based on the responses of rodents and primates 
that resemble clinical and neuropathological aspects of ALS-PDC. The 
chemistry and molecular mechanisms that MAM shares with those of 
nitrosamines and hydrazines have been discussed elsewhere in relation 
to possible roles for these widely distributed compounds in the etiology 
of sporadic forms of ALS, PSP and AD [289,362]. 

The action of MAM on the fetal nervous system results in persistent 
anatomical perturbations of the developing cerebellum and retina that 
appear directly relevant to the subclinical abnormalities described in 
cases of ALS-PDC on Guam and in Kii-Japan. Ectopic neurons are also 
found in the hippocampus of postnatal rats treated with MAMac [383]. 
Whether pathological changes in olfaction, skin and other organs in ALS- 
PDC are acquired before or after birth, they are also plausibly related to 
MAM exposure, as discussed in the Supplement. While this information 
is longstanding, it has not been appreciated before in large part because 
there has been insufficient communication between clinical and exper-
imental scientists. Further, while scientists focused on cancer mecha-
nisms have long understood the DNA-damaging effects of MAM and 
related genotoxicants, the significance of this property in perturbing the 
development and long-term maintenance of brain cells has not been 
widely appreciated. The neurology community has been focused on the 
genetic and infectious causes of neurodegenerative diseases while giving 
sparse attention to the role of exposure to potent environmental chem-
icals that act as slow toxins, a term first used >30 years ago to describe 
the putative role of cycad chemical(s) in ALS-PDC [137]. The fact that 
embryonic exposure to MAMac induces a reliable animal model of 
schizophrenia (see Supplement), demonstrates the genotoxic actions on 
the developing brain are, like many genetic disorders, delayed in their 
clinical expression. Similarly, epidemiological studies have shown that 
periods exceeding half a century may intervene between exposure to 
high-risk environments and the clinical onset of ALS-PDC. This obser-
vation directly challenges the statement that chemicals with neurotoxic 
potential do not induce long-latency disease and thus cannot be 
responsible for ALS-PDC [384]. Clearly, the search for environmental 
risk factors for disorders related to ALS-PDC must take into consider-
ation early-life exposures as possible etiological factors [385]. Signifi-
cant exposure to chemicals that induce a DNA-damage response in 
neurons merit the highest level of suspicion. 

The assembled evidence raises the possibility that some cases of ALS- 
PDC may have a partly fetal origin arising from maternal exposure to 
cycad genotoxins, while others are traceable to exposure as infants, ju-
veniles or adults. The human fetus in the second trimester is especially 
vulnerable to chemicals, which is consistent with the ability of MAMac 
to trigger cerebellar dysplasia, retinal dysplasia and a schizophrenia-like 
illness, all of which are described in ALS-PDC as discussed in the Sup-
plement. Since ingested cycasin gives rise to MAM which, like L-BMAA, 
crosses the placenta [247,386], the fetus of a pregnant Guamanian or 

Japanese woman exposed orally to cycasin in food (Guam) or medicine/ 
tonic (Kii-Japan), would have an increased risk for the development of 
CNS abnormalities, the hallmarks of which would persist throughout 
life. MAM and L-BMAA enter mother’s milk [250,252,387], which 
would result in exposure of infants to these genotoxins. With accultur-
ation to modernity, the declining use of cycad seed that resulted in 
exposure to cycad genotoxins would account for the progressive 
reduction of ALS-PDC in all three geographic foci of the disease. 

Whether fetal exposure to cycasin can trigger a cascade of molecular 
events that culminate in ALS-PDC is unknown, but the epidemiology and 
long-latency between exposure and clinical onset makes clear that this 
disease was sometimes acquired in infancy/childhood (Kii-Japan) or 
adolescence (Guam) [61,65,388]. Also unknown is whether the timing 
or the accumulated dose of cycad genotoxins determines the delayed 
development of subclinical neurofibrillary pathology, clinical dementia, 
atypical parkinsonism or ALS. Elsewhere, we have suggested these 
represent four points on a increasing dose-response continuum, which 
accounts for why ALS generally affects younger subjects while dementia 
is mostly confined to the elderly [137]. Viewed from this perspective, 
ALS would have resulted from high doses of cycad toxin(s) that induced 
fatal motor neuron disease at a relatively early age while lower levels of 
exposure spared motor neurons, thereby allowing longer survival pe-
riods during which other phenotypes had time to develop and surface. 
The response of Guam-derived neural stem cells to cycad toxins at 
different stages of neuronal development might provide important 
insight as to timing and vulnerability to genotoxin exposure. 

