
Bell Labs Technical Journal ◆ April–June 1998 3

Introduction
Lucent’s advanced 5ESS® switching system is

complex, making the cost of finding, fixing, and retest-

ing a software fault expensive. The current 5ESS

switching software system contains several million

lines of source code that provide many complicated

real-time switching features. Today, hundreds of sci-

entists and engineers are working continually on the

5ESS switch software to develop and enhance features

that will advance cellular, voice, and data communica-

tions technologies.

Customer demands for ever-increasing product

quality and the high cost of testing and reworking

source code made it crucial for the Lucent 5ESS

Switching Development organization to find ways to

prevent faults from being introduced into the soft-

ware in the first place.1-4 The goal of fault prevention

is to help programmers avoid injecting the most fre-

quent faults into a product. C language, the predomi-

nant programming language used in the 5ESS switch

development environment, strongly influences fault

prevention efforts.

The 5ESS Switch Coding Fault Prevention Team,

led by the author, began an effort in this area in

1993. The team’s work resulted in significant

achievements, leading to its selection by the

Switching Systems Business Unit to represent the

organization in receiving the “1994 AT&T Network

Systems Quality Team Excellence Award.” This

paper introduces the coding fault prevention process

and the technical guidelines used to prevent coding

faults. It also explains the results achieved and the

metrics used to measure them.

Development Process Analysis
The team completed a study of the 5ESS switch

software fault removal effectiveness and fault flow by

conducting interviews with developers on the nature

of each of more than 600 faults. Performing an exten-

♦ A Software Fault Prevention Approach
in Coding and Root Cause Analysis
Weider D. Yu

The complexity of Lucent Technologies’ advanced 5ESS® switching system makes the
cost of finding, fixing, and retesting a software fault very high. The current 5ESS sys-
tem contains several million lines of source code, which provide many complicated
real-time switching function features. As customer demands for ever-increasing
product quality compound the high cost of testing and reworking source code, it is
crucial for the 5ESS Switching Development organization to find ways to prevent
faults from being introduced into the software in the first place. The 5ESS Switch
Coding Fault Prevention Team was assembled to find methods to prevent the most
frequent faults from being injected into a product during coding. The Coding Fault
Prevention Guidelines, developed by the team for use in various Lucent switching
development organizations, lists the most frequent errors made during coding. It
also provides coders with information that will help reduce the risk of introducing
faults into the software. This paper describes the most common preventable faults
and the technical guidelines developed to overcome them. It also explains the met-
rics used to evaluate the results achieved.

4 Bell Labs Technical Journal ◆ April–June 1998

sive root cause analysis of the faults found and fixed in

the past 5ESS switch software releases enabled the

team to establish a baseline (called release T) of the

software faults’ life cycle—that is, how the faults were

injected. Figure 1 shows the baseline results estab-

lished from the study.

A crucial finding determined from the analysis

was that nearly half the faults were coding faults, and

the majority of them could have been prevented. The

team closely examined these faults to understand the

types of coding problems that existed. Table I shows a

list of the major coding faults found. The results of the

analysis also showed that three types of faults—logic,

interface, and maintainability—account for more than

50% of the total coding faults.5

The faults discussed in this paper were actual

faults found in a very large software project environ-

ment. The average programming ability and experi-

ence of developers connected with the project were

high compared to the norm in the industry. The team

extensively interviewed developers who produced the

code and the faults found in it to validate the faults

and their causes. To enumerate the most significant

faults for the Guidelines, the team conducted a statisti-

cal categorization and analysis on the fault data.

Using a structure developed from software qual-

ity perspectives to describe various categories of cod-

ing faults, the team developed the faults in each

In
je

ct
ed

 f
au

lt
 d

en
si

ty
(f

au
lt

s/
K

N
C

SL
)

12.2%

6.6%

18.5% 15.3%

47.4%

Good

Feature requirement specification

Feature database design

High-level feature design

Low-level feature design

Feature source code implementation

Where faults were introduced (baseline)

Phase
Injected

fault density* Total (%)

Requirement

Data design

High-level design

Low-level design

Coding

Total

1.2

0.7

1.9

1.5

4.7

10.0

12.2

6.6

18.5

15.3

47.4

100.0
KNCSL: Thousand noncommentary source lines
*Injected fault density: Number of injected faults
 per KNCSL (normalized)

Figure 1.
Baseline results of release T.

Table I. Major coding faults.

Type of coding defect Total (%)

Logic 19.8

Standards 19.8

Maintainability 17.9

Interface 14.3

Performance 8.4

Functionality 4.0

Human factors 3.5

Consistency 2.9

Data 2.4

Syntax 0.5

Other 6.6

Total 100

Bell Labs Technical Journal ◆ April–June 1998 5

category based on actual error information and con-

siderations of how program components were used.

The team’s approach to classifying faults is extensive

and comprehensive.

The faults have been implemented in a software

tool within the production environment. For each

fault fixed, developers choose a fault type and one

or more root causes. Based on the fault data col-

lected from developers, 90% of the total actual

faults were covered.

Faults reported in the literature are sometimes

generalized to a higher level with brief descriptions,

making the information difficult for developers to fully

understand and apply in a software development envi-

ronment. From a fault prevention point of view,

developers must be encouraged to think about how to

detect coding faults automatically. Some faults—such

as functions without return value checks, function

declarations and calls with incorrect numbers or types

of arguments, variables declared but not used, and

unreachable program statements—can be automati-

cally detected using the “lint” tool. This tool detects

features of C program files that are likely to be bugs,

nonportable, or wasteful and then issues error warn-

ing messages.

Root Cause Analysis
The team used a fishbone analysis to identify

the root causes of the coding faults. The top three

root causes of the faults were execution/oversight

(38%), resource/planning (19%), and education

and training (15%).

In addition, for each of the three major root

causes, the top two actionable detailed causes that had

the greatest effect were:

• Execution/oversight. Inadequate attention to

details (75%) and inadequate considerations to

all relevant issues (11%);

• Resource/planning. Not enough engineer time

(76%) and not enough internal support (4%);

and

• Education and training. Area of technical

responsibility (68%) and programming lan-

guage usage (15%).

The complete fishbone diagram shown in Figure 2

Figure 2.
Fishbone analysis used to identify root causes of the coding faults.

