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Intestines of non-uniform stiffness mold the

corners of wombat feces†

Patricia J. Yang,‡a Alexander B. Lee,‡b Miles Chan,a Michael Kowalski,c Kelly Qiu,c

Christopher Waid,c Gabriel Cervantes,a Benjamin Magondu,c Morgan Biagioni,a

Larry Vogelnest,d Alynn Martin,e Ashley Edwards,e Scott Carver*e and

David L. Hu *ab

The bare-nosed wombat (Vombatus ursinus) is a fossorial, herbivorous, Australian marsupial, renowned for its

cubic feces. However, the ability of the wombat’s soft intestine to sculpt flat faces and sharp corners in feces

is poorly understood. In this combined experimental and numerical study, we show one mechanism for the

formation of corners in a highly damped environment. Wombat dissections show that cubes are formed

within the last 17 percent of the intestine. Using histology and tensile testing, we discover that the cross-

section of the intestine exhibits regions with a two-fold increase in thickness and a four-fold increase in

stiffness, which we hypothesize facilitates the formation of corners by contractions of the intestine. Using a

mathematical model, we simulate a series of azimuthal contractions of a damped elastic ring composed of

alternating stiff and soft regions. Increased stiffness ratio and higher Reynolds number yield shapes that are

more square. The corners arise from faster contraction in the stiff regions and relatively slower movement in

the center of the soft regions. These results may have applications in manufacturing, clinical pathology, and

digestive health.

1 Introduction

The ability of wombats to form relatively uniform, clean cut, cubic

feces – as opposed to the tapered cylindrical feces of most animals –

is unique in the animal kingdom. The earliest documented

observation of wombat cubic feces is by Eric Guiler (1960), who

states: ‘‘The droppings of wombats are of a characteristic rectan-

gular shape’’.1 The next publication dates 1979,2 although the

droppings were known within Australia well prior to both these

references. It is currently poorly understood how these animals

produce geometric scats. With no immediately apparent explana-

tion as to how an animal’s defecation process could produce

cube-shaped scats, a range of hypotheses have been proposed

over decades.3–5 A sample of hypotheses include compression of

fecal material between pelvic bones, a relatively geometric-shaped

sphincter, and parallel blocks of longitudinal intestinal smooth

muscles in the cecum. Notably, all hypotheses have exclusively

remained the matter of objective speculation and assumed

mechanism, rather than subject to actual investigation.

The ability of wombats to form cubic feces is of both general

and practical interest. How animals engage in varying forms of

communication, and the underlying evolutionary forces driving

them, have been of interest to ecologists for decades. Recent

fluid dynamic modelling has investigated cylindrical scat

formation,6 with clinical application to diarrhea and constipa-

tion disorders,7 however mechanisms leading to the formation

of diverse fecal shapes is less understood. In the built world,

cubes and shapes with sharp edges are made by cutting,

molding or extrusion. Examples include extruded pasta, hay

cubes and injection-moulded plastics. Cube formation in ani-

mal models appears to be a new method, and may inform

manufacturing processes, particularly if soft biological materi-

als are of interest. Another application may be in the care of

captive animals. In Australia, wombats are kept in captivity in

zoos and wildlife parks, and their feces are cleared on a daily

basis. Quantifying a wombat’s scat shape may be a useful

metric for non-invasively assessing the quality of a wombat’s

diet, digestive health, or level of hydration.

The spontaneous formation of geometric structures has long

been the purview of a field of physics called pattern formation.
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Geometric patterns have been observed in geology, physics, and

biology. The processes of cooling lava at Giant’s Causeway

Ireland or of drying cornstarch leads to hexagonal columns

called columnar jointings.8 Since the 1800s it has been known

that vibration of a membrane generates beautiful arrangements

of grains of sand known as Chladni figures.9 This is due to

nodal lines being created between parts of the plate that vibrate

in opposite directions. When a central stream of water strikes a

kitchen sink, a roughly circular standing wave of fluid is

created, but when the fluid is viscous, polygons such as two,

three, four, and five sided shapes can be observed.10,11 In

biology, pattern formation is responsible for the wing venation

patterns of dragonflies12 and the formation of toothed gears in

certain jumping insects.13 Despite the ubiquity of these pat-

terns, squares are rare, and cubes even more so.

In this study, we will focus on the bare-nosed wombat Vombatus

ursinus, which produces the most cubic feces of the three species

of wombat. The bare-nosed wombat, shown in Fig. 1a, has an adult

body length 1 m and mass 20–35 kg. It is drought-tolerant and

lives a solitary lifestyle in underground burrows. It typically

produces 80–100 cubic feces per day mostly above ground.3

Wombats generally have low-nutrient diets, primarily consisting

of grasses and sedges.14 To compensate, they have long, spacious

intestines of length 6–9 m (see Fig. 1d), utilize hind-gut fermenta-

tion, and have a mean food passage retention time of 40–80 h.14,15

In comparison, a human of 100 kg has an intestinal length of 8 m,

fore-gut fermentation, and a mean food passage retention time of

50 h.16,17 The extended digestion period of wombats allows them

to maintain exceptionally low metabolic rates18,19 and also an

energetically expensive digging lifestyle.20 These attributes allow

the wombat to survive droughts that would challenge most other

mammals.

Animals have long been known for using their urine and feces

to communicate. However, wombats have a unique way of using

their feces as markings. Wombats, particularly bare-nosed wom-

bats, have a propensity to deposit feces in aggregations called

latrines. Such latrines are found on or next to distinctive landscape

features such as prominent rocks, logs and small rises, and burrow

entrances within their home ranges,3,21 as shown in Fig. 1b.

Latrines are generally found with five or more wombat scats

indicating that one or several wombats may be involved. It is

generally believed that prominent latrines facilitate visual or

olfactory communication between wombats or other nearby ani-

mals. It has been proposed that the flat sides of the feces serves the

purpose of latrine stability by preventing the feces from rolling off

these raised surfaces.3–5 Understanding how wombats produce

cubes may provide insight into how such a unique adaptation

evolved.

In this study we investigate cube formation in the wombat

using dissections, material measurements, and mathematical

modeling. We begin in Section 2 with the histological and

tensile experiments performed on wombat intestine samples as

well as 2D phenomenological modeling informed by these

experiments. In Section 3, we discuss the implications of our

work and provide suggestions for future research. In Section 4,

we summarize the contributions of our study. In Section 5, we

provide the detailed methods.