While the purpose of this review is to examine the pre-eminent role 
of environmental factors in the genesis of Western Pacific ALS-PDC, 
common exposure to which across generations has produced familial 
as well as sporadic examples of the disease, some authors have 
continued to insist on the role of an heritable component even though 
the disorder has all but disappeared. Given the genotoxic and epi-
genotoxic potential of MAM and formaldehyde, a common metabolite of 
both MAM and L-BMAA [290,389], systemic exposure to such com-
pounds could potentially result in genetic and/or epigenetic changes, 
whether heritable or not. In addition to the carcinogenic and neurotoxic 
risks of overexposure to formaldehyde, it is also a physiological mole-
cule that functions in association with the one-carbon cycle. Concen-
trations of endogenous formaldehyde are increased in the plasma of 
sporadic ALS [390], in the AD brain and primate models [391,392], the 
subject of which has been extensively discussed in relation to ALS-PDC 
[295]. Formaldehyde and epigenetics in AD is the subject of a recent 
paper [393]. Of note, occupational exposure to exogenous formaldehyde 
is reportedly a risk factor for ALS in Europe and the USA [394,395] and 
use of cigarettes, the smoke of which contains substantial amounts of 
formaldehyde and MAM-related nitrosamines [396,397], has been 
linked to increased risk for sporadic ALS [368,398–400], the patho-
genesis of which has been proposed to be a multi-step process analogous 
to that of cancer [401]. While smoking rates among Chamorros tradi-
tionally have been high [402], a potential link with ALS-PDC in Guam or 
elsewhere has not been explored. 

We conclude that the cycad chemicals MAM and L-BMAA are 
incriminated in the etiology of ALS-PDC. MAM, the common aglycone of 
cycad azoxyglycosides, is a major and perhaps principal player. MAM 
produces persistent DNA damage that perturbs cell-cycle control and 
probably drives neurons to attempt cell division, which fails, activates 
apoptosis, and culminates in cell death. While MAM is both neurotoxic 
and carcinogenic for organs such as the colon, BSS-BSSG is non- 
neurotoxic and a colon chemopreventive agent through its influence 
on the cell cycle [403]. A role for minerals in the etiopathogenesis of 
ALS-PDC is uncertain, but it is noteworthy that L-BMAA chelates diva-
lent metal ions, notably Cu2+, Zn2+ [404,405], which conceivably could 
perturb the enzyme activity of Cu-Zn superoxide dismutase, mutations 
of which underlie genetic forms of ALS [406] and protein misfolding has 
been reported in sporadic ALS, Parkinson’s disease and supranuclear 
palsy [407]. 
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Decades of study of Western Pacific ALS-PDC have provided impor-
tant lessons for the investigation of related neurodegenerative disorders 
worldwide: 

- geographic clusters (including conjugal cases) are unique opportu-
nities for etiologic discovery;  

- isolated clusters of the same neurodegenerative disease likely have a 
common etiology;  

- disease phenotype may evolve clinically from young-onset ALS to 
late-life dementia; 

- familial (as well as sporadic) disease can have a primary environ-
mental etiology;  

- exposure assessment should straddle the period from conception to 
symptom onset;  

- etiologic clues are most likely to arise from intense study of young- 
onset cases;  

- open-ended interviews as well as epidemiologic instruments 
generate testable hypotheses;  

- experimental animal studies are critically important to test suspect 
environmental agents;  

- knowledge of environmental etiology of disease can be used for 
primary disease prevention. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jns.2020.117185. 
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SUPPLEMENTARY TEXT 

1. ALS-PDC and MAM Developmental and Adult Abnormalities 

There is evidence of subclinical and systemic disease in the Western Pacific Amyotrophic Lateral 

Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) that is consistent with the known effects 

of cycasin and/or its active metabolite methylazoxymethanol (MAM) in humans and/or animals 

(Supplemental Table 1). 

 

Subclinical cerebellar and retinal pathology consistent with in utero second-trimester exposure to the 

cycad genotoxins is found in some cases of Guam and Kii-Japan ALS-PDC.  Changes in mental 

function (schizophrenia) that precede and/or accompany the clinical appearance of motor dysfunction 

in sporadic ALS and Kii-ALS may also suggest early exposure to MAM, which is widely used to 

induce an established animal model of schizophrenia. Guam, Kii and sporadic ALS exhibit 

abnormalities of skin suggestive of spontaneous regenerative changes, an effect of cycasin/MAM that 

was used traditionally as a poultice of cycad seed pulp to promote skin repair in Guam and Papua-

Indonesia communities impacted by ALS-PDC.  Bone and skin abnormalities may be related 

phenomena. Other links with varying strength between ALS-PDC and cycasin/MAM include changes 

in olfaction, diabetes mellitus, birth defects, liver disease and cancer risk. MAMac induces epigenetic 

and cell-cycle changes in human neuroprogenitor cells that are also consistent with cell-cycle 

perturbation of neurons in ALS-PDC-related neurodegenerative disorders, namely ALS and 

Alzheimer disease (AD). 

