
On Understanding Laws, Evolution, and 
Conservation in the Large-Program Life Cycle 

The paper presents interpretations of some recently dis- 
covered laws of evolution and conservation in the large- 
program life cycle. 

Program development and maintenance processes 
are managed and implemented by people; thus in the 
long term they could be expected to be unpredictable, 
dependant on the judgments, whims, and actionsof pro- 
gramming process participants (e.g., managers, pro- 
grammers, and product users). Yet, observed, mea- 
sured, and modeled regularities suggest laws that are 
closer to biological laws or those of modern physics 
than to those currently formulated in other areas subject 
to human influence (e.g., economics and sociology). 

After a brief discussion of the first four laws, to high- 
light underlying phenomena and natural attributes of 
the program evolution process, the paper concentrates 
on a fifth law and shows how, and why, this law repre- 
sents a conservation phenomenon: the Conservation of 
Familiarity 

LARGE PROGRAMS 

Various published papers ([ 11 and its bibliography), 
have discussed the characteristics and dynamics of 

evolution of large programs and the laws that have 
emerged from the studies of Belady, Lehman, and 
others over the past 7 years. The main objective of 
the present contribution is to discuss one specific as- 
pect of these laws-conservation. However, some 
general introductory remarks are desirable. 

In the first place we should stress that the discus- 
sion here is limited to large programs. Until recently 
these were defined as programs of which at least some 

part has been concurrently implemented and/or main- 
tained by at least two separately managed groups [2]. 

Such programs will certainly display the character- 

istics of largeness [3]. They will, for example. inevi- 
tably have the property of variety; they will also be 
outside the intellectual grasp of any individual; above 

all, they will undergo a continuous process of main- 
tenance and evolution, generally in somewhat undis- 
ciplined fashion. 

The above definition is, however. not very satis- 
fying. For one thing, programs not satisfying it may 

also display some or all of the other characteristics of 
largeness. Moreover, the definition tends to focus at- 
tention on management or sociological issues, 

whereas our fundamental concern is with program- 
ming methodology and the engineering of software. 
In particular, we should seek to recognize and learn 
to control the circumstances that lead to the ill effects 
so often associated with largeness. Will not the adop- 
tion of appropriate attitudes, algorithms, methodol- 

ogies. and programming techniques yield large pro- 
grams that are well disciplined? Such questions are 
being addressed via our current research, which in- 
cludes attempts to formulate more acceptable and 
useful definitions. We expect to report the results in 
due course. 

THE NATURE OF LAWS OF PROGRAM 

EVOLUTION 

Their Place Within the Spectrum of Scientific 

Laws 

The evolution of large programs. software systems, 
is clearly not a natural process governed by immuta-- 
ble laws of nature. Changes to a program are neither 
initiated nor occur spontaneously. People do the 
work: amend or emend the requirements, the speci- 
fication, the code, the documentation: repair the sys- 
tern: improve and enhance it. They do this in response 
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to fault reports, user requests, business or legal re- 
quirements, managerial directives, or their own in- 
spiration. Human thought and judgment play a deci- 
sive role in driving and executing the process that 
results from (and in) a seemingly continuous sequence 
of exogenous inputs. l 

Thus, we should not expect to discover laws of 
program evolution that yield the precision and pre- 
dictability ofthe laws of physics [4]. If laws governing 
large-program evolution can be formulated at all, they 
must certainly be weaker than those formulated in the 
biological sciences, where regularity stems from the 
collective behavior of cellular systems that, even 
though alive, are nonintelligent, i.e., are not influ- 
enced by conscious thought processes, at least at the 
level of human understanding. Program evolution 
should not even be expected to display the regularity 
that has been abstracted into laws in the social and 
economic sciences, e.g., the so-called Law of Supply 
and Demand. After all, the programming process is 
planned and controlled by an organizational and man- 
agement structure that is sensitive and reactive to the 
demands, pressures, circumstances, and contingen- 
cies of each moment. Thus, superficially, it would 
seem reasonable to expect the program evolution pro- 
cess to be totally irregular, a reflection at each in- 
stance in time of the pressures of the moment. 

