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ABSTRACT 
A study on pollutant dispersion and distribution inside public taxi transfer interchanges (TTIs) 
is reported. The pollutant levels inside TTIs are affected by many factors, for example, taxi 
data, climatic conditions, human activities and geometrical layout of TTIs. A site 
measurement of respirable suspended particulate (RSP) level is carried out in a typical TTI in 
Hong Kong. After analysing the effect of the above factors on RSP level, we propose to use 
artificial neural networks (ANNs) to study such phenomena. The recorded data within 
different time periods inside the selected TTIs are used as the test data set to train the 
proposed neural network model. The recovery performance of the ANN model is analysed 
and justified. In this study, we compare the forecasting results and the measured data of RSP 
in morning and afternoon sessions, respectively. The results show the feasibility and 
reliability of the proposed approach for forecasting pollutant levels inside TTIs. 
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INTRODUCTION 
As there is continuous economic development and population increase in Hong Kong, a series 
of severe problems relating to environmental benefits and protection has attracted much 
attention than ever before, for example, air pollution, shortage of land resources, waste and 
sewage disposal, etc. (Qin et al., 1997; Chan et al., 1999; Environmental Protection 
Department Report, 2000; Chan and Kwok, 2001). Among these, air pollution has a direct 
effect on human health through exposure to high ambient concentration levels of pollutants. 
The respirable suspended particulate (RSP) levels have frequently exceeded the air quality 
objective (AQO) of Hong Kong during the past 6 years (Environmental Protection 
Department Report, 2000). The main sources of air pollution in Hong Kong come from 
industry and vehicles. In recent years, with better land-use planning, stricter controls on 
certain industrial processes, and reduction in sulphur content and viscosity of industrial fuel 
oil, air pollution from industrial operations has been put under effective control. Nevertheless, 
as a result of increasing number of vehicles, vehicular emissions have become the main source 
of air pollution. Unfortunately, in Hong Kong, almost all commercial vehicles such as taxis, 
buses and goods vehicles run on diesel and therefore emit high levels of RSP. The situation is 
particularly serious in public transfer locations, for example, public taxi transfer interchanges 
(TTIs). These locations are normally built at ground level under large building complexes, 
surrounded by solid walls and structural columns, and poorly ventilated. As a result, the 
exhaust gas from vehicles could be trapped inside the TTI and the air inside these locations is 
smoky, filthy, choking and harmful to passengers. 

Concerning the high demand of good air quality in public places, a study on pollutant 
dispersion and distribution inside public TTIs is required and is necessary for the ultimate 
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purpose of diluting pollutant levels and improving air quality inside these locations. The 
concentration levels of pollutants inside TTIs are affected by many factors, for example, the 
taxi flow-rate, the continuous emission rates and periods of taxies, the ventilation rate, the 
environmental conditions (temperature, humidity, etc.), the geometrical layout inside TTIs, 
and the opening size and location of TTIs. The relationships between pollutant levels and their 
affected factors are basically non-linear, highly coupled or even not known yet. Full-scale 
measurement and computational fluid dynamics (CFD) simulation, for example, would be 
very expensive and time-consuming by using a conventional engineering approach. Artificial 
neural network (ANN) is good at dealing with such problems (Karayiannis and 
Venetsanopoulos, 1993; Perez and Reyes, 2001). This paper aims to analyse the factors 
affecting RSP level and the variable characters of RSP in TTIs based on the collected 
historical data in typical TTI sites, to investigate the probability and its effectiveness using an 
ANN approach and to predict RSP time series tendency in selected TTIs in Hong Kong. 
 
MEASUREMENT AND ANALYSIS OF FIELD DATA 
Field Data Acquisition 
In order to study the RSP levels in TTIs, a site measurement of RSP level was carried out in a 
typical TTI in Hong Kong (see Figure 1). The RSP level and its affected factors were 
monitored using relevant equipment. The measured data include air velocity (Anemomaster 
Model 6112 Kanomax) at a location 1.5 m above the ground within the passenger waiting area, 
temperature/humidity (No. 8016-00 Model SK-L200TH Sato Keiryoki Mfg. Co., Ltd.), and 
RSP levels (Airborne Particulates Monitor Model No. PDR-1000AN) at the same location 
within 10 s intervals. All parameters are measured within 1 h duration during off-peak hour at 
09:30–10:30 a.m. and peak hour at 13:30–14:30 p.m. for a whole week. In this study, the taxi 
flow-rate is counted in queue every minute and then the average taken for 5-min intervals (see 
Figure 2). The air velocity data are listed in Table 1. The parameters of temperature, humidity 
and RSP level are collected within the interval of every 10 s simultaneously. Figure 3 shows 
the variations of temperature and humidity during the collected hours on Wednesday, which 
represents typical tendency of these parameters during a week. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Scheme of a simplified TTI. 