 

1.1. Cerebellum  

The brains of some Japanese and many Guamanian subjects with ALS-PDC have multinucleated and 

ectopic Purkinje-like neurons in the cerebellum, with comparable developmental abnormalities of 

vestibular nuclei, occipital gyri and other areas of the brain [S1-3]. These long-neglected findings 

were confirmed in a recently published Japanese study of the cerebellum of 10 male and female Kii 

ALS-PDC subjects (aged 63-77 years) [S4].  Cases, but not age-matched controls, had plentiful 

cerebellar tau pathology together with dislocated and multinucleated Purkinje cells in the molecular 

layer and pathological changes in the dentate nucleus and cerebellum, the latter characterized by 3R 

and 4R tau pathology.  

 

Comparable cerebellar dysplasia developed in early postnatal rodents following a single 

intraperitoneal injection of MAMac [S4-S18]. MAMac disrupted cell division and migration that 

resulted in tissue disorganization featured by ectopic and misplaced Purkinje and granule cells [S14, 

S19]. Neonatal administration of MAMac perturbed cerebellar development in rodents such that, at 21 

days of age, granule cells were mixed with Purkinje neurons instead of forming layers [S14,S20]. 

Ectopic neurons were also found in the hippocampus of neonatal rats following administration of 



MAMac during fetal development [S21]. Based on human cerebellar development [S22], migrating 

granule and Purkinje cells would be at risk for MAM-induced disruption from the human second 

trimester onwards. 

 

The neurotoxic property of MAM involves the formation of O6-methylguanine (O6-mG) DNA lesions 

that are primarily repaired by O6-mG methyltransferase (MGMT), an enzyme that is especially low in 

brain tissue such that these DNA lesions accumulate and persist [S23-S26]. MGMT transfers the 

methyl group from O6-mG to a cysteine residue in its active site, and the enzyme is subsequently 

targeted for ubiquitin-related degradation [S27].  MAMac perturbs several brain protein networks, 

including transport (e.g., α-synuclein), cytoskeletal (e.g., β-tubulin, vimentin), and mitochondrial 

(e.g., Atp5b) proteins [S28].  Whereas transgenic mice lacking MGMT show increased susceptibility 

to MAMac, mice that overexpress MGMT are markedly protected from MAMac-induced cerebellar 

damage [S13].  These studies suggest that MAMac-induced DNA damage (i.e., O6-mG, N7-mG) 

plays an important role in the neuropathological and behavioral changes observed in rodents.  

 

1.2. Retina   

Linear or vermiform retinal tracts were found in 53% (n=38 of 72) of Guamanians with ALS-PDC 

and 16% (n=85 of 531) of neurologically normal Guam subjects [S29-S31]. Described by North 

American investigators as Guam Linear Retinal Pigment Epitheliopathy (LRPE), this condition was 

thought to resemble ophthalmomyiasis interna [S31], which results from the parasitic activity of an 

intraocular botfly larva [S34, S35].  LRPE occurred in one or both eyes without visual impairment, 

remained unchanged for up to 24 years, and predicted and preceded the clinical onset of ALS-PDC 

[R33]. Steele [S32] followed 17 of 28 Chamorro subjects (34-65 years old) diagnosed with LRPE, 16 

of whom were neurologically asymptomatic; 10 developed P-D 3 to 22 years after the retinal tracks 

had been recognized. A similar retinopathy was described in 4 of 12 male and female Kii ALS-PDC 

patients (mean age 64.3 years) and in one of 115 healthy residents (aged 20-89 years) [S36-38].  

 

The retinal tracks seen in Guamanian and Japanese subjects with and without ALS-PDC may result 

from persistent focal or multifocal disorganization of the sensory retina due to developmental 

perturbation probably arising from in utero exposure to cycad toxins, notably MAM. MAMac 

methylates nucleic acids and proteins in vivo and thereby kills rapidly dividing neuroblasts [S39, 

S40], perhaps during their terminal cell division [S41,S42].  MAMac also modulates gene expression 

associated with melanogenesis in mouse brain [S43]. The experimental response to a single systemic 

dose of cycasin or MAMac is critically dependent on the stage of embryonic developmental, as well 

as the species and dosage [S44-S48]. The rat retina is susceptible to systemic MAMac between days 

E17 and PE5. The neuroblastic layer folds to produce rosettes that are tubular in cross-section and 

which persist as retinal tracts in adult life [S46]. Thus, systemic exposure to MAMac during certain 



critical perinatal periods results in permanent dysplasia of retinal cytoarchitecture [S42].  This is 

consistent with the persistence of clinically insignificant retinal tracts in Guam and Kii-Japanese 

subjects. Studies are needed to determine whether retinal and cerebellar dysplasia coexist in ALS-

PDC, as observed in animals treated perinatally with MAMac [S9,S47]. Since the retina of the rat at 

birth is equivalent in developmental stage to the human retina at 4–5 months of gestation [S49], this 

implies that human retinal dysplasia, as with cerebellar dysplasia, would also result from fetal MAM 

exposure during the second to third trimester.   