One of the first and most surprising, yet most fun- 
damental, results of our observations and of the re- 
sultant analysis of the dynamics of evolution of some 
eight programs ranging over a wide spectrum of im- 
plementation and usage environments, has been that 
this is not so. Regularities, trends, and patterns ap- 
pear and dominate large-program evolution. The 
common features and patterns of behavior reflect 
common characteristics [3] from which laws can be 
deduced; laws that, within the spectrum outlined, lie 
closer to those that describe the time behavior of bi- 
ological organisms than those that emerge from the 
study of socioeconomic systems. Moreover, these 
laws find very practical application. They provide a 
basis for large-program life cycle management tools, 
as well as insight and understanding for improvement 
of the programming process. As we increasingly rely 
on the laws for guidance in the development of pro- 
gramming methodology and on a software engineer- 
ing discipline with its techniques and tools, it becomes 
vital to develop also a deeper understanding of these 
laws and the fundamental phenomena or truths that 
they reflect. 

‘We may regard the inputs as exogenous even though some of 
them will have been generated while, or as a result of, working on, 
or using, the system. 

The Underlying Cause of Regularity 

Once the phenomena have been recognized, the 
mechanisms underlying them are not difficult to un- 
derstand. As a totally unintelligent machine, the com- 
puter executing a program impacts its environment in 
a way that is precisely and completely determined by 
the code in association with any input data. The code 
is unforgiving; there is no room for logical error or 
imprecision. Thus any deviation from the required 
semantic and syntactic structure creates a need for 
corrective action. Good intentions, hopes of correct- 
ness, wishful thinking, even managerial edict cannot 
change the semantics of the code as written or its ef- 
fect when executed. Nor can they a posteriori affect 
the relationship between the desires, needs, and re- 
quirements of users and the program specification as 
presented to the programmers; nor that between the 
specification and its implementation; nor between any 
of these and operational circumstances-the real 
world. 

Additionally, the program and its documentation 
in all their versions-the system-has a damping ef- 
fect analogous to an ever-increasing mass. It is pre- 
cisely the freedom to implement changes or additions 
required for obtaining desired program behavior 
which is increasingly constrained by existing accu- 
mulated code and documentation, past program ap- 
plication and behavior, acquired habits, and imple- 
menter and user practices. 

The development and implementation of change 
and of any subsequent corrective action is strongly 
influenced by the fact that, in itself, program code is 
also not malleable. Internal coupling, interconnec- 
tions, and dependencies cause even changes that su- 
perficially appear localized to impact and modify the 
semantic consequences of code elsewhere in the pro- 
gram. Thus when changes are made to the code, de- 
viations from absolute correctness will occur and un- 
expected side effects will appear; these are very likely 
to lead to a need for further corrective action. The 
more intensive the pressure for change, the higher the 
rate of its implementation, the larger the group of peo- 
ple involved, and the more likely that maintenance 
must subsequently be diverted from progressive en- 
hancement to repair and cleanup (i.e., on redesign, 
restructuring, and re-implementation). 

We recognize these dependencies as feedback con- 
nections over the entire system and application pro- 
cesses and organizations. The resultant interplay of 
forces for change and expansion of the code on the 
one hand and the inertia of accumulated code, doc- 
umentation, and habits on the other, and the interplay 
over the various processes and the organizational 
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structures implementing them are believed to be 

major factors in causing the observed regularity, de- 
termining its statistical characteristics and 
parameters. 

These facts alone suffice to explain the consistency 
of the observations. Recognition of other factors 
merely strengthens our belief in the reality of the phe- 

nomena. In particular, large programs are, as a rule, 
created within large organizations and for large num- 

bers of users; otherwise they could not be economi- 
cally justified or maintained. But size causes inertia, 
and inertia smoothes behavior that might otherwise 

prove highly irregular. Moreover, the size and com- 
plexity of both the program and the application for 
which the program is intended mean that decisions 
take time (sometimes considerable) and large num- 
bers of people to implement. Resultant delays provide 
exogenous pressures and endogenous opportunities 
for change. The overall circumstances and environ- 
ment act as a filter, smoothing out the global conse- 
quences of individual decisions but, paradoxically, 

also adding the occasional random disturbance. They 
also act as an economic and social brake that inhibits 
or softens decisions that would have tco drastic an 
impact. For example, large budgets can, in general, 
be neither suddenly terminated nor drastically in- 
creased; in practice they can only be changed by frac- 

tional amounts. Similarly, a work force cannot be in- 
stantaneously hired. retrained, relocated, or 
dismissed: at best a task force can be sent in, and can 
cause a local perturbation. 