2 Results
2.1 Wombat experiments

If wombats were to make cubes similar to the way we make

noodles, we would expect a square anal sphincter. In 2019, we

obtain a CT scan of a live adult female wombat (Video S1, ESI†).

The scan shows that the wombat’s anus is round, a feature

consistent with all other animals. Also, the pelvic bones, which

the feces were once proposed to glide past, are nowhere in the

vicinity of the colon. We thus conclude that wombats do not

change their feces shape through extrusion. We obtain further

evidence that extrusion does not influence shape with a series

of dissections of wombats.

In this study, we present data from three dissected wombats, all

obtained following euthanasia by veterinarian owing to vehicle

collisions in 2018–2020. Unfortunately, vehicle collisions are a

source of wombat and other marsupial mortality events in

Australia. In 2018, we dissect a young female wombat (2–3 years

old). In 2019, we dissect an adult male wombat (42 years old).

And in 2020, we dissect a young male wombat (o2 years old).

Given the similarity in age and size of all wombats, we expect

feces and intestinal measurements to be comparable. All dis-

sected wombats are referred to by the year of dissection. From

the 2018 wombat, cubic feces are removed from the end of

the distal colon and unformed feces removed from the end

of the proximal colon. One of the cubic feces is scanned with

Fig. 1 Wombats form cubic feces. All scalebars represent 5 cm. (a) A

female wombat with her joey. (b) A typical wombat latrine consisting of

feces placed on a low rock or stump. (c) A 2019 dissection of a wombat

shows the cubic feces fully formed within the mid-distal colon, (d) the

excised 3 m of wombat intestine shows feces transforming from a yellow

yogurt-like slurry near the stomach to darkened dry cubes near the anus.
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a Faro arm to obtain a 3D point cloud reconstruction (see

Video S2, ESI†).

The wombat intestine of 6–9 m length (approximate length

for a fully grown wombat) consists of four sections after the

oesophagus: these include the stomach (0.14 m), a relatively

short small intestine (3.2 m), long proximal colon (3.9 m) and

distal colon (last 1.8 m). Fig. 1d shows the shape of feces with

relation to their position in the intestine (lower proximal colon

to lower distal colon). In the proximal colon, the feces are a

yellow-green slurry of digesta. As the fecal material approaches

the anus, it becomes increasingly dry, as shown by the darker

color. The beveled edges and flat faces also become increas-

ingly prominent.

The removal of water from the feces may help it to better retain

its shape. Generally, at higher solid fractions, mammalian feces

are more viscous and behave viscoplastically.22 To measure the

level of dryness we begin by removing feces samples from both the

proximal and distal colons. By weighing a scat, we obtainmwet, and

by drying them in an oven, we obtain mdry. We define the water

content of each sample using w ¼
mwet �mdry

mwet

. Feces from the

proximal colon have a water content of w = 0.81 and show an

amorphous shape. Feces from the distal colon, the last 1 m (or

17 percent) of the 6 m digestive tract, have a much lower water

content of w = 0.53. This water content is lower than many

mammals: for example, humans have a fecal water content of

w = 0.74.23

The fecal cubes have dimensions: height 2.3 � 0.3 cm, width

2.5 � 0.3 cm, and axial length 4.0 � 0.6 cm (see Fig. 2), and the

edges of the feces are beveled. Thus, the aspect ratio of the feces

is 1 : 1 : 1.6, and so technically the feces are rectangular prisms,

but for simplicity, we continue to refer to them as cubes in

this paper.

To understand the formation of the cubes, we hang an intact

intestine vertically allowing the bottom end to swing and rotate

freely. We observe that the corners of the cubes are aligned,

suggesting that the intestine itself has a coordinate system to

dictate corner formation. We hypothesize that this coordinate

system is written in the intestines in terms of its thickness and

its material properties. To explore this idea, we turn to histology

and material testing.

2.2 Material properties of wombat intestine

From the 2019 wombat, two cross sections of the intestines are

hematoxylin and eosin stained and the thickness of the tissue

layers are measured under a microscope. Since the cubes form

in the distal colon, and are amorphous in the proximal colon,

we obtain cross sections from both the proximal and distal

colon and perform histological staining. These sections are

50 cm and 200 cm away from the anus. We observe the four

major tissue layers, arranged external to internal: longitudinal

muscle, circular muscle, glandular tissue, and mucosa, as

labelled in Fig. 3a and b with the letters L, C, G, M, respectively.

In particular, the circular and longitudinal muscle thickness

varies greatly between different azimuthal locations, and so we

focus on these two layers from hereon.

Fig. 3c and d shows the relationship between tissue thick-

ness and azimuthal position in the proximal and distal colon.

We arbitrarily assign y = 01 as the position of observed lowest

thickness of the intestine. The longitudinal muscle, the circular

muscle, and the total thickness of both muscles are shown by

Fig. 2 Wombat feces within intact intestines. (a) Two wombat fecal

pellets and schematic showing the length, height, and width of each

pellet. (b) Figure of preserved wombat intestines spread out to show the

natural progression towards cube-shaped. The feces labeled 1 is at the

anus. The orange dotted line marks 1.5 m from the anus. (c) The relation-

ship between wombat feces length scale and distance from the anus. The

last 1.5 m shows consistent dimensions of 4 � 2.3 � 2.5 cm.
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the blue, red, and black lines, respectively. Examining the distal

colon section first, shown in Fig. 3d, the longitudinal tissue layer

more than doubles in thickness, from 10 mm to 25 mm, with the

peak occurring at y = 2401. The circular muscle also has a 50%

increase from 22 mm to 35 mm, with peak at y = 901. It is

noteworthy that the peaks are 1801 out of phase, as shown by

the the total thickness, which has peaks at around 901 and 2701.

As shown in Fig. 3c, the proximal colon also has two peaks.

The azimuthal location may not match that of the distal colon

because we could not maintain azimuthal alignment between

the two sections. The presence of thickness peaks combined

with the absence of the cubic feces in the proximal region

indicates to us that both feces dryness and axisymmetric

intestinal properties must be present to enable cubing to occur.