Process/
methodology

(8%)

(23%)
Methodology
not followed

Process not
existent/well defined

Support documentation
deficient or unavailable

(28%)
Process defined

but deficient

Insufficient
guidelines

Inadequate application
knowledge

Education/
training

(15%)

(68%)
Area of

technical
responsibility

Technical interfaces
(15%)

Programming
languages

System architecture

Tools/laboratory use

Execution/
oversight

(38%)

(11%)
Inadequate consideration

to all relevant issues

(75%)
Inadequate attention

to details

Inadequate review/
inspection/walkthrough

Procedural oversight

Insufficient peer
checking/proofing

Insufficient time
on desk checking

Coding
faults

Product
environment

(2%)

Testing
environment issues

Unstable and prone
to frequent changes

(45%)
Too complex

to understand

(16%)
Product area
error prone

Changes without
informing/checking

Communication

(9%)

(40%) Insufficient
communication

among developers

Immediate working team

Teams working on different areas

Documentation/
information issues

(32%)
Insufficient communication in

different functional areas

(4%)
Not enough

internal support

Resources/
planning

(19%)

Unclear ownership/
responsibility

(76%) Not enough
engineering time

Insufficient priority
Late requirement changes

Unexpected task complexity

For selected actionable root causes

Note: Percentage (within category) data included for
two highest runners of root cause only in each category

6 Bell Labs Technical Journal ◆ April–June 1998

illustrates the root causes identified and the per-

centages of distribution of their corresponding

actionable causes.

Countermeasures for Improvement
Based on these root causes, the team identified

several solutions, or countermeasures, and then

rated each countermeasure numerically using two

process characteristics: effectiveness and feasibility.

The overall score for each countermeasure was cal-

culated as the product of the values of effectiveness

and feasibility. Figure 3 shows a systematic dia-

gram used to derive the most effective and feasible

countermeasures.

To deal with the identified major root causes—

oversight and lack of education and training—the

team developed the Coding Fault Prevention Guidelines

and a checklist for 5ESS switch developers. (Because

the team could not control resource/planning, its

root cause was addressed by project management.)

The Guidelines describe, in detail, the faults frequently

introduced by engineers, along with side-by-side

examples of actual errors and the corrected code.

They also provide engineers with information that

helps reduce the risk of making those frequent faults.

Engineers were asked to understand the Guidelines

before they began their coding tasks.

Problem

Too many
coding faults

Execution/oversight

Inadequate attention to details,
inadequate consideration to

all relevant issues

Education/training

Area of technical responsibility,
programming language usages

Resources/planning

Lack of engineering time,
lack of internal support

Major focus

Supporting

The Coding Fault Prevention Guidelines

The Coding Fault Prevention Checklist

More peer checking

Training in fault prevention guidelines
for all 5ESS® coders

Coding cookbook

Required coding courses

Detailed task descriptions
with guidelines

Project schedule concurred by PMTs

Certified inspection moderators and
mandatory inspector attendance

Root causes

Countermeasures

Scale:
1 None
2 Somewhat
3 Moderate
4 Very
5 Extreme

Effectiveness x feasibility = overall

Ef
fe

ct
iv

en
es

s

Fe
as

ib
ili

ty

O
ve

ra
ll

A
ct

io
n

4

4

3

5

3

4

5

5

3

5

3

5

20

20

9

25

9

20

Yes

Yes

No

Yes

No

Yes

PMT – Project management team

Figure 3.
Root causes and countermeasures for preventing coding faults.

Bell Labs Technical Journal ◆ April–June 1998 7

In addition, to enhance the code inspection effec-

tiveness the team developed The Coding Fault

Inspection Checklist. Both the Guidelines and the

Checklist were made a formal part of the coding

process. The team then trained hundreds of engi-

neers responsible for coding tasks in their use. All the

countermeasures have been standardized in the

development organizations.

The Coding Fault Prevention Guidelines
The Guidelines provide detailed explanations of

each kind of error, accompanied by examples of cor-

rect and incorrect code. Coders and code inspectors

then use these guidelines during the coding phase,

preferably before coding begins. Periodically, the team

analyzes root causes for new frequent coding errors.

Because the most frequently encountered coding

faults change over time, the team uses the results to

update and maintain the Guidelines.

Logic Faults
Logic errors arise when a fault occurs in the cor-

rectness and consistency of computational and control

logic of the software programs in C. This type of error

relates to logical decisions or flows and branches

within a program. To further reduce the testing effort,

the logical correctness of the code needs to be carefully

verified during coding.

List of Major Logic Faults
The analysis gave the team a better understanding

of the types of logic faults the 5ESS Switching

Development engineers made easily and frequently.

The team used a tag number to uniquely identify each

type of logic fault. Table II lists the tag numbers for

these faults, along with the corrections for them. The

data on the logic faults has helped the team focus on

the most “critical” ones.

Samples of Logical Faults
The sections that follow describe each logic fault

listed in The Coding Fault Prevention Guidelines, accom-

panied by samples of correct and incorrect code.

C operator associativity and precedence. Each C

operator has its own order of precedence in an expres-

sion. It is the programmer’s responsibility to be familiar

with both the order of precedence of C operators and

their order of evaluation (or associativity) when multi-

ple operations are performed in a single expression or

on a single line of code. Each of the following incorrect

examples has occurred in the 5ESS switch code.

A. The intent of this test was to mask

blkptr->rpthead.fltdescwith HWMFLTCLAS
and then compare the results of that masking

operation with HWMATEFLT.
Incorrect:

if (blkptr->rpthead.fltdesc &
HWMFLTCLAS == HWMATEFLT)

Correct:

if ((blkptr->rpthead.fltdesc &
HWMFLTCLAS) == HWMATEFLT)

However, since the == operator has higher prece-

dence than the & operator, HWMFLTCLAS is com-

pared with HWMATEFLT first and then the

resulting true/false (1 or 0) is bit-wise masked

with blkptr->rpthead.fltdesc.

Table II. Logic faults.

Tag
number Fault correction

L1 Initialize all variables before use

L2 Control flow of break and continue statements

L3 Check C operator associativity and precedence for
correct usage

L4 Ensure loop boundaries are correct

L5 Do not over-index arrays

L6 Ensure value of variables is not truncated

L7 Reference pointer variables correctly

L8 Check pointer increments/decrements

L9 Ensure logical OR and AND tests are correct

L10 Use all assignment and equal operators
as intended

L11 Ensure bit field data types are either
unsigned or enum

L12 Use logical AND and mask operators
as intended

L13 Check preprocessor conditionals

L14 Check comment delimiters

L15 Test unsigned variables for == 0 or != 0 only

L16 Use 5ESS® switch-defined variables in the
correct context

L17 Use cast cautiously

8 Bell Labs Technical Journal ◆ April–June 1998

B. Another common precedence error occurs when

a pointer is passed to a function and the called

function attempts to increment or decrement the

contents of what that pointer is indicating. In this

example, numretry is a pointer to a variable that

has been passed to this function as an argument.

