
Blockchain-Based Solution

for Proof of Delivery of Physical Assets

Haya R. Hasan(&) and Khaled Salah(&)

Department of Electrical and Computer Engineering,

Khalifa University of Science, Technology and Research, Abu Dhabi, UAE

{haya.hasan,khaled.salah}@kustar.ac.ae

Abstract. To date, building a highly trustworthy, credible, and decentralized

proof of delivery (POD) systems to trace and track physical items is a very

challenging task. This paper presents a blockchain based POD solution of

shipped physical items that uses smart contracts of Ethereum blockchain net-

work, in which tracking, and tracing activities, logs, and events can be done in a

decentralized manner, with high integrity, reliability, and immutability. Our

solution incentivizes each participating entity including the seller, transporter,

and buyer to act honestly, and it totally eliminates the need for a third party as

escrow. Our proposed POD solution ensures accountability, punctuality,

integrity and auditability. Moreover, the proposed solution makes use of a Smart

Contract Attestation Authority to ensure that the code follows the terms and

conditions signed by the participating entities. It also allows the cancellation of

the transaction by the seller, buyer and transporter based on the contract state.

Furthermore, the buyer can also ask for a refund in certain justifiable cases. The

full code, implementation discussion with sequence diagrams, testing and ver-

ification details are all included as part of the proposed solution.

Keywords: Proof of delivery � Blockchain � Ethereum � Smart contracts

1 Introduction

With the widespread of technology and the internet, online shopping or trading have

become part of people’s daily activity. Often at the comfort of their homes, people start

searching for a desirable item and wonder if there is an online vendor that can provide

the item in a perfect condition to their door step. Meeting the needs of today’s world,

lots of online stores have launched and provided delivery services and even world-wide

shipping. Thus, there is an immense need to have a solution that provides proof of

delivery of any physical item such as a piece of clothing, book, home essentials etc.

delivered between any two parties.

Proof of Delivery (POD) or ‘last mile’ of delivery is crucial as it shows that an item

has reached its final and required destination. In real world, courier and delivery service

companies use trackers and proof of delivery systems to ensure that their customers’

needs are met on time and without delays. Not only punctuality is important, but also

the delivery of the item as is from the initial source is extremely vital.

© Springer International Publishing AG, part of Springer Nature 2018

S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 139–152, 2018.

https://doi.org/10.1007/978-3-319-94478-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_10&domain=pdf

Today’s proof of delivery systems are typically based on signed papers and doc-

uments which are carried with the transporter to the recipient. Other courier services

might depend on an electronic hand-held device used to obtain the signature of the

recipient with a valid ID. This is cumbersome and does not provide total trust for

delivery, whereby there is no true and genuine verification by the courier for the

signature and the ID of the recipient which can be fake. Even, the courier cannot be

trusted. Furthermore, online retailers depend on a third party for shipment. For

instance, Amazon depends on several regional courier companies for their delivery

services, such as UPS, FedEx, DHL, Pilot and many others [1, 2]. In addition, today’s

delivery service is completely centralized, costly, and extremely hard to manage. In

general, centralized systems suffer from privacy invasion, being a single point of

failure, and mistrust which can lead to corruption and attacks.

Problem Statement. To date, trusted online trading between two unknown parties is

not yet established without a centralized trusted third party. There is an immense need

for a proof of delivery and tracking of shipped items with a highly trusted, secure, and

decentralized traceability and auditability.

Blockchain is a new disruptive technology that possesses a lot of features that make

it ideal for tracking systems. Hence, making it a perfect candidate for creating proof of

delivery solutions. Blockchain is an immutable, distributed ledger that is tamper-proof

with ordered logs [3, 4]. Ethereum smart contracts made blockchain programmable, as

it allowed the execution of code, making it even more powerful [4]. An ideal proof of

delivery system should satisfy the following desirable characteristics:

• Accountability: It should be possible to trace back the actions performed to the

system to the actual initiating entity.

• Authorization: Each party in the system is allowed to only perform certain roles.

• Auditability: It should be possible to track all activities performed by the acting

entities and hence, to trace back the item’s state and route.

• Integrity: No one should be able to modify the audits and agreed upon terms and

conditions.