From the 2020 wombat we test the tensile material properties to

determine the effects of non-uniform tissue thickness. We cut two

sequential cross sections of the distal colon to perform material

testing. These circular bands are cut 1801 out of phase so that we

can obtain data in regions that have been clamped during the

testing (see Fig. 3e and f). We perform tensile testing to measure

stiffness as a function of azimuthal position. We infer stiffness by

the strain measured between lines drawn at increments of 4 mm.

Fig. 3g shows the relationship between stiffness and azimuthal

position, where the blue and red points are stiffness from each of

the two cross sections, and the black is the average stiffness of each

301 region. We observe a single peak in stiffness at y = 901 in the

distal colon, where y = 01 is set to be the location of lowest

stiffness. Because the two cross sections are sequential we expect

them to have comparable trends. Wide discrepancies in the data

near y = 01 and at y = 1801 are likely due to the tissue being

clamped near those regions, which affects its ability to stretch

laterally, affecting the stiffness measurement.

2.3 Simulation of intestinal contractions

We continue with our study using a theoretical model that

assumes that there are two bands of increased stiffness located

1801 out of phase. Tensile testing of passive tissue only displays

a single stiff region, but this test only measures azimuthal

stretching. A peristaltic contraction relies upon muscles in both

the azimuthal and the longitudinal directions. We surmise that

the peak in stiffness observed in the tensile test may corre-

spond to the factor of three increased thickness in the long-

itudinal muscle. The 0.5 factor of increased thickness in the

circular muscle apparently was not detected by our tensile test.

We hypothesize that the increased circular muscle thickness

results in a locally stronger muscle contraction during peristal-

sis. This locally increased contraction would phenomenologi-

cally be similar to an increased stiffness. For simplicity, we

develop our model as having two stiff regions to represent the

increased thickness of longitudinal and circular muscles. An

important parameter in this model is the stiffness ratio C, the

ratio between maximum and minimum stiffness, which we

observe in our tensile tests to be 4 (see Fig. 3g, peak stiffness is

4 times that of baseline stiffness).

We propose a phenonemological model to investigate how non-

uniform intestinal properties can influence feces shape during

peristaltic contractions. The goal of our model is to rationalize how

two regions of stiffness can result in four corners of the feces. A

square is defined as having 8 regions of differing curvature: zero

curvature at the flat sides, and steep peaks at each of the corners. It

is thus not obvious how the contraction of a band with 2 regions of

stiffness can result in 4 peaks in curvature.

We begin with a few caveats on our model. The real wombat

intestines are three-dimensional and filled with viscoelastic

Fig. 3 Non-uniform thickness and stiffness of the wombat intestine. (a and b) Histology of the distal colon, with the longitudinal muscle, circular muscle,

glandular tissue, and mucosa layer labelled with the letters L, C, G, M, respectively. Scale bar, 20 microns. (a) Staining corresponds to the azimuthal

position y = 401 and shows the thinnest longitudinal muscle thickness. (b) Staining corresponds to y = 2401 and shows the largest longitudinal thickness.

(c and d) The relationship between azimuthal position and tissue thickness, with the longitudinal muscle, circular muscle and total muscle thickness given

by the blue, red, and black lines, respectively. (c) is from the proximal colon, and (d) from the distal colon. (e) Custom-built tensile testing setup for the

wombat intestines. Scalebar, 1 cm. (f) Schematic showing two sequential cross sections cut at 1801 offset to obtain tensile testing data of the full 3601.

Cuts are made at the dotted red lines and tick marks are drawn using the blue lines. (g) The relationship between azimuthal position and tissue stiffness.

The blue and red points correspond to each of the adjacent cross sections and the black line to the average stiffness.
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feces. The peristaltic contractions occur at an unknown inten-

sity for an unknown duration. Thus, a fully accurate three-

dimensional model cannot be done with the current knowledge

about the intestine material dynamics. Instead, we take a

simplified approach: our model is two dimensional, consider-

ing a circular cross-section of the intestine. Rather than model-

ing the interaction between the intestines and the viscoelastic

feces, the feces are represented as added mass along the

intestinal walls as well as a linear damping in all directions.

We conduct our modeling in two phases, beginning with an

equilibrium phase to create an initial strained state of the

intestine, and followed by a non-equilibrium series of contrac-

tions. In the first phase, feces are initially pushed into the 2D

cross-section of our model. We assume the feces exerts a

constant pressure against the intestinal walls until the system

comes to equilibrium. We find that this equilibrium state is

necessary to prevent unphysical behavior in the second phase

of the model.

Once the initial equilibrium state of strain is found, the

intestine begins contracting by shortening the springs’ rest

length, l0. Multiple contractions are simulated by changing the

rest length to a contracted value, holding the contraction, and

then taking a relaxed value, and holding this length. The

contraction dynamics are thus idealized as a square wave.

The governing equations arise from the damping force in all

directions and the elastic spring forces of the intestinal walls.

The evolution of the solution shape is recorded as a function of

time. Since the wombat fecal pellet changes shape as it travels

down the intestine over 2–4 days, it is not clear whether it

reaches an equilibrium shape before it is ejected. Thus, our

goal is not to find an equilibrium shape for the feces but to

record how transient square-like shapes can arise. We also use

this method to determine how different intestinal and fecal

parameters may influence the shape.

Now that we have discussed the general idea of the model,

we turn to the specifics of the implementation. We divide the

intestine into a ring of 4n nodes, each of mass m. Each node is

connected to its neighboring nodes using linear springs of

varying stiffness. We divide the ring into 4 quadrants of n nodes

each. The regions are sequentially soft and stiff in an alternat-

ing ABAB pattern, shown in Fig. 4a, and similar to the variation

in thickness we observe from the wombat histology. The soft

zones have springs of stiffness 4nk, and the stiff zones have

stiffness of 4Cnk, where the stiffness ratio C4 1. Including n as

a factor in the stiffness allows the overall stiffness of the system

to be independent of the number of nodes in the ring.

To find the initial configuration for the model, we solve for

the equilibrium state. This state will depend on the minimum

and maximum spring stiffness 4nk and 4Cnk, and the spring

lengths li. It does not depend on mass or damping, which arise

in the contraction phase. As the feces is pushed into the 2D

intestinal ring, it exerts an outward constant pressure P.