Incorrect:

*numretry++;
Correct:

(*numretry)++;
Here, even though both ++ and * operators have

the same precedence, they associate right to left.

First the increment is applied to the pointer and

then the * operator is applied. This procedure

makes no sense, because the contents of that

variable have not been assigned. To fix this bug, a

set of ()are needed to force the increment to take

place on the contents indicated by the pointer, as

shown above.

C. Another common precedence error occurs when

an attempt is made to call a function, save its

return value, and test it from within a conditional

expression.

Incorrect:

if((rtc = _ims_open(NPRD_CH) !=
_SUCCESS)) {

Correct:

if((rtc = _ims_open(NPRD_CH)) !=
_SUCCESS) {

Since the != operator has higher precedence than

the = operator, the return value of

_ims_open()is compared with _SUCCESS first,

and then the resulting true/false value is assigned

to the rtc variable. Any subsequent tests made

on rtc to identify the specific error code returned

by _ims_open()proved fruitless, because the

actual return value was lost and rtc only con-

tained a true/false value. These errors are com-

mon when complex expressions are used.

D. In this example, the order of the evaluation of the

idx variable is unclear and confusing at best.

Incorrect:

for (idx = 0; idx < 40;
dispstring[idx] =
COTsuccess[idx++]);

Correct:

for (idx = 0; idx < 40;
idx++) {dispstring[idx] =
COTsuccess[idx];
}

Because some compilers evaluate from right to

left and others evaluate from left to right, idx
could be off by one value, depending on the

application. And at any rate, the code is confus-

ing; it would be clearer if it were rewritten to

allow only the increment of idx++ to take place

in the for statement, with the assignment taking

place within the body of the for loop itself, as

illustrated above.

E. Although this example may look like a perfect

piece of code, a problem stems from a faulty defi-

nition of the GLCLRSHORT() macro, which vio-

lates C coding standards.

Incorrect:

GLCLRSHORT (worklist[indx].unblocked,
picb^1);

This macro, which is defined as:

#define GLCLRSHORT(map_name, bitno) \
(map_name[bitno >> GLL2SHORT]
&= (1 << (bitno & (GLSZSHORT-1))))

expands in the code to:

(worklist[indx].unblocked[picb^1
>> GLL2SHORT] &= (1 << (picb^1 &
(GLSZSHORT-1))));

Two orders of precedence errors are introduced

when an expression containing the exclusive OR

operator ^ is passed for the second argument of

the macro. Because both the >> and the & opera-

tors have higher precedence than the ^ operator,

the logic of the macro is altered.

Kernighan and Ritchie6 give an excellent table

that shows the order of precedence and the associativ-

ity of each C operator. Programmers can refer to this

table during programming to determine how the oper-

ators interact with each other.

Variable initialization. Programmers should ver-

ify that all variables, both global and local, are initial-

ized before they are used. Members of globally

allocated structures and all pointers must be properly

initialized before use.

Bell Labs Technical Journal ◆ April–June 1998 9

Rules governing the initialization of variables are

as follows:

• Local and global constants must be initialized

where they are defined.

• Nonconstant, nonstatic local variables must be

initialized in the code segment rather than

where they are defined.

• Process-specific global variables must be initial-

ized by specific functions designed for their ini-

tialization whenever those processes are

recreated.

Loop boundaries. Variables are sometimes incre-

mented beyond their designed capabilities, especially

in such practices as indexing an array by more values

than that array is designed to hold. This practice can

cause wild writes on other program text and stack

space. It is advantageous, therefore, to verify that the

bounds or limits of each loop statement (for and

while) are correct.

A. In this example, although the correct number

of elements was allocated to the local array

proname[], it was eventually over-indexed

because the loop limit was set too high.

Incorrect:

char proname[10];
.
.
.

� for(i=0;i<14;i++)
{

proname[i] = *argv[0];
.
.
.

B. Another error occurs when loop boundary tests

continue too far. In this example, the variable

featent.curpos should only be tested for less

than, never equal to, NBISTRMFTENT.
Incorrect:

for(; (featent.curpos <=
NBISTRMFTENT &&. . .

Correct:

for(; (featent.curpos <
NBISTRMFTENT && . . .

To avoid such subtle errors, all loop boundary

tests should be carefully examined.

Variable truncation. If a value larger than itself is

assigned to a variable, that value becomes truncated.

Although not detrimental in some cases, this practice

is devastating in others, and should be avoided. Special

care must be taken when bits are being assigned to

fields, because it is very easy to assign a value that uses

more bits than a field can accommodate. This is espe-

cially true if the bit fields exist in different data struc-

tures, where their respective structures may be defined

for different sizes.

A. This example is taken from a field bug that

required a software update (that is, a software

patch/change) to rectify:

pcccap->cindex = (cindx + 1) & 0x7f;
Here, the value being assigned is masked with

0x7f, which is 7 bits. Because cindex was only

allocated 6 bits of storage in its data structure, the

data being assigned was truncated, causing the

critical field problem.

B. This example has also required a software update

to rectify it.

Incorrect:

char time;
time = SMLI2PDEL;
OSWAIT(OSTIMEOUT, time);

Correct:

long time;
time = SMLI2PDEL;
OSWAIT(OSTIMEOUT, time);

Here, SMLI2PDEL was #define to 10000 and

then passed as the second argument to

OSWAIT()to wait for 10 seconds. However, since

time was only allocated as a signed char, the

assigned value of SMLI2PDEL was truncated to

16 decimals. Thus, this code was only waiting for

16 milliseconds, instead of the required 10 seconds.

Hints: Never take any assigned variables for granted.

Always check that the value being assigned can

never be larger than the variable or data structure

can accommodate.

Pointer increment rules. Using pointers provides

notational convenience and program efficiency, result-

ing in code that uses less memory and executes faster.

Pointer increments and decrements are scaled to the

size of the data type to which the pointer is pointing.

10 Bell Labs Technical Journal ◆ April–June 1998

When incrementing and decrementing pointers,

do not exceed the boundary of the data type. The

example below illustrates a pointer being decremented

and incremented to out-of-bounds values:

Incorrect:

short value[EXMAXVAL];
short *value_pointer;

value_pointer = value;
� --value_pointer;

value_pointer = value;
� value_pointer += (EXMAXVAL + 1);

Logical OR and AND tests. Any logical OR of two

or more “not equal” (!=) tests of the same variable will

always produce true results. Likewise, any logical AND

of two or more “equality” (==) tests of the same vari-

able will always produce false results.

A. In the incorrect example below, the tests of

CRMTCTYP(cid)will always produce true results.