 

1.3. Skin and Bone  

Western Pacific ALS-PDC is a disease that extends beyond the nervous system and includes 

abnormalities of connective tissue. Dermatological changes in Guam ALS [S50] and Kii ALS [S51] 

reproduce those reported in sporadic ALS [S52-S54]. Collagen fibrils of unusually small diameter, 

together with increased amorphous material, are correlated with a sluggish return of stretched skin and 

resistance to bed sores. Japanese investigators concluded that cross-linking of skin collagen is affected 

in ALS, such that the pathway of skin collagen runs counter to normal aging, resulting in a 

"rejuvenation" of skin collagen [S55]. Noteworthy is that some of the pathological changes in the 

CNS of subjects with sporadic ALS may be mirrored in the skin, including the presence of epidermal 

TDP-43+ cells and FUS (fused in sarcoma) immunoreactivity [S56,S57], both of which are related to 

DNA damage control/repair.  

 

Spencer [S58] reviewed the possible relationship between connective tissue abnormalities in 

Guamanians, their propensity to ALS-PDC, and their exposure to cycad toxins in food and medicine. 

In addition to an atypical skin in Guam ALS, there were reductions in cortical bone mass and subtle 

abnormalities in calcium and vitamin D metabolism in Guam ALS-PDC subjects [S59,S60]. 

However, the mean skull thickness of Chamorros was higher in females (but not males) who died with 

ALS or PDC compared with controls [S61]. The world’s highest incidence of diaphyseal aclasis 

(multiple exostoses), a disorder featured by benign bony tumors (mostly of long bones) appearing in 

childhood (4-8 years of age), was reported among Guam Chamorros in 1958-59 [S62,S63] but never 

studied in relation to ALS-PDC. Cervical spondylosis was found in 30 Kii-ALS patients (48%), 

lumbar spondylosis in 7 (13%), ossification of the posterior longitudinal ligament in 4 (6.3%), and 

ossification of the yellow ligament in 4 (6.3%) [S64,S65]. 

 

Bone and skin disorders are reported in animals treated with cycad toxins. Dastur [S66,S67] found 

skin atrophy and collagen degeneration in a single young monkey with Betz cell and anterior horn cell 

degeneration associated with severe weakness and wasting of one arm that appeared after several 

months on a diet of cycad flour prepared Chamorro-style. Animals grazing on young cycad leaves or 

given cycasin develop progressive hindlimb weakness and cattle lose their bone-keratin horns and 



keratinaceous hooves in the manner of a molt, in which dermal regeneration is active [S69-S70].   To 

induce more rapid skin repair and prevent infection, crushed cycad seed was traditionally used to treat 

tropical ulcers or pressed into open skin wounds in communities hyperendemic for ALS-PDC in 

Guam and Papua-Indonesia, respectively [S71,S72, see also 36:37 min:sec at 

https://vimeo.com/1621281].  Mammalian skin contains β-glucosidase that converts cycasin to its 

metabolite MAM [S73].  Taken in concert, these disparate observations suggest that certain cycad 

toxin(s) can induce marked changes in connective tissues.   

 

MAMac modulates the canonical Wnt signaling pathway, which has a pivotal role in the regulation of 

cortical bone mass, with pathway activation in bone regeneration [S74, S75]. Wnt proteins (Wnt5a) 

regulate epidermal differentiation in adult skin [S76,S77]. MAMac also upregulates the Acvr1b gene, 

a member of the transforming-growth-factor-β family linked to skin epithelial cell proliferation and 

hair development [S43,S78]. While the molecular mechanism has not been established, MAM is 

chemically related to hydrazines and hydrazides that inhibit lysyl oxidase [S79, S80], a family of 

proteins that oxidize lysine residues in collagen and elastin, establish stable cross-linking of the 

extracellular matrix, and provide tensile strength and structural integrity to skin and bone [S81]. 

Inhibition of lysyl oxidase expression or enzyme activity triggers connective tissue disorders 

(osteolathyrism) and fibrotic diseases [S82]. Lathyrogens exert their maximal effect in immature 

animals where they can induce the formation of abnormally thin collagen fibrils [S80,S83], as 

described in Guam ALS-PDC and sporadic ALS. 

 

1.4. Congenital Defects 

Information on birth defects on Guam is sparse. In the 1950s, of children born to 17 women with 

ALS, two aged 41 and 37 years bore infants with anencephaly, and cleft palate and harelip, 

respectively [S84]. In the 1980s, Chamorro women stated that spina bifida was not uncommon [S85]. 

From 1970–1989, there were 121 infant deaths among 49,841 live births on Guam due to congenital 

anomalies including congenital heart disease, and diaphragmatic hernia, and anencephaly [S86]. 

Attribution of these birth defects to Agent Orange exposure was vigorously contested [S87]. No 

information on congenital abnormalities has been found for Kii-ALS/PDC. 

 

Cycasin and MAMac cross the placental barrier, and MAMac has neuroteratogenic potential in 

several mammalian species [S44, S88].  A single intravenous injection of MAMac (20-23 mg/kg) to 

pregnant hamsters on the day 8 of gestation variably resulted in neural tube defects, hydrocephalus, 

microcephalus, cranioschisis, exencephaly, spina bifida, rachischisis, anophthalmia, microophthalmia, 

and oligodactyly in fetuses that were examined on day 12 of gestation [S44,S88].   