Fig. 4 The mathematical model of contracting wombat intestines. (a) Schematic of the elastic ring simulating the intestine. Blue and red regions indicate

low and high stiffness zones, respectively. This color scheme is valid for (c–e) as well. (b) Close-up of the variables defined at a single node. The

equilibrium shape of the intestine arises from solving the force balances perpendicular and parallel to the angular bisector shown. (c–e) Sequence of

intestine shapes during a series of contractions and the corresponding relationships (f–h) between curvature and aziumuthal positions for each of these

shapes. For these simulations, C = 4, and Re = 10�3. (c) At time t = 0 s, the equilibrium shape is close to circular, and the curvature (f) is near constant. (d)

After several contractions, the intestine becomes increasingly square (t = 7.9 s), as shown. Note that depending on the Reynolds number and stiffness,

some shapes are more square than others. The four peaks of curvature in (g) correspond to the four corners. (e) Past the peak squareness, S, the

contraction continues to deform the intestine, and the shape begins to resemble an ellipse. This frame corresponds to a time t = 30 s.
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The equilibrium arrangement of nodes is found from the

local force balance on the individual nodes. Consider a node

within the soft region (see Fig. 4b). Attached to it are two

springs of stiffness 4nk, stretched to lengths l1 and l2, respec-

tively. The angle formed between the springs is f. The pressure

force exerted on the node is perpendicular to the spring and

proportional to the spring length, 1
2Pl1 and 1

2Pl2. We draw our

axis parallel and perpendicular to the angular bisector. By

considering the force balance perpendicular to the angular

bisector, we see that l1 = l2. This also holds true for nodes

within the stiff region. We can also show that if all of the spring

lengths are the same, the angle f of each of those nodes must

also be the same.

We then have 5 unknowns: lA and fA for the soft regions, lB
and fB for the stiff regions, and fAB, the angle at the 4

interfacial nodes between the stiff and soft regions. We there-

fore require 5 equations. Four equations come from local force

balances, and the final equation comes from the assumed

convex geometry of the equilibrium shape. This calculation is

described in more detail in Section 5.

The equilibrium shape is used as the initial condition of the

intestine before the contraction begins. The contraction of the

intestinal wall is simulated by alternating the rest length of

each spring from l0 to l0/4 using a square wave with period t. As

wombat intestine contractions occur at an unknown intensity

and period, these parameters were chosen arbitrarily.

l0 ¼
l0 cosð2pt=tÞo 0

l0=4 cosð2pt=tÞ � 0

�
(1)

The net force comes from the two spring forces attached to

each node and a damping force �b
-

vi opposing the direction of

motion, where b is a damping coefficient and
-

vi is the velocity of

the ith node. The mass of each node, m accounts not only for

the mass of the intestinal tissue, which is likely negligible, but

also the added mass of the feces as it is displaced along the

digestive tract.

Fig. 4c–e shows the progression of wombat feces shape

during a series of contractions, using n = 50 nodes for each

region, a stiffness ratio C = 4, damping b = 45 g s�1, and added

mass m = 0.045 g. Fig. 4f–h shows the curvature measured

around the feces. The initial equilibrium shape of the intestine

is fairly circular, as shown by the nearly constant curvature in

Fig. 4f. Fig. 4d shows the peak squareness during mid-

contraction, where the feces shows the start of 4 corners, and

the curvature in Fig. 4g shows 4 peaks. The intestine displays

this transient square state and then passes out of the square

state as the contractions continue. We show a point later in the

contractions in Fig. 4e and h showing the feces is clearly less

square.

2.4 Simulation analysis

While it is easy to qualitatively distinguish between circles and

squares in both the simulation shape and the curvature, k(y),

graphs, we require a way to quantitatively measure the square-

ness of the shape. There exist many simple methods to measure

how round an object is,24 and we find one potential way to

measure squareness based on the definition of the squircle.25

However, the method based on the squircle definition is not

robust to the noise found when applied to natural wombat

feces. It evaluates most samples as very square, but for a few,

visually similar samples, it evaluates them as very round (see

Supplemental material S1, ESI†).

We proceed by proposing a squareness metric that employs

the k(y) signal and cross-correlates it to idealized reference

curvatures going from the flat curvature of a circle to the

infinitely peaked curvature of a square (see Fig. 5a). Our final

squareness S is defined in eqn (17) in the Methods section, and

varies between 0 and 1, with 1 as being most square.

Fig. 5b shows the time course of feces squareness during the

simulation. We perform 40 sequential contractions, with each

oscillation in the figure marking a contraction. The squareness

has a sharp increase at tE 5 s with a peak squareness of S = 0.3

at t = 7.9 s. Subsequently, the squareness decreases, demon-

strating the transient nature of the square shape in the

simulation.

To determine if our simulation captures the squareness of

actual wombat feces, Fig. 5c shows 36 wombat feces collected

around Maria Island, off of Tasmania, Australia. A histogram of

the squareness of these samples is shown in Fig. 5d, and we

find that the feces have a mean squareness of 0.14 with a

standard deviation of 0.1. These lower values appear to be due

to sensitivity to the shape’s aspect ratio. For rectangular shapes,

the corners are not spaced apart azimuthally in a way that

matches the reference curvature. Nevertheless, our metric gives

similar values to visually similar shapes. We proceed by using

our squareness metric to explore the effect that different

simulation parameters have on the resulting feces shape.

We consider two dimensionless groups as the independent

variables that characterize the intestinal contraction: the stiff-

ness ratio C, and the Reynolds number, Re. The stiffness ratio

is defined as

C ¼
stiffness of stiff region

stiffness of soft region
; (2)

where we observe wombat feces has a stiffness ratio of C = 4.

We conduct simulations by matching simulation Reynolds

number Re with the biological Reynolds number Reb,

defined as

Reb ¼
rLv

m
¼

inertia

viscous force
; (3)

where r and m are the density and dynamic viscosity of the feces

respectively. We focus on the Reynolds number characterizing

the peristaltic contractions that generates the square cross

section, and not the Reynolds number of the slower axial flow

through the intestines. Therefore, L is the radius of the intes-

tine and v is the radial velocity of the intestine during a

contraction. For the feces of mammals,6 r E 1 g cm�3 and m

varies between 103–105 g (cm s)�1. The radius of the wombat

intestine is on the order of unity, L E 1 cm. Based on the

peristaltic contraction frequency of dogs and humans,26 which
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are between f = 0.05–0.2 Hz, we approximate that wombat

intestine contractions have a characteristic radial velocity of

v = fL = 0.01–1 cm s�1. All together, we approximate the

Reynolds number of wombat intestines deforming feces to be

Reb E 10�7–10�3. Since wombat feces is drier than that of most

mammals, the Reynolds number may be even lower, especially

near the anus.