Incorrect:

if ((call.dn[i] == CRINIT) &&
((CRMTCTYP(cid) != CRINWATS) ||
(CRMTCTYP(cid) != CRTINWATS)))

Correct:

if ((call.dn[i] == CRINIT) &&
((CRMTCTYP(cid) != CRINWATS) &&
(CRMTCTYP(cid) != CRTINWATS)))

B. This incorrect example will always produce false

results, regardless of the value of rc.
Incorrect:

if (rc == GLFAIL && rc == DBSYS_ERR)
Correct:

if (rc == GLFAIL || rc == DBSYS_ERR)

Logical AND and mask operators. One method of

giving up control to allow other processes a chance to

run while executing within a loop is by setting a mask

value and checking it against a loop counter with

each iteration of a loop. However, if a double & is

used, no mask occurs; instead, the program performs

a true/false operation, and the loop may run for a

much longer time period before it takes a break. This

is an example taken from within the body of a

for loop.

Incorrect:

if ((i && 0xff) == 0) OSSUSPEND();
Correct:

if ((i & 0xff) == 0) OSSUSPEND();
Here, the variable i was declared to be a short. The

programmer intended to have the loop give up control

every 256th iteration, that is, whenever the lower 8

bits of i were set. However, because the programmer

used && instead of &, this statement would only pro-

duce true results once every 65,536 times.

Preprocessor conditionals. The #if and #ifdef
preprocessor statements are used for conditional com-

pilation of programs. The #if statement tests whether

a constant expression produces a non-zero value, and

the #ifdef statement evaluates whether a single

identifier has been defined previously (and has not

been subsequently undefined by a #undef state-

ment), either by using a #define statement or being

passed as a -Didentifier option to the compiler.

Note: If an identifier is not currently defined, the

#ifndef statement is used to evaluate it.

A. The only valid use of a #ifdef, #ifndef, or

#undef statement is for checking a single

identifier:

#ifdef M68000 #ifndef EES #undef SPTAG
. .
. .
. .

#endif #endif

The #undef statement does not require a

#endif statement. In addition, it is illegal syntax

for a #ifdef or a #ifndef statement to have

parentheses—such as #ifdef (PAM)—sur-

rounding the identifier.

B. Since a #if statement is used to test a constant

expression, it can test for more than a single iden-

tifier, such as any of the following:

#if PAM �This is equivalent to a #ifdef PAM
#if (defined PAM)
#if (defined PAM && (!defined EES))
Flow of break and continue statements.

Sometimes, break and continue statements lead to

confusion about exactly what has happened, that is,

where control has been passed. It is advantageous,

therefore, to verify the proper use of these control-

changing statements.

Bell Labs Technical Journal ◆ April–June 1998 11

A break statement exits from within a loop

statement (do, for, while) or from within a switch
statement. Confusion sometimes arises when one or

more loops and/or switch statements are nested. If a

break is executed from within a set of nested loops,

only the innermost loop in which the break state-

ment occurs is terminated. Likewise, if a break is

executed from within a set of nested switch state-

ments, only the innermost switch statement is

exited. When both loops and switch statements are

nested, be sure the action executed by the break
statement is what is desired.

The continue statement skips remaining code in

the innermost loop from which the continue is exe-

cuted and continues executing from the end of that

loop. This ensures that any increments, such as the

third expression of a for statement, will take place. If

a continue is executed from within a switch that is

itself within a loop, the switch is exited, passing con-

trol to the end of that loop and skipping any state-

ments in between. This is in contrast to a break
statement, which would only exit that particular

switch statement and continue executing the state-

ments that follow the end of that switch in the loop.

Whenever a break or continue statement is

used within a loop statement, the programmer must

clearly annotate how the change will affect the pro-

gram flow. In this example the continue passes con-

trol to line 20, where value is incremented (as

expression 3 of the for statement) and then tested (as

expression 2 of the for statement). When the break
statement is executed, control is passed to line 19.
11: for (value = 0; value < EXMXVAL; value++) {
12: switch (get_value(value)) {
13: case EXNOTUSED:
14: continue;
15: default:
16: doit();
17: break;
18: }
19: funcA();
20: }
21: other_work();

Interface Faults
Just what is an interface? Among the many defin-

itions offered are the following:

• A shared boundary across which information

is passed;

• A hardware or software component that con-

nects two or more other components for the

purpose of passing information from one to

the other;

• A connection between two or more compo-

nents for the purpose of passing information

from one to the other; and

• A connecting or connected component, as in

the second item above.

Therefore, interface problems/errors result when a

mismatch occurs in a data/control transfer between a

function and its surrounding environment, other

functions, global/local variables, or data variables/

structures, including:

• A variable/symbol name mismatch, such as a

reference to a nonexistent variable;

• A structure, type, or configuration mismatch,

such as:

– An argument type mismatch between call-

ing statement and called function,

– One or more required arguments missing,

or

– Extraneous arguments passed;

• A value or variable range mismatch, such as a

wrong value substitution for an argument; or

• A data transfer or control procedure mismatch,

such as a failure to set the program state.

List of Major Interface Faults
It is sometimes difficult for engineers to avoid cre-

ating interface faults, because they are easily over-

looked during code inspection and testing.

Understanding what the major interface faults are and

designing and writing code that excludes them is the

most effective way to prevent them. Table III lists

each fault type and describes its correction.

Samples of Interface Faults Listed in The Coding Fault
Prevention Guidelines

The sections that follow describe some of the

interface faults and how to avoid them.

Function arguments and return types.
Developers should analyze every function call to

determine whether the needs of the called and calling

functions have been met, based on the arguments

12 Bell Labs Technical Journal ◆ April–June 1998

passed and the return types used, and what the func-

tion call will provide for their programs. Questions

such as the following may stimulate thinking along

these lines.

• Is this function providing the necessary

functionality?

• Will the parameters passed provide sufficient

data to achieve that functionality?

• Would it be more efficient to pass a pointer

rather than a group of variables or, if those val-

ues are to be modified, a data structure?

• Will the return value provide information that

the calling function can readily use?

For every function call made, developers need to

verify that the arguments’ types and order match

those of the called function. They should also verify

that the return type is correct. If the return value is not

used, it should be cast to void. If a function does not

have a return value, define the function to return

void; otherwise it will default to returning integer.
Function arguments of the wrong type should be cast

to the expected type when appropriate.

A. A common error that occurs in many function

calls is passing a copy of a variable when the

function definition expects a pointer, or passing a

pointer when the function definition expects a

value. In the following example, MLtisfail()is
defined to accept a pointer to the data being

passed as argument one, but no &was coded.