Table 1 Average air velocity at different times during a week 
Time Air Velocity (m/s) 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday
09:30 0.01 0.01 0 0.02 0 0.02 0.03 
10:30 0 0.01 0.03 0 0.02 0.01 0.02 
13:30 0.04 0 0 0.02 0.2 0.04 0 
14:30 0.04 0.03 0 0.02 0.02 0.03 0.02 

Remark The ventilation system operates between 10:00 a.m. and 24:00 p.m. 
 

P.W.A.      S.P.  

In                                        Exit 
  P.W.A. - Passenger Waiting Area 
  ο - Pollutant sources  S.P.-Sample Point 
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Data Analysis 
Before establishing the RSP forecasting model, it is necessary to analyse the characteristics of 
RSP and the properties of its affected factors based on the original measured data. For the 
selected time durations in the study, the differences of the RSP levels between the morning 
and afternoon sessions, in particular, on Tuesday and Wednesday, can be observed (see Figure 
4). However, the changes of some affected factors are not obvious, for example, the 
temperature and air velocity in the same time periods, shown in Table 1 and Figure 3. In 
general, it is believed that the taxi flow-rate is the main affecting factor because the RSP 
originates from its exhaust emission. From Figure 4, it is also of interest to observe that the 
maximum RSP levels are not in par with the maximum taxi occupancy during off-peak or 
peak hours as shown in Figure 2. Hence, other parameters may have greater influence on the 
RSP levels than the taxi flow-rate. 
 

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7
 Monday
 Tuesday
 W ednsday
 Thursday
 Friday
 Saturday
 Sunday

Nu
m

be
r o

f t
ax

i p
ar

ke
d

Time (x 5 mins, 9:30am-10:30am)
0 1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

10

12

14

16  Monday
 Tuesday
 Wednsday
 Thursday
 Friday
 Saturday
 Sunday

Nu
m

be
r o

f t
ax

i p
ar

ke
d

Time (x 5 mins, 13:30pm-14:30pm)  
Figure 2 Taxi flow rate during off-peak and peak hours for a week in a typical TTI. 
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Figure 3 Profiles of temperature and humidity on Wednesday in a typical TTI. 
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Figure 4 RSP profiles during off-peak and peak hours for a week. 

According to the humidity curves during the measured periods shown in Figure 3, it is 
reasonable to take the humidity as a major factor to influence the RSP levels (Neubauer et al., 
1998). In the mean time, we take an additive factor produced by stochastic function to 
produce a complex vector instead of other factors such as temperature, and short sequence, for 
example, taxi flow-rate and air velocity, etc. Considering the time differences between taxi 
emission and pollutant monitor, some delay time series must be considered in the forecasting 
model. A function model for predicting RSP level is founded as below: 
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RSP( ) (Add,Humidity( ), Humidity( 1);RSP( 1), , RSP( 2))t f t t t tτ τ= − − −L K  (1) 
 
Here Add , Humidity( )  and RSP( )  represent additive factor, humidity and RSP time series, 
while, 1τ  and 2τ  represent the delay time, respectively. 
 
APPLICATION OF ARTIFICIAL NEURAL NETWORK MODEL 
The training process of a three-layer, feed-forward neural network, which will be used to 
predict the RSP variations in public TTIs, is presented in this section. Figure 5 presents the 
typical topology structure of the network. It consists of an input layer, a single hidden layer 
and an output layer, every neuron or node in the topology represents a non-linear mapping 
between input and output vectors (Karayiannis and Venetsanopoulos, 1993). It is denoted that 
the input vector is 1 2( , , , )nX x x xK , and the output vector is 1 2( , , , )mY y y yK . The  denotes 
number of hidden nodes. The ),(, ms

jk
sn

ijjkij RwRwww ×× ∈∈  are, respectively, the connection 
weighting matrix between input and hidden layer, and that between hidden and output layer. 
The ),(, m

k
s

kj RR ∈∈ θθθθ  are threshold vectors of the hidden layer and the output layer 

separately. Therefore, these interrelationships form a non-linear map from the input space nR  
to the output space mR . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here, the output vector of the hidden layer is: 
( )p ij p jO f w x θ= × +  (2) 