In summary. large-program creation and mainte- 
nance occur in an environment with many levels of 
arbitration, correction, smoothing, and feedback con- 
trol. A large number of superficially independent (i.e., 
almost random) inputs are concurrently and succes- 
sively superimposed to yield time behavior that may 
be statistically modeled (e.g.. described by parame- 
ters that have normal distributions). Many, if not all. 
of the inputs arise from organizational checks and bal- 
ances. from feedback often also involving the users 
of the system. The feedbacks in general ensure long- 
term stability: negative feedback dominates. The al- 
ternative. of course, would be instability and disin- 
tegration of the system. The existence of regularity, 
and therefore of laws abstracting that regularity, be- 
comes reasonable and understandable. 

The Gross Nature of the Laws 

The detailed behavior of the programming process 
and of the system that is the object of process activity 
is the consequence of human decision and action. 
Specific individual events in the life cycle of the sys- 

tem, the system development and maintenance pro- 

cess. cannot therefore be predicted more precisely 
than can the specific acts of participating or interact- 

ing individuals [41. Any laws can only relate to the 
gross (statistical) dynamics of large-program systems 
over a period of time, but as such they yield insight 
and understanding that should permit improvement 
of the programming process and advance the devel- 
opment of software engineering science and practice. 

Feedback Consequences of Increasing 
Understanding of the Process 

Increasing understanding of the dynamics of the 

large-program life cycle raises another problem: To 
what extent will the discovery and acquisition of 

knowledge and understanding of the laws that regu- 
late the programming process, by an environment 
previously unaware of or insensitive to their exis- 
tence, lead to changed behavior and thus invalidation 
of the laws? How will managerial awareness of and 
conscious reaction to the laws affect the very nature 
of these laws? Since they reflect the joint behavior of 

people, the laws are unlikely to be immutable. Surely 
they may be expected to change as understanding of 

system behavior increases [ 41. 
Space does not permit us to address this question 

in detail. We merely assert that the present laws re- 

flect deeply rooted aspects of human and organiza- 
tional behavior. Associated with the mechanistic 
forces that define, control, and execute the automatic 
computational process, they are sufficiently funda- 

mental to be treated as absolute. at least in our gen- 
eration. As knowledge of them is permitted to impact 
the programming process, and as programming tech- 
nology advances, they may require restatement or re- 
vision, or become irrelevant or obsolete: but for the 
time being, we must accept and learn to use them. To 
ignore them is foolish and costly. 

THE LAWS 

We now comment briefly on the laws summarized in 
Table 1, so as to expose some of the more fundamen- 
tal truths that they reflect. These laws have been fully 
discussed in earlier publications ([ 11 and its 
bibliography). 

1. The Law of Continuing Change 

This first law reflects a phenomenon intrinsic to the 
very being of large programs. It arises. at least in part. 
from the fact that the world (in this case. the com- 
puting environment) undergoes continuing change. 
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Table 1. Five Laws of Program Evolution 

1. 

2. 

3. 

4. 

5. 

CONTINUING CHANGE 

A program that is used and that, as an implementation of its 
specification, reflects some other reality, undergoes 
continuing change or becomes progressively less useful. The 
change or decay process continues until it is judged more cost 
effective to replace the program with a recreated version. 

INCREASING COMPLEXITY 

As an evolving program is continuously changed, its 
complexity, reflecting deteriorating structure, increases unless 
work is done to maintain it or reduce it. 

THE FUNDAMENTAL LAW (OF PROGRAM EVOLUTION) 

Program evolution is subject to a dynamics which makes the 
programming process, and hence measures of global project 
and system attributes, self-regulating with statistically 
determinable trends and invariances. 