Incorrect:

return(MLtisfail(mltmsg->cmd.req.req2,

tmrc));

Correct:

return(MLtisfail(&mltmsg->cmd.req.req2,

tmrc));

It is helpful to use pointers as arguments when:

– Large amounts of data or large data struc-

tures are being passed, and

– A called function must modify the calling

function’s data.

B. Often one level of indirection is missing, such as

the asterisk in the example below. The argument

should have been cast as a pointer to a pointer.

Incorrect:

DXal_fndnxt(..., (DXALMDATA *)
&data_ptr);

Correct:

DXal_fndnxt(..., (DXALMDATA **)
&data_ptr);

It is helpful to use a pointer to a pointer when it is

necessary for a called function to modify the

pointer to the calling function’s data (that is, to

modify the address where the data is stored or

point to new data).

C. A common error occurs when the data types of

arguments are not verified before calling the

function. In this example the first parameter

expected by CCbinasc()is an unsigned

Table III. Major interface faults.

Fault type Fault correction

I1 Verify that the arguments and return types of all function calls are consistent with those declared in the function.

I2 Complete function and global variable definitions and declarations.

I3 Use a reasonable number of function arguments.

I4 Verify macros’ use (for example, full context).

I5 Follow naming standards for function arguments and global variables.

I6 Use defensive programming practices.

I7 Ensure system process entry points are correct.

I8 Use function return values or cast to void.

I9 Verify parentheses are placed on function calls.

I10 Use subsystem provided initialization functions where possible.

I11 Use library functions or pre-existing functions where possible.

Bell Labs Technical Journal ◆ April–June 1998 13

long, but loop_ptr->annc_rtidx is an

unsigned short. The parameters that

CCbinasc()receives will be wrong because the

difference in data types causes a skew.

CCbinasc()will take the first four bytes of data as

its first parameter. Only two bytes of data will be

taken from loop_ptr->annc_rtidx; the next

two bytes will be taken from the next argument.

Incorrect:

(void) CCbinasc(loop_ptr–>
annc_rtidx, ...);

Correct:

(void) CCbinasc((DMUNLONG) loop_ptr–>
annc_rtidx, ...);

D. Another common error occurs when an addi-

tional argument is defined for a function but not

every occurrence of the call is modified. (An error

of this type can also arise when a function is

called but not all its arguments are passed.) This

problem becomes more severe when a new argu-

ment is added at the beginning or the middle of

the existing argument list. When this occurs, all

the previously existing arguments from that point

on are “skewed.” The example below illustrates

just such a problem.

Function called with three arguments

� DBnswch_mem(&omsg, &smtimr,
grwsize);

but defined with four arguments

� DBnswch_mem(OSPID, *omsg, *timr,
grwsize)

E. Another common error arises from misunder-

standings between the DMPORT and the DMGPORT
data types. The former is an unsigned 16-bit

quantity, but the latter is a typedef struct
containing both a member and a module. In this

example newtup_ptr->port is pointing to a

DMGPORT. What is needed is to pass the member
of the port structure being pointed to by

newtup_ptr.
Incorrect:

RTdslprmpt(newtup_ptr->port);
Correct:

RTdslprmpt(newtup_ptr->port.member);
Other s imilar , but not ident ical , errors

occur for other data structures.

F. Another group of errors that could be classified

under this subheading results from an improper

number of arguments being passed to

printf()and its related function types. These

problems arise when more arguments are passed

to be printed than there are conversion charac-

ters, or when there are more conversion char-

acters than arguments passed.

Incorrect:

sprintf(infile,
"/rclog/tmp.evl%d.5E31");

Incorrect:

sprintf(corclog, "/log/cpcorc", 0);
G. Many errors result from confusion between

fprintf() and printf(), because the former

requires a stream pointer for argument number

one and the latter does not.

Incorrect:

fprintf("system error, ‘cdbcom’ not
found in relation table\en");

Incorrect:

printf(stdout,"%s VPATH:\en",Prompt);
Function and global variable definitions and

declarations. When a program calls a function or

accesses global data, it needs a declaration of the func-

tion’s return type and the global data type. Usually,

these declarations are part of header files and must be

defined according to the scope of the function calls

and/or data accessed. Declarations of functions must

be provided as function prototypes, also known as

function templates. A function prototype lists the types of

each function’s arguments, as well as the type of argu-

ment the function returns. The use of these function

prototypes and header files for data definitions ensures

the exact definition is given for the called function

and/or the data being accessed.

If the called function and/or data accessed is

defined and used only in a specific module, no special

header files are needed. If the called function and/or

data accessed is defined in a specific module and used

in more than one module within that subsystem, then

the declarations of those types (as well as the defini-

tions of the types used) must be made in the subsys-

tem’s local header files.

14 Bell Labs Technical Journal ◆ April–June 1998

If the called function and/or data accessed is used

by subsystems other than the one where they are

defined, then the declarations of those types (as well as

the definitions of the types used) must be made in

global header files.

Function arguments. In interfaces, simplicity is a

desirable property, because the number of arguments

within a function affects a program’s interface com-

plexity. A large number of arguments makes the inter-

face unmanageable, and the result can be difficult to

read and understand. The maintainability of the inter-

face also suffers, because it becomes easy to insert

errors, such as argument type mismatches, when

modifying an argument. The “rule of seven” may be

used as a reasonable maximum number of arguments

in a function call.

Some interface measures help manage the use of

function arguments, such as:

• The number of variable items per function (in

+ out), and

• The number of functions to which it is con-

nected (called and calling).

Passing data in structures (struct or typedef
struct) that contain all or most items required by

the called function is a powerful method of simplify-

ing an interface.

This example illustrates a function with too many

arguments. It can be rewritten to pass a structure

and/or pointers.

Original:

SSfunction (code, value, type, DBYES,
msg.numb, msg.size, msg.unit.side,
msg.unit.mod, msg.reg_make, DBNO);

Pass pointer:

SSfunction (code, value, type, DBYES,
&msg, DBNO);

Pass structure:

SSfunction (code, value, type, DBYES,
msg, DBNO);

If a pointer to a structure is passed, then the called

function can change the values of that structure’s ele-

ments. If an entire structure is passed, and it contains

more elements than the summation of the individual

arguments passed, then the programmer must avoid

introducing stack overflow problems.

Function returns. Although C language does not

require explicit definitions or declarations of function

return types, functions that do not return values

should be defined and declared as type void. When a

function is defined or declared without an explicit

return type, the compiler defaults the return type to

int. In this case, however, it becomes difficult to

determine whether the function will return a value.

To avoid this confusion, the function’s return type

should always be defined and declared.

Using the void data type informs the compiler

that the function will not return a value, preventing

any further ambiguous use of the function and

improving the program’s maintainability. Because the

compiler does not generate object code for returning a

value, it also saves stack space and helps system per-

formance. A function defined or declared to be type

void cannot be used in an expression.