 

 



 

2. ALS-PDC Comorbidities and MAM-Related Abnormal Functions 

2.1. Mental Health 

Prior or concomitant psychiatric illness (schizophrenia, psychosis, mood disorders) has been noted in 

ALS [S91-S96], and others have reported links between perinatal stress, schizophrenia and ALS [S98-

S101]. Register-based nationwide studies have proven a higher occurrence of schizophrenia up to 1-5 

years before and 2-5 years after ALS diagnosis [S102]. Motor dysfunction also occurs in 

schizophrenia [S103-S105]. Neuropsychological deficits, some of which were consistent with a 

diagnosis of schizophrenia, occurred prior to or after the onset of motor symptoms of Kii-ALS [S106].  

A 32-year-old Japanese patient with Kii-ALS was documented to have had schizophrenic symptoms 

antedating the neurological picture [S107]. Kii ALS-PDC has been linked to oral medicinal exposure 

to toxins in cycad seed (Cycas revoluta) [S108,S109].  

 

The subject of neuropsychological deficits in Guam ALS-PDC has not been addressed. Keith [S110] 

interviewed 15 Guam and 5 Saipan-resident Chamorros with schizophrenia (equal numbers of males 

and females, aged 24-59 years).  In general, delusional content reflected Chamorro culture: magic, 

heredity and (often food-associated) poisoning. In the late 1970s, Chamorro descriptors for mental 

illness included: malango (sick in the head), caduco (crazy, talks bad words, preoccupied, forgetful) 

atmariao (insane). Chamorros were said to have little concern for the causation of caduco or atmariao 

and considered these disorders a fact of life. An exception was chet not maipe, a physical illness 

assumed to be caused by the supernatural powers of taotaomona and that should be treated by 

suruhåna (elderly male native healer who specialized in treating chet not maipe, “hot sickness”).  

Symptoms of chet not maipe include: fever, boils, blisters, marks on the skin, other bodily ills and 

some types of paralysis [S111]. Said in 1977 to be “less common than in the past,” adolescent girls 

with chet not maipe with partial paralysis (considered to be akin to hysteria or conversion disorder) 

were treated with advice, skin potions, herbal remedies and prescribed magical ritual. Most caduco 

and atmariao behaviors were not associated with chet not maipe. 

Schizophenia is widely modeled in rodents by in utero exposure to MAMac (>100 papers between 

1998-2020). The MAMac animal model replicates changes both in mesolimbic dopamine function, 

which may contribute to the positive symptoms of schizophrenia, and to altered frontal cortical–

limbic circuits thought to be associated with changes reminiscent of the negative and cognitive 

impairments of the human disorder [S112].  Schizophrenia-like deficits develop in the juvenile 

offspring of pregnant mice and rats treated with a carefully timed single dose of MAMac [S113-

S117]. This is accompanied by a reduced volume/weight of hippocampal, entorhinal, parietal and 

prefrontal cortex and dorsal striatum, the first abnormalities associated with deficits in glutamatergic 

transmission and dopamine dysregulation in the prefrontal cortex and associated cognitive deficits 



[S117-123]. Rats aged 4 months develop schizophrenia-like features following a single in utero 

injection of MAMac (i.e., embryonic day E17) as indicated by an MRI of enlarged lateral ventricles 

and altered cerebral blood flow [S124], much like that observed in the frontal or temporal lobes of Kii 

ALS-PDC brains [S106]. Adult rats that were exposed in utero to MAMac also exhibited a significant 

reduction in neuronal spine density as well as impaired working memory, which could be blocked by 

treatment with a glycogen synthase kinase 3β (GSK3β) inhibitor during the juvenile period [S125]. 

The age-dependent “hyperactive” GSK3β in this rodent model caused significant deficits in long-term 

potentiation and facilitated long-term depression in prefrontal cortical pyramidal neurons [S126]. 

GSK-3β (tau protein kinase 1) is implicated in the aggregation of hyperphosphorylated tau proteins 

into paired helical filaments that form NFTs in several neurodegenerative disorders, including ALS-

PDC [S127-S129]. In sum, there are links between prenatal exposure to MAM and the latent onset of 

abnormal brain structure and function. For humans, the second trimester is a period of risk for brain 

changes that result in childhood schizophrenia [S113].  

 

2.2. Epilepsy 

Few data are available for the incidence of epilepsy on Guam, and the possibility of an association 

with ALS-PDC was never explored.  Between 1960 and 1966, 122 Guamanians had their first episode 

of epilepsy, for an average annual incidence of 47.3/100,000, substantially higher than the 

corresponding figure for the population of Rochester, Minnesota, USA (29.8/100,000) [S130].  Other 

estimates of the annual incidence rate for afebrile seizures (30-35/100,000) and the prevalence of 

“active” cases (230-542/100,000) were within international norms [S131-S134]; however, in four 

survey villages, there was “severe underreporting of idiopathic epilepsy”, defined as having no causal 

or associated factor other than family history, which had a high incidence in infancy, fell to moderate 

levels in childhood, rose again in adolescence and declined thereafter [S134].    