CONSERVATION OF ORGANIZATION STABILITY 
(INVARIANT WORK RATED) 

The global activity rate in a project supporting an evolving 
program is statistically invariant. 

CONSERVATION OF FAMILIARITY (PERCEIVED 
COMPLEXITY) 

The release content (changes, additions, deletions) of the 
successive releases of an evolving program is statistically 
invariant. 

All programs are models of some part, aspect, or pro- 
cess of the world. They must therefore be changed to 
keep pace with the needs and the potential of a chang- 
ing environment. If they are not, they become pro- 
gressively less relevant, useful, and cost effective. 

Of course all complex systems evolve. Living, so- 
cial, and artificial systems [ 51 all respond to reactions 
and pressures from their environments by changes in 
operational pattern, function, and structure. Software 
is distinguished not by the fact that evolution occurs, 
but by the way in which it occurs. 

The pressure for change with respect to any large 
program is felt almost daily. A widely held view is that 
the details of the desired change need “only” bc writ- 
ten down and then applied without further real effort 
(or so it would seem) to all instances of the system. 
As a consequence, changes are superimposed 
(change upon change upon change) in a current ern- 

bodiment. This contrasts strongly with normal indus- 
trial practice where conceptual changes are inputs to 
a redesign and recreation process that ultimately pro- 
duces a new instance of the system. Moreover, any 
repairs to software are a departure from the original 
conceived design and/or implementation rather than 
the replacement of a worn-out part. In addition there 
is, in software, absolutely no decay or death process 
through which older parts of the system wear out and 
are replaced, or disintegrate and disappear out of the 
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system. Removals, with replacements and additions, 
occur as a result of system-extraneous pressures and 
effort, and then only as the result of conscious and 
directed effort on the part of people. 

The evolution of software differs from that of other 
systems in many other ways, but it is not our concern 
here to prove that software is different or to state in 
detail how it is different. We ask the reader to accept 
that difference and then to ponder the practical 
implications. 

These implications are, we assert, strongly influ- 
enced by the fact of continuing evolution, recognized 
and formalized by the first law. The causes of contin- 
uing change are seen as stemming, at least in part, 
from the continuing evolution of the environments, in 
combination with the “soft” nature of programming 
technology. Hence changeability and all it implies 
must be accepted as a basic requirement for software 
systems. The degree to which it is achieved and main- 
tained may make all the difference, in the develop- 
ment, application, and cost effectiveness of a system 
between success and failure, profitability and loss. 

2. The Law of Increasing Complexity 

Our second law may be seen as an analogue of the 
second law of thermodynamics. More correctly, both 
of these laws should perhaps be viewed as descrip- 
tions of instances of a still more fundamental natural 
phenomenon. In our case, the law is a consequence 
of the fact that a system is changed to improve its ca- 
pabilities and to do so in a cost-effective manner. Spe- 
cific change objectives develop from a consideration 
of factors that indicate immediate or measurable ben- 
efit. They are expressed in terms of performance tar- 
gets, system resources required during execution, im- 
plementation resources, completion dates, fiscal 
objectives and constraints, and so on. 

In cases with multiple objectives, it is generally im- 
possible to fulfill all of them optimally. Hence the 
completed project and system must represent a com- 
promise that results from judgments and decisions 
taken during the planning and implementation pro- 
cesses, often on the basis of time and group- or man- 
agement-local optimization. 

Structural maintenance is rarely mentioned in ob- 
jectives. Being antiregressive [6], it yields no imme- 
diate or visible benefit but merely (sic) prevents de- 
terioration. Thus structure, being excluded from 
stated project objectives, will inevitably suffer; each 
change will degrade the system a little more. The re- 
sultant accumulation of gradual degradation ulti- 
mately leads to the point where the system can no 
longer be cost effectively maintained and enhanced 



Laws, Evolution and Conservation 217 

unless and until redesign and cleanup or reimplemen- 
tation is undertaken and successfully completed. 

The law suggests that large-program structure 
must not only be created but must also be maintained 
if decay is to be avoided or, at least, postponed. Plan- 
ning and control of the maintenance and change pro- 
cess should seek to ensure the most cost-effective 
balance between functional and structural mainte- 
nance based on the lifetime of the program. Models 
and tools are required to facilitate such balance. 

