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ABSTRACT 
Particle deposition indoors has received increasing attention recently as a result of increasing 
concern about the effects of particle exposure on human health. 

Recently, a review paper has been published on particle deposition indoors, focusing on the 
experimental side (Lai, Indoor Air, 12:211–214;2002). In this paper, modelling efforts 
addressing indoor particle deposition were reviewed. The emphasis was put on the particle 
eddy diffusivity term of Eulerian approach. Both the conventional and unconventional 
methods modelling the particle eddy diffusivity were reviewed and their assumptions and 
limitations were discussed. The appropriateness of the methods for practical indoor 
measurement was also addressed. 
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INTRODUCTION 
From the mathematical point of view, there are two approaches to analyse the particle 
transport process. The first approach is the Eulerian method, which considers the particulate 
phase as continuous and applies the species conservation condition to deduce the equation of 
particle concentration as a function of position and time. The second one is the Lagrangian 
approach, which treats the dynamics of one single particle by a trajectory method and extends 
to a multiple particle system by statistical analysis. 
 
EULERIAN APPROACH 
The key challenge of most Eulerian modelling of particle deposition is to determine the 
particle eddy diffusivity εp. Corner and Pendlebury (1951) developed the first analytical 
solution for the deposition of particles onto surfaces of various orientations in a rectangular 
chamber under homogeneously turbulent flow. 

They expressed the particle eddy diffusivity coefficient in the form of 
 

2yKep =ε   (1) 
 
Ke being the turbulent intensity parameter and expressed as 
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where κ  is the von Kármán constant (usually assumed to be 0.4). u is the longitudinal mean 
flow velocity and du/dy is the mean flow velocity gradient. It should be noted that both Eqns 
(1) and (2) can be derived using Prandtl’s mixing length hypothesis. 

The next significant improvement in the Eulerian approach was the model developed by 
Crump and Seinfeld (1981). They derived an expression for the particle rate loss coefficient 
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for an enclosure of arbitrary shape. They also generalized the expression for the turbulent 
diffusivity coefficient 
 

n
ep yK=ε   (3) 

 
instead of fixing n = 2 as in the model of Corner and Pendlebury (1951), n can be any real 
number. 

As shown in Eqns (1)–(3), the conventional methods require two parameters, Ke and n, to 
estimate particle eddy diffusivity. There are three such approaches, all of which require the 
evaluation of the velocity gradient (cf. Eqn (2)). The applicability of the first method, which 
was adopted by Corner and Pendlebury (1951), is doubtful. Using boundary layer flow to 
approximate the flow along each surface is too idealistic and can be only used for rough 
estimation purposes. For a real enclosure, in which the flow pattern is so complex, this ideal 
hypothesis is unlikely to be true. In the literature, there are no data available to verify the 
appropriateness of the expression, e.g. detail CFD modelling comparison. 

The other two approaches are analogous to each other in the sense that they both employ 
the statistical theory of turbulence advanced by Taylor (1935) to evaluate the velocity gradient 
term. The first approach employs the theory of local similarity, usually referred to as universal 
equilibrium (Kolmogoroff, 1941a). This theory states that if the Reynolds number of a system 
is sufficiently large, the small scale eddies will exhibit a common universal structure which 
applies to all types of turbulent flow. The rate of energy flow per unit mass in the system is 
determined by the motion of the larger eddies. The small-scale eddies must then adjust 
themselves to achieve the required rate of energy dissipation, through an energy cascade 
(Kolmogoroff, 1941b). Based on the above argument, the energy dissipation rate can be 
evaluated by estimating the net energy input of the system and the following expression 
resulted: 
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where ε is the energy dissipation rate per unit mass of fluid. q is the turbulent kinetic energy 
per unit mass of the fluid 
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where 2'

iu  is the rms component of the fluctuation velocity i. Further, assuming the turbulence 
is isotropic the last equality sign resulted. Etheridge and Sandberg (1996) assumed that the 
time taken to dissipate the energy, τ, is proportional to the time scale of the large eddies, they 
expressed τ as 
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where Lt represents the size of the largest eddies or the width of the flow. They adopted the 
natural choice for Lt to be V1/3, where V is the volume of the room. Combining Eqns (5) and 
(6), ε can be approximated as 
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By measuring the decay of the velocity and turbulence fluctuation 2'u , ε in Eqn (7) can be 
estimated. 

On the other hand, Hanzawa et al. (1987) calculated ε by another expression 
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where λ is the Taylor micro-scale eddy and is estimated by the following expression (Hinze, 
1975): 
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where u is the mean velocity, n is the frequency of the eddy and E(n) is the energy spectrum. 