 

MAMac administration to rat pups on gestational day 15 reduces the brain’s seizure threshold, with 

evidence of spontaneous electrographic seizure activity and reduced potassium current function and 

expression for the Kv4.2 channel subunit [S135-S137]. Schwartzkroin and Wenzel [S20] proposed 

that MAMac-induced cortical heterotopic neuronal clusters are insufficient to determine the seizure-

initiating process. 

 

2.3. Olfaction 

Olfactory dysfunction is among the first signs of ALS-PDC [S138]. Marked olfactory deficits, first 

reported in Guam PDC, were also present in Chamorro patients with ALS, atypical parkinsonism or 

dementia, and in some controls with or without possible sub-clinical ALS-PDC [S139,S140]. 

Olfactory deficits are also among the first signs of AD and idiopathic Parkinson disease [S141,S142]. 

The inability to distinguish the nature of olfactory dysfunction among Guam P-D, AD [S138] and 



ALS patients [S140] suggests a common neurologic substrate and underlines the close relationship 

between ALS-PDC and the more familiar neurodegenerative disorders seen in the West. 

 

MAMac perturbs brain and olfactory bulb development in albino rats [S11].  Related abnormalities 

were found in MAMac-treated young adult mice with brain levels of the DNA-repair enzyme MGMT 

comparable to those found in human brain. As described above, gene expression changes in mouse 

brain were examined 7 days after a single injection of MAMac (MAMearly) and 6 months later 

(MAMlate). Whereas six brain cell-signaling pathways (n = 4 or more genes per pathway) were 

common to MAMearly and MAMlate and three were unique to MAMlate, the latter was dominated by 28 

(of a total of ~1300) modulated genes involved in olfactory transduction, including genes coding for 

olfactory receptors that were both upregulated (n=25) and downregulated (n = 3) [S78]. While caution 

is merited when comparing rodent and human data, these findings support the proposal that cycad 

toxin exposure is responsible for perturbation of olfaction in ALS-PDC. 

 

2.4. Diabetes mellitus 

Diabetes mellitus (DM) and dysglycemia appear to be more frequent among Western patients with 

ALS [S143] although an inverse association has also been reported [S144-S148]. On Guam, a 1974 

study of carbohydrate metabolism in 110 persons with a diagnosis or suspicion of ALS-PDC found a 

considerably higher incidence of abnormalities than in the general population of the continental 

United States and the tropical Pacific area [S149,S150]. Glucose tolerance test results suggested 

abnormal carbohydrate metabolism in three-fifths of those with definite neurologic disease, of which 

43% and 12% of ALS and P-D subjects met criteria for DM. A positive family history for DM in 

study participants was about twice the expected rate. A 1980 study found that age-specific rates for 

DM in Guamanians aged 45 years and over were 2-3 times greater than that of the general U.S. 

population, with Guam Chamorros (prone to ALS-PDC) having the highest rates of DM and related 

complications [S151], including hypertension [S153,S154]. A 1997 case-control study found DM in 

44% of Chamorros with ALS-PDC (n=16) and 31% of neurologically normal Guamanian subjects 

(n=16), some of whom probably had preclinical neurodegenerative disease [S155].  

 

Cycasin and MAM impair pancreatic cell function leading to β-islet cell destruction in vitro. Human 

islet cultures were less sensitive to MAMac than corresponding cultures of murine islets, and the 

cellular damage was associated with nitric oxide release and DNA alkylation (O6-mG adducts) 

[S156]. The MAM-induced DNA damage was also ~3 times higher than that of murine islets treated 

with the potent genotoxin streptozotocin (STZ).  Extensive pancreatic β-islet cell damage was noted in 

Old World primates chronically treated with oral or intraperitoneal cycasin [S157]. Notably, activity 

of the specific DNA-repair enzyme MGMT is low in β-islet cells as in post-mitotic neurons [S158].  

These observations suggest there might be a link between the former dietary exposure to cycasin 



among Chamorros and their contemporaneous high rates of DM. This would be consistent with the 

established relationship between DM and neurodegenerative disorders [S159] and with the induction 

of a murine model of sporadic AD by intracerebroventricular administration of STZ [S160] which, 

like MAM, methylates biomolecules via a common methyldiazonium ion [S160,S161] (vide infra). 

No significant changes were observed in β-islet cell function after 6 days of continuous treatment with 

a high concentration (1.0 mM) of L-BMAA [S156]. 