The output vector of the output layer is: 
( )p jk p ky f w O θ= × +  (3) 

In this study, function ( )f ⋅  is a bounded, non-decreasing, non-linear function, for example, 
the sigmoid function, expressed as: 

1( )
1 e

f µµ −=
+

 (4) 

The network is trained by using a gradient-descent technique (Perez and Reyes, 2001). The 
root mean square (RMS) error is defined as below: 

2

1

1 ( ) min( )
N

p p
p

E y d E
N =

= − =∑  (5) 

s 

Input layer  Hidden layer  Output layer 
Figure 5 Topology of three layer feed-

forward neural networks. 
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Here, N is the number of the training samples and pd  is the desired output. The normal back-
propagation algorithm is used to train the neural network by modifying the learning 
parameters ikw  and jkθ . Once the training is completed successfully, the RMS achieves the 
minimum value for all training samples and the objective of the investigation can be matched 
as: 

( 1)( ) ( 1)
( 1)ik ik

ij

E tw t w t
w t

η α∂ −∆ = − + ∆ −
∂ −

 (6) 

In Eqn (6), ( ) ( ) ( 1)ik ik ikw t w t w t∆ = − − ; (0,1)η ∈  is the learning rate, and (0,1)α ∈  is the 
momentum factor. The training requires a set of training data, which normally consists of a 
series of input and associated output vectors according to supervised rules. During the 
training, the model will continuously adjust the weights and threshold in the neural network 
using certain kinds of training algorithms so that the desired input–output mapping could be 
obtained. After the training is completed, the multi-layer feed-forward neural network has the 
ability to forecast unknown variables based on an input vector similar to the input samples in 
training. 
 
FORECASTING OF THE RSP CONCENTRATIONS 
A multi-layer feed-forward neural network has the ability to model an unknown non-linear 
function and to predict its tendency through training. In this study, an implicit function of 
RSP, that is Eqn (1), has been proposed. According to the RSP distributions shown in Figure 
4, the RSP levels on Tuesday and Wednesday are taken as samples, all measured data are 
divided into two sets, that is, the training set (200 samples) and the testing set (150 samples). 
In order to be compatible with the multi-layer feed-forward neural network, all data are 
normalized into the range [0,1] by sigmoid function. The normalization is carried out 
according to Eqn (7), and two parameters, α  and (0,1)β ∈ , are adopted in order to prevent 
the nodes becoming over-fitting, in general, 0.9β = , (1 ) / 2α β= − : 

min
norm

max min

( )x xx
x x

β α−= +
−

 (7) 

Thus, first of all, we need to consider the values of those delaying parameters and the 
number of hidden nodes in the forecasting model. Having analysed the distributions of 
measured variables and compared the training precision by increasing or decreasing input 
nodes during the training, the values of 1τ  and 2τ  are both assigned as 4. The number of 
hidden nodes is selected as 18 according to the general rule of input number plus ten. In case 
studies, the proposed multi-layer feed-forward neural network has been structured with the 
form of ‘9-19-1’. Figures 6 and 7 present a comparison between simulation and measurement 
on Tuesday and Wednesday by the above established neural network model. The recovery 
performance of the ANN model is satisfactory and reliable. 
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Figure 6 Comparison of ANN simulation and measurement on Tuesday. 



Particulate Matter    181 

0 500 1000 1500
200

250

300

350

400

450

500
 Simulation
 Measurement

RS
P 

le
ve

l  
(µ g

/m
3 )

Time (Seconds, 9:30-10:30am)
0 500 1000 1500

400

450

500

550
 Simulation
 Measurement

R
S

P 
le

ve
l  

(µ g
/m

3 )

Time (Seconds, 13:30-14:30pm)  
Figure 7 Comparison of ANN simulation and measurement on Wednesday. 

CONCLUSIONS 
In this study, an ANN model has been established to predict the RSP level in public TTIs. In 
the ANN model, an additive complex factor is produced by the stochastic function and used as 
input vector instead of conventional parameters. It is found that the climatic condition such as 
humidity has great impact on the RSP levels in TTI, while temperature is less important. 
Although the air movement affects the characteristics of RSP, it is feasible to ignore it 
because of a small change in magnitude of air velocity. Concerning the effect of taxi flow-rate 
on RSP level, it is necessary to get more field data in different TTIs in future. It can be 
concluded that the established ANN approach for forecasting pollutant levels inside TTI is 
feasible, effective and validated by applying to a practical case of simulating the RSP levels in 
a typical TTI in Hong Kong. 
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