3. The Fundamental Law of Large-Program 
Evolution 

This was previously called the La\r, of Stcitisticnll~ 

Smooth GronTh [7]. It expresses the observation al- 

ready made above that large-program evolution does 
not simply reflect, at each instant and in each period. 
the decisions and actions of the people in the envi- 
ronment in which it is maintained and in which it is 
used. The law states that, at least in the current state 
of the art, there exists a dynamics whose character- 
istics are largely determined during the conception 
and early life of the system of the maintenance pro- 
cess and of the maintenance organization. The char- 
acteristics of this dynamics increasingly determines 
the gross trends of the maintenance and enhancement 
process. System, project and organizational histor> 

play an important role in the program evolution pro- 
cess, while feedback effects the additional, inherent, 
factor producing a self-stabilizing control process, it- 

self evolving. Thus cyclic effects emerge, though not 
necessarily with pure periods. 

This law is particularly important in guiding OUI 
understanding of the software creation and mainte- 
nance process. However, its tacit acceptance (for the 
time being) also helps the manager and the planner to 
remain realistic. We are not free to set and achieve 

arbitrary design, performance, and work targets [Xl. 
Project constraints are at present not all under our 
control. Thus we must accept any limits they imply 

until they can be or have been changed. Moreover. 
the law implies that models of large-program evolu- 
tion can be created and be exploited as planning and 
control tools. 

4. The Law of Organizational Stability 

This was previously referred to as the Law of Invar- 
iant Work Rate [7]. It reflects the fact that, in general, 
human organizations seek to achieve and maintain 
stability or stable growth. As suggested above, sud- 
den substantial changes in such managerial parame- 
ters as staffing, budget allocations, manufacturing lev- 

els, and product types are avoided; as a rule, such 
changes are not even possible. A variety of manage- 

rial, union, and governmental checks, balances, and 

controls ensure smooth overall progress to the ever- 
changing, ever-distant objective of the organization 
(or its eventual collapse). In addition, the fourth law 
also reflects the organizational response to the limi- 
tation that, we shall show, underlies the fifth law. 

Thus with hindsight it becomes clear that the dis- 
covery of an invariant activity measure (statistically 
invariant. as when its parameters are always normally 
distributed with constant mean and variance) could 
have been anticipated. What is not really understood 
is why, in large-program maintenance projects, mew- 
sures of work input rate should be the quantities to 
display such invariance. However. the fact remains 

that for the systems observed, the count of modules 
changed (handled) or changes made per unit of time, 
as averaged over each release interval, has been sta- 
tistically invariant over the period of observation. The 
limitations implied by this invariance can only be tem- 
porarily overcome. If they need to be overstepped. 
the consequences should be identified and must be 
accepted. 

5. The Law of Conservation of Familiarity 
(Perceived Complexity) 

In [7]. this was referred to as the Law of incremental 

Growth Limits. Its discovery was based on data from 
three systems, each of which was made available to 
users release by release. In each case the incremental 

growth of the program varied widely from one release 
to the next, but the average over a relatively large 
number of releases remained remarkably constant; 
that is, a high-growth release would tend to be fol- 
lowed by one with little or no growth, or even by sys- 
tem shrinkage; or two releases, each displaying near 
average growth, would be followed by one with only 
slight growth. Moreover. releases for which the net 

growth exceeded about twice the average proved to 
be minor disasters (or major ones, depending on the 
degree of excess) with poor performance. poor reli- 
ability, high fault rates, and cost and time overruns. 

The evidence suggests that initial release quality is 

a nonlinear function of the incremental growth. From 
a more complete phenomenological analysis along the 
lines outlined below, we hypothesize that quality is 
expontentially related to the w1c~tr.w c.o/rtort. that is. 
to the amount of change implemented in the release. 

It should perhaps be added that at this time we 
know of no precise way of defining or measuring re- 
lease content that takes into account the size, com- 
plexity. and interrelationships of system and code 
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changes, additions, and deletions. It is not even clear 
that a metric can be found. If it can, then such a uni- 
versal measure must also be sensitive to the charac- 
teristics of the systems and the environments in- 
volved in or affected by the changes. 