• Punctuality: The system should be able to time every action and deliver the item on

time to the customer.

• Honesty: Each of the participating entities (seller, transporter and buyer) should be

incentivized to act honest and do their part legitimately.

In this paper, we propose a blockchain solution for the proof of delivery of physical

items that solves the issue of trust, tracking, tracing back and proves the item reached

its final and legitimate destination. The solution can be extended to include interme-

diary destinations before the final one and can be easily integrated with a Know Your

Customer (KYC) protection to add an extra layer of security. We show in our solution

that all parties involved in the contract are all equally trusted with the same authority

levels. Their roles allow them to execute certain functions only, hence managing the

contract flow using role restriction. The main contributions of the paper can be sum-

marized as follows:

• We propose a blockchain-based proof of delivery solution that utilizes tamper-proof

logs for auditability and traceability.

140 H. R. Hasan and K. Salah

• Our solution utilizes an equal agreed upon collateral to incentivize each of the

participating entities to act honest. Our PoD solution ensures integrity of the signed

terms and conditions form by using InterPlanetary File System (IPFS) hash in the

smart contract. Also, the smart contract code is attested by the smart contract

attestation authority to ensure that it follows the signed terms and conditions.

• We demonstrate accountability in our solution by using keys and hashes for veri-

fication of the true legitimate receiver. We also show how our solution addresses

issues related to customer loyalty and delivery punctuality. Refund and cancellation

are also taken care of to preserve the rights of the seller, buyer and transporter.

• We present a complete system architecture, sequence diagrams and the full code

with the implementation and testing details.

The remainder of this paper is organized as follows. Section 2 provides the related

work. Section 3 presents the system architecture of the proposed solution. Section 4

describes the important aspects of the implementation. Section 5 illustrates the testing

and validation of the smart contract code and Sect. 6 concludes the paper.

2 Related Work

This section presents the work that is available in the literature for proposed algorithms

and techniques for proof of delivery of physical items. All blockchain solutions try to

solve the trust issue between the seller, buyer and transporter while tracking the item’s

state through the logged events.

For instance, [5] proposes using a secure hash and a key that is given by the seller

to the transporter along with the item. Once the transporter arrives to the destination,

the buyer would enter the key and the hash of the key is compared with the hash

already available in the contract. This method is simple and easy to implement. It uses

the contract as an escrow. Therefore, the item’s price would only be given to the seller

once the hash verification is done. However, it involves trusting the transporter not to

manipulate the key. Furthermore, its success depends on all the parties acting honest

and trust worthy and this cannot be guaranteed.

On the other hand, localethereum [6], an Ethereum market place, does not use the

contract as an escrow. It uses a third party as a funded escrow. The seller and buyer or

traders agree upon a trusted third party as escrow that they would trust till the end of the

transaction. Also, in case of dispute, the involved parties can allow localethereum to act

as an arbitrator. Although using a third party as an escrow costs more and also requires

more incentives for trust and honesty, having an arbitrator incase of a dispute makes it

more convenient.

Furthermore, BitBay [7], a decentralized marketplace which provides a platform for

users to trade and sell, uses a ‘double-deposit escrow’. This means that a collateral is

deposited by the traders or buyer and seller that is equal to double the item price being

traded or sold. BitBay eliminates the need of a trusted third party as an escrow. Hence,

it uses the contract itself as an escrow that takes all the deposits until the transaction is

completed. BitBay also does not act as a moderator themselves in case of issues unlike

localethereum. However, using BitBay the delivery of a physical item would require

Blockchain-Based Solution for Proof of Delivery 141

trusting a third party for the transportation. There is no guarantee that the transporter

would not manipulate the delivered item or create a delay.

An important point is also to be able to integrate the system with a KYC procedure

to verify the identity of the parties involved in the contract. For instance, this can be

achieved by using a certification body that takes the signed personal information of a

user and stores their hash in the blockchain. Later on, when a user would like to register

in a service, the service providers would verify the submitted signature hash with the

hash value of the personal information acquired from the certification body. If both the

hashes match, then the identification is complete [8].