Items returned from functions should either be the

same type as the function or they should be cast to the

function type. If a function returns a value that does

not need to be checked or saved, the function’s return

can be cast to (void), which also saves stack space.

A. Functions defined without an explicit type default

to int:
Incorrect:
�
SSfunction()
{

return;
}

Correct:
void
SSfunction()
{

return;
}

B. In this example, although the function

SSmodify()is declared to return type void, its
return value is checked:
Incorrect:
void
SSfunction()
{

void SSmodify();
� if (SSmodify() == GLSUCCESS)

.

.

.

Bell Labs Technical Journal ◆ April–June 1998 15

C. When a function that returns a value is called,

but there is no need to save or check its return

value, it should be cast to type void:
Incorrect:

RET_VAL
SSfunction()
{

strncpy(cost, Glctcst, 4);
.
.
.

Correct:

RET_VAL
SSfunction()
{
(void)strncpy(cost, Glctcst, 4);

.

.

.

D. If a function defined to return void instead

returns a value, it will not compile.

Incorrect:

void
SSbad_func()
{
� return(0);
}
Defensive programming practices. When a func-

tion is called, the program must verify that the argu-

ments passed are within the expected ranges. This

practice is helpful for preventing indiscriminate use of

pointers whose values may not be guaranteed to be

sane. The level of defensive checking must be balanced

with real-time constraints. For example, it is not

absolutely necessary to check and recheck the same

arguments as they are passed down to lower func-

tions. If the arguments are checked in the first func-

tion, there will probably be no need to recheck them

at each function called unless they have been modified

in some way.

A. Before using global pointers, programmers should

verify the sanity of the pointers.

Correct:

/* front and rear pointer range checks */

� if (CRrptr < CRQPTRESET || CRrptr > CRMAX

||

� || CRfptr < CRQFPTINIT CRfptr > CRMAX) {

CRqrecover (); /* recover the CRA queue

*/

AUASRTA (AUFALSE, CRA_4_ASRT);

return (CRERROR);

}

B. When a function is entered, the program must

verify the sanity of the arguments.

Correct:

Short
DBopgparm(parid, new_buf, pcrid,
operation)
DMSYSID parid;
char *new_buf;
unsigned char pcrid;
DMDBMODE operation; /* Global
parameter operation */
{

.

.

.

<<< local declarations >>>
.
.
.

/* range check parameter id */
� if ((parid <= 0) || (parid

>= dbparmax)) {
return(DBSYS_ERR);

}

Maintainability Faults
The maintainability of a software program rep-

resents the ease with which it is possible to main-

tain the software on that system. Basically,

maintainability measures how simple it is to correct

and change software programs. Maintainability can

be defined as:

• The ease with which software programs can

be maintained,

• The ease with which maintenance of a func-

tional unit can be performed in accordance

with prescribed requirements, and

• The ease with which a software error can

be located and fixed within a specified

time period.

16 Bell Labs Technical Journal ◆ April–June 1998

Maintainability can have several components,

including modularity, simplicity, self-descriptiveness,

and verifiability.

The modularity of a software program is defined by

a structure of highly cohesive components with opti-

mum coupling. In a modular program, a change to

one component has minimal impact on other compo-

nents. Simplicity is the ability to make definitions and

implementations of software functions noncomplex

and understandable. A software program is self descrip-

tive if it contains enough information for others to

determine its objective, assumptions, constraints,

inputs, outputs, components, and status. Verifiability is

the ease with which the operation and performance of

a specified software program can be checked.

List of Major Maintainability Faults
Maintainability faults affect how efficiently engi-

neers can modify source programs. Table IV lists the

major maintainability faults.

Samples of Maintainability Faults
The sections that follow describe corrections for

some of the maintainability faults.

Flow-control statements. A software update

may introduce a bug if it adds a line of code that

does not enclose the body of an if statement in

braces, thus inadvertently changing the logical pro-

gression of the code. Therefore, the bodies of all if,
else, for, while, do-while, and switch con-

structs should always be defined within braces and

indented a full 8-character tab stop. (All flow control

statements must follow one of the permitted coding

standards styles to prevent problems with later code

changes and non-standard macro expansion that

may contain multiple statements or else-less-if
statements.)

A. In this example, an if statement body is defined

both without and with braces:

Original code

Incorrect:

if (condition == TRUE)
flag = DBYES;

Correct:

if (condition == TRUE) {
flag = DBYES;
}

Table IV. Major maintainability faults.

Fault number Fault correction

M1 Only use macros to make code easier to read and/or more flexible.

M2 Give macros containing arguments descriptive argument names.

M3 Do not hide important details, significant operations, or side effects in macros.

M4 Avoid code with program knots, such as inappropriate use of goto or break in loops.

M5 Use structure bit fields to avoid shift/mask instructions to access bit fields.

M6 Include any definitions used in all global/local header files (#include).

M7 Use if-else series instead of a series of if statements when deciding between a series of mutually
exclusive possibilities.

M8 Use #define constants instead of hard-coded numbers.

M9 Verify that parentheses are used to clarify and ensure correct precedence.

M10 Enclose all bodies of flow-control statements in braces.

M11 Always use previously defined struct/union/typedef types for arguments.

M12 Use existing #feature statements when possible.

M13 Follow the standard layout for source files and functions.

M14 Use library functions rather than rewriting code.

M15 Use enumerations instead of constants when appropriate.

M16 Provide clear and meaningful comments.

Bell Labs Technical Journal ◆ April–June 1998 17

B. The programmer then inserts a software update

(SU), adding a call to ASfunction()immedi-

ately following the setting of the flag.

Incorrect:

if (condition == TRUE)
flag = DBYES;

SU added � ASfunction();
Correct:

if (condition == TRUE) {
flag = DBYES;

SU added � ASfunction();
}

As this example illustrates, when braces are not

used in the original software, lines added to the

program can easily disrupt its logical execution.

The incorrect example above contains no braces,

either existing or added. Instead of calling the

ASfunction()in addition to setting the flag,
the program calls the ASfunction()regardless

of the condition being tested, with the flag only

being set if the condition is true.

Explicit variable comparisons. All logic control

statements must test for an explicit comparison. The

programmer cannot assume that if the expression

evaluates to a zero it will be taken as true, and any-

thing else is assumed to be true. The example below

illustrates the principle of explicitness:

Incorrect:

if (strlen(Name)) {
printf("Emp Name %s\n", Name);
}

Correct:

if (strlen(Name) != 0) {
printf("Emp Name %s\n", Name);
}

Embedded assignments and multiple state-

ments. Only one variable or function may be declared

per line. This allows the programmer to place a com-

ment for each declaration.