 

2.5. Liver disease, hepatic and other cancers 

Most cancers in Pacific Island populations are linked to smoking, obesity, physical inactivity, poor 

nutrition or infections. Data for Guam are available only for infections. Between 1970 and 2012, the 

mean age of the 3,437 hepatitis cases on Guam was 40.7 ± 16.7 years old, of which one-third (34.7%) 

were Chamorros [S162].  This group had the highest cases of hepatitis A (5.2%) and hepatitis C 

(19.6%), whereas Micronesians had the highest cases of hepatitis B (23.4%). The difference in 

proportion of liver cancer cases among Guam ethnic groups was also statistically significant. Hepatitis 

C was the type of hepatitis most common among liver cancer cases (63.3% of viral hepatitis-

associated liver cancer cases).  Guam cancer incidence for the period 1998-2002 showed that 

Chamorros had high age-adjusted incidence rates for cancers of the mouth and pharynx (24.4 vs. U.S. 

10.7), nasopharynx (13.9 vs. 0.6 U.S.) and liver (13.2 vs. 5.2 U.S.), and Filipinos living on Guam also 

had high age-adjusted incidence rates for cancers of the nasopharynx (5.1), and liver (9.6) [S163]. 

There are no studies of the type or incidence of cancer in ALS-PDC.  

Soon after ingestion of cycad plant products, there is sudden onset of nausea and vomiting, 

enlargement of the liver, convulsions, loss of consciousness, and death or recovery [S164]. 

Hepatocellular damage resulting from acute cycad toxicosis is seen in domestic animals and cattle 

[S165-S167], and cycasin induces liver and neuromuscular disease in goats [S69]. The livers of rats 

showed extensive hemorrhage and necrosis 24-48 hours after a single dose of MAMac; however, by 

the 4th day the liver showed little pathology other than irregularities in the size and shape of the 

hepatocyte [S168]. Prolonged treatment with cycasin/MAMac  produced hepatomas, renal and 

intestinal tumors in rats [S88,S169,S170] and, in non-human primates, hepatocellular and bile duct 

carcinoma, renal carcinoma and adenomatous polyps of the small intestine [S157, S171]. 

Unfortunately, the nervous system of these valuable animals was not examined in these cancer-

focused experiments, and there are no studies of the type or incidence of cancer in ALS-PDC. There 

was an increased death rate from cirrhosis but not hepatoma in Japanese residents of Miyako island 

who had been forced to subsist for food on cycads 2-7 years earlier [S164]. While a cancer registry for 

Miyako islanders was formed, there was no long-term follow-up of survivors. 



MAM has mutagenic and carcinogenic as well as neurotoxic potential mediated by specific patterns of 

DNA damage that has been discussed in detail elsewhere [S80, S163]. Simply stated, the outcome of 

treatment with MAMac appears to depend on whether the targeted cell is cycling and thus able to 

undergo mutagenesis and uncontrolled cell proliferation (cancer), has a limited potential for mitosis, 

or is post-mitotic (neurodegeneration). That neurodegeneration and cancer may be “two sides of the 

same coin” has been demonstrated experimentally [S43,S173]. Brains of single-dose MAMac-treated 

young adult mice with levels of the DNA-repair enzyme MGMT equivalent to those found in human 

brain displayed short-term (up to 7 days, i.e. MAMearly) changes in the expression of genes in cell-

signaling pathways associated with Neurological Disease (n=159), Psychological Disorders (n=75), 

Cancer (n=114) and Genetic Disorder (n=212), coupled with changes in Physiological System 

Development and Function, namely: Nervous System Development and Function (n=64), Embryonic 

Development (n=22), Organ Development (n=14), and Skin and Hair Development and Function 

(n=11) [S43].   

 

The involvement of brain-specific cell-signaling pathways, including transforming growth factor-β 

(TGF-β), wingless and proto-oncogene Int-1 (Wnt), and mitogen-activated protein kinase (MAPK), 

match those involved in the genesis of colon carcinogenesis induced by azoxymethane, which is 

mediated by its proximate metabolite MAM [S174-S176]. Whereas TGF-β and MAPK signaling is 

up-regulated and Wnt down-regulated in colon cells prone to MAM-induced mutagenesis, the Wnt-

pathway tau kinase GSK3β appears to be upregulated in the brains of young adult mice following a 

single dose of MAM (MAMearly), leading to tau hyperphosphorylation [S43]. This interpretation is 

supported by the presence in mouse brain 6 months following an injection of MAMac (MAMlate) of 

elevated mitogen-activated protein kinases and increased caspase-3 activity, both of which are 

involved in tau aggregation and NFT formation typical of ALS-PDC and AD [S43].    

 

2.6.  Cell-cycle and Epigenetics 

While neurons undergo terminal mitosis during their development and remain in a quiescent  post-

mitotic state under normal conditions throughout life, there is mounting evidence of aberrant neuronal 

cell-cycle reactivation in neurodegenerative disorders with tauopathy, including ALS-PDC 

[S177,S178]. Mature neurons in various brain regions of subjects with tauopathy activate DNA 

duplication without subsequent mitosis, which results in apoptosis [S179].  