Since our simulation is two-dimensional, and only accounts

for the feces properties in a phenomenological manner, we

must redefine the Reynolds number for the simulation. The

length scale is the mean radius of the initial equilibrium

intestine configuration, R. Similar to the biological system,

the radial velocity is v = R/t, where t is the period of the model

contractions. Note that the radius, and thus the velocity, are

functions of the spring constants, with higher spring constants

associated with a smaller equilibrium intestine size. The 2D

density is calculated as the added mass divided by the initial

area, r2D = m/(pR2), which has units of mass per unit area. The

viscosity of the feces is quantified by the damping coefficient b,

which has units of mass/time. The simulation’s Reynolds

number is

Re ¼
m
�

pR2
� �� �

RðR=tÞ

b
¼

m

pbt
(4)

To encapsulate the biological Reynolds number, we run simu-

lations in the range of Re = 10�4–100. Our first claim is that the two

stiff regions found in the wombat’s intestinal tissue serve an

important role in forming the transient square state. We investigate

this by performing a 1D parameter sweep of the simulation, varying

the spring stiffness ratio C, which relates the maximum and

minimum stiffness of the intestine, while keeping the Re = 10�3.

As C increases, the feces increases in squareness S according to the

linear regression S = 0.02C + 0.2, R2 = 0.98 (see Fig. 6b). For

comparison we include our experimental data by the open symbol,

associated with a stiffness ratio C = 4 and a squareness S = 0.14 �

0.1. According to our simulations, this stiffness ratio would yield a

squareness of S = 0.28, which is twice as large as the field data.

We now use our simulation to address the question of how

four peaks in curvature result from only two peaks of stiffness.

First consider a uniformly stiff ring. By definition, a smaller

circle has higher curvature than a larger circle. Therefore,

contracting a uniform ring of springs will naturally cause an

increase in curvature.

Now consider contractions of a ring of non-uniform stiffness.

In a zone of stiffer springs, an increase in curvature will occur

earlier than for zones of softer springs. Since there are two stiff

zones, this mechanism leads to two corners forming in the middle

of the stiff regions. However, to get the remaining two corners in

the correct location, there must be an increase in curvature in the

middle of the soft regions as well. We propose that these corners

form due to inertial effects at the center of the soft regions. As the

stiff regions contract more forcefully, the neighboring nodes of

Fig. 5 Squareness for simulated and actual wombat feces. (a) The relationship between curvature and aziumthal position. The curvature at one point in

time (t = 7.9 s) during a contraction is shown by the black solid line. To evaluate squareness this curvature is correlated to the corresponding reference

curvature shown by the blue dotted line. The reference curvature shape is defined using the variable l. Decreasing l corresponds to greater peaks in

curvature, and greater squareness S. (b) The time course of squareness S during a series of intestinal contractions. Insets show the simulation shape at t =

0, 7.9, and 30 s. The oscillations in squareness correspond to each contraction. (c) An array of 36 wombat feces found on Maria Island in Tasmania. The

blue outlines indicate the measured shape using image analysis. The numbers below each feces correspond to the calculated squareness. (d) A histogram

of squareness of natural wombat feces from part (c), demonstrating a mean squareness of 0.14 and a standard deviation of 0.1.

Soft Matter Paper

P
u
b
li

sh
ed

 o
n
 0

8
  
2
0
2
0
. 
D

o
w

n
lo

ad
ed

 b
y
 G

eo
rg

ia
 I

n
st

it
u
te

 o
f 

T
ec

h
n
o
lo

g
y
 o

n
 2

8
.0

1
.2

0
2
1
 1

7
:4

2
:2

9
. 

View Article Online



482 | Soft Matter, 2021, 17, 475--488 This journal is©The Royal Society of Chemistry 2021

these regions are also dragged towards the center. Conversely, the

farthest nodes from the stiff regions are the middle nodes of the

soft regions. Their addedmass causes them to lag behind, creating

an increase in curvature.

As evidence for this physical picture, we perform a parameter

sweep in Reynolds number, shown in Fig. 6c. The stiffness ratio is

kept fixed at C = 4, and the Reynolds number is varied by

manipulating the damping b. As expected, the peak squareness

of the simulations increases with Re. The simulation becomes less

reliable for Reynolds number approaching 1, due to unphysical

behavior such as the intestines crossing itself, which is permitted

by the 2D nature of our simulations. Discounting the point at

Re near 1, linear regression gives S = 0.6 + 0.04 log(Re), R2 = 0.57.

The simulation show very shallow gains in squareness between

Re = 10�4–10�2, but then a significant increase in squareness at

Re = 10�1. Fig. 6a shows the full 2D parameter sweep of both the

spring stiffness ratio, C, and the Reynolds number. Generally,

squareness improves for both higher spring ratios and higher

Reynolds number, up to Re = 10�1.

As an additional test of our proposed mechanism for corner

formation, we consider the case of three periods of stiffness.

With three stiff regions and three soft regions, we expect six

corners to form. When running the simulation with three

periods of stiffness, we expect a transient hexagon. While the

hexagon is barely recognizable, its presence is illustrated by the

six peaks in curvature (see Fig. 7). That is to say, if an animal

were to evolve 3 or 4 periods of stiffness along the circumfer-

ence of their intestines, we predict that their feces would take

the shape of hexagonal or octagonal prisms.

3 Discussion

In this study, we show that a combination of unique material

properties and muscular contractions are necessary for wombats

to produce feces with square cross sections. We discover the

wombat intestines have non-uniform stiffness along the circum-

ference, in part due to variations in muscle thickness. When

intestines conduct their regular peristalsis, digesta is moved

towards the anus. Typical peristalsis is uniform in all azimuthal

directions because the intestines themselves are uniform. How-

ever, the non-uniformity in the wombat intestines cause amplified

contractions in distinct pre-set locations. Over many cycles, these

non-uniform contractions, along with inertial effects, encourage

the preferential movement of feces and the sculpting of the

corners. While these inertial effects seem unlikely in a system

with such a low Reynolds number, oscillatory motion may cause

inertial instabilities at lower-than-expected Reynolds numbers.27

The flat trend in squareness for simulations at Re = 10�4–10�2

suggests that continued reduction of Reynolds number would have

negligible effects on the squareness. Multiple contractions of short

duration may reduce the magnitude of radial velocities and thus

the damping, in comparison to the damping of a single large

longer contraction.