The other approach is also based on the statistical theory of turbulence proposed by Taylor 
(1935). If the flow is isotropic, i.e. the mean properties are independent of the direction of the 
reference axes (although not strictly held in any confined-boundary conditions such as a 
room), ε can be expressed as 
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where /u y∂ ∂′  is the velocity gradient of the fluctuation velocity in orthogonal directions. 
Rearranging the terms in Eqn (10), Okuyama, Shimada and their colleagues (e.g. 1977, 1986) 
evaluated the velocity gradient term by estimating stirrer power energy. They assumed that in 
the case of a stirred tank, the average value of the energy dissipation rate was approximately 
equal to the power input rate of the stirrer. They used a parameter called the power number 
(PN) to calculate the input power experimentally. It is defined as 
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where P is the input power, N is number of stirrer revolutions per unit time and L is the length 
of the stirrer blade. Apparently, if we know the PN of the stirrer, the evaluation of ε becomes 
straightforward. How to determine the power number, however, is not as simple as thought. 
Obviously, the power number depends on the type of the stirrer, i.e. propeller or turbine, and 
the detailed design of the stirrer, i.e. number of blades, blade diameter and blade areas, etc. It 
is also a function of the stirrer speed (Bates et al., 1966). For different types of stirrers, the 
magnitude of the power number can vary up to one order of magnitude (Okuyama et al., 
1986). It is suggested that the power number method proposed by Okuyama and Shimada is 
only suitable for some specific stirrers or mixers and may not be appropriated for forced 
ventilation systems in which no power number can be defined. One point to note is that 
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although Okuyama, Shimada and their colleagues used Eqn (2) to evaluate Ke, the exponent 
raised to the von Kármán constant was one and not two as used by Corner and Pendlebury. 

After obtaining ε, one more parameter that needs to be determined is the exponent n in Eqn 
(3). In the literature, various values of n between 2 and ~3 have been reported. The 
dimensional inconsistency associated with the non-integer values of n makes the expression 
lack a strong physical foundation. Chen et al. (1992), Cheng (1997) and Lai and Nazaroff 
(2000) discussed the discrepancies among different studies. In some studies, the values of n 
were obtained by fitting the data (Okuyama et al., 1986). A new model has recently been 
developed with a different perspective by incorporating recent information on the structure of 
turbulent diffusivity in the vicinity of the surface. Only one parameter, the friction velocity, 

*u , was used to describe the turbulence enhanced deposition feature (Lai and Nazaroff, 2000). 
The application of *u  is very common in particle deposition on pipe/duct surfaces (Wood, 

1981; Guha, 1997). Basically, it is a measure of the wall shearing stress exerted on the 
surfaces by the moving fluid, and can be determined by estimating the velocity gradient at the 
wall. For the flow over a smooth surface with a prevailing direction, the physical significance 
of *u  can be interpreted as being equal to the fluctuation velocity in the transverse direction 
(Davies, 1972). However, in the literature, very few results have been reported to justify the 
use of this parameter to describe indoor turbulent condition and further experimental 
validation is necessary (Schneider et al., 1994; Byrne et al., 1995). 
 
LAGRANGIAN APPROACH 
The Lagrangian approach splits the particle phase into a representative set of individual 
particles and tracks these particles separately through the flow domain by solving the 
equations of particle motion. 

To the author’s knowledge, there is no published work particularly for particle deposition in 
an enclosure or room in the literature. Several investigators studied particle transport in indoor 
environments numerically; however, the particle deposition parts of their work are very crude. 

Lu and Howarth (1996) presented a Lagrangian model predicting aerosol particle 
deposition and migration in two interconnected ventilated zones. The turbulent airflow field 
was modelled by the standard k–ε model. Only the drag force and gravity were considered and 
the effect of turbulence was ignored. Chung (1999) performed similar Lagrangian simulation 
for particle transport in a multizone enclosure. However, only the trajectories of several 
sample particles were shown and his experiment did not consider particle motion. All of these 
investigations focus on the influence of the bulk air movement exclusively. The grids used 
were very coarse. The important turbulent dispersion and diffusion effects were not taken into 
consideration. 

The main disadvantage of Lagrangian simulations is its cost. It is prohibitive to obtain a 
‘statistically significant’ quantitative result for three-dimensional simulations. Flow dependent 
variables are the most difficult part for particle deposition modelling. For Lagrangian 
simulations in an enclosure, the mean velocity, turbulent intensity level returned by CFD 
solvers and stochastic instantaneous turbulent field returned by random walk schemes are of 
crucial importance. Most of the existing turbulence models are calibrated based on flows 
parallel to the wall and employ empirical wall functions. Airflows in indoor environments or 
enclosures always involve flow impingement, separation, small secondary vortexes in corners. 
The validity of conventional turbulence models has not been well addressed, or some recent 
improvement is not available in popular commercial CFD packages. 

Currently, the authors are investigating particle deposition indoors by improving an Euler–
Lagrange model. Figure 1 shows the distribution of particles depositing inside a chamber 
between 5s–10s. Only one-fourth of the test chamber is simulated (chamber size 0.4 × 0.4 × 
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0.4 m3). An ensemble of 16 000 10-µm particles initially uniformly distributed is released. 
The deposition points are recorded. It is observable from the figure that advection effect plays 
a dominant role in corners due to the non-negligible normal mean flow velocity component. 
Near the stagnation point, particles depart from fluid streamlines and strike on the floor due to 
impaction. 
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Figure 1 Distribution of particles depositing inside a chamber between 5s and 10s. 
 
CONCLUSION 
The knowledge of particle deposition has many practical implications. It is evident that the 
Eulerian and Lagrangian approaches are actually two extremes of particle deposition 
modelling. The current review highlights the particle diffusivity mandatory required by the 
Eulerian model and the limitations of the CFD model. 
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