 

Preliminary studies have been undertaken to examine the cell-cycle network of human 

neuroprogenitor cells (hNPCs) treated in vitro with MAMac. DNA methylome analysis, which 

provides a picture of epigenetic regulation of individual gene expression, revealed marked differential 

methylation of key genes that regulate the cell cycle (Figure S1). MAMac in a concentration-



dependent manner also reduced hNPC histone deacetylase activity, which has a key role in the 

epigenetic regulation of gene expression (Figure S2). 
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SUPPLEMENTARY TABLE 

 

Associations between ALS-PDC and the mammalian toxic effects of cycasin/MAM acetate (MAMac) 

ALS-PDC and MAM Developmental and Adult Abnormalities 
 

 

No. 

 

 

Tissue 

ALS-PDC 

Guam and/or Kii-Japan 
 

Cycasin/MAMac 

Single dose to animal unless 
otherwise stated 

Comment/Related Information 

 

1.1. 

Cerebellum 

(Guam and Kii) 
Sub-clinical cellular disruption; 
ectopic neurons. 

Developmental cerebellar dysplasia.  Human and experimental animal 
pathology matches. 

 

1.2. 

Retina 

(Guam and Kii) 
Sub-clinical linear retinal 
pigmentary epitheliopathy. 

Developmental retinal dysplasia.  Human and experimental animal 
pathology matches. 

 

 

1.3 

Skin and Bone 

(Guam and 
heavily studied 
in ALS in 
Japan) 

Resistance to bed sores; loss of 
elasticity; subclinical connective 
tissue disorder; focal collagen 
regeneration. 
 

Perturbed brain KEGG Wnt signaling 
pathway (skin). Affects skin and hair 
development and function. 
Perturbed brain KEGG Wnt signaling 
(bone). 

Animals grazing on cycads shed horns 
and hooves. Cycad seed pulp used 
traditionally to speed skin repair (Guam 
and Papua-Indonesia). Former very high 
incidence of diaphyseal aclasis among 
Chamorros 

 

 

1.4 

Congenital 

Defects 

(Guam, not 
studied in Kii) 

Anencephaly, and cleft palate and 
harelip (children born to 2/17 
Guam women with ALS).  

Neural tube defects, hydrocephalus, 
microcephalus, cranioschisis, 
exencephaly, spina bifida. 

In the 1980s, Chamorro women stated 
that spinal bifida was not uncommon, but 
supporting data unavailable. 

ALS-PDC Comorbidities and MAMac-Related Abnormal Functions 
 

2.1. 

Mental health 

Kii and Guam 
Schizophrenia prior to motor signs 
(1 reported Kii case). One patient 
with Guam P-D 

Links with psychological disorders; 
MAMac models schizophrenia in 
rodents. 

Schizophrenia before/after onset of motor 
weakness reported in and associated with 
sporadic ALS.  

 

2.2. 

Epilepsy 

Guam, not 
studied in Kii-
Japan 

1960-66. Mean annual incidence of 
epilepsy higher on Guam than on 
mainland; 1968. Similar incidence 
rates to international norms.   

Lower threshold for epileptifom 
activity associated with cortical 
dysplasia. 

Severe underreporting of cases when 
clinical data were used while 
ascertainment of symptomatic seizure 
disorders was nearly complete. 

 

2.3. 

Olfaction 

Guam, not 
studied in Kii-
Japan  

Marked olfactory deficits in all 
ALS-PDC phenotypes, and in 
possible subclinical cases. 

Perturbed brain olfactory gene 
expression in mice. 

Altered transcription of 28 olfactory 
genes detected 6 months after single 
MAMac dose. 

 

 

2.4 

Diabetes 

mellitus 

Guam, not 
studied in Kii-
Japan 

Elevated, perhaps related to ALS-
PDC. Link with neuropathy of 
possible diabetic origin.  
 

Perturbed brain KEGG insulin 
signaling. 

Cycasin/MAMac in vitro impaired 
human and rodent pancreatic -islet cell 
response to insulin and, at high 
concentrations, destroyed -islet cells. 

 

2.5. 

Liver disease, 

hepatic and 

other cancers 

Guam, not 
studied in Kii-
Japan 

Co-morbidity uninvestigated. 
1998-2002. High-incidence of 
liver, nasopharynx, mouth-pharynx 
tumors. 

Perturbed brain KEGG cancer 
signaling in mice.  

MAM is a DNA-damaging agent with 
acute hepatotoxic, neurotoxic and 
carcinogenic properties. Tumors of liver, 
kidney, esophagus and small intestine 
occur with prolonged primate treatment. 

 

2.6. 

Cell-cycle and 

epigenetic 

changes 

Guam and Kii-
Japan 

Neurons show mitotic activation 
(Guam) and reduced expression of 
GADD 

 

Changes in cell-cycle network gene 
transcription and inhibition of histone 
deacetylase activity in human 
neuroprogenitor cells. 

Aberrant re-expression of many cell-
cycle proteins in vulnerable neuronal 
populations occurs in several 
neurodegenerative disorders 
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