Our study shows corners forming in less than 10 contraction

cycles. This early corner formation is not realistic because our

model does not model the non-Newtonian nature of the feces.

With contractions occurring every couple of seconds26 over a

time of 5 days,15 the feces actually experience on the order of

100 000 contractions. We believe that these missing details may

Fig. 6 Regime diagrams of shape as a function of spring stiffness ratio C and

Reynolds number Re. (a) Qualitative 2D sweep of C and Re, showing the peak

squareness in the simulation. (b) The relationship between squareness S and

spring stiffness ratio C, with solid points given by simulation and line given by

linear best fit. The open symbol indicates the squareness of biological wombat

feces, with error bars giving the standard deviation in the squareness. (c) The

relationship between squareness S and Reynolds number. Solid symbols give

the simulation data, and open symbols denote the biological wombat square-

ness and our estimate for its Reynolds number.
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explain why the model at the lowest Reynolds numbers only

shows the initial formation of corners, especially in the soft

regions, and why these corners never become sharp. We

suspect that as the feces becomes drier, the yield stress nature

of the material makes it increasingly capable of holding its

cubic shape. Moreover, cubes are found only in the distal colon,

and not the proximal colon, despite the periodic tissue thick-

ness found in both regions. Future modeling that takes into

account the effects of feces dryness might be able to resolve the

onset of cubing in the distal colon.

In this work, we focus on the formation of the feces cross

section, which involves four faces out of the six. We hypothesize

that the axial length of the cubes is set by mechanical drying

instabilities. As lava cools, it shrinks, generating stress in the

material. This stress is relieved if the lava cracks at regular

intervals.8 This is the mechanism underlying the formation of

hexagonal columnar jointings and similar structures in drying

corn starch cakes. While hexagons have been observed in these

planar surfaces, and radial cracks have been observed in a circular

anulus,28 the crack structure occuring in drying cylinders remains

unknown. Our preliminary work on drying corn starch suggests

that lateral flat cuts as observed in wombat feces is one possibility,

and may account for the remaining two faces of the cube.

The significance of cubic feces in evolution is ripe for future

work, and we suggest some potential directions here. It is well

known that wombats deposit aggregations of feces on promi-

nent surfaces, such as rocks or logs, as exemplified in Fig. 1b,

and it is widely hypothesized that their cubic shape facilitates

the feces remaining on the surface. In preliminary tests, we

explored the ability of cubic feces to prevent rolling and

bouncing. We formed balls of dough in the same shape and

size of wombat feces and dropped them from a height of 20 cm,

comparable to the height of an adult wombat anus. When the

feces landed on flat surfaces, cubes travel farther than spheres.

When dropped onto inclined surfaces of 81, cubes end up

20 cm closer to the original impact site than spheres on average.

Similar such tests could easily be done with natural substrates.

It is possible that the feces’ cubic shape increases the

surface area so that it can facilitate olfactory communication.

Elevated scent-marking is a common behavior in many mam-

mals and is hypothesized to increase scent dispersal and

visibility.29,30 The purpose of scent-marking is typically

territorial,30,31 however there is evidence that feces are also

used in social communication32 or communicating reproduc-

tive status.33

4 Conclusion

In this study, we show that wombats form corners in their feces

using intestinal contractions coupled with the unique non-

uniform material properties of their intestines. The questions

of how and why wombats form cubic feces make up a compel-

ling case study of the intersections between physiological,

behavioral, and evolutionary ecology. However, they also have

value in a range of other fields, particularly as a novel method

of cube formation in manufacturing, and clinical pathology

insight into the effect of human illnesses changing the tensile

properties of the intestinal tract.

5 Materials and methods

Wombat tissues and fecal samples are all obtained from humanely

euthanized individuals that were the victim of vehicle collisions. In

this study, we present data from 3 wombat dissections. All dissec-

tions are performed after the specimen is frozen and thawed. In

2018, we dissect a young female wombat (2–3 years old). In 2019,

we dissect an adult male wombat (42 years old). And in 2020, we

dissect a young male wombat (o2 years old).

5.1 Histology

We perform E&H staining on tissue samples taken every 1 cm

along the entire circumference of both the proximal and distal

colons. This sampling and staining was performed 3 times for

Fig. 7 The results of simulation using 3 stiff regions. (a) A hexagonal feces is formed with barely noticeable corners. (b) The relation between curvature

and y, more clearly showing the six peaks in curvature in part (a).
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both the proximal and distal colons at locations separated by 1

cm axially in their respective regions. Sections were cut at

thicknesses of 14 to 19 microns. The staining allows for the

visual identification of the four major tissue layers: mucosa,

glandular layer, circular muscle, and longitudinal muscle. We

measured the thickness of each layer underneath a microscope

using NIS-Elements software (see Table S1, ESI†).

5.2 Dryness testing

We evaluate fecal water content in the lower proximal colon

(2–2.5 m from the anus) and distal colon (0–0.5 m from the anus).

Five representative pieces of fecal material are extracted from the

distal colon (all pieces are formed and distinct cubes) and two

from the proximal colon (pieces not distinct, derived from the

continuous slurry), they are weighed, dried at 60 1C until they no

longer changed in mass (96 hours) and then re-weighed.

5.3 Tensile testing

The cut is made at a 50 cm distance from the anus. To measure

the local stiffness at different azimuthal locations, we laser-cut

a stencil to draw tick marks every 4 mm along the circumfer-

ence of a 5 cm long tissue sample of proximal and distal colon.

A ZXUEZHENG surgical marker (0.5 mm, from Amazon) pro-

vides the most visible tick marks. Two such rows are drawn

1 cm apart on each sample. To perform the tensile test, the

sample is cut longitudinally.

Both ends of the cut tissue are clamped down with custom-

made clamps (see Fig. 3e). Each clamp is made from laser-cut

acrylic with sandpaper hot-glued to the inside, preventing the

tissue from slipping. From one clamp, the sample is hung off a

rod, while the bottom of a disposable water bottle is hung off of

the bottom clamp. The sample is stretched by adding incre-

ments of water to the bottle. The clamp and bottle weigh 51.6 g.