The absence of adequate definitions and measures 
is no reason for ignoring observed phenomena and 
their implications. The gradual clarification and evo- 
lution of concepts, definitions, and measures is fun- 
damental to the very nature of the phenomenological 
approach we have adopted, an approach that is con- 
sidered essential for significant progress in mastering 
the problems of software engineering. One first ob- 
serves and measures some phenomenon, then seeks 
models, interpretations, and explanations in more 
fundamental terms; subsequently, one can seek mea- 
sures and devise experiments that confirm, reject, 
modify, and/or extend the original hypotheses, inter- 
pretations, and explanations; and so on. 

INTERPRETATION OF THE FIFTH LAW 

Change and Refamiliarization 

The phenomenon abstracted by the fifth law was de- 
tected at a very early stage of the evolution dynamics 
studies and was featured in the earliest models [91. It 
has been applied as a planning and control parameter 
for a number of years. The explanation, however, has 
only recently become apparent. The release process 
has always been understood as fulfilling a stabilization 
role [ 91. Once a large program is in general use, its 
code and documentation are normally in a state of 
flux. A fault is fixed locally; in other installations it is 
perhaps fixed differently or not at all. Minor or major 
changes and local adaptations are made. Code is 
changed without a corresponding change to docu- 
mentation. Documentation is changed to correspond 
to observed behavior without a full and detailed anal- 
ysis of the precise semantics of the code within the 
context of the total system under all possible envi- 
ronmental conditions. Only at the moment of release 
does there exist an authoritative version of the pro- 
gram, the code, and its documentation. Even this may 
include multiple versions of modules, say, for more 
or less clearly defined alternative situations. 

Some time after the release of a program or pro- 
gram version, each designer, implementer, tester, 
salesman, and user that has been exposed to or 
worked with the system will have become thoroughly 
conversant with, at least, those of its attributes and 
characteristics that are considered at all relevant. The 
resultant familiarity will have bred some degree of re- 

laxation, of ability to work with the program in order 
to accomplish specific objectives. The program will 
be manipulated without uncertainty or concern and 
used without (apparent) need for concentrated 
thought. External perception of a program’s intrinsic 
complexity will be at a minimum. For people working 
consistently on or with the program, its perceived 
complexity may be said to approach zero. 

As changes are introduced, as the new release is 
gradually created and becomes available, new and 
unfamiliar code appears. The program behaves dif- 
ferently in execution, in its interaction with and im- 
pact on the environment. Pagination in the previously 
familiar documentation has changed and any need for 
reference entails a major search. The system has be- 
come uncomfortably unfamiliar, the degree of unfa- 
miliarity depending on the magnitude and extent of 
the change. 

A major intellectual effort is now required by each 
person involved before any completely successful 
and cost-effective interaction with the new system 
can occur. The system has suddenly become strange. 
Its perceived complexity is high. 

Even those who participated in the preparation of 
the new release will normally have been involved di- 
rectly with only a small part of the changes, a small 
portion of the system. They too must now learn to 
understand the new system in its totality. Moreover, 
until the complete system is available, all acquisition 
of knowledge and understanding of the changes and 
of the new system must be based on reading of code 
and documentation text, or on partial execution of 
system components on test cases or system models. 
At least some part of system-internal interactions or 
dependencies will be absent in such an environment. 
Only with final integration of the new system does the 
full executable program become available. We sug- 
gest that when the release content exceeds some crit- 
ical amount, only operational experience with the 
complete system can bring or restore the degree of 
knowledge and familiarity, the global viewpoint, that 
is essential for subsequent cost-effective mainte- 
nance, enhancement, and exploitation of the large 
program. 