For example:

Incorrect:

DBxyz()

{

short AMicrtmrs(), rc;

short code, status = 0;

Correct:

DBxyz()

{

short AMicrtmrs(); /* set ICR timers */

short rc; /* return code */

short code; /* access code */

short status = 0; /* process status */

Preprocessor conditionals. Proper use of pre-

processor conditionals can contribute greatly to the

readability of programs, as shown in the following

four examples.

A. Preprocessor conditionals used within function

definitions should only be used for minor differ-

ences based on the definition of a flag. Major dif-

ferences should be handled by separate

functions.

B. Preprocessor conditional changes within a func-

tion should be localized as much as possible, not

scattered throughout the function (that is, any

decisions that depend on a conditional expression

should be made in one place if possible.)

C. A preprocessor conditional must not split or inter-

rupt the flow of a complete C statement.

Incorrect:

if ((cond == GLRUN)
#ifdef FEAT_A
|| (cond == GLWAIT)
#endif
) {

Correct:

#ifdef FEAT_A
if (cond == GLRUN || cond == GLWAIT)
#else
if (cond == GLRUN)
#endif
{

D. Preprocessor conditional code can often be

made more readable by isolating it within

macro definitions.

Incorrect:

#ifdef EXPORT
for (i = 0; i < MSXRSMMAX; i++)
#else
for (i = 0; i < MSRSMMAX; i++)
#endif

18 Bell Labs Technical Journal ◆ April–June 1998

Correct:

MSmax.h:
#ifdef EXPORT
#define MSMAXRSM MSXRSMMAX
#else
#define MSMAXRSM MSRSMMAX
#endif
Source File:

for (i = 0; i < MSMAXRSM; i++)
As this example illustrates, placing the preproces-

sor conditional in a header file and defining a

#define constant according to whether that par-

ticular conditional is true makes the source code

much more readable. This is especially true when

the #define constant is used repeatedly in one

or more source files.

Macros. A macro is a short piece of text, or text

template, that can be expanded into a longer text.

Often, problems in macro definitions do not appear

where the macro is defined; instead, they cause

errors much further down in the program. Using

macros can simplify code, but they can also obscure

important details or significant operations. Careful

attention is needed to prevent unwanted and/or

unexpected side effects.

A. For example:
#define SQUARE(x) ((x) * (x))

.

.

.
w = SQUARE (++value);

The invocation of the SQUARE macro will cause

value to be incremented twice, because this state-

ment will be expanded by the C preprocessor to:

w = ((++value) * (++value));
B. Defining macros to change flow control is consid-

ered a bad programming practice. This example

obscures the basic control flow of the program.

Incorrect:

#define FOR_ALL for(i = 0; i < SIZE; i++)
.
.
.

/* Clear the c array */

FOR_ALL {

c[i] = 0;

}

Null statement forms for for and while loops.
The null statement forms of the for and while loops

are emphasized by placing a comment on the line fol-

lowing the left brace. The comment should also state

that this is a /* Null Body Loop */.
The examples below show incorrect and correct

null loop statements.

Incorrect:

while (*s++ = *t++);
Correct:

while (*s++ = *t++) {
/* Null Body Loop */

}
Program knots. A program knot is a measure of

unavoidable intersections of program control flow

arcs, as well as a measure of the lack of structure in the

linear program flow graphs. Inappropriate use of

goto, break, continue, or nested loops can cause

extra logical complexity in a program, which can be

reflected by the number of “program knots.” If the

statements of the program can be rearranged to reduce

the number of counts of “program knots,” the struc-

ture of the program logic will be easier to understand

and maintain.

A. A break statement in the for loop of this exam-

ple has caused one “knot.”

Incorrect:

for (i = 0; i < n; ++i) {
eof_flag = fscanf (in_file, "%d;",
&x[i]);
if (eof_flag == EOF) {
knot � break;
}
sum += x[i];
}
This program can be rewritten without any

“knot,” as follows:
Correct:
eof_flag = 0;
for (i = 0; i < n && eof_flag !=
EOF; ++i) {
eof_flag = fscanf (in_file,
"%d", &x[i]);
if (eof_flag != EOF) {

sum += x[i];
}

}

Bell Labs Technical Journal ◆ April–June 1998 19

B. The goto statement in the inner for loop causes

a program knot of 2.

for (y = 0; y < Y_LIMIT; y++) {
for (x = 0; x < X_LIMIT; x++) {
if (data [x] [y] == 0) {
goto found;
}
}
}
(void) printf ("Not found\n");
exit(8);
found: (void) printf ("Found at %d,

%d\n", x,y);
Some similarities exist between the concept of

“program knots,” which reduce the complexity of

programs, and “irreducible flow graphs,” used to

analyze signal flow graphs. A flow graph is irre-

ducible if all nontrivial proper subflow graphs

have been eliminated. An irreducible flow graph

is one in which nodes and edges cannot be

reduced further to maintain the functions of the

original flow graph.

Each source program statement can be repre-

sented as a node in a flow graph, and each explicit

control transfer between statements is represented as a

direct connecting edge (or called branch) between

nodes. The number of intersections is a measure of a

program’s “structuredness.” It can also be used as a

measure of program control complexity. The higher

the number of program knots in a program, the

greater the cost of maintaining the program and the

higher the risk that the program’s complexity will pro-

duce faults.

A flow graph7 containing a limited number of

nodes with edge cross intersections is more structured

and more helpful for system analysis or general study.

The concept of “irreducible flow graphs” emphasizes

the property of minimum numbers of nodes and

edges. Systematic methods are available to reduce any

signal flow graph to an essential flow graph, which

contains only essential nodes (in addition to sinks and

sources) and eliminates the nodes with edge cross

intersections. The irreducible flow graph concept can

be viewed as a generalized scheme of the program

knots concept.

Pointers in array function arguments. An

array name used without a subscript is a pointer to

that array. Specifying the array name without a

subscript produces a pointer to the first element of

the array. To declare a function parameter an array,

use its name rather than a pointer to the array, as

shown below.

Incorrect:

void

FCgetvalues(arrayname)

DMLONG *arrayname;

{
.
.
.

Correct:

void

FCgetvalues(arrayname)

DMLONG arrayname [];

{
.
.
.

Measurement Metrics
Metrics measure the results of preventing software

faults using three criteria: the number of faults, costs of

developing accurate code versus fixing faulty code,

and the number of coding faults found by customers

after delivery divided by the source code size.

Faults
The team defined the metric injected coding fault

density as the number of faults injected into the soft-

ware during coding divided by the source code size

of the software in thousands of noncommentary

source code lines (KNCSL).8 The metric showed a

34.5% coding fault reduction in the release T+1.