3 Proposed Blockchain Solution

In this section, we propose a solution that utilizes the Ethereum blockchain to create a

system that is decentralized, provides trust, and uses immutable logs and events. This

system is a solution for selling physical items with a proof of delivery and without the

need of an intermediary service such as a broker or an agent. This is done by using

smart contracts which facilitate the automation of the process and help in saving the

history of all transactions without alterations.

3.1 System Overview and Design

The proposed solution is focused on proof of delivery of physical items between a

seller and an interested buyer. A transporter is also part of the contract to ensure the

item delivery is carried out and all other parties are notified about the status of the item

during delivery. An agreed upon and trusted arbitrator by the seller, buyer and trans-

porter is also part of the contract and can only step in incase of a dispute. Each of the

mentioned participants possess an Ethereum address and they all sign an agreement

form which has all the terms and conditions of the contract. Furthermore, an important

part of our solution, is the attestation of the contract from a certified trusted authority,

Smart Contract (SC) Attestation Authority. The attestation guarantees to all partici-

pating entities that the smart contract follows the signed agreement terms and condi-

tions. The roles of the Ethereum entities in the smart contract are as follows:

Seller: The seller is the owner of the item to be sold. The seller creates the contract,

signs the agreement terms and conditions form, deposits a collateral, and provides

keys to both the buyer and transporter.

Buyer: The buyer is the entity that shows interest in the item being sold. The buyer

agrees to the terms and conditions, deposits a collateral along with the item price,

and requests an item key to be able to take the item from the transporter when

delivered.

Transporter: The transporter’s main role is to deliver the item as received between

the seller and buyer.

Arbitrator: The arbitrator is a trusted third party that is agreed upon by the seller,

buyer and transporter who will only get involved in case of a dispute to solve the

issues off the chain.

142 H. R. Hasan and K. Salah

SC Attestation Authority: The smart contract attestation authority ensures that the

smart contract complies with the terms and conditions signed by the involved

parties in the agreement form.

The smart contract of the proposed solution follows a certain algorithm that flows in

a sequence that should be followed by the participating entities to preserve everyone’s

right. All actions that take place off the chain are accompanied by functions in the

contract that trigger logged events and notifications. The contract receives the agreed

upon collateral which is in our case twice the item price from the seller, buyer and

transporter as they are equally trusted by each other and by the smart contract. The

collateral can be of any reasonable value as long as it is equal among all entities. The

funds are held by the contract, so the contract acts as escrow until the payment is settled

based on the events and verification results. The smart contract contains the following:

• Modifiers: Modifiers ensure that transactions and functions are executed by the right

legitimate entities and that the payable functions only accept the correct intended

payment before proceeding. Modifiers change the function that uses them to allow it to

execute based on the result of another code that is first executed inside the modifier. For

example, requiring the collateral by each entity to be twice the actual price of the item or

requiring a certain function to be executed by only the seller, buyer, transporter or any

one of them is specified using the modifiers: costs(), OnlySeller(), Only-

Buyer(), OnlyTranspoter(), OnlySeller_Buyer_Tranporter().

• Events: After the execution of a function, an event is used to create notifications

and saved logs. Events help in tracing and in notifying all participating parties about

the current state of the contract and current activities.

Fig. 1. System architecture of the Ethereum-based solution showing the main participating

entities participating in a successful transaction

Blockchain-Based Solution for Proof of Delivery 143

• Variables: Variables help in saving important values that preserve the state of the

contract as it changes along with the functions. Variables used in the contract hold

addresses of the participating entities, IPFS hash of the agreement terms and con-

ditions form, item’s details such as price and ID, and current contract state.

Figure 1 shows the system architecture of the proposed blockchain solution that

shows the transactions between the seller, buyer and transporter. All the parties sign the

terms and conditions agreement form and agree to its content by depositing a collateral

that is twice the item price. Then the seller prepares the item and hands it over to the

transporter along with a key (KeyT). Every item has two keys that are given by the

seller, i.e. a key that is given to the transporter and a key that is handed over to the

buyer (KeyB). The transporter delivers the item to the buyer and they both exchange

their keys. This ensures that the transporter has reached the intended buyer. Both of the

transporter and buyer enter the keys to the contract and verification takes place. The

smart contract computes the hashes of the keys entered and if the hashes match, then

the payment is settled. The buyer is refunded one item price, the transporter gets back

twice the item price that was deposited as collateral with 10% of the item price

additional payment for the delivery service. Lastly, the seller gets the rest of the ether

deposits which include the rest of the deposited collateral and the payment of the item

price by the buyer.