Thus, in general, at the moment of release or 
shortly before that time a major learning effort will 
begin that involves all those associated with the sys- 
tem, not just the users. All changes and additions 
must be identified, understood, and experienced, 
their significance appreciated within the operational 
context of the total system. Once this has been done, 
the old degree of comfort with the system will return 
and its perceived complexity once again will approach 
zero; the level of familiarity has been restored. 
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The amount of work that must be invested, the in- 
tellectual effort required to achieve this, depends 
among other factors on the attitudes of people, on the 
organization, and on the number, magnitude, and 
complexity of changes introduced. Because changes 
to the system interact with one another, because 
changes implemented in the same release must be 
understood in the context of all other changes being 
concurrently implemented as well as in the context of 
the unchanged parts of the system and of past and fu- 
ture applications, the relationship between the release 
content and the amount of intellectual effort needed 
to absorb the changes introduced by a new release 
fully is at least quadratic. But whatever the precise 
relationship between the difficulty of restoring famil- 
iarity with the program and the magnitude of the re- 
lease content, it will be of the general form indicated 
in Figure 1. 

The axes of the curve are not calibrated since at 
present neither concept nor suitable measures are 
well defined. Our concept of “difficulty” relates to 
that of Norden and of Putnam [ 10,111. They, how- 
ever, are concerned with difficulty of implementation, 
whereas our concern is with understanding the 
changes within the context of the total system and 
their implications with regard to its operational be- 
havior. Although related, since one cannot (should 
not?) implement without understanding, the concepts 
are clearly not identical. 

The Averaging of Ability Through Human 
Interactions 

It must be left to the future to identify or define mea- 
sures and provide an improved formulation of the fifth 
law. Meanwhile we must clarify the basic concepts 
and increase understanding of, at least, the phenom- 

Figure 1. Difficulty-release-content relationship. A, above 
threshold: B, below threshold. 

enology; thereby we shall provide a basis for ultimate 
formalization. 

Everyone’s ability to master a new or changed ob- 
ject is limited, though people clearly differ in their 
ability to absorb new knowledge (e.g., to achieve full 
understanding of the changed program). Thus the im- 
pact of changes will vary from person to person ac- 
cording to many factors that will include, but are not 
limited to, their learning ability and absorptive capac- 
ity. For a given large program with which many peo- 
ple are inevitably involved, the direct and indirect 
costs of familiarization (delays incurred, mistakes 
made. destructuring, etc.) relate to the average ability 
of all the people involved. This average will not 
change significantly with time or. with the detailed 
composition of the group. 

In the implementation environment. for example, 

although the above-average person will regain mas- 
tery more quickly, make fewer mistakes, and achieve 
a temporary advantage (which might lead to promo- 
tion or transferal to another project). the below-av- 
erage person will fall behind, perhaps lose contact, 
make more mistakes, and do more damage. This per- 
son may well be reassigned to a less demanding role, 
one with less impact, or even be fired. But the damage 
will have been done: others will have to do additional 
work to apply corrective action. Since hiring policies 
are related to the already established makeup of the 
project, the average capacity to understand will, at 
best, remain unchanged; more probably it will decline 
LIZI. 

In the application and user environment, the ca- 
pable individual will master the changes relatively 
quickly and carry on with assigned responsibilities. 
experience minimal perturbation. and cause no im- 
pact on others. The less capable. on the other hand, 
will have to discuss with others their difficulties in 
fully appreciating the changes. They will even mis- 
interpret documentation or system behavior and re- 
port difficulties or faults that are, in fact. nonexistent. 
Such discussions or reports will cause delays or dis- 
ruptions in the project, and may even lead to erro- 
neous repair. Once again the presence of persons with 
greater than average difficulty in refamiliarization has 
a project impact that ranges beyond the immediate 
bound of responsibility of these individuals. It results 
in an o\~e~al/ slowdown in the return to normalcy after 
change, the time required being determined by u\‘- 
c~,-tr~~c~ ability. 

For different organizations, systems. structures. 
methodologies, and processes, the average level will, 
of course, be different. This implies that any models 
will contain exogenous variables. These variables 
point to a potential for improving the average absorp- 
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tion level, once the phenomenon, the organization, 
and the programming process are understood. 

Conservation of Familiarity and Statistically 
Invariant Release Content 

Given the above insights into (1) the increased diffi- 
culty of understanding changes and their implications 
as release content increases and (2) the mechanism of 
the slow down of both utilization and further evolu- 
tion as system structure deteriorates, the number of 
faults increases, documentation lags, and perfor- 
mance declines, we are now in a position to appreciate 
the fifth law. 