The sample is stretched by adding water to the bottle, a total of

7 times, in 25 ml increments. The sample is allowed to settle

before the next increment of water is added. The test is

recorded and we use the video labeler app from the Computer

Vision toolbox in MATLAB to track the location of the interior

end of the left row of tick marks. To get a full 3601 test of the

sample, 2 adjacent samples are prepared and the longitudinal

cut is performed 1801 offset of the other, allowing us to test

regions of the tissue that would otherwise be covered by the

clamps. A video of the test is shown in Video S3 (ESI†). Linear

regressions of the local tensile data are shown in Fig. S1 and S2

(ESI†).

As shown in Fig. 3f, the first sample is denoted by blue dots

while the other is denoted by red diamonds. The black line

shows an averaging between the two samples at that azimuthal

location, ignoring the edge-most data points of both samples

due to edge effects from clamping down on the tissue.

5.4 Solving the equilibrium model

The intestine simulation does not attempt to model the non-

Newtonian nature of the feces itself. Instead it represents the

feces phenomenologically as increased damping and mass,

aggregated at the intestinal walls. Without the feces, the nodes

may take on conformations that allow the springs to cross

themselves in 2D space, which is not physically possible in the

biological system. We find that using the equilibrium solution

as the initial state helps prevent intersection of nodes during

the contraction simulation.

The wombat intestines are modeled by a ring of springs (see

Fig. 4a). The equilibrium shape is described by the length of the

springs in the soft region lA, the length of the springs in the stiff

region lB, the angles between the springs in the soft and stiff

regions, fA and fB respectively, and the angle at the interfacial

nodes between the stiff and soft regions fAB. A constant

pressure, P, is exerted outwards on the nodes until the springs

come to an equilibrium length. To solve for 5 unknown values,

we require a system of 5 equations. Four of the equations come

from local force balances: parallel to the angular bisector in the

soft region (see eqn (5) and Fig. 4b) and the stiff region (see

eqn (6)), and for the interfacial node, both parallel and

perpendicular to the angular bisector (see eqn (7) and (8)).

The equilibrium shape forms a convex 4n-gon requiring the

summation of the angles to be p(4n � 2) (see eqn (9)).

tan fA=2ð Þ ¼
8nk lA � l0ð Þ

PlA
(5)

tan fB=2ð Þ ¼
8Cnk lB � l0ð Þ

PlB
(6)

tan fAB=2ð Þ ¼
8nk lA þ ClB � ðC þ 1Þl0ð Þ

P lA þ lBð Þ
(7)

tan fAB=2ð Þ ¼
P lB � lAð Þ

8nk lA � ClB þ ðC � 1Þl0ð Þ
(8)

p(4n � 2) = 2(n � 1)(fA + fB) + 4fAB (9)

In eqn (5)–(9), n is the number of nodes in each of the 4 sections

of the ring, l0 is the resting spring length, k is the base spring

stiffness, and C is the spring stiffness ratio between the stiff

and soft regions.

The equilibrium shape is numerically calculated using the

MATLAB function fsolve. Both options MaxIterations and Max-

FunctionEvaluations are set to 108. Each of the 4 regions are

composed of n = 50 nodes as increasing n greater than 50 did

not seem to change the resulting shape. The following are the

parameters used in the default simulation. The unstretched

length of every spring is l0 ¼ 2 sin
p

4n

� �
, resulting in an

unstretched ring of radius R0 = 1 cm, matching the unstretched

radius of the wombat’s distal colon. The base spring stiffness is

k = 0.1 104 g s�2, and the stiffness of each spring was 4nk and

4Cnk for the soft and stiff springs respectively. The spring

stiffness ratio is C = 4. Multiplying the spring stiffness by 4n

normalizes the overall stiffness of the ring to be independent of

the number of nodes used in the simulation and results in the

softer spring stiffness to be equivalent to 0.2 N mm�1 as found

from tensile testing. The function fsolve requires an initial
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guess at the solution, (lA,lB,fA,fB,fAB) = (l0 + 10�4,l0,(4n � 2)p/

(4n),(4n � 2)p/(4n),(4n � 2)p/(4n)).

The simulation fails to run if the equilibrium solution

cannot be found. This may happen when the spring stiffness

ratio C is too close to 1. When C = 1 the system is over-

constrained and, as described to the MATLAB function fsolve,

cannot find the equilibrium solution. We find this happens

when C o 2. MATLAB may also fail to find the equilibrium

solution if k is too high. This may be due to eqn (5)–(8) holding

too much weight, not allowing fsolve to find a solution that also

satisfies eqn (9). Due to this constraint, we measure all masses

in units of 104 g, to keep k o 1.

5.5 Simulating the model intestine contractions

The contraction is simulated by solving the equations of motion

according to Newton’s second law, F = ma, eqn (10). Each node is

subject to two neighboring spring forces and a damping force.

m _~vi ¼ ki ~xiþ1 �~xik k � l0ð Þ dxiþ1 � xið Þ

þ ki�1 ~xi�1 �~xik k � l0ð Þ dxi�1 � xið Þ � b~vi: (10)

where 8
-

u8 indicates the magnitude of vector u and û means that

vector u is scaled to be a unit vector. We close the system with the

definition of velocity,

~vi ¼ _~xi (11)

The differential equation is solved over a time period of t =

[0, 40 s] using the MATLAB function ode45. For simulations

involving changes in damping, the simulation time is extended

linearly as damping is increased, according to tf = 105b, where tf
is the duration of the simulation, and b is the damping

coefficient. The equilibrium solution is used to get the initial

xy coordinates of all 4n nodes and their initial velocities are

set to 0.

The following are the parameters for the default simulation.

The added mass of each node is set to m = 4.5 � 10�6 104 g.

This mass is calculated by multiplying our 2D density of feces,

r2D = 1 g cm�2 by the equilibrium mean radius squared, R2, then

dividing by the number of nodes. Recall that mass must be

measured in units of 104 g to keep the base spring stiffness

k low. The damping coefficient is set to be b = 4.5 � 10�3 104 g s�1.

To contract the system, the rest length of the springs is decreased,

from l0 to l0/4. The system oscillates as a square wave between l0
and l0/4 with a period t = 1 s. Over the simulation time, this

period results in 40 simulated oscillations and Re = 10�3.