The contract used in the blockchain solution is an attested contract. Hence, the

contract code and flow was verified and attested by the Smart Contract (SC) Attestation

Authority. Therefore, the attested SC includes the Ethereum address of the attestation

authority that verified the contract code and ensured that it agrees to the terms and

Fig. 2. Attested SC pointing to the Ethereum address of the SC Attestation Authority which also

has a list of all the Ethereum addresses of the attested contracts

144 H. R. Hasan and K. Salah

conditions in the agreement form that is signed by all the parties of the contract.

Moreover, the SC Attestation Authority has a complete list of the all the Ethereum

addresses of the attested contracts. This provides a way for the participating entities to

trust the contract content and to be able to verify that it has truly been attested and is

now trustable. Figure 2 shows the attested smart contract and the SC Attestation

Authority contract along with their relationship.

4 Implementation Details

The smart contract code is written in Solidity using the web-based IDE, Remix. The

code focuses on three main entities, the seller, transporter and buyer to acquire the

proof of delivery of a physical item. However, there are two other entities that also

contribute in making the contract more trustable. The arbitrator steps in incase of a

dispute and the SC Attestation Authority attests and verifies that the contract code

matches the terms and conditions signed by each of the actively participating entities.

Figure 3, shows the sequence diagram that demonstrates the flow of the code. The

code represents a seller who has an item and would like to sell it to an interested buyer.

Therefore, a transporter is needed to deliver the packaged item between the seller and

the buyer. At the beginning of the contract, the seller, transporter and buyer are all

required to sign the attested terms and conditions agreement form. The agreed upon

collateral which is twice the item price is automatically deducted from each party that

signs the form. The form’s IPFS hash is available in the contract so that each of the

seller, buyer and transporter will be able to access the same form using the IPFS hash

provided in the contract. This will ensure the data integrity of the content of the

agreement form is well maintained.

The transporter is provided with a key along with the physical item. The trans-

porter’s key (KeyT) is handed over to the transporter while the key is kept unrevealed to

the buyer. On the other hand, the buyer also has a key which the transporter is unaware

of its content, (KeyB). The keys are exchanged between the transporter and the buyer

upon the successful delivery of the item. The hashes of the concatenated strings is

computed twice, once by the transporter and another time by the receiver. Verification

is then done by the contract to check that the hashes match. If the hashes match, then

the transaction is successful and the buyer gets back half of the deposited collateral.

The transporter also gets back the deposited collateral in addition to the transportation

fees and the rest goes to the seller. The above is demonstrated in Alternative 1, in

Fig. 3. Alternative 2 and 3 that are illustrated in Fig. 3, take place if the verification

hashes do not match or any of the transporter or receiver fail to enter the verification

keys on time. In this case, the deposited collateral gets transferred to the trusted

arbitrator that was agreed upon by all the parties at the beginning of the contract.

It is important to note that the contract code is written in a way that allocates a time

window for each action to preserve the rights of the other parties involved. For

instance, when the packaged item is received by the transporter, the time is stored in the

contract and is later checked to verify if the delivery time was exceeded or not. The

buyer has the right to request a refund if the time is exceeded. This can be done using

the refund() function.

Blockchain-Based Solution for Proof of Delivery 145

Furthermore, the buyer also needs to enter the keys for verification after the

transporter has called the verifyTrasnporter() function by a maximum of

15 min. If the buyer exceeds the time window allocated for verifying the keys, the

transporter has the right to leave after calling the BuyerExceededTime() function.

In this function, the time window is checked, and the arbitrator gets involved to solve

the issue off the chain. Figure 4, shows the implementation of the verification functions

of both the transporter and buyer.