The 5ESS Switching Development organization

exceeded its original 10% target value for improve-

ment by 250%.

The metric testing cost per source code line is defined

as the total testing cost of the product (in dollars)

divided by the source code size of the software (in

KNCSL). The metric showed an 18.3% reduction in

the release T+1.

for

for

goto

X

X

found

20 Bell Labs Technical Journal ◆ April–June 1998

Costs
Each of the three metrics used to measure costs

showed a reduction, as follows:

• The software fixing cost per fault, defined as the

average software fixing cost (in dollars) per

fault, was derived from the project’s historical

results. Based on the 34.5% coding fault

reduction, a total of US$7M was saved in prod-

uct rework and testing. The result was vali-

dated by the actual cost data collected.

• The engineer cost per hour, defined as the aver-

age cost (in dollars) per engineer per hour, was

derived from the project’s historical results.8

Based on the total number of hours expended

by engineers in implementing the chosen

countermeasures, the total engineering cost

was US$100K.

• The cost per source code line, defined as the total

actual development cost of the software (in dol-

lars) divided by the source code size (in

KNCSL), showed a decrease for the release T+1.

Coding Faults Found by Customers
The customer-found coding fault density, defined as

the number of coding faults found after delivery to

external customers divided by the software’s source

code size (in KNCSL), showed a 35.2% reduction in

the release T+1.

Results
The results of implementing the countermeasures

were significant. The team compared the results quan-

titatively with the baseline release T data below:

• The number of coding faults injected for the

T+1 software release was reduced by 34.5%.

Figure 4 shows these results exceeded the tar-

get for improvement in T+1 by 250%. The

average total testing cost (including the engi-

neering effort spent fixing and testing) was

reduced by 18.3%.

– Reductions in injected coding faults short-

ened the engineers’ work interval. As a

result, engineers were able to start new work

earlier, thereby improving their productivity.

– The reduction in coding faults gave product

management the confidence to discontinue

customer site testing, a 5ESS switch devel-

opment phase, thereby eliminating a bur-

den on external customers.

– The result also contributed to the on-time

delivery goal of the customer business unit

(CBU). The development interval of the

release was shorter than the release T,

enabling the CBU to exceed its goal by 8.3%.

• A total saving of $7M in product rework and

testing versus the implementation cost

US$100K produced a benefit-to-cost ratio of

70:1. For the T+1 release, the average develop-

ment cost was lower than that of the baseline

release T. The implementation also contributed

to the CBU’s financial goal for development

costs by surpassing its goal of a 17% decrease

and achieving a 26% decrease.

Conclusions
The software release issued after the fault preven-

tion approach and technical guidelines reported in this

paper were instituted was one of the best produced by

In
je

ct
ed

 c
o

d
in

g
 f

au
lt

 d
en

si
ty

(f
au

lt
s/

K
N

C
SL

)

Baseline

(10% improvement)

(34% actual improvement)

Target
fault density

Baseline
fault density

Good

Actual
fault density

KNCSL – Thousand noncommentary
 source code lines

Figure 4.
Results of implementing the countermeasures.

Bell Labs Technical Journal ◆ April–June 1998 21

the 5ESS Switching Development organization. The

number of coding faults delivered to external cus-

tomers was reduced by 35.2%, lowering the impact of

the major selected actionable root causes by 60%.

External customers continue to be satisfied with the

superior performance of the 5ESS switch—the best in

its class, according to the Federal Communications

Commission’s official report.9

Despite the fact that implementing coding fault

prevention was new to the organization, the results

achieved helped the organization shift the software

development process from fault detection to fault pre-

vention, a more advanced development paradigm.

Engineers became more knowledgeable and skilled in

preventing coding faults from the outset—before they

reached the customer.

Acknowledgments
The author gratefully acknowledges all the efforts

of the 5ESS switch engineers who participated in this

project, especially G. M. Gehi, A. Gupta, J. Hendry,

D. A. Reimer, B. Verner, D. G. Raj-Karne, and

P. Y. Chan. For their support, thanks go to J. M.

Perpich, C. E. W. Ward, C. P. Huang, S. T. Huang,

S. M. Kania, M. L. Zajac, and P. V. Lessek of Lucent

Technologies.

References
1. Watts S. Humphrey, Managing the Software

Process, Addison-Wesley, Reading, Mass., 1989.
2. Capers Jones, Applied Software Measurement,

McGraw-Hill, New York, 1991.
3. Richard E. Fairley, Software Engineering Concepts,

McGraw-Hill, New York, 1985.
4. Weider D. Yu, “Verifying Software Require-

ments: A Requirement Tracing Methodology
and Its Software Tool,” IEEE J. Select. Areas
Commun., Vol. 12, No. 2, Feb. 1994,
pp. 234–240.

5. Weider D. Yu, Alvin Barshefsky, and Steel T.
Huang, “An Empirical Study of Software Faults
Preventable at a Personal Level in a Very Large
Software Development Environment,” Bell Labs
Tech. J., Vol. 2, No. 3, Summer 1997, pp. 221–232.

6. Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Prentice-Hall,
Englewood Cliffs, N.J., 1988, p. 49.

7. Wai-Kai Chen, Theory of Nets: Flows in Networks,
John Wiley, New York, 1990.

8. Weider D. Yu, D. Paul Smith, and Steel T.
Huang, “Software Productivity Measurements,”

AT&T Tech. J., Vol. 69, No. 3, May/June 1990,
pp. 110–120.

9. Service Quality Report, Automatic Reporting and
Management Information System (ARMIS),
Federal Communications Commission, 1998.
See http://www.fcc.gov/ccb/armis

(Manuscript approved May 1998)

WEIDER D. YU received a B.S. in mathematics from
Fu-Jen Catholic University in Taiwan; he
also earned an M.S. from the State
University of New York at Albany and a
Ph.D. from Northwestern University in
Evanston, Illinois, both in computer

science. As a distinguished member of technical staff
in the Systems Management and Quality Architecture
Department at Lucent’s Network Systems in Naperville,
Illinois, Dr. Yu is responsible for 5ESS®-2000 interval
metrics and measurement, software quality analysis
and measurement, defect prevention and root cause
analysis, software productivity, requirement specifica-
tion and traceability, software fault flow and removal
effectiveness, and software estimation and cost
modeling. Dr. Yu is also an adjunct associate professor
in the Electrical Engineering and Computer Science
(EECS) Department at the University of Illinois in
Chicago, the chair of the Chicago chapter of the IEEE
Communications Society, and president of the Chinese
Academic and Professional Association of Mid-America
(CAPAMA). ◆