5.6 Calculating curvature

The shape of the simulation is analyzed by calculating the

curvature at 20 azimuthal positions. Nodes from the simulation

are translated so that the center is located at (0,0). They are

then binned together according to their y location in polar

coordinates. While in polar coordinates, the points are rotated

so that the center of the bin is at y = p/2. The points are mapped

backed to Cartesian coordinates so that we may fit a degree 2

polynomial y = f (x) to the points. From the polynomial, the

average curvature of those points is calculated according to

eqn (12).

kavg ¼
1

xmax � xmin

ðxmax

xmin

f 00ðxÞdx

1þ f 0ðxÞ2ð Þ3=2

¼
1

xmax � xmin

f 0 xmaxð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 xmaxð Þ2

q �
f 0 xminð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0 xminð Þ2
q

							

							

(12)

5.7 Quantifying squareness

The wombat feces themselves are not perfect cubes, as the

corners, while distinct, are clearly rounded. There exist several

metrics for measuring a shape’s roundness.24 For measuring

squareness, we found a single existing metric called the

squircle.25 Attempts to use it on our biological data showed

that it was not robust to noise (see more discussion in the ESI†).

We propose a new metric to evaluate squareness S which comes

from comparing the measured curvature k(y) to a reference

curvature signal.

When considering the reference curvature signal, note that a

circle displays constant curvature for all values of y, while a

square has k(y) = 0 for all values of y except k(y) = N at each of

the 4 corners. The template for our reference signal is then

based upon the following impulse function

flðxÞ ¼
1

l
e�jxj=l: (13)

We can check the validity of this equation by considering the

limit as l tends to infinity: liml-Nfl(x) = constant, behavior

which is similar to the curvature signal of a circle. Likewise, for

the limit as l tends to zero, liml-0fl(0) = N and fl(x|x a 0) = 0,

similar to the curvature signal around a single corner of a

square. We will use l to describe the sharpness of a shape’s

corners. This impulse function also has the added benefit that

the area under the curve is constant for all l.

ð1

�1

1

l
e�jxj=ldx ¼ 2 (14)

We use this property to scale the function based on the size of

the shape. For a circle with area A

kcircleðyÞ ¼

ffiffiffiffi
p

A

r ð2p

0

kcircleðyÞdy ¼ 2p

ffiffiffiffi
p

A

r
: (15)

We may then scale our reference curvature signal for any

arbitrary shape such that the area under the curve is 2

ffiffiffiffiffi
p
3

A

r
.

To match the 4 peaks in curvature that a square displays, we

express the curvature as a piece-wise function, mapping the

original infinite domain to a finite one. In doing so, our

function’s area under the curve is no longer conserved over l.

We remedy this by scaling by the integrated area under the

curve, from zero to p/2, which is relevant for each of the pieces
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of the piecewise function. Overall we have

krefðy; lÞ ¼

ffiffiffiffiffi
p3

A

r
1

l
e�j tanðy�cÞ=lj


 �

Ð
p=2
0

1

l
e� tan ~yd~y

(16)

where

c ¼

p=4 y 2 ð0; p=2Þ
3p=4 y 2 ðp=2; pÞ
5p=4 y 2 ðp; 3p=2Þ
7p=4 y 2 ð3p=2; 2pÞ

8
>><
>>:

The reference function displays discontinuities at y ¼
np

2
, 8n A

Z. From kref, we inherently get the first component of our

squareness metric in l, in which high values of l indicate the

shape is very circular, while values close to 0 indicate the shape

is square.

To match the measured k(y) to the proper value of l, we

cross-correlate the signals k(y) and kref(y,l) using the xcorr

function available in MATLAB (see Fig. 5a). Both signals must

be sampled at the same values of y. The measured k(y) is made

continuous by linearly interpolating between values. The func-

tion xcorr finds the correlation between signals at varying lags,

rotating the shape until the curvature signals are aligned. When

performing the cross-correlation, we input three periods of

each curvature signal, y = [0,6p] and specify that the lag may

not be more than 2p. This prevents xcorr from correlating to

different signals by only comparing a small part of each signal.

We numerically find the value of l that yields the maximum

correlation x using MATLAB’s built-in fminsearch and an initial

guess of l = 1. With the optimal value for l and the corres-

ponding correlation x, we calculate squareness as

S = x10(1 � 2 arctan(l)/p). (17)

The range of S is (0,1) where S = 1 indicates that the shape is

perfectly square, and S = 0 indicates that the shape is either

perfectly circular or very much not square. The correlation, x, is

raised to the 10th power. This exponent weights the correlation

to ensure that the shape is given a high score only when it has 4

peaks in curvature rather than just 2 very high peaks in

curvature. In practice, 2 high peaks in curvature may result in

a correlation of x E 0.9. Raising the correlation to the 10th

power sufficiently punishes these non-square shapes.

We illustrate the evaluation of squareness with a numerical

example. Consider a single frame at t = 7.9 s from the square

simulation using the default parameters listed above (C = 4,m =

4.5 � 10�6 104 g, b = 4.5 � 10�3 104 g s�1). The function ode45

gives the xy coordinates of all n nodes at each time point. From

these coordinates, we calculate curvature k using eqn (12) for

each bin of nodes. We then get a function k(y) for any arbitrary

value of y by linearly interpolating between calculated curvature

values. We sample the curvature k(y) every 0.61 (0.1 radians)

from 0.61 to 359.41. The resulting vector of curvature values is

then repeated 3 times so that cross-correlation by the function

xcorr will not be inflated by comparing too few data points.

Using the function fminsearch we compare the curvature k(y)

to the reference curvature kref(y,l) as described by eqn (16),

sampling at the same values of y, searching for the value of l

that yields the highest cross-correlation. For t = 7.9 s, this

optimal value is l = 1.5 with a cross-correlation of x = 0.98.

Fig. 5a shows the curvature from the simulation (solid black

line) as well as the reference curvature kref(y,l = 1.5) (dotted

blue line). The range of l is (0,N), so we map l to a range (0,1)

with 1 indicating highest squareness and multiply it with the

cross-correlation value x10 as in eqn (17). The resulting map-

ping, from eqn (17) yields a squareness of S = 0.3. We repeat

this procedure for every time increment in the contraction.
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