Fig. 3. Sequence diagram of the smart contract code that shows the flow for a successful and an

unsuccessful transaction

146 H. R. Hasan and K. Salah

Once the buyer enters the keys, the verification() function is automatically

called as it is an internal function. The function compares the hashes of the transporter

and buyer. If the hashes are equal, the verification is successful and the buyer receives

half of the deposited collateral, the transporter receives his full collateral in addition to

his transportation fees and the seller receives back the rest of the deposits. However, if

the hashes are not equal, which could mean that either of the transporter or receiver

failed to enter the right keys, all deposits are transferred to the arbitrator and the dispute

is solved off the chain. This is demonstrated in Fig. 5 which shows the code of the

verification() function.

Fig. 4. Contract code showing the key verification functions and time window checking (The

full code is available at: https://github.com/smartcontract694/POD_PhysicalItems).

Fig. 5. Contract code showing the verification function (The full code is available at: https://

github.com/smartcontract694/POD_PhysicalItems).

Blockchain-Based Solution for Proof of Delivery 147

https://github.com/smartcontract694/POD_PhysicalItems
https://github.com/smartcontract694/POD_PhysicalItems
https://github.com/smartcontract694/POD_PhysicalItems

Furthermore, each function in the contract requires a certain previous state for it to

be successfully executed. This plays a vital role in the ability of a certain entity to

cancel the purchase. The buyer can cancel the purchase without penalty if the item has

not yet been delivered and a transporter can cancel the delivery before taking the item

from the seller. A mapping that maps the address of each of the buyer, seller and

transporter along with a boolean is used to control the cancellation. At the beginning all

items of the mapping are initialized with true. After the package is created and the keyT
is handed to the transporter, the transporter and seller cannot cancel the purchase.

Hence, their mapping items are changed to false as illustrated in Fig. 6. Moreover,

when the package has been handed over to the transporter, the buyer cannot cancel the

purchase and the mapping of the buyer also gets changed to false. Hence, the can-

cellation function always checks the state to know which stage the item is in and if the

cancelling entity has the right to cancel or not using the mapping details.

5 Testing and Validation

The smart contract code has been tested for several important aspects and test cases that

are discussed in this section.

5.1 Test Case 1: Payable Collateral Amount

The contract code has one payable function. This function uses a modifier called

costs() which ensures that the ether deposited is equal to the agreed upon collateral

which is twice the item price. Figure 7 shows the logs of a successful deposit with-

drawal made by the sender upon signing the terms and conditions agreement form. The

figure also shows that the successful transaction took a value of 4 ether since the item

price is 2 ether in this contract.

Fig. 6. Functions in the contract code that show ‘state’ requirements (The full code is available

at: https://github.com/smartcontract694/POD_PhysicalItems).

148 H. R. Hasan and K. Salah

https://github.com/smartcontract694/POD_PhysicalItems

5.2 Test Case 2: Role Restriction

To ensure the proper functionality of the code based on the actions of the participating

entities, the contract’s functions are restricted based on the role. All the functions of the

contract have been tested successfully for role restriction. Hence, if the arbitrator for

instance whose address is “0x583031d1113ad414f02576bd6afabfb302140225” tries to

request the package key of the buyer, the transaction fails as illustrated in Fig. 8.

5.3 Test Case 3: Matching Verification Keys

A successful test case was tested to ensure that the verification of the hashes works as

expected and the payment settlement. As can be seen in Fig. 9, the keys entered

provide similar hashes and as a result, the transaction is successful. The buyer gets back

a deposit of 2 ether, the transporter gets back 2 ether in addition to 10% of the item

price as transportation fees and the seller gets back the rest of the deposited collateral.

Figure 10 shows the ether deposits at the end of the successful transaction, with the

seller, transporter and buyer having 101.8, 100.2 and 98 ether respectively.

Fig. 7. Log details of a successful deposit transaction by the seller.

Fig. 8. Log details of a failed transaction due to role restriction.

Blockchain-Based Solution for Proof of Delivery 149

5.4 Test Case 4: Dispute and Arbitrator Role

In the case of the keys entered by the buyer and transporter are not matching, a dispute

occurs and the arbitrator steps in. All the ether deposits that are held with the contract

are transferred to the arbitrator and the dispute is solved off the chain. As can be seen in

Fig. 11, the arbitrator at the end of an unsuccessful transaction has 12 ether, since each

of the three parties has deposited 4 ethers when signing the agreement form. Figure 12,

shows the events that take place during a dispute and before the contract gets to the

‘aborted’ state.