If the release content, the magnitude of change 
and/or the incremental growth, is less than some 
threshold region T (Figure l), the integration and op- 
erational installation of the new system should be 
fairly straightforward. No major problems should be 
experienced in mastering the new release; it may well 
be that the change may be absorbed and familiarity 
restored without actual operational disturbance. 

The very ease of the refamiliarization process in 
conjunction with the never-ending search for produc- 
tivity growth will, however, create a managerial cli- 
mate in which more ambitious releases that will chal- 
lenge system capability and may well flout its natural 
parameters will be attempted. A pressure is created 
that tends to move subsequent releases from the B 
region (Figure 1) into or above the threshold region 
T. 

When the release content lies in T (which may not 
be precisely delineable), quality, performance, com- 
pletion, and installation problems are to be expected. 
Slippage and cost overrun will probably occur. A sub- 
sequent release may be required to clean up the sys- 
tem and restore it to a state that permits further cost- 
effective evolution. This experience will certainly not 
encourage management to demand an increase in re- 
lease content. The next release will tend to be in the 
same threshold region or even below it. 

Finally, if a release is attempted whose content ex- 
ceeds that of the T region and moves into A, serious 
problems will be encountered. Slippage and cost 
overrun will occur unless plans take account of the 
greatly increased difficulties that will be experienced. 
If not properly planned, such an attempt may lead to 
the effective collapse of the system or, as we have 
observed in at least two instances, to an effect that we 
have termed system jssion. Since only release of the 
system to end users and to the developers provides 
full exposure, even when adequate resources and 
time have been provided, such a release will still have 
to be followed by a restoration or clean-up release. 

This results in one or more successor releases in the 
B region of the characteristic curve of Figure 1. 

It was the repeated observation of the above pat- 
terns of release behavior that suggested the analysis 
and led to the insights summarized in the preceding 
paragraphs. Our analysis suggests that the conse- 
quences of feedback in the process, in conjunction 
with the nonlinear characteristics indicated in Figure 
1, lead (over several releases) to stabilization of re- 
lease content in or just below the threshold region. 
We have not yet attempted to create an analytic model 
of this effect, but it should not prove too difficult to 
build and validate [ 131. 

The fifth law abstracts both the observations and 
their interpretation including the emergence of invar- 
iant average incremental growth or release content. 
The latter is also a consequence of the additional ex- 
ogenous pressure for accelerated functional growth 
of content that is characteristic of large-program ap- 
plications and, in general, of organizational environ- 
ments. Once again the law suggests that managers and 
planners take note of project and system invariances; 
when formulating plans, they must respect the limi- 
tations the invariances imply or accept the inevitable 
consequences. 

FINAL COMMENTS 

The first recognition of the laws discussed was based 
entirely on an examination and analysis of data from 
a variety of programs and systems, both large and not 
so large. To make the transition from phenomenology 
to science, however, the laws, once formulated, must 
be examined in their own right. The laws of large-pro- 
gram development and evolution are now beginning 
to be understood in this way. They are seen to express 
very basic attributes of computing, of the program- 
ming development, maintenance, and usage pro- 
cesses, of programs themselves, and of the organi- 
zations and environments in which these activities are 
carried out. 

Once this interpretation of the laws in terms of 
more fundamental phenomena has been achieved, the 
old data must be reexamined and new information 
examined in the light of the laws as understood. De- 
viations must be explained and interpreted; contra- 
dictions may require reformulation and reinterpreta- 
tion of a law, or even its rejection. 

There is, of course, nothing new in these com- 
ments: they form the very basis of the scientific 
method. They are added here, however, to assert the 
belief that the laws as formulated have been substan- 
tiated by experience and by experimental data to the 
point where they can stand in their own right until 



Laws, Evolution and Conservation 221 

evidence and developing insight and understanding 

demand their change-or until we can so change sys- 
tem structure, process methodology and character- 
istics. and programmer and user practice and habits, 
that the laws as formulated no longer apply. 
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