Fig. 9. Log details of a successful transaction and payment settlement.

Fig. 10. Ether deposits at the end of a successful transaction.

Fig. 11. Ether deposits at the end of an unsuccessful transaction.

150 H. R. Hasan and K. Salah

6 Conclusion

This paper has presented a blockchain solution which facilitates the trading and

tracking of sold items between two parties in a decentralized way. The solution pro-

vides a proof of delivery of physical items taking advantage of the security and

immutability that blockchain provides. Our proposed solution is generic enough and

can be applied to almost all shipped physical items and assets. In this paper, we focused

on providing, implementing, and testing the smart contract code and algorithm of the

PoD solution that show cases the ability to prove the delivery of an item using an equal

deposited collateral by the seller, transporter and buyer. In the paper, we showed and

discussed how our solution can provide PoD key features and requirement that include

integrity, accountability, authorization, punctuality and honesty. As a future work, we

plan to extend our solution to implement aspects related to confidentiality and privacy.

Also, work is underway to develop completed DApps with different views for seller,

buyer, and transporter.

References

1. “Help & Customer Service”, Amazon Shipment Updates via Text Terms and Conditions.

https://www.amazon.com/gp/help/customer/display.html/ref=hp_left_v4_sib?ie=UTF8&node

Id=201910790

2. “Help & Customer Service”, Shipping Carrier Contacts. https://www.amazon.com/gp/help/

customer/display.html/ref=hp_ss_qs_v3_rt_ci?ie=UTF8&nodeId=201117350

3. Toyoda, K., et al.: A novel blockchain-based product ownership management system (POMS)

for anti-counterfeits in the post supply chain. IEEE Access PP(99), 1 (2017)

4. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things.

IEEE Access 4, 2292–2303 (2016)

Fig. 12. Events at the end of an unsuccessful transaction.

Blockchain-Based Solution for Proof of Delivery 151

https://www.amazon.com/gp/help/customer/display.html/ref%3dhp_left_v4_sib%3fie%3dUTF8%26nodeId%3d201910790
https://www.amazon.com/gp/help/customer/display.html/ref%3dhp_left_v4_sib%3fie%3dUTF8%26nodeId%3d201910790
https://www.amazon.com/gp/help/customer/display.html/ref%3dhp_ss_qs_v3_rt_ci%3fie%3dUTF8%26nodeId%3d201117350
https://www.amazon.com/gp/help/customer/display.html/ref%3dhp_ss_qs_v3_rt_ci%3fie%3dUTF8%26nodeId%3d201117350

5. “Two party contracts”, Dapps for Beginners (2018). https://dappsforbeginners.wordpress.

com/tutorials/two-party-contracts/

6. “How Our Escrow Smart Contract Works”, localethereum.com’s official blog (2018). https://

blog.localethereum.com/how-our-escrow-smart-contract-works/

7. “Double Deposit Escrow – BitBay”, BitBay (2018). https://bitbay.market/double-deposit-

escrow. Accessed 28 Mar 2018

8. “Open Source Products”, KYC (Know Your Customer) (2018). https://guide.blockchain.z.

com/en/docs/oss/kyc/

152 H. R. Hasan and K. Salah

https://dappsforbeginners.wordpress.com/tutorials/two-party-contracts/
https://dappsforbeginners.wordpress.com/tutorials/two-party-contracts/
https://blog.localethereum.com/how-our-escrow-smart-contract-works/
https://blog.localethereum.com/how-our-escrow-smart-contract-works/
https://bitbay.market/double-deposit-escrow
https://bitbay.market/double-deposit-escrow
https://guide.blockchain.z.com/en/docs/oss/kyc/
https://guide.blockchain.z.com/en/docs/oss/kyc/

	Blockchain-Based Solution for Proof of Delivery of Physical Assets
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Blockchain Solution
	3.1 System Overview and Design

	4 Implementation Details
	5 Testing and Validation
	5.1 Test Case 1: Payable Collateral Amount
	5.2 Test Case 2: Role Restriction
	5.3 Test Case 3: Matching Verification Keys
	5.4 Test Case 4: Dispute and Arbitrator Role

	6 Conclusion
	References

